PATENTANMELDUNG
Titel: Verfahren und Verbindungen zur Beeinflussung der Raumstruktur von GNB-Proteinen
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Beeinflussung der Eigenschaften von GNB- Proteinen (GNB, guanine nucleotide binding protein)", insbesondere von Proteinen der Ras- Superfamilie sowie ein Mittel zur Durchführung dieses Verfahrens.
Die GNB-Proteine bilden eine große Proteinfamilie, deren Mitglieder in vielen zellulären Funktionen involviert sind. Eine besonders wichtige Gruppe ist die Ras-Superfamilie, eine Superfamilie regulatorischer Proteine, die nach ihrem wichtigsten Vertreter, dem Produkt des Proto-Onkogens ras benannt ist. Gemeinsam ist allen Mitgliedern der Ras-Superfamilie, dass sie GTP (Guansintriphosphat) und GDP (Guanosindiphosphat) binden und an intrazellulären Signalübertragungen beteiligt sind. Daher werden sie auch als „kleine GTP-bindende Proteine" bezeichnet. Wenn sie GTP gebunden haben, kommunizieren sie mit im Signalstrom abwärts gelegenen Effektormolekülen. Nach Bindung der kleinen GTP-bindenden Proteine an spezielle GTPase-aktivierende Enzyme (GAP, GTPase activa- ting proteins) wird das gebundene GTP zu GDP hydrolysiert und sie werden dann als Signalmoleküle inaktiv. Ihre Reaktivierung kann nur stattfinden, wenn das gebundene GDP gegen GTP ausgetauscht wird, wozu Guaninnucleotidaustauschfaktoren (GEF, guanine nucleotide exchange factor) benötigt werden. Diese Proteine werden also durch Beladung mit GTP bzw. GDP ein- bzw. ausgeschaltet und werden daher auch als „molekulare Schalter" bezeichnet.
Die Ras- Proteine (p21rss) sind monomere Proteine mit einer Molekülmasse von 21.000 Da, die auf den ras-Genen kodiert sind. Man unterscheidet v-ras-Gene (virale Onkogene in Krebs erzeugenden Viren) und c-ras-Gene in eukaryontisches Organismen. Letztere sind zelluläre Proto-Onkogene, die normale physiologische Funktionen erfüllen. Die c-ras-Gene können durch Mutationen zu Onkoge- nen transformiert werden. Bei Säugetieren kennt man die Proteine c-H-Ras, c-K-Ras und c-N-Ras. Von c-K-Ras gibt es zwei verschieden gespleißte Varianten. Die Ras-Proteine sind mit je einem li
pophilen Palmitoyl- und Farnesyl-Rest in der Nähe des Carboxy-Terminus an die Zellmembran gebunden.
Die Ras-Proteine sind an der Signaltransduktion von Wachstumsfaktoren beteiligt. Wenn GTP an die Ras-Proteine gebunden ist, sind diese aktiv und übermitteln ein Signal. Dies geschieht auf verschiedenen Wegen. Der zuerst endeckte Ras-Effektor war die Raf-Proteinkinase, die wiederum eine ganze Kaskade von Proteinkinasen aktiviert, was sich über Transkriptionsfaktoren auf die Ablesung bestimmter, für Zeilproliferation und Zelldifferenzierung verantwortllicher Gene im Zellkern auswirkt. Inzwischen weiß man, dass Ras mit einer Anzahl anderer Effektoren interagiert und mit anderen Proteinen der Ras-Superfamilie wie RaplA um die Bindung an diese Effektoren kompetitiert. Beispiele sind die Phosphoinositid-3-Kinase, das RalGEF, AF6 und Nore. Die Aktivierung von Nore beeinflusst vermutlich direkt die Apoptose, d.h. den programmierten Zelltod. Indirekt and die Signaltransduktion gekoppelt ist auch die Aktivierung bestimmter Formen der Protein-Kinase C.
Die Ras-Proteine werden von einem GTPase-aktivierenden Protein (GAP) reguliert. GAP bindet an den Komplex aus Ras-Protein und GTP und stimuliert im Ras-Protein eine GTP-spaltende Aktivität. Dadurch wird GTP zu GDP abgebaut und der aktivierende Effekt wird abgeschaltet. Ein Guanin- nukleotid-Austauschfaktor katalysiert den Austausch von GDP gegen GTP am Ras-Protein, so dass dieses wieder aktiviert wird.
Man kennt nun Mutationen in ras-Genen, welche die GTPase-Aktivität im Ras-Protein herabsetzen und damit Ras für eine längere Zeit in seiner aktiven Konformation halten. Dadurch werden die betreffenden Gene zu Onkogenen, und die Proteine stimulieren ein ständiges Zellwachstum, was zur Ausbildung von Tumoren führt.
Da der aktivierende Effekt von GTP bzw. der desaktivierende Effekt von GDP auf ras-Proteine auf eine Änderung der räumlichen Struktur des Proteins zurück zu führen ist, besteht ein Ansatz in der Entwicklung von Anti-Tumor-Medikamenten darin, Substanzen zu entwickeln, die auf die räumliche Struktur von ras-Proteinen einwirken. Die Änderungen der Raumstruktur während der Aktivierung und Desaktivierung werden bspw. mittels NMR-Spektroskopie untersucht (vgl. M.Geyer et al., „Conformational transitions in p21ras and in ist complexes with the effector protein raf-RBD and die
GTPase activating protein Gap"; Biochemistry 35, 10308-10320 (1996); M.Geyer et al., „Conformational states of the nuclear GTP-binding protein ran and ist complexes with the exchange factor RCC1 and the effector protein RanBPl", Biochemistry 38, 1 1250-11260 (1999); M. Spörner et al., „Dynamic properties of the ras switch l region and ist importance for binding to effectors", PNAS 98, 4944-4949 (2001)). Gleiches gilt für die Kinetik dieser Reaktionen (vgl. T. Schweins et al., „Linear free energy relationships in the intrinsic and GTPase activating protein- stimulated guanosine 5'-triphosphate hydrolysis of p21ras", Biochemistry 35, 14225-14231 (1996).
Die Aufgabe der vorliegenden Erfindung besteht somit darin, Verfahren und Mittel bereit zu stellen, welche die Raumstruktur von Ras-Proteinen derart beeinflussen, dass die Effektorenwechselwirkung moduliert wird, entweder direkt durch die Stabilisierung der nicht-aktiven Konformation von Ras, eine Wechselwirkung mit dem Effektor selbst oder indirekt durch eine Erhöhung der GTPase- Aktivität oder eine Verlangsamung des GTP-Austausches. Hiermit ließe sich zum Beispiel die Zeilproliferation verlangsamen oder der programmierte Zelltod einleiten.
Die Lösung besteht in einem Verfahren mit den Merkmalen des Anspruchs 1 und in einem Mittel mit den Merkmalen des Anspruchs .
Überraschenderweise hat sich herausgestellt, dass eine an sich bekannte Klasse von Verbindungen, nämlich mono-, di- und trinukleare Übergangsmetallkomplexe substituierter und unsubstituierter 1 , 4,7,10-Tetraazacyclododecane, auf eine Weise auf die Raumstruktur von Ras-Proteinen einwirkt, dass die in der NMR-Spektroskopie beobachtbare schwach-bindende Konformation im Nucleot- sidtriphosphat stabilisiert wird. Bisher war nur bekannt, dass derartige Komplexe mit der DNA wechselwirken oder pseudo-enzymatische katalytische Aktivität aufweisen (vgl. R. Reichenbach- Klinke, Burkhard König, „Metal complexes of azacrownethers in molecular recognition and cataly- sis", J. Chem. Soc. Dalton Trans. 2002,121-130; B. König et al., „Urea derivatives of 1 ,4,7,10- Tetraazacyclododecane - synthesis and binding properties", Eur. J. Org. Chem. 2001, 1943-1949).
Die entscheidende Erkenntnis für eine gezielte Unterbrechung der Signalkaskade auf der Ebene des Ras-Proteins ist die Tatsache, dass nicht die GTP-Bindung per se für die Aktivierung von Ras ver-
antwortlich ist, sondern die Stabilisierung einer Ras-Konformation durch GTP, die die Effektoren stark bindet und aktiviert. Die erfindungsgemäße Weiterentwicklung von Anti-Tumor- Medikamenten auf der Grundlage der Änderung der räumlichen Struktur des Proteins besteht darin, Substanzen bereit zu stellen, die so auf die räumliche Struktur von Ras-Proteinen einwirken, dass eine nicht-aktive Konformation stabilisiert wird. Dies kann auch durch eine Beschleunigung der Hydrolyse oder eine Verzögerung des GDP-GTP-Austauchs geschehen; dies sind aber nur Sonderfälle des beschriebenen allgemeinen Mechanismus.
Die hier vorgestellten Ergebnisse legen nahe, dass auch im GTP-Komplex ein Konformer von Ras vorliegt, das dem GDP-Zustand ähnlich ist, und dessen Population man durch gezielten Einsatz von Wirkstoffen erhöht werden kann.
Für die Untersuchungen wurde die Substanzklasse der mono-, di- und trinuklearen Übergangsmetallkomplexe substituierter und unsubstituierter 1 ,4,7,10-Tetraazacyclododecane benutzt Beispiele für diese Substanzen sind im Folgenden aufgeführt.
In allen Formeln haben die Symbole folgende Bedeutung:
M = Zn(ll), Cu(ll), Mn(ll), Mn(lll), Ni(ll), Co(lll), Cd(ll), Hg(ll), Fe(lll);
R = H, substituiertes oder unsubstituiertes Alkyl, Aryl, Heteroaryl; auch gemischt substituiert;
X = anorganische Anionen, wie Perchiorat oder Chlorid;
Y = Alkylkette, Aromat, Heteroaromat, Peptid, jeweils substituiert oder unsubstituiert.
Beispiele erfindungsgemäßer wirksamer Koordinationsverbindungen sind
und Kopplungsprodukte mit Peptiden natürlicher und nicht-natürlicher Aminosäuren
2 ClOv
Die Synthese der Substanzen wurde nach publizierten Vorschriften durchgeführt. Exemplarische Literaturstellen sind im Anhang zu dieser Beschreibung aufgelistet. Auch die in diesen Arbeiten zitierte Literatur kann wiederum zur Synthese der Verbindungen heran gezogen werden.
Bei der Zugabe einer beliebigen dieser Verbindungen zu einem Ras-Protein beobachtet man eine intermolekulare Bindung, die eine Konformationsänderung zur Folge hat (Fig. 1). Die Bindung wurde durch NMR-Titration und kalorimetrische Titration nachgewiesen. Die Fig. 2 zeigt eine isother- male titrationskalorimetrische Messung der Bindung von Zink(ll)cyclen an Ras. Mg2+.GppNHp in wässrigem Puffer, die nach an sich bekannten Vorschriften durchgeführt wurde. Dabei wurden a0.0585 mmol Ras.Mg2+.GppNHp in 1.42 ml HEPES Puffer bei pH 7.0 und 18.3 mmol Zink(ll)cyclen in 300 μl HEPES Puffer, pH 7.0. verwendet. Die Messung erfolgte bei 20.0 °C, vermessen wurden 60 Injektionen zu 5 μl. Die Auswertung der Daten erfolgte mit dem Microcal-Ergänzungsmodul zum Programm Origin. Es wurde eine Assoziationskonstante von 2,660 M"1 bei einer angenommenen 1 :1 Stöchiometrie bestimmt.
Fig. 3 zeigt die Anpassung der Titrationskurve, die eine millimolare Bindungskonstante liefert
Die durch die Bindung der Koordinationsverbindung ausgelöste Änderung des Proteinkonformati- onsgleichgewichts wurde wiederum durch NMR-Messungen nachgewiesen. Fig. 1 zeigt 31P NMR Spektren von Ras.Mg2+.GppNHp bei 278 K in wässrigen Puffern. In Abwesenheit von Effektoren liegt Ras in zwei Zuständen vor, die durch verschiedene Phosphoresonanzfrequenzen charakterisiert sind. Der Graph links zeigt die Änderungen bei Zusatz einer Ras-Bindungsdomäne, hier von AF6. Nur der eine der beiden Zustände, der „Ras-Bindungszustand" kommt im Komplex mit dem Effektor vor, der „schwach-bindende Zustand" ist nicht mehr nachzuweisen. Nach Zusatz von Zink(ll) Cyclen (0 bis 10 Äquivalente) lässt sich der „schwach-bindende Zustand" stabilisieren (Fig. 1 , rechts).
Daraus lässt sich der Schluss ziehen, dass die erfindungsgemäßen Verbindungen einen Zustand stabilisieren, der die Interaktion mit Effektoren schwächt. Damit können diese Verbindungen als Wirkstoffe in der Antitumortherapie wirken.
Anhang: Literatur
Chung, Yongseog; Akkaya, Engin U.; Venkatachalam, T. K.; Czarnik, Anthony W. Synthesis and characterization of a reactive binuclear cobalt(lll) complex. Cooperative promotion of phosphodiester hydrolysis. Tetra h ed ro n Lett. (1990), 31 (38), 5413-16.
Norman, Paul R.; Cornelius, Richard D. Mechanism of cobalt(lll)-promoted hydrolysis of triphosphate ion. J. Am. Chem. Soc. (1982), 104(9), 2356-61.
Kodama, Mutsuo; Kimura, Eiichi. Kinetics and mechanism of displacement of zinc(ll) by copper(ll) in complexes of saturated macrocyclic tetraamines. J. Chem. Soc, Dalton Trans. (1980), (12), 2447-51.
Anichini, Andrea; Fabbrizzi, Luigi; Paoletti, Piero; Clay, Robert M. A microcalorimetric study of the macrocyclic effect. Enthalpies of formation of copper(ll) and zinc(ll) complexes with some tetra- aza macrocyclic ligands in aqueous solution. J. Chem. Soc, Dalton Trans. (1978), (6), 577-83.
Hua, Wang Shi; Ajiboye, Sarah I.; Haining, Gordon; McGhee, Laurence; Peacock, Robert D.; Peattie, Gordon; Siddique, Rana M.; Winfield, John M. Co-ordination chemistry of iodine(l) with tetraaza- macrocycles or monodentate ligands. Comparisons with bromine(l) and with some d-block metals. J. Chem. Soc, Dalton Trans. (1995), (23), 3837-42.
Burai, Laszlo; Ren, Jimin; Kovacs, Zoltan; Bruecher, Erno; Sherry, A. Dean. Synthesis, Potentiometry, and NMR Studies of Two New 1,7-Disubstituted Tetraazacyclododecanes and Their Complexes Formed with Lanthanide, Alkaline Earth Metal, Mn2+, and Zn2+ Ions. Inorganic Chemistry (1998), 37(1), 69-75.
Stephens, Ashley K. W.; Dhillon, Ramesh; Lincoln, Stephen F.; Wainwright, Kevin P. Helicity interchange in the cadmium(ll), mercury(ll) and lead(ll) complexes of two isomeric pendant arm tetraaza macrocyclic ligands. Inorg. Chim. Acta (1995), 236(1 -2), 185-8.
Swisher, R. G.; Stuehr, D. J.; Knox, J.; Fox, B. M.; Blinn, E. L The reactions of silver(l) with tetraaza macrocyclic ligands. J. Coord. Chem. (1989), 20(2), 101-7.
T, Fricke, S. Chräpavä, B. König, Syn. Commun. 2002, im Druck. Synthesis of 1,4,7,10-Tetra-N-alkyl-1,4,7,10-tetraaza-cyclododecanes
B. König, M. Pelka, H. Zieg, T. Ritter, H. Bouas-Laurent, R. Bonneau, J.-P. Desvergne, J. Am. Chem. Soc. 1999, 121 , 1681 - 1687.
Photoinduced Electron Transfer in a Phenothiazine-Riboflavin Dyad Assembied by Zinc-Imide Coordination in Water
R. Reichenbach-Klinke, B. König, J. Chem. Soc, Dalton Trans. 2002, 121 - 130. Metal Complexes of Azacrownet ers in Molecular Recognition and Catalysis (review)
M. Subat, B. König, Synthesis 2001, 1818 - 1825. N-Arylation of 1 ,4,7,10-Tetraazacyclododecanes
B. König, M. Pelka, M. Subat, I. Dix, P. G. Jones, Eur. J. Org. Chem. 2001 , 1943 - 1949. Urea Derivatives of 1,4,7,10-Tetraazacyclododecane: Synthesis and Binding Properties
B. König, M. Pelka, M. Klein, I. Dix, P. G. Jones, J. Lex, J. Ind. Phenom. 2000, 37, 39 - 57.
Synthesis of Functionalized Aza-macrocycles and the Application of Their Metal Complexes in
Binding Processes (review)