WO2004006309A1 - Method of exposure and aligner - Google Patents

Method of exposure and aligner Download PDF

Info

Publication number
WO2004006309A1
WO2004006309A1 PCT/JP2003/008415 JP0308415W WO2004006309A1 WO 2004006309 A1 WO2004006309 A1 WO 2004006309A1 JP 0308415 W JP0308415 W JP 0308415W WO 2004006309 A1 WO2004006309 A1 WO 2004006309A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
exposure
gas
housing
transmittance
Prior art date
Application number
PCT/JP2003/008415
Other languages
French (fr)
Japanese (ja)
Inventor
Shunsuke Niisaka
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2004519235A priority Critical patent/JPWO2004006309A1/en
Priority to AU2003246243A priority patent/AU2003246243A1/en
Publication of WO2004006309A1 publication Critical patent/WO2004006309A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70925Cleaning, i.e. actively freeing apparatus from pollutants, e.g. using plasma cleaning

Definitions

  • the present invention relates to an exposure method having a step of cleaning an optical element and an exposure apparatus for performing the method. More specifically, the present invention relates to an optical element using ultraviolet light having a wavelength of 200 nm or less such as an F 2 excimer laser. TECHNICAL FIELD The present invention relates to an exposure method having a cleaning step of an optical element for cleaning a substrate and an exposure apparatus for executing the method. Background art
  • an exposure apparatus that transfers a pattern on a mask (or reticle) to a substrate such as a wafer or a glass plate.
  • a step-and-repeat type reduction projection exposure apparatus for transferring a pattern on a mask onto a substrate via a projection optical system, and a step-and-ski method have been proposed.
  • Projection exposure apparatuses such as a scanning exposure type projection exposure apparatus of the Yang system (so-called scanning stepper) are mainly used.
  • a projection exposure apparatus uses a large number of optical elements such as lenses and mirrors in order to accurately transfer a pattern on a mask onto a substrate.
  • the degassing generated from the housing or the lens barrel (housing of the projection optical system) in which these optical elements are housed, and impurities originally present in the atmosphere in the optical system cause impurities on the surface of the optical elements.
  • this cleaning method has poor cleaning efficiency, and it has been necessary to irradiate the optical element with ultraviolet light for a long time in order to obtain a sufficient cleaning effect. For this reason, in addition to a decrease in work efficiency, there has been a problem that the optical element is damaged by a long time irradiation with ultraviolet light of high engineering energy on the glass material.
  • An object of the present invention is to provide a method for manufacturing a micro device such as a semiconductor device or a liquid crystal display device by using a method for cleaning an optical element capable of sufficiently and efficiently cleaning the optical element.
  • An object of the present invention is to provide an exposure method and an exposure apparatus capable of improving yield and productivity.
  • the mask is formed by using an illumination optical system that irradiates an exposure beam onto a mask and a projection optical system that irradiates an exposure beam irradiated through the mask onto a photosensitive substrate.
  • the illumination optical system and the projection optical system By irradiating at least one of the illumination optical system and the projection optical system surrounded by the housing supplied with the gas having the high moisture concentration with the exposure beam, the illumination optical system and the projection optical system Cleaning the optical element constituting at least one of the above.
  • the exposure method of the present invention includes a cleaning step of cleaning an optical element constituting an illumination optical system and / or a projection optical system housed in a housing.
  • the housing is filled with a gas having a higher moisture concentration than the gas filled in the housing during exposure of the photosensitive substrate, and an exposure beam (for example, ultraviolet light) is irradiated with an illumination optical system and / or a projection optical system. Irradiation.
  • an exposure beam for example, ultraviolet light
  • a housing filled with the gas having a high moisture concentration water (moisture) present in the housing is irradiated with ultraviolet light, thereby generating a strong oxidizing OH radical, and oxidation of the OH radical.
  • the organic substances adhered to the surface of the optical element existing in the housing are oxidized and decomposed.
  • the optical element can be cleaned by removing the oxidatively decomposed organic matter, for example, together with the exhaust of the gas in the housing.
  • the high water concentration is preferably 0.5 ppm to 10 ppm. If the water concentration is lower than 0.5 ppm, the amount of OH radicals generated is small, The cleaning effect of the optical element due to the oxidizing action is not sufficient.
  • the moisture concentration is higher than 1 O ppm, the ultraviolet light is absorbed by the moisture in the housing, and the light amount of the ultraviolet light decreases as the position of the optical element moves away from the light source. Insufficient.
  • the gas preferably contains an inert gas, for example, nitrogen or helium. Further, it is preferable that the gas having a high water concentration further contains ozone. Oxidation of ozone contained in the gas allows for more efficient ⁇ optical element cleaning.
  • a transmittance of at least one of the illumination optical system and the projection optical system with respect to an exposure beam is measured, and the cleaning step is performed when the measured transmittance falls below a predetermined value. Is preferred. Thereby, the optical system in the exposure apparatus can be always maintained in a good state. Further, it is preferable that the exposure beam is F 2 excimer laser light.
  • an exposure apparatus for exposing a photosensitive substrate with an exposure beam through a mask having a predetermined pattern
  • An illumination optical system including an optical element for irradiating the mask with an exposure beam generated from the light source;
  • a projection optical system including an optical element for projecting the pattern of the mask onto the photosensitive substrate;
  • a water concentration adjusting device for adjusting the water concentration in the housing in accordance with the exposure step and the optical element cleaning step. Since the exposure apparatus of the present invention has the moisture concentration adjusting device, it is possible to adjust the moisture concentration in the housing in the optical element cleaning step to be higher than the moisture concentration in the housing in the exposure step. In this way, by irradiating the optical element with the exposure beam after adjusting the moisture concentration, ⁇ H radicals are generated in the housing, and the oxidizing action of the OH radicals causes the optical element existing in the housing to be strongly oxidized. Organic substances adhering to the child surface can be decomposed and removed.
  • the moisture concentration adjusting device adjusts the moisture concentration in the housing such that the cleaning step of the optical element is higher in the cleaning step of the optical element than in the exposing step.
  • the apparatus further includes a transmittance detection device that detects a transmittance of at least one of the illumination optical system and the projection optical system. It is desirable to adjust the water concentration.
  • the water concentration adjusting device is connected to the housing and the first tank in which the first gas is stored, and the gas is connected to the housing and the gas is filled in the first tank.
  • the switching valve is controlled to supply the first gas in the first tank into the housing, and in that state, the exposure beam generated from the light source is sensitized through the illumination optical system, the mask, and the projection optical system. Irradiate on the substrate.
  • the photosensitive substrate is exposed in a pattern corresponding to the pattern formed on the mask.
  • the switching valve is controlled to supply the second gas having a higher moisture concentration than the first gas from the second tank into the housing surrounding at least one of the illumination optical system and the projection optical system. I do.
  • at least one of the illumination optical system and the projection optical system may be irradiated with the exposure beam generated from the light source.
  • the exposure apparatus further comprises: a transmittance detection device that detects at least one transmittance of the illumination optical system and the projection optical system; and a control device that controls the switching valve. It is desirable to control the switching valve according to the transmittance detected by the transmittance detector.
  • the second gas preferably has a water concentration of 0.5 ppm to 1 O ppm. If the water concentration is lower than 0.5 ppm, the amount of generated 0 H radicals is small, and the cleaning effect of the optical element by the oxidizing action is not sufficient. On the other hand, if the moisture concentration is higher than 1 O ppm, the ultraviolet light is absorbed by the moisture in the housing, and the light amount of the ultraviolet light decreases as the position of the optical element moves away from the light source. Will be enough. Further, it is preferable that the first and second gases include nitrogen or helium. Further, it is preferable that the second gas contains ozone. The optical element can be more efficiently cleaned by the oxidizing action of ozone contained in the second gas.
  • the light source is preferably an F 2 excimer laser.
  • the exposure apparatus of the present invention further includes a beam matching unit provided between the light source and the illumination optical system and including an optical element, and a housing surrounding the beam matching unit. It is preferable that the water concentration adjusting device adjusts the water concentration in the housing surrounding the beam matching unit so that the optical element cleaning step is higher than the exposure step.
  • FIG. 2 is a flowchart showing an exposure step and an optical element cleaning step in the exposure apparatus of the present invention.
  • the output per Roh ⁇ Riresu is 6 m J / cm 2, wavelength 1 57
  • a vacuum ultraviolet laser beam (F 2 excimer laser beam) of 65 nm was irradiated with a 65-million pulse, and the transmittance of this optical element was measured again with the above-mentioned vacuum ultraviolet spectrometer and found to be 97.2%. This decrease in transmittance is caused by the fact that organic substances existing around the optical element adhere to the surface of the optical element when the optical element is irradiated with laser light.
  • an optical element having the same configuration as that described above was placed in a nitrogen atmosphere having a water concentration of 0.3 ppm, and a vacuum ultraviolet laser having a wavelength of 157 nm was applied to this optical element in the same manner as described above.
  • the light was irradiated with a 65-million pulse, and the transmittance of the optical element after laser irradiation was measured using a vacuum ultraviolet spectrometer to be 97.2%.
  • an optical element of the same configuration was placed in a nitrogen atmosphere with a water concentration of 1 ppm, and a vacuum ultraviolet laser with a wavelength of 157 nm was applied to the optical element in the same manner as above.
  • the light was irradiated with a pulse of 25 mm.
  • the transmittance of the optical element after the irradiation of the laser light was measured. 3%, the original transmittance before laser beam irradiation is maintained. This indicates that the optical element is being cleaned.
  • the mechanism for cleaning the optical element is as follows. When water (H 2 0) is irradiated with F 2 excimer laser light, O H radicals are generated by the photolysis reaction. The generated OH radical has a strong oxidizing action, and the oxidizing action oxidizes and decomposes organic matter.
  • FIG. 1 is a schematic configuration diagram of an exposure apparatus according to the present invention.
  • a scanning type exposure apparatus for semiconductor manufacturing that transfers a pattern on a reticle as a mask to a plurality of shot areas on a wafer as a substrate by a step-and-scan method will be described.
  • the exposure apparatus 10 mainly includes a light source unit 12 as a light source, an illumination optical system 14, a reticle stage RST for holding a reticle R, a projection optical system PL, a wafer stage WST for holding a wafer W, and There is one control device 20 for driving and controlling these.
  • a light source unit 12 As the light source unit 1 2, F 2 excimer monodentate apparatus is used.
  • the light source unit 12 is actually installed on the floor above the installation floor or in another room (for example, a service room that is less clean than the ultra-clean room where the exposure unit is installed). It is shown above the illumination optical system 14 for convenience.
  • the light source unit 12 is a light transmitting system beam including a housing HS 1 and optical elements (including a cylindrical lens and a beam expander) arranged in the housing HS 1. It is connected via a matching unit BMU to a housing HS 2 in which an illumination optical system 14 is arranged.
  • the beam matching unit BMU and the illumination optical system 14 constitute an illumination optical system that irradiates the light from the light source unit 12 to the reticle R.
  • the light source unit 12 includes a laser resonator 12a, a beam splitter 12b having a transmittance of about 97%, and a beam splitter 12b arranged on an optical path of laser light emitted from the laser resonator 12a.
  • the laser resonator 12a includes a narrow-band module and a laser chamber including a discharge electrode (both not shown).
  • the band narrowing module is configured by combining a prism and a diffraction grating (grating), and reduces the spectrum width of the laser light emitted from the laser resonator 12a to about the natural oscillation spectrum width.
  • the output is narrowed to about 1/100 to 1/300.
  • the narrow-band module may be configured by an optical element such as an interference type band filter in which two plane mirrors called an etalon (Fabry—Perotetalon) are arranged in parallel.
  • the beam monitor mechanism 12 includes a diffuser, an etalon element, a line sensor, and an energy monitor (all not shown).
  • the light that has passed through the diffuser constituting the beam monitor mechanism 12c is diffracted by the etalon element to form a fringe panel.
  • the fringe pattern corresponds to the center wavelength and the half-width of the spectrum of the incident light, and an image signal corresponding to the fringe pattern is output from the line sensor to the control device 20.
  • the control device 20 obtains information on the optical characteristics of the light incident on the beam monitor mechanism 12c by performing predetermined signal processing on the imaging signal of the fringe pattern. At the same time, the control device 20 detects the energy power of the laser beam based on the output of the energy monitor.
  • the light source unit 12 is provided with a drive mechanism 18 for a spectroscopic element such as a grating, a prism, or an etalon that constitutes the laser resonator 12a.
  • the drive mechanism 18 is controlled by the controller 20 based on information on the optical characteristics of the incident light with respect to the beam monitor mechanism 12c (detection results of the beam monitor mechanism 12c), and the center wavelength and the spectral half width Is adjusted to fall within a desired range.
  • the center wavelength can be adjusted substantially continuously within a predetermined range, for example, 156.9 nm to 157.6 nm.
  • the wavelength of the laser light (F 2 excimer laser light) emitted from the laser resonator 12 a can be adjusted by the drive mechanism 18.
  • a shirt (not shown) for blocking laser light according to control information from the control device 20 is provided on the side of the illumination optical system 14 of the beam splitter 12b.
  • the illumination optical system 14 is composed of a secondary light source forming optical system including an energy rough adjuster, a fly-eye lens, a condensing lens system, a reticle blind, and an imaging lens system (all not shown). Are arranged in a predetermined positional relationship in the housing HS2.
  • the laser light emitted from the light source unit 12 becomes the illumination light for exposure having a substantially uniform illuminance distribution through the illumination optical system 14 and forms a rectangular (or arc-shaped) illumination area on the reticle R.
  • a beam splitter 14a having a transmittance of about 97% is disposed between the secondary light source forming optical system of the illumination optical system 14 and the imaging lens system.
  • an incident light amount measuring device 22 called an integrator sensor composed of photoelectric conversion elements is arranged on the optical path of the light reflected by the beam splitter 14a.
  • the photoelectric conversion signal of the light amount measured by the incident light amount measuring device 22 is sent to the control device 20.
  • the output of the photoelectric conversion signal in the incident light amount measuring device 22 is calibrated in advance with respect to the output of a reference illuminometer (not shown). Also, the output of the above-described energy monitor is calibrated with respect to the output of the photoelectric conversion signal in the incident light meter 22.
  • the conversion factor (or conversion function) of these output values Is determined in advance, and the value is stored in the memory in the control device 20.
  • the reticle chamber RR houses the reticle R and the reticle stage RST in a sealed state. Reticle R is fixed on reticle stage RST by electrostatic attraction.
  • the reticle stage RST can be driven on a reticle base (not shown) at a predetermined scanning speed in a predetermined scanning direction (Y-axis direction in FIG. 1) by a reticle driving unit 24 such as a linear motor. . Further, reticle stage RST is configured to be able to be finely driven by reticle driving section 24 in the rotation direction (0 direction) with reference to the X axis direction orthogonal to the Y axis and the Z axis orthogonal to the XY plane. I have.
  • the position of the reticle stage RST is always detected by a reticle laser interferometer (hereinafter referred to as “reticle interferometer”) 25 with a resolution of about 0.5 to 1 nm.
  • the position information (or speed information) of reticle stage RST obtained by reticle interferometer 25 is sent to control device 20.
  • Control device 20 controls the position of reticle stage RST by driving reticle driving section 24 based on the transmitted position information (or speed information) of reticle stage RST.
  • the projection optical system PL is arranged below the reticle stage RST such that the optical axis AX is in the Z-axis direction.
  • the projection optical system PL is a refraction optical system that has a telecentric optical arrangement on both sides within the lens barrel CL and includes a plurality of lens elements arranged at predetermined intervals in the optical axis AX direction.
  • the projection optical system PL is a reduction optical system having a predetermined projection magnification (for example, 1Z5 or 1/4).
  • a reduced image (partially inverted image) of the circuit pattern in the illumination area of the reticle R is formed in an exposure area conjugate to the illumination area on the wafer W coated with a photo resist on the surface.
  • Wafer stage WST is arranged below projection optical system PL.
  • the wafer stage WST is placed on a wafer base (not shown), It is driven movably in the XY plane by a driving device 26 composed of a motor or the like.
  • wafer W is fixed by electrostatic attraction via a wafer holder (not shown).
  • a moving mirror 28 is provided on the upper surface of wafer stage WST.
  • the position of the wafer stage WST in the XY plane can be adjusted from 0.5 to 0.5 by irradiating the moving mirror 28 with a measuring beam from a wafer laser interferometer (hereinafter referred to as “wafer interferometer”) 30. It is always detected with a resolution of about 1 nm.
  • the position information (or speed information) of the wafer stage WST obtained by the wafer interferometer 30 is sent to the controller 20.
  • the controller 20 is driven based on the position information (or speed information) of the wafer stage WST. By driving the device 26, the position of the wafer stage WST is controlled.
  • an emitted light amount measuring device 32 composed of a photoelectric conversion element is fixed.
  • the light-receiving surface of the emitted light quantity measuring device 32 is set to be substantially the same height as the surface of the wafer W, and the photoelectric conversion signal corresponding to the light amount obtained by the emitted light quantity measuring device 32 is transmitted to the control device 20.
  • the output of the photoelectric conversion signal in the emitted light quantity measuring device 32 is previously calibrated with the output of the incident light quantity measuring device 22 described above.
  • the conversion coefficients (or conversion functions) of these outputs are obtained in advance, and the values are stored in the memory of the control device 20.
  • the wafer stage WST, the wafer W, the movable mirror 28, the wafer interferometer 30, the emitted light quantity measuring device 32, and the driving device 26 are housed in a sealed state in the wafer chamber WR.
  • the supply pipe system and the exhaust pipe system are connected to the cylinder C respectively.
  • the reticle chamber RR and the wafer chamber WR are also connected to an air supply piping system and an exhaust piping system, respectively.
  • the reticle chamber RR and the wafer chamber WR may be filled with nitrogen gas or Pum gas is supplied.
  • the supply of these gases is controlled by a solenoid valve (not shown) installed in the supply piping system.
  • the housing HS1, housing HS2, and lens barrel CL are connected to one end of air supply piping 34A, 34B, and 34C, respectively, as an air supply piping system. .
  • the other end sides of the air supply pipes 34A, 34B, and 34C are each branched in a forked shape.
  • One of the bifurcated branches of the air supply pipes 34A and 34B is connected to a tank T1 containing a nitrogen gas having a water concentration of 0.3 ppm.
  • the other of the two branches of the air supply pipes 34A and 34B is connected to a tank T2 containing a nitrogen gas having a water concentration of 1 Ppm.
  • One of the bifurcated branch of the supply pipe 34 C is connected to a tank T 3 containing helium gas having a water concentration of 0.3 ppm.
  • the other branch of the bifurcated supply pipe 34 C is connected to a tank T 4 containing helium gas with a water concentration of 1 ppm.
  • Solenoid valves that open and close each pipe (gas passage) are provided between the supply pipe 34 A branch and tank T 1 and between the supply pipe 34 A branch and tank T 2. 38 A and 38 B are provided respectively.
  • each pipe (gas passage) is opened and closed between the branch of the air supply pipe 34B and the tank T1 and between the branch of the air supply pipe 34B and the tank T2.
  • Solenoid valves 38 C and 38 D are provided, respectively.
  • the gas exhausted from the housing of each optical system is exhausted from the exhaust pipe 42 via the exhaust pipes 40A, 40B, and 40C.
  • moisture sensors 44 A, 44 B that detect the concentration of moisture in the gas flowing in the exhaust pipes (gas passages). And 44 C are provided respectively.
  • the values of the moisture concentrations detected by these moisture sensors 44A to 44C are sent to the control device 20.
  • the control device 20 mainly includes a microcomputer (or workstation) and a memory. As described above, the control device 20 controls the driving device of each component of the exposure device 10 and also controls the opening and closing operations of the solenoid valves 38A to 38F.
  • control device 20 sends a signal from the light source unit 12 to the illumination optical system 14 based on the output of the incident light amount measuring device 22 and the output of the energy monitor 12a constituting the beam monitoring mechanism 12c.
  • a calculation function for calculating the transmittance of the optical system up to the position of the beam splitter 14a (hereinafter referred to as "first transmittance” as appropriate), and the output of the incident light quantity measuring device 22 and the measurement of the output light quantity
  • the solenoid valves 38A to 38F are in the closed state, and the gas contained in each ink does not flow into the housing or the lens barrel via the air supply pipe. Although it is in a state, a high-concentration nitrogen gas (first nitrogen gas) having a water concentration of 0.3 ppm is contained in the inside of the housing of the beam matching unit BMU and the illumination optical system 14 and in the exhaust pipe system.
  • first nitrogen gas a high-concentration nitrogen gas having a water concentration of 0.3 ppm
  • an exposure step is first started (step S 1).
  • the exposure process is interrupted (step S 2), and the controller 20 controls the first transmittance and the second transmittance.
  • the value is measured (step S3). It is determined whether at least one of the first transmittance and the second transmittance is lower than a preset value (Step S4), and the first transmittance and the second transmittance are determined.
  • the process proceeds to an optical element cleaning step described below.
  • the solenoid valves 38 B, 38 D and 38 F are opened under the control of the controller 20.
  • nitrogen gas second nitrogen gas
  • HS 1 and the illumination optical system 14 are supplied into the housing HS 2 respectively.
  • a helium gas second helium gas containing a water concentration of 1 ppm is supplied from the tank 4 to the lens barrel CL containing the projection optical system PL via the air supply pipe 34C (step S). Five ) .
  • helium gas having high thermal conductivity was used in the lens barrel CL of the projection optical system transmission PL in order to prevent the deterioration of the imaging characteristics due to heat.
  • the first nitrogen gas filled in the housings HS 1 and HS 2 and the first nitrogen gas filled in the lens barrel CL are transferred to the housing HS 1 through the respective exhaust pipe systems.
  • HS 2 and the lens barrel C are exhausted, and the inside of the housings HS 1 and HS 2 is almost completely replaced by the second nitrogen gas, and the inside of the lens barrel CL is replaced by the second helium gas.
  • the control device 20 outputs water from the water sensors 44 A, 44 B, and 44 C connected to the exhaust piping system connected to the housings HS 1 and HS 2 and the lens barrel CL, respectively.
  • concentration becomes 1 ppm or more, it is determined that the gas in the housing (including the lens barrel) of each optical system has been replaced with the second nitrogen gas or helium gas.
  • the housing of each optical system barrel The supply of gas into the housing is stopped by closing all solenoid valves in the air supply piping system connected to the Next, the controller 20 starts outputting a trigger pulse to the high-voltage power supply in the light source unit 12, and starts emitting laser light (F 2 excimer laser light) from the laser resonator 12 a. .
  • the shirt (not shown) in the light source unit 12 is in a closed state.
  • laser light pulsesed ultraviolet light
  • the controller 20 Information on the signal and the pulse energy value is sent to the controller 20.
  • a shutter (not shown) in the light source unit 12 is opened by an instruction from the control device 20. It is.
  • Step S 6 laser light is emitted from the light source unit 12, and the emitted laser light is applied to the gas inside each space (housing) in which the beam matching unit BMU, the illumination optical system 14, and the projection optical system PL are installed. And the optical element.
  • the optical element by irradiating a laser beam (F 2 excimer laser light) Cleaning is performed (Step S 6) Immediately after the cleaning of the optical element is started, the wafer stage WST is moved so that the emitted light amount measuring device 32 arranged on the wafer stage is located immediately below the projection optical system PL. Let me do it.
  • step S7 the output of the incident light amount measuring device 22, the output of the energy monitor constituting the beam monitoring mechanism 12 c, and the output of the emission light amount measuring device 32 are simultaneously captured, and the above-described first transmittance and second transmission The rate is determined (step S7).
  • wafer stage WST is moved so that emission light meter 32 retracts from immediately below projection optical system PL. Thereafter, at predetermined time intervals, the projection optical system PL The movement of the wafer stage WST for lowering and retreating and the measurement of the first and second transmittances are repeated.
  • the control device 20 monitors changes in the first and second transmittances measured at predetermined time intervals, and determines whether both of the change rates of the transmittances are equal to or less than a predetermined value (for example, substantially zero). Judgment is made (step S8). If the rate of change is equal to or less than the predetermined value, it can be considered that the cleaning of the optical element has been completed. When it is considered that the cleaning of the optical element is completed, the shutter in the light source unit 12 is closed, the output of the trigger pulse to the high-voltage power supply in the light source unit 12 is stopped, and the air supply piping system is stopped.
  • a predetermined value for example, substantially zero
  • the electromagnetic valves 38 ⁇ , 38C and 38 ⁇ are opened, and the first nitrogen gas and helium gas are supplied into the housing of each optical system for a predetermined time (step S9).
  • the second nitrogen gas and the helium gas remaining in the housing (including the lens barrel) of each optical system are exhausted through the exhaust piping system, and are almost completely converted into the first nitrogen gas and the helium gas, respectively. Is replaced by
  • the control device 20 removes the gas in the housing of each optical system from the first. Is determined to have been replaced by nitrogen gas or helium gas. In this state, the normal exposure process can be restarted (step S10).
  • the cleaning of the optical element is continued until the rate of change of the transmittance of the optical element becomes equal to or less than the predetermined value.
  • the cleaning of the optical element in the optical system housing in such an exposure apparatus is particularly required when the optical element is easily stained and the necessity of cleaning is high. It is effective when the operation is stopped or when the exposure condition or illumination condition of the exposure apparatus is changed (when replacing the aperture stop in the illumination optical system, replacing the reticle, changing the pupil aperture in the projection optical system, etc.). is there. This minimizes downtime during the operation of the system, enables efficient cleaning of optical elements, and enables the exposure system to always exhibit its original performance. [Operation of exposure apparatus]
  • a reticle loader and a wafer loader controlled by the controller 20 load the reticle R into the reticle stage RST (installation) and load the wafer W into the wafer stage WST (installation). Done.
  • the reticle stage RST is moved so that the reticle R becomes the scanning exposure start position.
  • reticle drive unit 24 Scanning exposure of wafer W on wafer stage WST is performed while controlling reticle stage RST and wafer stage WST synchronously by controlling driving device 26 respectively.
  • the reticle R on the reticle stage RST and the wafer W on the wafer stage WST are synchronized along the Y-axis so that they face each other at a speed ratio according to the projection magnification of the projection optical system PL. Moving.
  • the light quantity control during scanning exposure is performed based on the output of the incident light quantity measuring device 22 and the output of the energy monitor, for example, the pulse energy of the laser light output from the laser resonator 12a or the laser resonator 12a. This is performed by adjusting the oscillation frequency.
  • the wafer stage WST is step-moved by one shot area in the X-axis direction, and the scanning exposure for the next shot area is similarly performed. By repeating the step movement and the scanning exposure in this manner, a predetermined number of shots of the exposure pattern are transferred onto the wafer W.
  • the method of cleaning the beam matching unit, the illumination optical system, and the projection optical system of the exposure apparatus has been described.
  • the air supply pipe connected to the housing of the optical system desired to be cleaned.
  • the water concentration is low in the housing of the optical system where cleaning is not performed, it is possible to suppress the energy absorption of laser light due to the influence of the water in the housing.
  • effective cleaning of the optical element can be performed even in a projection optical system which is considered to be far from the light source.
  • the beam matching unit of the exposure apparatus, and the method of cleaning the optical elements of the illumination optical system and the projection optical system have been described.
  • the optical element is cleaned while the first nitrogen gas and the first helium gas in the optical system are replaced with the second nitrogen gas and the second helium gas, respectively.
  • the moisture concentration may be supplied mixed gas of nitrogen gas and Saizo emissions 0 3 is 1 ppm.
  • the second helium gas water content concentration but it may also be supplied mixed gas of Heriumugasu ozone 0 3 is 1 ppm.
  • a mixed gas of nitrogen gas or helium gas and ozone 0 3 was filled in the housing or lens barrel, further irradiating F 2 excimer laser light (vacuum ultraviolet light).
  • organic contaminants Substance in adhering to the optical element surface in the housing or barrel is cut by the energy of the F 2 excimer one laser light, in addition to the oxidizing action of 0 H the radical Le
  • the optical element can be more efficiently cleaned by the oxidizing action of ozone contained in the mixed gas.
  • the optical element is cleaned by irradiating a laser beam.
  • the optical element may be cleaned by irradiating the optical element with laser light in a state where the second nitrogen gas or the room gas is continuously supplied into each housing.
  • the atmosphere in the housing can be maintained at a predetermined moisture concentration, so that the optical element can be efficiently cleaned in a stable state. Therefore, the optical element can be sufficiently cleaned in a shorter time, that is, the irradiation time of the F 2 excimer laser beam (vacuum ultraviolet light) can be shortened, so that the glass material constituting the optical element is damaged. Can be reduced. Further, in the present embodiment, the supply of the gas into the housing is stopped while the optical element is being cleaned by irradiating the laser beam, but the second nitrogen gas or the helium gas is supplied at a predetermined rate. After the supply for a time, the first nitrogen gas or the helium gas may be supplied during the cleaning of the optical element.
  • the F 2 excimer laser beam vacuum ultraviolet light
  • nitrogen gas and helium gas having a water concentration of 1 ppm were used.
  • the concentration of water contained in the gas is not limited to this, but may be any as long as the concentration of water is in the range of 0.5 ppm to 10 ppm. If the water concentration is lower than 0.5 ppm, a predetermined amount of 0 H radical cannot be obtained, so that the oxidizing action is not sufficient and the cleaning effect of the optical element is reduced. On the other hand, if the water concentration is higher than 1 O ppm, light is absorbed by the water in the housing during the cleaning process, and the cleaning effect of the optical element decreases as the distance from the light source increases.
  • the nitrogen gas is supplied to the beam matching unit and the illumination optical system, but a helium gas may be supplied instead of the nitrogen gas.
  • helium gas is supplied to the projection optical system, but nitrogen gas may be supplied instead of helium gas.
  • a gas whose moisture concentration is within a predetermined range is used.
  • the nitrogen gas is supplied to the reticle chamber RR and the wafer chamber WR, but a helium gas may be supplied instead of the nitrogen gas.
  • the projection optical system of the exposure apparatus of the present invention is not limited to a projection optical system in which all optical elements are composed of refractive lenses. It may be a catadioptric projection optical system composed of elements.
  • the projection optical system is not limited to a reduction system projection optical system, and may be a unit magnification system or an enlargement system projection optical system.
  • the gas is supplied by directly connecting the pipe to the lens barrel of the projection optical system.
  • the projection optical system may be housed in a gas-sealed chamber, and the gas may be supplied into such a chamber.
  • an F 2 excimer laser is used as a light source, but the light source is not limited to this, and an excimer laser such as ArF or KrF, EUV light, or the like may be used.
  • the oscillation wavelength is set to any of the wavelengths of 248 nm, 193 nm, and 157 nm.
  • a harmonic of a fixed laser such as a YAG laser having a vector may be used.
  • a single-wavelength laser beam in the infrared or visible range oscillated by a DFB semiconductor laser or fiber laser is amplified by, for example, a fiber amplifier doped with erbium (or both erbium and ytterbium).
  • a harmonic converted into a wavelength of ultraviolet light using a nonlinear optical crystal may be used.
  • the oscillation wavelength of a single-wavelength laser is in the range of 1.51 to 1.59 Atm, a 10th harmonic with a generated wavelength in the range of 151 to 159 nm will be output. .
  • the 10th harmonic whose generated wavelength is in the range of 157-158 nm that is, the wavelength substantially equal to that of the F 2 excimer laser Ultraviolet light can be obtained.
  • the oscillation wavelength is in the range of 1.03 to 1.12 m, a 7th harmonic whose output wavelength is in the range of 147 to 160 nm is output.
  • a 7th harmonic having a generation wavelength within the range of 157 to 158 Aim that is, ultraviolet light having substantially the same wavelength as the F 2 excimer laser.
  • a ytterbium-doped-fiber laser is used as the single-wavelength oscillation laser.
  • a scanning exposure apparatus for manufacturing a semiconductor in which a pattern on a reticle as a mask is transferred to a plurality of shot areas on a wafer as a substrate by a step-and-scan method has been described.
  • the present invention is not limited to this, and is not limited to a step-and-repeat type projection exposure apparatus (stepper), but also a step-and-scan type and a step-and-repeat type for a liquid crystal.
  • stepper a step-and-repeat type projection exposure apparatus
  • step-and-scan type a step-and-repeat type for a liquid crystal.
  • the present invention can also be applied to a projection exposure apparatus.
  • the structure and exposure operation of a scanning exposure apparatus is described in detail, for example, in U.S. Patent No. 6,341,007 B1, and to the extent permitted by the laws of the country designated or selected in this international application, This US patent is incorporated herein by reference.
  • optical adjustment is performed after an illumination optical system and a projection optical system composed of a plurality of lenses are incorporated into the exposure apparatus main body, and a reticle stage and a wafer stage including a large number of mechanical parts are used. Wiring and piping are carried out after the laser is attached to the exposure apparatus body, and overall adjustments (electrical adjustment, operation confirmation, etc.) are performed. It is desirable that the manufacture of the exposure apparatus be performed in a clean room where the temperature, cleanliness, etc. are controlled. Further, a semiconductor device can be manufactured by using the exposure apparatus of the present invention.
  • a semiconductor device is designed using a design process for designing according to the function and performance of the device, a reticle manufacturing process for manufacturing a reticle based on the design, a wafer manufacturing process for obtaining a wafer from silicon material, and an exposure apparatus.
  • an optical element constituting an illumination optical system, a projection optical system, or the like of an exposure apparatus can be easily and efficiently cleaned. Therefore, the optical system of the exposure apparatus can always be maintained in a good state. As a result, the yield and productivity in manufacturing micro devices such as semiconductor devices and liquid crystal display devices can be improved.

Abstract

A method of exposure and an aligner wherein yield and productivity in the production of microdevices such as semiconductor devices and liquid crystal display devices can be enhanced by the use of a method of cleaning optical devices, the method capable of satisfactorily cleaning optical devices with high efficiency. This exposure method comprises a step of cleaning optical devices as constituents of illumination optical system and/or projection optical system accommodated in a housing. In the cleaning step, the housing is charged with a gas of moisture content higher than that of a gas charged into the housing at the exposure of photosensitive substrate, and the illumination optical system and/or projection optical system is irradiated with exposure beams (e.g., ultraviolet radiation). In the housing charged with the gas of higher moisture content, water (moisture) present in the housing is exposed to ultraviolet radiation to thereby produce OH radicals exhibiting strong oxidative activity. Organic matter adhering to the surface of optical devices lying in the housing is oxidized and decomposed by the oxidative activity of OH radicals. Thus, cleaning of the optical devices can be accomplished.

Description

明細書 露光方法及び露光装置 技術分野  Description Exposure method and exposure apparatus
本発明は、 光学素子の洗浄工程を有する露光方法及びその方法を実行する露光 装置に関し、 さらに詳し〈は、 F 2エキシマレ一ザ等の波長 2 0 0 n m以下の紫 外光を用いて光学素子を洗浄する光学素子の洗浄工程を有する露光方法及びその 方法を実行する露光装置に関する。 背景技術 The present invention relates to an exposure method having a step of cleaning an optical element and an exposure apparatus for performing the method. More specifically, the present invention relates to an optical element using ultraviolet light having a wavelength of 200 nm or less such as an F 2 excimer laser. TECHNICAL FIELD The present invention relates to an exposure method having a cleaning step of an optical element for cleaning a substrate and an exposure apparatus for executing the method. Background art
従来、 半導体素子や液晶表示素子等を製造するためのフォ卜リソグラフイエ程 では、 マスク (または、 レチクル) 上のパターンをウェハやガラスプレート等の 基板に転写する露光装置が用いられている。 近年、 この種の露光装置として、 マ スク上のパターンを投影光学系を介して基板上に転写するステップ .アンド . リ ピ一卜方式の縮小投影露光装置 (いわゆるステツパ) やステップ .アンド · スキ ヤン方式の走査露光型の投影露光装置 (いわゆるスキャニング . ステツパ) 等の 投影露光装置が、 主に用いられている。 この種の投影露光装置では、 要求される解像度が高くなるに従って露光光の波 長も短くなり、 最近では約 1 5 7 n mの波長を有する F 2エキシマレ一ザ光を露 光用の照明光として用いる、 F 2エキシマレ一ザ露光装置も開発されている。 しかしながら、 波長 2 0 0 n m以下の真空紫外 ( V U V ) 光は、 光路中に空気 が存在すると、 空気中に存在する水 (水分) によってそのエネルギの大部分が吸 収されてしまい、 露光対象である基板の表面において露光に必要なエネルギを得 ることができない。 このため、 例えば、 F 2エキシマレ一ザ露光装置では、 光学 系内の光路の大部分を屈折率が 1に近い気体、 例えば N 2等で置換し、 且つ、 露 光用の照明光として水による吸収の少ない波長に狭帯域化したエキシマレーザ光 を用いて、 マスク上のパターンを基板上に効率的に転写 (露光) している。 一般に、 投影露光装置では、 マスク上のパターンを基板に正確に転写するため に、 多数のレンズやミラー等の光学素子が使われている。 しかしながら、 これら の光学素子が収納されるハウジングや鏡筒 (投影光学系のハウジング) 自身から 発生する脱ガスや光学系内の雰囲気中に初めから存在する不純物が原因となって、 光学素子表面に微量の水や有機系の汚染物質等が付着していた。 これらの水や有 機系の汚染物質は、 F 2エキシマレ—ザ光等の紫外光に対して強い吸収作用を有 しており、 特に F 2エキシマレーザ露光装置においては、 光学素子表面に付着し た微量の水や汚染物質の影響により、 光学系の透過率の低下や光学系の結像性能 の劣化を引き起こしていた。 これにより、 基板に転写されたパターンも劣化し、 半導体素子や液晶表示素子等のマイクロデバイスの製造における歩留まり低下の 原因となっていた。 ところで、 有機物が付着することにより汚染された光学素子表面に紫外光を照 射すると、 紫外光のエネルギによって表面に付着した有機物を切断することがで きる。 この方法を用いた光学素子の洗浄方法が知られている。 しかしながら、 この洗浄方法では洗浄効率が悪く、 十分な洗浄効果を得るため には光学素子に長時間紫外光を照射する必要があった。 このため、 作業効率の低 下に加えて、 高工ネルギの紫外光を長時間照射することによる光学素子の硝材へ のダメ一ジ等が問題となっていた。 Conventionally, in a photolithography process for manufacturing a semiconductor device, a liquid crystal display device, and the like, an exposure apparatus that transfers a pattern on a mask (or reticle) to a substrate such as a wafer or a glass plate has been used. In recent years, as this type of exposure apparatus, a step-and-repeat type reduction projection exposure apparatus (so-called stepper) for transferring a pattern on a mask onto a substrate via a projection optical system, and a step-and-ski method have been proposed. Projection exposure apparatuses such as a scanning exposure type projection exposure apparatus of the Yang system (so-called scanning stepper) are mainly used. In this type of projection exposure apparatus, it is shortened wavelength of the exposure light in accordance with the required resolution increases, as recently illumination light for exposure light, F 2 excimer one laser light having a wavelength of about 1 5 7 nm is used, F 2 excimer one the exposure apparatus has also been developed. However, in the case of vacuum ultraviolet (VUV) light having a wavelength of 200 nm or less, if air is present in the optical path, most of the energy is absorbed by water (moisture) present in the air, and the light is exposed to light. The energy required for exposure cannot be obtained on the surface of a certain substrate. For this reason, for example, in an F 2 excimer laser exposure apparatus, most of the optical path in the optical system is replaced with a gas having a refractive index close to 1, such as N 2 , and The pattern on the mask is efficiently transferred (exposed) onto the substrate using excimer laser light that has been narrowed to a wavelength that is less absorbed by water as illumination light for light. In general, a projection exposure apparatus uses a large number of optical elements such as lenses and mirrors in order to accurately transfer a pattern on a mask onto a substrate. However, the degassing generated from the housing or the lens barrel (housing of the projection optical system) in which these optical elements are housed, and impurities originally present in the atmosphere in the optical system cause impurities on the surface of the optical elements. Trace amounts of water and organic pollutants were attached. Contaminants such as water and organic systems, F 2 excimer - and have a strong absorption to ultraviolet light of laser light or the like, particularly in the F 2 excimer laser exposure apparatus, affixed to an optical surface The effects of trace amounts of water and contaminants reduced the transmittance of the optical system and the imaging performance of the optical system. As a result, the pattern transferred to the substrate also deteriorates, causing a reduction in the yield in the manufacture of micro devices such as semiconductor elements and liquid crystal display elements. By irradiating the surface of the optical element contaminated with the organic matter with ultraviolet light, the organic matter attached to the surface can be cut by the energy of the ultraviolet light. A method for cleaning an optical element using this method is known. However, this cleaning method has poor cleaning efficiency, and it has been necessary to irradiate the optical element with ultraviolet light for a long time in order to obtain a sufficient cleaning effect. For this reason, in addition to a decrease in work efficiency, there has been a problem that the optical element is damaged by a long time irradiation with ultraviolet light of high engineering energy on the glass material.
発明の開示 Disclosure of the invention
本発明の目的は、 光学素子を十分に且つ効率良く洗浄可能な光学素子の洗浄方 法を用いて、 半導体素子や液晶表示素子等のマイクロデバイスの製造における歩 留まり及び生産性を向上させることができる露光方法及び露光装置を提供するこ とにある。 本発明の第 1の態様に従えば、 露光ビームをマスクに照射する照明光学系と、 上記マスクを介して照射された露光ビームを感光性基板に照射する投影光学系と を用いて、 上記マスク上に形成されたパターンを上記感光性基板に転写する露光 方法であって、 An object of the present invention is to provide a method for manufacturing a micro device such as a semiconductor device or a liquid crystal display device by using a method for cleaning an optical element capable of sufficiently and efficiently cleaning the optical element. An object of the present invention is to provide an exposure method and an exposure apparatus capable of improving yield and productivity. According to a first aspect of the present invention, the mask is formed by using an illumination optical system that irradiates an exposure beam onto a mask and a projection optical system that irradiates an exposure beam irradiated through the mask onto a photosensitive substrate. An exposure method for transferring the pattern formed thereon to the photosensitive substrate,
上記照明光学系及び上記投影光学系の少なくとも一方を包囲するハウジング内 に、 感光性基板露光時におけるハウジング内の気体より高い水分濃度を有する気 体を供給する工程と;  Supplying a gas having a higher moisture concentration than the gas in the housing during exposure of the photosensitive substrate into a housing surrounding at least one of the illumination optical system and the projection optical system;
上記高い水分濃度を有する気体が供給されたハウジングに包囲された上記照明 光学系及び上記投影光学系の上記少なくとも一方に、 上記露光ビームを照射する ことにより、 上記照明光学系及び上記投影光学系の上記少なくとも一方を構成す る光学素子を洗浄する工程と;を含む露光方法が提供される。  By irradiating at least one of the illumination optical system and the projection optical system surrounded by the housing supplied with the gas having the high moisture concentration with the exposure beam, the illumination optical system and the projection optical system Cleaning the optical element constituting at least one of the above.
本発明の露光方法は、 ハウジング内に収容された照明光学系及び/または投影 光学系を構成する光学素子を洗浄する洗浄工程を含む。 洗浄工程において、 感光 性基板の露光時にハウジング内に充填される気体よりも水分濃度が高い気体をハ ウジング内に充填し、 露光ビーム (例えば、 紫外光) を照明光学系及び/または 投影光学系に照射する。 上記水分濃度が高い気体を充填したハウジング内では、 ハウジング内に存在する水 (水分) に紫外光が照射されることによって、 強力な 酸化作用を有する 0 Hラジカルが生成され、 この O Hラジカルの酸化作用によつ て、 ハウジング内に存在する光学素子表面に付着していた有機物が酸化分解され る。 酸化分解された有機物を、 例えばハウジング内のガスの排気とともに除去す ることにって、 光学素子の洗浄を行うことができる。 本発明では、 上記高い水分濃度が、 0 . 5 p p m〜1 0 p p mであることが好 ましい。 水分濃度が 0 . 5 p p mより低いと O Hラジカルの発生量が少ないので、 酸化作用による光学素子の洗浄効果が十分でない。 一方、 水分濃度が 1 O p p m よりも高いと、 紫外光がハウジング内の水分に吸収されてしまい、 光学素子の位 置が光源から離れるに従って紫外光の光量が低下して、 光学素子の洗浄が不十分 となる。 本発明では、 上記気体が不活性気体、 例えば、 窒素またはヘリウムを含むこと が好ましい。 また、 上記高い水分濃度を有する気体がさらにオゾンを含むことが 好ましい。 気体中に含んだオゾンの酸化作用により、 一層効率良〈光学素子を洗 浄することができる。 本発明では、 さらに、 上記照明光学系及び上記投影光学系の少なくとも一方の 露光ビームに対する透過率を計測し、 計測された透過率が所定値以下に低下した ときに、 上記洗浄工程を実行することが好ましい。 これにより、 露光装置内の光 学系を常に良好な状態に維持することができる。 また、 上記露光ビームが、 F 2 エキシマレ一ザ光であることが好ましい。 本発明の第 2の態様に従えば、 露光ビームで所定パターンのマスクを介して感 光性基板を露光する露光装置であって、 The exposure method of the present invention includes a cleaning step of cleaning an optical element constituting an illumination optical system and / or a projection optical system housed in a housing. In the cleaning process, the housing is filled with a gas having a higher moisture concentration than the gas filled in the housing during exposure of the photosensitive substrate, and an exposure beam (for example, ultraviolet light) is irradiated with an illumination optical system and / or a projection optical system. Irradiation. In a housing filled with the gas having a high moisture concentration, water (moisture) present in the housing is irradiated with ultraviolet light, thereby generating a strong oxidizing OH radical, and oxidation of the OH radical. By the action, the organic substances adhered to the surface of the optical element existing in the housing are oxidized and decomposed. The optical element can be cleaned by removing the oxidatively decomposed organic matter, for example, together with the exhaust of the gas in the housing. In the present invention, the high water concentration is preferably 0.5 ppm to 10 ppm. If the water concentration is lower than 0.5 ppm, the amount of OH radicals generated is small, The cleaning effect of the optical element due to the oxidizing action is not sufficient. On the other hand, if the moisture concentration is higher than 1 O ppm, the ultraviolet light is absorbed by the moisture in the housing, and the light amount of the ultraviolet light decreases as the position of the optical element moves away from the light source. Insufficient. In the present invention, the gas preferably contains an inert gas, for example, nitrogen or helium. Further, it is preferable that the gas having a high water concentration further contains ozone. Oxidation of ozone contained in the gas allows for more efficient <optical element cleaning. In the present invention, it is preferable that a transmittance of at least one of the illumination optical system and the projection optical system with respect to an exposure beam is measured, and the cleaning step is performed when the measured transmittance falls below a predetermined value. Is preferred. Thereby, the optical system in the exposure apparatus can be always maintained in a good state. Further, it is preferable that the exposure beam is F 2 excimer laser light. According to a second aspect of the present invention, there is provided an exposure apparatus for exposing a photosensitive substrate with an exposure beam through a mask having a predetermined pattern,
上記露光ビームを発生させる光源と;  A light source for generating the exposure beam;
光学素子を含み、 上記光源から発生した露光ビームを上記マスクに照射するた めの照明光学系と ;  An illumination optical system including an optical element for irradiating the mask with an exposure beam generated from the light source;
光学素子を含み、 上記マスクのパターンを上記感光性基板に投影するための投 影光学系と ;  A projection optical system including an optical element for projecting the pattern of the mask onto the photosensitive substrate;
上記照明光学系及び上記投影光学系の少なくとも一方を包囲するハウジング と;  A housing surrounding at least one of the illumination optical system and the projection optical system;
該ハウジング内の水分濃度を露光工程及び光学素子の洗浄工程に応じて調節す るための水分濃度調節装置と ;を備える露光装置が提供される。 本発明の露光装置は、 水分濃度調節装置を有するので、 光学素子の洗浄工程で はハウジング内の水分濃度が露光工程におけるハウジング内の水分濃度よりも高 くなるように調節することができる。 このように、 水分濃度を調節した上で露光 ビームを光学素子に照射することにより、 ハウジング内で〇 Hラジカルが生成さ れ、 その O Hラジカルの強力な酸化作用により、 ハウジング内に存在する光学素 子表面に付着していた有機物を分解除去することができる。 本発明において、 上記水分濃度調節装置は、 上記ハウジング内の水分濃度を露 光工程よりも光学素子の洗浄工程の方が高くなるように調節することが好ましい。 また、 上記照明光学系及び上記投影光学系の少なくとも一方の透過率を検出する 透過率検出装置を備え、 上記水分濃度調節装置は、 透過率検出装置で検出された 透過率に応じてハウジング内の水分濃度を調節することが望ましい。 本発明の露光装置では、 上記水分濃度調節装置が、 上記ハウジングに接続され 第 1の気体が収納されている第 1タンクと、 上記ハウジングに接続され第 1 タン クに充填されている気体よりも水分濃度が高い第 2の気体が充填されている第 2 タンクと、 上記照明光学系及び上記投影光学系の少なくとも一方を包囲するハウ ジングへの第 1 タンクからの第 1の気体と第 2タンクからの第 2の気体の供給を 切り替える切替弁とを備え得る。 この場合、 切替弁の開閉動作を制御することに より、 第 1 タンクの第 1のガスと第 2タンクの第 2のガスとを切替可能に、 ハウ ジング内に供給することができる。 露光工程では、 切替弁を制御して第 1タンク の第 1の気体をハウジング内に供給し、 その状態で光源から発生した露光ビーム を照明光学系、 マスク及び投影光学系を介して、 感光性基板上に照射する。 これ により、 マスク上に形成されたパターンに対応するパターンで感光性基板が露光 される。 一方、 洗浄工程では、 切替弁を制御して、 第 1の気体よりも水分濃度が 高い第 2の気体を第 2のタンクから照明光学系及び投影光学系の少なくとも一方 を包囲するハウジング内に供給する。 この状態で、 光源から発生した露光ビーム で照明光学系及び投影光学系の少な〈とも一方を照射すればよい。 また、 本発明 の露光装置は、 さらに、 上記照明光学系及び上記投影光学系の少な〈とも一方の 透過率を検出する透過率検出装置と、 上記切替弁を制御する制御装置とを備え、 該制御装置は上記透過率検出装置で検出された透過率に応じて上記切替弁を制御 することが望ましい。 本発明では、 第 2の気体の水分濃度が 0 . 5 p p m〜1 O p p mであることが 好ましい。 水分濃度が 0 . 5 p p mより低いと 0 Hラジカルの発生量が少ないの で、 酸化作用による光学素子の洗浄効果が十分でない。 一方、 水分濃度が 1 O p p mよりも高いと、 紫外光がハウジング内の水分に吸収されてしまい、 光学素子 の位置が光源から離れるに従って紫外光の光量が低下して、 光学素子の洗浄が不 十分となる。 また、 第 1及び第 2の気体が窒素またはヘリウムを含むことが好ま しい。 さらに、 第 2の気体がオゾンを含むことが好ましい。 第 2の気体中に含ま れたオゾンの酸化作用により、 一層効率良く光学素子を洗浄することができる。 さらに、 本発明では、 上記光源が F 2エキシマレ一ザであることが好ましい。 本発明の露光装置では、 上記光源と上記照明光学系との間に設けられ、 光学素 子を備えるビームマッチングュニッ 卜と、 該ビームマッチングュニッ 卜を包囲す るハウジングとをさらに備え、 上記水分濃度調節装置は、 上記ビームマッチング ュニッ 卜を包囲するハウジング内の水分濃度を、 露光工程よりも光学素子の洗浄 工程の方が高くなるように調節することが望ましい。 図面の簡単な説明 図 1は、 本発明における露光装置の概略構成図である。 A water concentration adjusting device for adjusting the water concentration in the housing in accordance with the exposure step and the optical element cleaning step. Since the exposure apparatus of the present invention has the moisture concentration adjusting device, it is possible to adjust the moisture concentration in the housing in the optical element cleaning step to be higher than the moisture concentration in the housing in the exposure step. In this way, by irradiating the optical element with the exposure beam after adjusting the moisture concentration, 〇H radicals are generated in the housing, and the oxidizing action of the OH radicals causes the optical element existing in the housing to be strongly oxidized. Organic substances adhering to the child surface can be decomposed and removed. In the present invention, it is preferable that the moisture concentration adjusting device adjusts the moisture concentration in the housing such that the cleaning step of the optical element is higher in the cleaning step of the optical element than in the exposing step. The apparatus further includes a transmittance detection device that detects a transmittance of at least one of the illumination optical system and the projection optical system. It is desirable to adjust the water concentration. In the exposure apparatus of the present invention, the water concentration adjusting device is connected to the housing and the first tank in which the first gas is stored, and the gas is connected to the housing and the gas is filled in the first tank. A second tank filled with a second gas having a high moisture concentration; a first gas and a second tank from the first tank to a housing surrounding at least one of the illumination optical system and the projection optical system; And a switching valve for switching the supply of the second gas from the fuel cell. In this case, by controlling the opening / closing operation of the switching valve, the first gas in the first tank and the second gas in the second tank can be supplied to the housing in a switchable manner. In the exposure process, the switching valve is controlled to supply the first gas in the first tank into the housing, and in that state, the exposure beam generated from the light source is sensitized through the illumination optical system, the mask, and the projection optical system. Irradiate on the substrate. Thereby, the photosensitive substrate is exposed in a pattern corresponding to the pattern formed on the mask. On the other hand, in the cleaning process, the switching valve is controlled to supply the second gas having a higher moisture concentration than the first gas from the second tank into the housing surrounding at least one of the illumination optical system and the projection optical system. I do. In this state, at least one of the illumination optical system and the projection optical system may be irradiated with the exposure beam generated from the light source. Further, the present invention The exposure apparatus further comprises: a transmittance detection device that detects at least one transmittance of the illumination optical system and the projection optical system; and a control device that controls the switching valve. It is desirable to control the switching valve according to the transmittance detected by the transmittance detector. In the present invention, the second gas preferably has a water concentration of 0.5 ppm to 1 O ppm. If the water concentration is lower than 0.5 ppm, the amount of generated 0 H radicals is small, and the cleaning effect of the optical element by the oxidizing action is not sufficient. On the other hand, if the moisture concentration is higher than 1 O ppm, the ultraviolet light is absorbed by the moisture in the housing, and the light amount of the ultraviolet light decreases as the position of the optical element moves away from the light source. Will be enough. Further, it is preferable that the first and second gases include nitrogen or helium. Further, it is preferable that the second gas contains ozone. The optical element can be more efficiently cleaned by the oxidizing action of ozone contained in the second gas. Further, in the present invention, the light source is preferably an F 2 excimer laser. The exposure apparatus of the present invention further includes a beam matching unit provided between the light source and the illumination optical system and including an optical element, and a housing surrounding the beam matching unit. It is preferable that the water concentration adjusting device adjusts the water concentration in the housing surrounding the beam matching unit so that the optical element cleaning step is higher than the exposure step. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram of an exposure apparatus according to the present invention.
図 2は、 本発明の露光装置における露光工程及び光学素子の洗浄工程のフ口一 チヤ一卜である。 発明を実施するための最良の形態 本発明における実施態様を、 図を用いて説明するが、 本発明はこれに限定され ない。 FIG. 2 is a flowchart showing an exposure step and an optical element cleaning step in the exposure apparatus of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
[光学素子の洗浄方法] [How to clean optical elements]
まず、 本発明の露光装置に用いる光学素子の洗浄方法について説明する。 厚さ First, a method for cleaning an optical element used in the exposure apparatus of the present invention will be described. thickness
3 mmの蛍石からなる基板上に、 Mg F2、 し 3「3及び[\/19 F2の各層を、 基板 側から順に形成した。 このとき、 Mg F2、 し &「3及び1^9「2が、 それぞれ厚 さ 1 0. 2 nm、 23. 5 n m及び 26. 7 n mとなるように形成した。 これに より、 光学素子を得た。 こうして得られた光学素子の透過率を、 波長 1 57 nmの真空紫外分光器で測 定したところ、 98. 3%であった。 この光学素子に、 1ノ \リレス当たりの出力が 6 m J/cm2である、 波長 1 57 nmの真空紫外レ一ザ光 (F2エキシマレ一ザ 光) を 65ミリオンパルス照射した。 この光学素子の透過率を上記の真空紫外分 光器で再度測定したところ、 97. 2%であった。 この透過率の低下は、 光学素 子がレーザ光で照射されることによって、 光学素子の周囲に存在する有機物が光 学素子表面に付着してしまうことに起因すると考えられる。 次に、 上記と同じ構成の光学素子を水分濃度 0. 3 p pmの窒素雰囲気中に配 置し、 上記と同様にして、 この光学素子に波長 1 57 nmの真空紫外レーザ光を 65ミリオンパルス照射した。 レーザ光の照射後の光学素子の透過率を真空紫外 分光器を用いて測定したところ、 97. 2%であった。 透過率は、 単に光学素子 に真空紫外光を照射した場合と同様に低下した。 これに対し、 水分濃度 1 p pmの窒素雰囲気中に同じ構成の光学素子を配置し、 上記と同様にして、 光学素子に波長 1 57 n mの真空紫外レーザ光を 25ミリ才 ンパルス照射した。 レ一ザ光照射後の光学素子の透過率を測定したところ、 98. 3 %であり、 レーザ光照射前の元の透過率が維持されている。 このことから、 光 学素子の洗浄が行われていることが分かる。 この光学素子の洗浄のメカニズムは、 以下の通りである。 水分 (H 2 0 ) に F 2 エキシマレ一ザ光を照射すると、 光分解反応によって 0 Hラジカルが生成される。 生成された O Hラジカルは強力な酸化作用を備えており、 その酸化作用によって 有機物は酸化分解される。 つまり、 所定の水分濃度を有する気体で覆われた雰囲 気中に光学素子を配置し、 この光学素子に F 2エキシマレーザ光を照射すること によって、 光学素子表面に付着した有機物は酸化され、 C 0 2や H 2 0等のガスと して分解されて除去される。 次に、 上記光学素子の洗浄方法を露光装置に適用した例について、 図 1及び 2 を用いて説明する。 図 1は、 本発明における露光装置の概略構成図である。 本実 施形態では、 ステップ 'アンド, スキャン方式で、 マスクとしてのレチクル上の パターンを、 基板としてのウェハ上の複数のショッ 卜領域に転写する半導体製造 用の走査型露光装置について説明する。 露光装置 1 0は、 主に、 光源としての光源ュニッ 卜 1 2、 照明光学系 1 4、 レ チクル Rを保持するレチクルステージ R S T、 投影光学系 P L、 ウェハ Wを保持 するウェハステージ W S T、 及び、 これらを駆動制御するための制御装置 2 0を 1厢えている。 光源ユニッ ト 1 2としては、 F 2エキシマレ一ザ装置が用いられている。 光源 ユニッ ト 1 2は、 実際には設置床の上面または別の部屋 (例えば、 露光装置本体 が設置される超クリーンルームに比べてクリーン度の低いサービスルーム) 内に 設置されるが、 図 1では便宜上照明光学系 1 4の上方に示した。 光源ュニッ 卜 1 2は、 ハウジング H S 1 とハウジング H S 1内に配置された光学素子 (シリンド リカルレンズやビームエキスパンダ等を含む) とから構成された送光系のビーム マッチングュニッ 卜 BMUを介して、 内部に照明光学系 1 4が配置されたハウジ ング H S 2に接続されている。 本実施形態では、 ビームマッチングュニヅ 卜 BM Uと照明光学系 1 4で、 光源ユニッ ト 1 2からの光をレチクル Rに照射する照明 光学系を構成している。 光源ユニッ ト 1 2は、 レーザ共振器 1 2 a、 レーザ共振器 1 2 aから出射され たレーザ光の光路上に配置された透過率 97%程度のビ—ムスプリッタ 1 2 b、 ビ一ムスプリッタ 1 2 bの反射光路上に配置されたビームモニタ機構 1 2 c及び 高圧電源 (不図示) 等で構成されている。 レーザ共振器 1 2 aは、 狭帯域化モジュールと、 放電電極を含むレーザチャン バ (いずれも不図示) とから構成されている。狭帯域化モジュールは、 プリズム と回折格子 (グレーティング) とを組み合わせて構成されており、 レーザ共振器 1 2 aから出射されるレーザ光のスぺク トル幅を自然発振スぺク トル幅の約 1 / 1 00〜1 /300程度に狭めて出力する。 なお、 狭帯域化モジュールを、 エタ ロン (Fa b r y— Pe r o t e t a l o n) と呼ばれる 2枚の平面鏡を平行 に配置した干渉型の帯域フィルタ等の光学素子から構成してもよい。 ビームモニタ機構 1 2 は、 ディフユ一ザ、 エタロン素子、 ラインセンサ及び エネルギモニタ (いずれも不図示) で構成されている。 ビームモニタ機構 1 2 c を構成するディフユ一ザを通過した光はエタロン素子で回折し、 フリンジパ夕一 ンを形成する。 このフリンジパターンは、 入射光の中心波長及びスペクトル半値 幅に対応しており、 ラインセンサからこのフリンジパターンに相当する撮像信号 が制御装置 20に出力される。 制御装置 20は、 このフリンジパターンの撮像信 号に所定の信号処理を施すことによって、 ビームモニタ機構 1 2 cに対する入射 光の光学特性に関する情報を得る。 同時に、 制御装置 20は、 エネルギモニタの 出力に基づいてレーザビームのエネルギパワーを検出する。 光源ュニッ ト 1 2には、 レーザ共振器 1 2 aを構成するグレーティングやプリ ズム、 エタロン等の分光素子の駆動機構 1 8が併設されている。 駆動機構 1 8は、 ビームモニタ機構 1 2 cに対する入射光の光学特性に関する情報 (ビームモニタ 機構 1 2 cの検出結果) に基づいて制御装置 2 0によって制御され、 中心波長及 びスペク トル半値幅が所望の範囲内となるように調整される。 この場合、 中心波 長は、 所定範囲、 例えば 1 5 6 . 9 n m〜1 5 7 . 6 n mの範囲内で略連続的に 調節可能となっている。 即ち、 本実施形態では、 駆動機構 1 8によってレーザ共 振器 1 2 aから出射されるレーザ光 (F 2エキシマレ一ザ光) の波長を調整する ことができる。 また、 光源ュニッ 卜 1 2内には、 ビームスプリッタ 1 2 bの照明光学系 1 4側 に、 制御装置 2 0からの制御情報に応じてレーザ光を遮光するためのシャツ夕 (不図示) が配置されている。 照明光学系 1 4は、 エネルギ粗調器、 フライアイレンズ等を含む 2次光源形成 光学系、 集光レンズ系、 レチクルブラインド及び結像レンズ系 (いずれも不図 示) 等で構成され、 それぞれがハウジング H S 2内において所定の位置関係で配 置されている。 光源ュニッ卜 1 2から出射されたレーザ光は、 照明光学系 1 4を 介して照度分布が略均一な露光用照明光となり、 レチクル R上の矩形状 (あるい は円弧状) の照明領域を照明する。 照明光学系 1 4の 2次光源形成光学系と結像 レンズ系との間には、 約 9 7 %の透過率を有するビームスプリツ夕 1 4 aが配置 されている。 ビームスプリッタ 1 4 aで反射された光の光路上には、 光電変換素 子からなるインテグレー夕センサと呼ばれる入射光量計測器 2 2が配置されてい る。 この入射光量計測器 2 2で計測された光量の光電変換信号が、 制御装置 2 0 に送られる。 入射光量計測器 2 2における光電変換信号の出力は、 予め基準照度 計 (不図示) の出力に対してキャリブレーションされている。 また、 入射光量計 測器 2 2における光電変換信号の出力に対して、 前述したエネルギモニタの出力 がキャリブレーションされている。 これらの出力値の変換係数 (または変換関 数) は予め求められており、 その値は制御装置 2 0内のメモリに格納されている。 レチクル室 R Rは、 レチクル R及びレチクルステージ R S Tを密閉状態で収納 している。 レチクルステージ R S T上には、 レチクル Rが静電吸着により固定さ れている。 レチクルステージ R S Tは、 リニアモータ等のレチクル駆動部 2 4に より、 レチクルべ一ス (不図示) 上を所定の走査方向 (図 1では、 Y軸方向) に 所定の走査速度で駆動可能である。 また、 レチクルステージ R S Tは、 レチクル 駆動部 2 4によって、 Y軸に直交する X軸方向及び X Y面に直交する Z軸を基準 とした回転方向 (0方向) にも微少駆動可能な構成となっている。 レチクルステージ R S Tの位置は、 レチクルレ一ザ干渉計 (以下、 「レチクル 干渉計」 という) 2 5により、 0 . 5〜1 n m程度の分解能で常時検出される。 レチクル干渉計 2 5で得られたレチクルステージ R S Tの位置情報 (又は速度情 報) は制御装置 2 0に送られる。 制御装置 2 0は、 送られたレチクルステージ R S Tの位置情報 (又は速度情報) に基づいてレチクル駆動部 2 4を駆動すること により、 レチクルステージ R S Tの位置制御を行う。 投影光学系 P Lは、 光軸 A Xが Z軸方向となるように、 レチクルステージ R S Tの下方に配置されている。投影光学系 P Lは、 鏡筒 C L内に両側テレセン卜リ ックな光学配置で且つ光軸 A X方向に所定間隔で配置された複数枚のレンズェレ メン卜からなる屈折光学系である。 また、 投影光学系 P Lは、 所定の投影倍率 (例えば、 1 Z 5あるいは 1 / 4 ) を有する縮小光学系である。 投影光学系 P L によって、 レチクル Rの照明領域における回路パターンの縮小像 (部分倒立像) が、 表面にフォ卜レジス卜が塗布されたウェハ W上の上記照明領域と共役な露光 領域に形成される。 ウェハステージ W S Tは、 投影光学系 P Lの下方に配置される。 ウェハステ一 ジ W S Tは不図示のウェハベース上に配置され、 リニアモータや磁気浮上型平面 モータ等で構成される駆動装置 2 6により、 X Y平面内で移動可能に駆動される。 ウェハステージ W S Tの上面には、 ウェハ Wが不図示のウェハホルダを介して静 電吸着により固定される。 また、 ウェハステージ W S Tの上面には、 移動鏡 2 8が設けられている。 ゥェ ハステージ W S Tの X Y面内の位置は、 ウェハレーザ干渉計 (以下、 「ウェハ干 渉計」 という) 3 0から移動鏡 2 8に対して測長ビームを照射することにより、 0 . 5〜1 n m程度の分解能で常時検出される。 ウェハ干渉計 3 0で得られたゥ ェハステージ W S Tの位置情報 (又は速度情報) は制御装置 2 0に送られ、 制御 装置 2 0は、 ウェハステージ W S Tの位置情報 (又は速度情報) に基づいて駆動 装置 2 6を駆動することにより、 ウェハステージ W S Tの位置制御を行う。 また、 ウェハステージ W S Tの上面には、 光電変換素子からなる出射光量計測 器 3 2が固定されている。 出射光量計測器 3 2の受光面は、 ウェハ Wの表面と略 同じ高さとなるように設置されており、 出射光量計測器 3 2で得られた光量に対 する光電変換信号が制御装置 2 0に供給される。 出射光量計測器 3 2における光 電変換信号の出力は、 前述した入射光量計測器 2 2の出力に対して予めキヤリブ レージョンされている。 これらの出力の変換係数 (または変換関数) は予め求め られており、 その値は制御装置 2 0のメモリ内に格納されている。 なお、 ウェハ ステージ W S T、 ウェハ W、 移動鏡 2 8、 ウェハ干渉計 3 0、 出射光量計測器 3 2及び駆動装置 2 6は、 ウェハ室 W R内に密閉状態で収納されている。 本実施形態の露光装置 1 0では、 ビームマッチングュニッ 卜 B M Uを収納して いるハウジング H S 1、 照明光学系 1 4を収納しているハウジング H S 2及び投 影光学系 P Lを収納している鏡筒 Cしに、 給気配管系及び排気配管系がそれぞれ 接続されている。 また、 不図示ではあるが、 レチクル室 R R及びウェハ室 W Rに も、 それぞれ給気配管系と排気配管系とが接続されている。 なお、 レチクル室 R R及びウェハ室 W Rには、 パージ等の目的により、 必要に応じて窒素ガスやヘリ ゥムガスが供給される。 これらのガスは、 給気配管系に設置された不図示の電磁 弁によって給気制御される。 ハウジング H S 1 、 ハウジング H S 2及び鏡筒 C Lには、 図 1に示すように、 給気配管系として、 それぞれ給気配管 3 4 A、 3 4 B及び 3 4 Cの一端が接続さ れている。 給気配管 3 4 A、 3 4 B及び 3 4 Cの他端側は、 それぞれ二股状に分 岐されている。 給気配管 3 4 A及び 3 4 Bの二股状に分岐したうちの一方の配管 は、 水分濃度 0 . 3 p p mの窒素ガスが収容されたタンク T 1にそれぞれ接続さ れている。 また、 給気配管 3 4 A及び 3 4 Bの二股状に分岐したうちのもう一方 の配管は、 水分濃度 1 P p mの窒素ガスが収容されたタンク T 2にそれぞれ接続 されている。 また、 給気配管 3 4 Cの二股状に分岐したうちの一方の配管は、 水分濃度 0 . 3 p p mのヘリゥ厶ガスが収容されたタンク T 3に接続されている。 給気配管 3 4 Cの二股状に分岐したうちのもう一方の配管は、 水分濃度 1 p p mのヘリウム ガスが収容されたタンク T 4に接続されている。 給気配管 3 4 Aの分岐部とタンク T 1 との間及び給気配管 3 4 Aの分岐部とタ ンク T 2との間には、 各管路 (気体通路) の開閉を行う電磁弁 3 8 A及び 3 8 B がそれぞれ設けられている。 同様に、 給気配管 3 4 Bの分岐部とタンク T 1 との 間及び給気配管 3 4 Bの分岐部とタンク T 2との間には、 各管路 (気体通路) の 開閉を行う電磁弁 3 8 C及び 3 8 Dがそれぞれ設けられている。 さらに、 給気配 管 3 4 Cの分岐部とタンク T 3との間及び給気配管 3 4 Cの分岐部とタンク T 4 との間には、 各管路 (気体通路) の開閉を行う電磁弁 3 8 E及び 3 8 Fがそれぞ れ設けられている。 これらの電磁弁 3 8 A〜3 8 Fは、 制御装置 2 0によって開 閉制御される。 なお、 電磁弁の制御方法については、 後述する。 さらに、 ハウジング H S 1、 ハウジング H S 2及び鏡筒 C Lには、 排気配管系 として、 それそれ排気配管 4 0 A、 4 0 B及び 4 0 Cの一端が接続されている。 また、 排気配管 4 0 A、 4 0 B及び 4 0 Cの他端は、 共通の排気配管 4 2に接続 されている。 各光学系のハウジングから排気されたガスは、 各排気配管 4 0 A、 4 0 B及び 4 0 Cを介して排気配管 4 2から排出される。 排気配管 4 0 A、 4 0 B及び 4 0 Cの途中には、 それそれの排気管の管路 (気体通路) 内を流れる気体 中の水分濃度を検出する水分センサ 4 4 A、 4 4 B及び 4 4 Cが、 それぞれ設け られている。 これらの水分センサ 4 4 A〜4 4 Cで検出された水分濃度の値は、 制御装置 2 0に送られる。 制御装置 2 0は、 主にマイクロコンピュ一タ (あるいはワークステーション) 及びメモリで構成される。 制御装置 2 0は、 上述したように、 露光装置 1 0の各 構成部分の駆動装置を制御するとともに、 電磁弁 3 8 A〜3 8 Fの開閉動作を制 御する。 また、 制御装置 2 0は、 入射光量計測器 2 2の出力とビームモニタ機構 1 2 cを構成するエネルギモニタ 1 2 aの出力に基づいて、 光源ュニッ 卜 1 2か ら照明光学系 1 4のビ一ムスプリッタ 1 4 aの位置までの光学系の透過率 (以下、 適宜 「第 1の透過率」 と呼ぶ) を算出する演算機能や、 入射光量計測器 2 2の出 力と出射光量計測器 3 2の出力に基づいて、 ビ一ムスプリッタ 1 4 aの位置から ウェハ面までの光学系の透過率 (以下、 適宜 「第 2の透過率」 と呼ぶ) を算出す る演算機能を有する。 On a substrate made of fluorite 3 mm, Mg F 2, each layer of the tooth 3 '3 and [\ / 19 F 2, formed from the substrate side. In this case, Mg F 2, teeth and "3 and 1 ^ 9 " 2 was formed to have a thickness of 10.2 nm, 23.5 nm and 26.7 nm, respectively. Thus, an optical element was obtained. The transmittance of the optical element thus obtained was obtained. and where a measurement at the vacuum ultraviolet spectrometer wavelength 1 57 nm, was 98.3%. in this optical element, the output per Roh \ Riresu is 6 m J / cm 2, wavelength 1 57 A vacuum ultraviolet laser beam (F 2 excimer laser beam) of 65 nm was irradiated with a 65-million pulse, and the transmittance of this optical element was measured again with the above-mentioned vacuum ultraviolet spectrometer and found to be 97.2%. This decrease in transmittance is caused by the fact that organic substances existing around the optical element adhere to the surface of the optical element when the optical element is irradiated with laser light. Next, an optical element having the same configuration as that described above was placed in a nitrogen atmosphere having a water concentration of 0.3 ppm, and a vacuum ultraviolet laser having a wavelength of 157 nm was applied to this optical element in the same manner as described above. The light was irradiated with a 65-million pulse, and the transmittance of the optical element after laser irradiation was measured using a vacuum ultraviolet spectrometer to be 97.2%. On the other hand, an optical element of the same configuration was placed in a nitrogen atmosphere with a water concentration of 1 ppm, and a vacuum ultraviolet laser with a wavelength of 157 nm was applied to the optical element in the same manner as above. The light was irradiated with a pulse of 25 mm.The transmittance of the optical element after the irradiation of the laser light was measured. 3%, the original transmittance before laser beam irradiation is maintained. This indicates that the optical element is being cleaned. The mechanism for cleaning the optical element is as follows. When water (H 2 0) is irradiated with F 2 excimer laser light, O H radicals are generated by the photolysis reaction. The generated OH radical has a strong oxidizing action, and the oxidizing action oxidizes and decomposes organic matter. That is, by disposing an optical element in an atmosphere covered with a gas having a predetermined moisture concentration and irradiating the optical element with F 2 excimer laser light, organic substances attached to the optical element surface are oxidized, is decomposed in the gas such as C 0 2 and H 2 0 is removed. Next, an example in which the above-described method for cleaning an optical element is applied to an exposure apparatus will be described with reference to FIGS. FIG. 1 is a schematic configuration diagram of an exposure apparatus according to the present invention. In the present embodiment, a scanning type exposure apparatus for semiconductor manufacturing that transfers a pattern on a reticle as a mask to a plurality of shot areas on a wafer as a substrate by a step-and-scan method will be described. The exposure apparatus 10 mainly includes a light source unit 12 as a light source, an illumination optical system 14, a reticle stage RST for holding a reticle R, a projection optical system PL, a wafer stage WST for holding a wafer W, and There is one control device 20 for driving and controlling these. As the light source unit 1 2, F 2 excimer monodentate apparatus is used. The light source unit 12 is actually installed on the floor above the installation floor or in another room (for example, a service room that is less clean than the ultra-clean room where the exposure unit is installed). It is shown above the illumination optical system 14 for convenience. The light source unit 12 is a light transmitting system beam including a housing HS 1 and optical elements (including a cylindrical lens and a beam expander) arranged in the housing HS 1. It is connected via a matching unit BMU to a housing HS 2 in which an illumination optical system 14 is arranged. In this embodiment, the beam matching unit BMU and the illumination optical system 14 constitute an illumination optical system that irradiates the light from the light source unit 12 to the reticle R. The light source unit 12 includes a laser resonator 12a, a beam splitter 12b having a transmittance of about 97%, and a beam splitter 12b arranged on an optical path of laser light emitted from the laser resonator 12a. It consists of a beam monitor mechanism 12c arranged on the reflected light path of the splitter 12b and a high voltage power supply (not shown). The laser resonator 12a includes a narrow-band module and a laser chamber including a discharge electrode (both not shown). The band narrowing module is configured by combining a prism and a diffraction grating (grating), and reduces the spectrum width of the laser light emitted from the laser resonator 12a to about the natural oscillation spectrum width. The output is narrowed to about 1/100 to 1/300. The narrow-band module may be configured by an optical element such as an interference type band filter in which two plane mirrors called an etalon (Fabry—Perotetalon) are arranged in parallel. The beam monitor mechanism 12 includes a diffuser, an etalon element, a line sensor, and an energy monitor (all not shown). The light that has passed through the diffuser constituting the beam monitor mechanism 12c is diffracted by the etalon element to form a fringe panel. The fringe pattern corresponds to the center wavelength and the half-width of the spectrum of the incident light, and an image signal corresponding to the fringe pattern is output from the line sensor to the control device 20. The control device 20 obtains information on the optical characteristics of the light incident on the beam monitor mechanism 12c by performing predetermined signal processing on the imaging signal of the fringe pattern. At the same time, the control device 20 detects the energy power of the laser beam based on the output of the energy monitor. The light source unit 12 is provided with a drive mechanism 18 for a spectroscopic element such as a grating, a prism, or an etalon that constitutes the laser resonator 12a. The drive mechanism 18 is controlled by the controller 20 based on information on the optical characteristics of the incident light with respect to the beam monitor mechanism 12c (detection results of the beam monitor mechanism 12c), and the center wavelength and the spectral half width Is adjusted to fall within a desired range. In this case, the center wavelength can be adjusted substantially continuously within a predetermined range, for example, 156.9 nm to 157.6 nm. That is, in the present embodiment, the wavelength of the laser light (F 2 excimer laser light) emitted from the laser resonator 12 a can be adjusted by the drive mechanism 18. In the light source unit 12, a shirt (not shown) for blocking laser light according to control information from the control device 20 is provided on the side of the illumination optical system 14 of the beam splitter 12b. Are located. The illumination optical system 14 is composed of a secondary light source forming optical system including an energy rough adjuster, a fly-eye lens, a condensing lens system, a reticle blind, and an imaging lens system (all not shown). Are arranged in a predetermined positional relationship in the housing HS2. The laser light emitted from the light source unit 12 becomes the illumination light for exposure having a substantially uniform illuminance distribution through the illumination optical system 14 and forms a rectangular (or arc-shaped) illumination area on the reticle R. Light up. A beam splitter 14a having a transmittance of about 97% is disposed between the secondary light source forming optical system of the illumination optical system 14 and the imaging lens system. On the optical path of the light reflected by the beam splitter 14a, an incident light amount measuring device 22 called an integrator sensor composed of photoelectric conversion elements is arranged. The photoelectric conversion signal of the light amount measured by the incident light amount measuring device 22 is sent to the control device 20. The output of the photoelectric conversion signal in the incident light amount measuring device 22 is calibrated in advance with respect to the output of a reference illuminometer (not shown). Also, the output of the above-described energy monitor is calibrated with respect to the output of the photoelectric conversion signal in the incident light meter 22. The conversion factor (or conversion function) of these output values Is determined in advance, and the value is stored in the memory in the control device 20. The reticle chamber RR houses the reticle R and the reticle stage RST in a sealed state. Reticle R is fixed on reticle stage RST by electrostatic attraction. The reticle stage RST can be driven on a reticle base (not shown) at a predetermined scanning speed in a predetermined scanning direction (Y-axis direction in FIG. 1) by a reticle driving unit 24 such as a linear motor. . Further, reticle stage RST is configured to be able to be finely driven by reticle driving section 24 in the rotation direction (0 direction) with reference to the X axis direction orthogonal to the Y axis and the Z axis orthogonal to the XY plane. I have. The position of the reticle stage RST is always detected by a reticle laser interferometer (hereinafter referred to as “reticle interferometer”) 25 with a resolution of about 0.5 to 1 nm. The position information (or speed information) of reticle stage RST obtained by reticle interferometer 25 is sent to control device 20. Control device 20 controls the position of reticle stage RST by driving reticle driving section 24 based on the transmitted position information (or speed information) of reticle stage RST. The projection optical system PL is arranged below the reticle stage RST such that the optical axis AX is in the Z-axis direction. The projection optical system PL is a refraction optical system that has a telecentric optical arrangement on both sides within the lens barrel CL and includes a plurality of lens elements arranged at predetermined intervals in the optical axis AX direction. The projection optical system PL is a reduction optical system having a predetermined projection magnification (for example, 1Z5 or 1/4). By the projection optical system PL, a reduced image (partially inverted image) of the circuit pattern in the illumination area of the reticle R is formed in an exposure area conjugate to the illumination area on the wafer W coated with a photo resist on the surface. . Wafer stage WST is arranged below projection optical system PL. The wafer stage WST is placed on a wafer base (not shown), It is driven movably in the XY plane by a driving device 26 composed of a motor or the like. On the upper surface of wafer stage WST, wafer W is fixed by electrostatic attraction via a wafer holder (not shown). A moving mirror 28 is provided on the upper surface of wafer stage WST. The position of the wafer stage WST in the XY plane can be adjusted from 0.5 to 0.5 by irradiating the moving mirror 28 with a measuring beam from a wafer laser interferometer (hereinafter referred to as “wafer interferometer”) 30. It is always detected with a resolution of about 1 nm. The position information (or speed information) of the wafer stage WST obtained by the wafer interferometer 30 is sent to the controller 20. The controller 20 is driven based on the position information (or speed information) of the wafer stage WST. By driving the device 26, the position of the wafer stage WST is controlled. Further, on the upper surface of wafer stage WST, an emitted light amount measuring device 32 composed of a photoelectric conversion element is fixed. The light-receiving surface of the emitted light quantity measuring device 32 is set to be substantially the same height as the surface of the wafer W, and the photoelectric conversion signal corresponding to the light amount obtained by the emitted light quantity measuring device 32 is transmitted to the control device 20. Supplied to The output of the photoelectric conversion signal in the emitted light quantity measuring device 32 is previously calibrated with the output of the incident light quantity measuring device 22 described above. The conversion coefficients (or conversion functions) of these outputs are obtained in advance, and the values are stored in the memory of the control device 20. The wafer stage WST, the wafer W, the movable mirror 28, the wafer interferometer 30, the emitted light quantity measuring device 32, and the driving device 26 are housed in a sealed state in the wafer chamber WR. In the exposure apparatus 10 of the present embodiment, the housing HS 1 housing the beam matching unit BMU, the housing HS 2 housing the illumination optical system 14 and the mirror housing the projection optical system PL The supply pipe system and the exhaust pipe system are connected to the cylinder C respectively. Although not shown, the reticle chamber RR and the wafer chamber WR are also connected to an air supply piping system and an exhaust piping system, respectively. The reticle chamber RR and the wafer chamber WR may be filled with nitrogen gas or Pum gas is supplied. The supply of these gases is controlled by a solenoid valve (not shown) installed in the supply piping system. As shown in Fig. 1, the housing HS1, housing HS2, and lens barrel CL are connected to one end of air supply piping 34A, 34B, and 34C, respectively, as an air supply piping system. . The other end sides of the air supply pipes 34A, 34B, and 34C are each branched in a forked shape. One of the bifurcated branches of the air supply pipes 34A and 34B is connected to a tank T1 containing a nitrogen gas having a water concentration of 0.3 ppm. The other of the two branches of the air supply pipes 34A and 34B is connected to a tank T2 containing a nitrogen gas having a water concentration of 1 Ppm. One of the bifurcated branch of the supply pipe 34 C is connected to a tank T 3 containing helium gas having a water concentration of 0.3 ppm. The other branch of the bifurcated supply pipe 34 C is connected to a tank T 4 containing helium gas with a water concentration of 1 ppm. Solenoid valves that open and close each pipe (gas passage) are provided between the supply pipe 34 A branch and tank T 1 and between the supply pipe 34 A branch and tank T 2. 38 A and 38 B are provided respectively. Similarly, each pipe (gas passage) is opened and closed between the branch of the air supply pipe 34B and the tank T1 and between the branch of the air supply pipe 34B and the tank T2. Solenoid valves 38 C and 38 D are provided, respectively. In addition, between the branch of the air supply piping 34 C and the tank T 3 and between the branch of the air supply piping 34 C and the tank T 4, electromagnetic valves for opening and closing each pipe (gas passage) are provided. Valves 38E and 38F are provided, respectively. These solenoid valves 38 A to 38 F are controlled to be opened and closed by a control device 20. The control method of the solenoid valve will be described later. In addition, housing HS 1, housing HS 2 and lens barrel CL One end of each of the exhaust pipes 40A, 40B and 40C is connected. The other ends of the exhaust pipes 40 A, 40 B, and 40 C are connected to a common exhaust pipe 42. The gas exhausted from the housing of each optical system is exhausted from the exhaust pipe 42 via the exhaust pipes 40A, 40B, and 40C. In the middle of the exhaust pipes 40 A, 40 B, and 40 C, moisture sensors 44 A, 44 B that detect the concentration of moisture in the gas flowing in the exhaust pipes (gas passages). And 44 C are provided respectively. The values of the moisture concentrations detected by these moisture sensors 44A to 44C are sent to the control device 20. The control device 20 mainly includes a microcomputer (or workstation) and a memory. As described above, the control device 20 controls the driving device of each component of the exposure device 10 and also controls the opening and closing operations of the solenoid valves 38A to 38F. Further, the control device 20 sends a signal from the light source unit 12 to the illumination optical system 14 based on the output of the incident light amount measuring device 22 and the output of the energy monitor 12a constituting the beam monitoring mechanism 12c. A calculation function for calculating the transmittance of the optical system up to the position of the beam splitter 14a (hereinafter referred to as "first transmittance" as appropriate), and the output of the incident light quantity measuring device 22 and the measurement of the output light quantity Has a calculation function of calculating the transmittance of the optical system from the position of the beam splitter 14a to the wafer surface (hereinafter, appropriately referred to as "second transmittance") based on the output of the beam splitter 32 .
[露光装置における光学素子の洗浄方法] [Method for cleaning optical element in exposure apparatus]
次に、 上述のようにして構成された露光装置 1 0の光学系 (ビームマッチング ユニッ ト B M U、 照明光学系 1 4及び投影光学系 P L ) を構成する光学素子の洗 浄方法について、 図 1及び 2を用いて説明する。 なお、 通常の露光時においては、 電磁弁 3 8 A〜3 8 Fはそれぞれ閉じた状態であり、 各夕ンクに収容されている 気体が給気配管を介してハウジングや鏡筒内に流れない状態となっているが、 ビ —厶マッチングュニッ 卜 B M U及び照明光学系 1 4のハウジング内部及び排気管 系には水分濃度が 0 . 3 p p mである高濃度の窒素ガス (第 1の窒素ガス) が、 投影光学系 P Lの鏡筒内部及び排気管系には水分濃度が 0 . 3 p p mのヘリゥム ガス (第 1のヘリウムガス) が残存している状態である。 図 2に示すように、 本発明の露光方法に従えば、 最初に露光工程を開始する (ステップ S 1 ) 。 所定時間経過御に (例えば、 所定枚数のウェハの露光が終了 する毎に) 露光工程を中断し (ステップ S 2 ) 、 制御装置 2 0によって上述の第 1の透過率及び第 2の透過率の値を計測する (ステップ S 3 ) 。 第 1の透過率及 び第 2の透過率の少なくとも一方の値が予め設定した値よりも低下したか否かを 判断し (ステップ S 4 ) 、 第 1の透過率及び第 2の透過率の少なくとも一方の値 が予め設定した値よりも低い場合には、 以下に示す光学素子の洗浄工程に入る。 露光工程が中断した状態で、 制御装置 2 0の制御により電磁弁 3 8 B、 3 8 D 及び 3 8 Fが開放される。 電磁弁が開放されることにより、 タンク 2から水分濃 度 1 p p mの窒素ガス (第 2の窒素ガス) が、 給気管 3 4 A及び 3 4 Bを介して、 ビームマッチングュニッ 卜 B M Uのハウジング H S 1及び照明光学系 1 4のハウ ジング H S 2内にそれぞれ供給される。 同時に、 タンク 4から水分濃度 1 p p m 含むヘリウムガス (第 2のヘリウムガス) が、 給気管 3 4 Cを介して、 投影光学 系 P Lが収納されている鏡筒 C L内に供給される (ステップ S 5 ) 。 特に、 投影 光学系伝 P Lの鏡筒 C L内には、 熱に起因する結像特性の低下を防止するために 熱伝導性が高いヘリウムガスを用いた。 これにより、 ハウジング H S 1、 H S 2 内に充填されていた第 1の窒素ガス及び鏡筒 C L内に充填されていた第 1のヘリ ゥ厶ガスは、 それぞれの排気管系を介してハウジング H S 1、 H S 2及び鏡筒C しから排気され、 ハウジング H S 1、 H S 2内は第 2の窒素ガスに、 鏡筒 C L内 は第 2のヘリウムガスに、 略完全に置換される。 なお、 制御装置 2 0は、 ハウジ ング H S 1、 H S 2及び鏡筒 C Lに接続される排気配管系にそれぞれ接続された 水センサ 4 4 A、 4 4 B及び 4 4 Cの出力がいずれも水分濃度 1 p p m以上とな つた時点で、 各光学系のハウジング (鏡筒含む) 内の気体が第 2の窒素ガスまた はヘリウムガスに置換されたと判断する。 次いで、 各光学系のハウジング (鏡筒 含む) に接続されている給気配管系の全ての電磁弁を閉じることによって、 ハウ ジング内へのガスの供給を停止する。 次に、 制御装置 2 0から光源ュニヅ 卜 1 2内の高圧電源に対して卜リガパルス の出力を開始し、 レーザ共振器 1 2 aからレーザ光 ( F 2エキシマレ一ザ光) の 発光を開始する。 このとき、 光源ユニット 1 2内のシャツ夕 (不図示) は閉じた 状態である。 レーザ光の発光開始によって、 レーザ光 (パルス紫外光) がビーム スプリツ夕 1 2 bを介してビ一ムモニタ機構 1 2 cに入射し、 ビ一厶モニタ機構 1 2 cから前述したフリンジパターンの撮像信号及びパルスエネルギ値の情報が 制御装置 2 0に送られる。 次いで、 ビームモニタ機構 1 2 cで得られた情報に基づいてレーザ光が所定の 状態となった段階で、 制御装置 2 0からの指示によって光源ユニット 1 2内のシ ャッタ (不図示) が開かれる。 これにより、 光源ュニッ 卜 1 2からレーザ光が出 射され、 出射したレーザ光がビ一厶マッチングュニッ 卜 B M U、 照明光学系 1 4 及び投影光学系 P Lが設置される各空間 (ハウジング) 内部の気体及び光学素子 に対して照射される。 各ハウジング (鏡筒を含む) 内には、 水分濃度 1 p p mの 窒素ガスまたはヘリウムガスが充填されているので、 上述の通り、 レーザ光 (F 2エキシマレーザ光) を照射することによって光学素子の洗浄が行われる (ステ ップ S 6 ) 光学素子の洗浄開始直後に、 ウェハステージ上に配置された出射光量計測器 3 2が投影光学系 P Lの直下に位置するように、 ウェハステージ W S Tを移動させ る。 次いで、 入射光量計測器 2 2の出力、 ビームモニタ機構 1 2 cを構成するェ ネルギモニタの出力及び出射光量計測器 3 2の出力を同時に取り込み、 上述した 第 1の透過率及び第 2の透過率を求める (ステップ S 7 ) 。 次いで、 出射光量計 測器 3 2が投影光学系 P Lの直下から退避するように、 ウェハステージ W S Tを 移動させる。 以後、 所定の時間間隔で、 出射光量計測器 3 2の投影光学系 P L直 下への配置及び退避を行うためのウェハステージ W S Tの移動と第 1及び第 2の 透過率の計測とを繰り返し行う。 Next, a method for cleaning the optical elements constituting the optical system (beam matching unit BMU, illumination optical system 14 and projection optical system PL) of the exposure apparatus 10 configured as described above will be described with reference to FIGS. This will be described using 2. At the time of normal exposure, the solenoid valves 38A to 38F are in the closed state, and the gas contained in each ink does not flow into the housing or the lens barrel via the air supply pipe. Although it is in a state, a high-concentration nitrogen gas (first nitrogen gas) having a water concentration of 0.3 ppm is contained in the inside of the housing of the beam matching unit BMU and the illumination optical system 14 and in the exhaust pipe system. , Helium gas (first helium gas) with a moisture concentration of 0.3 ppm remains inside the lens barrel of the projection optical system PL and the exhaust pipe system. As shown in FIG. 2, according to the exposure method of the present invention, an exposure step is first started (step S 1). When the predetermined time has elapsed (for example, each time the exposure of a predetermined number of wafers is completed), the exposure process is interrupted (step S 2), and the controller 20 controls the first transmittance and the second transmittance. The value is measured (step S3). It is determined whether at least one of the first transmittance and the second transmittance is lower than a preset value (Step S4), and the first transmittance and the second transmittance are determined. If at least one of the values is lower than a preset value, the process proceeds to an optical element cleaning step described below. While the exposure process is interrupted, the solenoid valves 38 B, 38 D and 38 F are opened under the control of the controller 20. When the solenoid valve is opened, nitrogen gas (second nitrogen gas) with a water concentration of 1 ppm from tank 2 is supplied to the beam matching unit BMU housing via the air supply pipes 34A and 34B. HS 1 and the illumination optical system 14 are supplied into the housing HS 2 respectively. At the same time, a helium gas (second helium gas) containing a water concentration of 1 ppm is supplied from the tank 4 to the lens barrel CL containing the projection optical system PL via the air supply pipe 34C (step S). Five ) . In particular, helium gas having high thermal conductivity was used in the lens barrel CL of the projection optical system transmission PL in order to prevent the deterioration of the imaging characteristics due to heat. As a result, the first nitrogen gas filled in the housings HS 1 and HS 2 and the first nitrogen gas filled in the lens barrel CL are transferred to the housing HS 1 through the respective exhaust pipe systems. , HS 2 and the lens barrel C are exhausted, and the inside of the housings HS 1 and HS 2 is almost completely replaced by the second nitrogen gas, and the inside of the lens barrel CL is replaced by the second helium gas. The control device 20 outputs water from the water sensors 44 A, 44 B, and 44 C connected to the exhaust piping system connected to the housings HS 1 and HS 2 and the lens barrel CL, respectively. When the concentration becomes 1 ppm or more, it is determined that the gas in the housing (including the lens barrel) of each optical system has been replaced with the second nitrogen gas or helium gas. Next, the housing of each optical system (barrel The supply of gas into the housing is stopped by closing all solenoid valves in the air supply piping system connected to the Next, the controller 20 starts outputting a trigger pulse to the high-voltage power supply in the light source unit 12, and starts emitting laser light (F 2 excimer laser light) from the laser resonator 12 a. . At this time, the shirt (not shown) in the light source unit 12 is in a closed state. With the start of laser light emission, laser light (pulsed ultraviolet light) is incident on the beam monitor mechanism 12c via the beam splitter 12b, and the above-described fringe pattern is imaged from the beam monitor mechanism 12c. Information on the signal and the pulse energy value is sent to the controller 20. Next, when the laser beam enters a predetermined state based on the information obtained by the beam monitor mechanism 12c, a shutter (not shown) in the light source unit 12 is opened by an instruction from the control device 20. It is. As a result, laser light is emitted from the light source unit 12, and the emitted laser light is applied to the gas inside each space (housing) in which the beam matching unit BMU, the illumination optical system 14, and the projection optical system PL are installed. And the optical element. Within each housing (including the barrel), since the moisture concentration 1 ppm of nitrogen gas or helium gas is filled, as described above, the optical element by irradiating a laser beam (F 2 excimer laser light) Cleaning is performed (Step S 6) Immediately after the cleaning of the optical element is started, the wafer stage WST is moved so that the emitted light amount measuring device 32 arranged on the wafer stage is located immediately below the projection optical system PL. Let me do it. Next, the output of the incident light amount measuring device 22, the output of the energy monitor constituting the beam monitoring mechanism 12 c, and the output of the emission light amount measuring device 32 are simultaneously captured, and the above-described first transmittance and second transmission The rate is determined (step S7). Next, wafer stage WST is moved so that emission light meter 32 retracts from immediately below projection optical system PL. Thereafter, at predetermined time intervals, the projection optical system PL The movement of the wafer stage WST for lowering and retreating and the measurement of the first and second transmittances are repeated.
制御装置 2 0では、 所定時間間隔で計測した第 1及び第 2の透過率の変化を監 視し、 それらの透過率の変化率がともに所定の値以下 (例えば、 略零) となった かどうか判断する (ステップ S 8 ) 。 変化率が所定の値以下になっていたならば、 光学素子の洗浄が終了したとみなすことができる。 光学素子の洗浄が終了したと みなされた場合には、 光源ュニッ卜 1 2内のシャツタを閉じ、 光源ュニッ 卜 1 2 内の高圧電源に対する卜リガパルスの出力を停止するとともに、 給気配管系の電 磁弁 3 8 Α、 3 8 C及び 3 8 Εを開放して、 各光学系のハウジング内に第 1の窒 素ガス及びヘリウムガスを所定時間の間供給する (ステップ S 9 ) 。 これにより、 各光学系のハウジング (鏡筒含む) 内に残存していた第 2の窒素ガス及びへリウ ムガスが排気配管系を介して排気され、 それぞれ第 1の窒素ガス及びヘリゥムガ スに略完全に置換される。 制御装置 2 0は、 水センサ 4 4 Α、 4 4 Β及び 4 4 C の出力がいずれも水分濃度 0 . 3 p p m未满となった時点で、 各光学系のハウジ ング内の気体が第 1の窒素ガスまたはヘリゥムガスに置換されたと判断する。 こ の状態で、 通常の露光工程を再開 (ステップ S 1 0 ) することができる。 なお、 透過率の変化率が所定の値よりも大きい場合には、 光学素子の透過率の変化率が 所定の値以下となるまで光学素子の洗浄を継続する。 このような露光装置における光学系ハウジング内の光学素子の洗浄は、 特に、 光学素子に汚れが付着しやすく洗浄の必要性が高いとき、 例えば、 露光装置を製 造した直後、 露光装置を長期間運転停止したとき、 または、 露光装置の露光条件 若しくは照明条件を変更したとき (照明光学系内の開口絞りの交換時、 レチクル 交換時、 投影光学系内の瞳開口変更時等) には有効である。 装置の稼動中のダウ ンタイムを極力抑制し、 効率的な光学素子の洗浄を行うとともに、 常に露光装置 本来の性能を発揮することが可能となる。 [露光装置の動作] The control device 20 monitors changes in the first and second transmittances measured at predetermined time intervals, and determines whether both of the change rates of the transmittances are equal to or less than a predetermined value (for example, substantially zero). Judgment is made (step S8). If the rate of change is equal to or less than the predetermined value, it can be considered that the cleaning of the optical element has been completed. When it is considered that the cleaning of the optical element is completed, the shutter in the light source unit 12 is closed, the output of the trigger pulse to the high-voltage power supply in the light source unit 12 is stopped, and the air supply piping system is stopped. The electromagnetic valves 38Α, 38C and 38Ε are opened, and the first nitrogen gas and helium gas are supplied into the housing of each optical system for a predetermined time (step S9). As a result, the second nitrogen gas and the helium gas remaining in the housing (including the lens barrel) of each optical system are exhausted through the exhaust piping system, and are almost completely converted into the first nitrogen gas and the helium gas, respectively. Is replaced by When the outputs of the water sensors 44Α, 44Β, and 44C all reach a moisture concentration of less than 0.3 ppm, the control device 20 removes the gas in the housing of each optical system from the first. Is determined to have been replaced by nitrogen gas or helium gas. In this state, the normal exposure process can be restarted (step S10). When the rate of change of the transmittance is larger than the predetermined value, the cleaning of the optical element is continued until the rate of change of the transmittance of the optical element becomes equal to or less than the predetermined value. The cleaning of the optical element in the optical system housing in such an exposure apparatus is particularly required when the optical element is easily stained and the necessity of cleaning is high. It is effective when the operation is stopped or when the exposure condition or illumination condition of the exposure apparatus is changed (when replacing the aperture stop in the illumination optical system, replacing the reticle, changing the pupil aperture in the projection optical system, etc.). is there. This minimizes downtime during the operation of the system, enables efficient cleaning of optical elements, and enables the exposure system to always exhibit its original performance. [Operation of exposure apparatus]
次に、 図 2に示した露光装置の露光工程について簡単に説明する。 まず、 制御 装置 2 0で制御されるレチクルローダ及びウェハローダ (いずれも不図示) によ つて、 レチクルステージ R S Tへのレチクル Rの投入 (設置) 及びウェハステー ジ W S Tへのウェハ Wの投入 (設置) が行われる。 次いで、 各光学系に接続されている給気配管系の電磁弁 3 8 A、 3 8 C、 3 8 E並びにレチクル室 R R及びウェハ室 W Rにそれぞれ接続されている不図示の給 気配管系の電磁弁を開放して、 第 1の窒素ガスまたはヘリゥ厶ガスを所定時間供 給した後に、 各電磁弁を閉じる。 次いで、 レチクル顕微鏡、 ウェハステージ W S T上の基準マーク板、 ァライメント検出系 (いずれも不図示) を用いて、 レチク ルァライメン卜やべ一スライン計測等の準備動作を、 所定の手順に従って行う。 次いで、 ァライメン卜検出系 (不図示) を用いて、 例えば、 特開昭 6 1 - 4 4 4 2 9号公報に開示されるような E G A (ェンハンス卜 ■ グロ一バル 'ァライメ ン卜) 等のァラィメン卜計測を実行する。 ァライメン卜計測の終了後、 以下のよ うにして、 ステップ ·アンド ·スキヤン方式の露光動作が行われる。 まず、 ウェハ W上の最初のショッ 卜 (ファース卜 ■ ショッ 卜) 領域が走査露光 の開始位置となるように、 ウェハステージ W S Tを移動する。 同時に、 レチクル Rが走査露光開始位置となるように、 レチクルステージ R S Tを移動する。 次い で、 レチクル干渉計 2 5によって計測されたレチクル Rの X Y平面内の位置情報 及びウェハ干渉計 3 0によって計測されたウェハ Wの X Y平面内の位置情報に基 づいてレチクル駆動部 2 4及び駆動装置 2 6をそれぞれ制御してレチクルステ一 ジ R S Tとウェハステージ W S Tとを同期移動させながら、 ウェハステージ W S T上のウェハ Wの走査露光を行う。 このとき、 レチクルステージ R S T上のレチ クル Rとウェハステージ W S T上のウェハ Wは、 投影光学系 P Lの投影倍率に応 じた速度比で、 互いに逆向きとなるように Y軸方向に沿って同期移動する。 なお、 走査露光中の光量制御は、 入射光量計測器 2 2の出力及びエネルギモニタの出力 に基づいて、 例えば、 レーザ共振器 1 2 aから出力されるレーザ光のパルスエネ ルギまたはレーザ共振器 1 2 aの発振周波数を調整することによって行われる。 Next, the exposure process of the exposure apparatus shown in FIG. 2 will be briefly described. First, a reticle loader and a wafer loader (both not shown) controlled by the controller 20 load the reticle R into the reticle stage RST (installation) and load the wafer W into the wafer stage WST (installation). Done. Next, supply air piping systems 38A, 38C, 38E connected to each optical system, and unillustrated air supply piping systems connected to the reticle chamber RR and wafer chamber WR, respectively. After opening the solenoid valves and supplying the first nitrogen gas or helium gas for a predetermined time, each solenoid valve is closed. Next, using a reticle microscope, a fiducial mark plate on the wafer stage WST, and an alignment detection system (all not shown), preparatory operations such as reticle alignment and baseline measurement are performed according to a predetermined procedure. Then, using an alignment detection system (not shown), for example, an EGA (enhanced ■ global alignment) as disclosed in Japanese Patent Application Laid-Open No. 61-44429 is used. Execute the alignment measurement. After the alignment measurement, the exposure operation of the step-and-scan method is performed as follows. First, the wafer stage WST is moved so that the first shot (first shot) area on the wafer W becomes the starting position of the scanning exposure. At the same time, the reticle stage RST is moved so that the reticle R becomes the scanning exposure start position. Next, based on the position information of reticle R in the XY plane measured by reticle interferometer 25 and the position information of wafer W in the XY plane measured by wafer interferometer 30, reticle drive unit 24 Scanning exposure of wafer W on wafer stage WST is performed while controlling reticle stage RST and wafer stage WST synchronously by controlling driving device 26 respectively. At this time, the reticle R on the reticle stage RST and the wafer W on the wafer stage WST are synchronized along the Y-axis so that they face each other at a speed ratio according to the projection magnification of the projection optical system PL. Moving. In addition, The light quantity control during scanning exposure is performed based on the output of the incident light quantity measuring device 22 and the output of the energy monitor, for example, the pulse energy of the laser light output from the laser resonator 12a or the laser resonator 12a. This is performed by adjusting the oscillation frequency.
1つのショッ 卜領域に対するレチクルパターンの転写が終了すると、 ウェハス テ一ジ W S Tが 1 ショッ 卜領域分だけ X軸方向にステップ移動され、 次のショッ 卜領域に対する走査露光が同様に行われる。 このようにして、 ステップ移動と走 査露光とを繰り返すことにより、 ウェハ W上に所定のショッ ト数の露光パターン が転写される。 なお、 本実施形態では、 露光装置のビームマッチングュニッ 卜、 照明光学系及 び投影光学系全ての光学素子の洗浄方法について説明したが、 洗浄を望む光学系 のハウジングに接続される給気配管系の電磁弁のみを上述のように制御すること によって、 一部の光学系のみ (例えば、 照明光学系のみ、 または、 ビ一厶マッチ ングュニッ 卜と投影光学系) を選択的に洗浄することもできる。 洗浄を行わない 光学系のハウジング内では水分濃度が低いので、 そのハウジング内の水分の影響 によるレーザ光のエネルギ吸収を抑制することができる。 これにより、 光源から 距離的に遠いと思われる投影光学系においても、 効果的な光学素子の洗浄を行う ことができる。 また、 本実施形態では、 露光装置のビームマッチングュニッ 卜、 照明光学系及 び投影光学系の光学素子の洗浄方法について説明したが、 レチクル室内に充填す るガスの水分濃度を上記と同様に制御し露光ビームを照射することによって、 レ チクル室内の光学素子、 即ち、 レチクルを洗浄することも可能である。 なお、 本実施形態では、 光学系内の第 1の窒素ガス及び第 1のヘリウムガスを、 それぞれ第 2の窒素ガス及び第 2のヘリゥムガスに置換した状態で、 光学素子の 洗浄を行ったが、 本発明はこれに限定されない。 例えば、 第 2の窒素ガスに代えて、 水分濃度が 1 p p mである窒素ガスと才ゾ ン 0 3との混合ガスを供給してもよい。 また、 第 2のヘリウムガスに代えて、 水 分濃度が 1 p p mであるヘリゥムガスとオゾン 0 3との混合ガスを供給してもよ い。 窒素ガスまたはヘリウムガスとオゾン 0 3との混合ガスをハウジングまたは 鏡筒内に充填し、 さらに F 2エキシマレーザ光 (真空紫外光) を照射する。 本実 施形態と同様にして、 ハウジングまたは鏡筒内の光学素子表面に付着した汚れ物 質中の有機物が F 2エキシマレ一ザ光のエネルギによって切断され、 0 Hラジカ ルの酸化作用に加えて、 混合ガス中に含まれるオゾンの酸化作用により、 より一 層効率良く光学素子を洗浄することができる。 また、 本実施形態では、 ビームマッチングュニッ 卜及び照明光学系のハウジン グ並びに投影光学系の鏡筒内に、 第 2の窒素ガスまたはヘリゥムガスを供給完了 後にレーザ光を照射して光学素子の洗浄を行ったが、 各ハウジング内に第 2の窒 素ガスまたはへリゥムガスを供給し続けた状態でレ一ザ光を光学素子に照射する ことによって、 光学素子の洗浄を行ってもよい。 これにより、 ハウジング内の雰 囲気を所定の水分濃度に維持することができるので、 安定した状態で効率良く光 学素子を洗浄することができる。 従って、 光学素子をより短時間で十分に洗浄す ることができる、 即ち、 F 2エキシマレーザ光 (真空紫外光) の照射時間を短縮 することができるので、 光学素子を構成する硝材へのダメージを低減させること ができる。 さらに、 本実施形態では、 レーザ光を照射して光学素子の洗浄を行っている間 は、 ハウジング内へのガスの供給を停止していたが、 第 2の窒素ガスまたはヘリ ゥ厶ガスを所定時間供給した後、 光学素子の洗浄中に第 1の窒素ガスまたはヘリ ゥ厶ガスを供給してもよい。 本実施形態では、 水分濃度 1 p p mの窒素ガス及びヘリウムガスを用いたが、 ガス中に含まれる水分濃度はこれに限定されず、 水分濃度が 0 . 5 p p m〜1 0 p p mの範囲内であればよい。 水分濃度が 0 . 5 p p mより低いと所定量の 0 H ラジカルが得られないことにより酸化作用が十分ではなく、 光学素子の洗浄効果 も低下する。 一方、 水分濃度が 1 O p p mよりも高いと、 洗浄工程で光がハウジ ング内の水分に吸収されてしまい、 光源から離れるに従つて光学素子の洗浄効果 が低下してしまう。 本実施形態では、 ビームマッチングュニッ 卜及び照明光学系に窒素ガスを供給 したが、 窒素ガスに代えてヘリウムガスを供給してもよい。 同様に、 本実施形態 では、 投影光学系にヘリウムガスを供給したが、 ヘリウムガスに代えて窒素ガス を供給してもよい。 いずれの場合にも、 水分濃度が所定の範囲内となるような気 体を用いることは言うまでもない。 なお、 本実施形態では、 レチクル室 R R及び ウェハ室 W Rにそれぞれ窒素ガスを供給したが、 窒素ガスに代えてヘリゥ厶ガス を供給してもよい。 本発明の露光装置の投影光学系は、 全ての光学素子が屈折系のレンズからなる 投影光学系に限られず、 反射素子 (ミラ一) のみで構成される投影光学系や屈折 系のレンズと反射素子とからなる反射屈折系の投影光学系であつてもよい。 また、 投影光学系は、 縮小系の投影光学系に限られず、 等倍系または拡大系の投影光学 系であっても構わない。 本実施形態では、 投影光学系の鏡筒に直接配管を接続してガスを供給したが、 投影光学系をガスシールされたチャンバ内に収容して、 かかるチャンバ内にガス を供給してもよい。 本実施形態の露光装置では、 光源として F 2エキシマレ一ザを用いたが、 これ に限定されず、 A r Fや K r F等のエキシマレ一ザや E U V光等を用いてもよい。 また、 例えば、 波長 2 4 8 n m、 1 9 3 n m、 1 5 7 n mのいずれかに発振スぺ クトルを持つ、 Y AGレーザ等の固定レーザの高調波を用いるようにしてもよい。 さらに、 D F B半導体レーザ若しくはファイバレーザから発振される赤外域、 ま たは、 可視域の単一波長レーザ光を、 例えばエルビウム (又はエルビウムとイツ テルビウムの両方) がド一プされたファイバアンプで増幅し非線形光学結晶を用 いて紫外光に波長変換した高調波を用いてもよい。 例えば、 単一波長レーザの発振波長を 1 . 5 1 ~1 . 59 At mの範囲内にする と、 発生波長が 1 51 ~1 59 nmの範囲内となる 1 0倍高調波が出力される。 特に、 発振波長を 1 . 57〜1 . 58 171の範囲内にすると、 発生波長が 1 57 〜 1 58 n mの範囲内となる 1 0倍高調波、 即ち、 F 2エキシマレーザと略同じ 波長となる紫外光を得ることができる。 また、 発振波長を 1 . 03〜1 . 1 2 mの範囲内にすると、 発生波長が 1 4 7〜1 60 nmの範囲内となる 7倍高調波が出力され、 特に、 発振波長を 1 . 0 99〜1 . 1 06 yumの範囲内にすると、 発生波長が 1 57〜1 58 Aimの範囲 内の 7倍高調波、 即ち、 F2エキシマレ一ザと略同じ波長となる紫外光を得るこ とができる。 このとき、 単一波長発振レーザとして、 イッテルビウム ' ド一プ - ファイバレーザを用いる。 本実施形態では、 ステップ ·アンド ·スキャン方式で、 マスクとしてのレチク ル上のパターンを、 基板としてのウェハ上の複数のショッ 卜領域に転写する半導 体製造用の走査型露光装置について説明したが、 本発明はこれに限定されず、 ス テツプ .アンド . リピ—卜方式の投影露光装置 (ステツパ) は勿論、 液晶用のス テツプ ·アンド · スキャン方式及びステップ 'アンド ' リピ一ト方式の投影露光 装置にも適用することができる。 走査型露光装置の構造及び露光動作は、 例えば、 米国特許第 6, 341 , 007 B 1に詳細に記載されており、 本国際出願で指定 または選択された国の法令で許容される限りにおいて、 この米国特許を援用して 本文の記載の一部とする。 なお、 本発明の露光装置では、 複数のレンズから構成される照明光学系や投影 光学系を露光装置本体に組み込んだ後に光学調整が行われるとともに、 多数の機 械部品からなるレチクルステージやウェハステ一ジを露光装置本体に取り付けた 上で配線や配管を施され、 さらに総合調整 (電気調整、 動作確認等) が行われる。 なお、 露光装置の製造は、 温度やクリーン度等が管理されたクリーンルーム内で 行われることが望ましい。 また、 本発明の露光装置を用いることにより、 半導体デバイスを製造すること ができる。 半導体デバイスは、 デバイスの機能や性能に応じて設計を行う設計ェ 程、 当該設計に基づいてレチクルを作製するレチクル作製工程、 シリコン材料か らウェハを得るためのウェハ製造工程、 露光装置を用いてレチクルに形成された パ夕一ンをウェハ上に転写するウェハ露光工程、 レチクルパタ一ンが転写された ウェハに物理的 ·化学的処理を施すウェハ処理工程、 処理されたウェハをデバイ スの形態にするデバイス組立て工程 (ダイシング工程、 ボンディング工程、 パッ ケージ工程を含む) 、 デバイスの機能や性能を検査する検査工程等を経て、 製造 される。 産業上の利用可能性 本発明では、 上述の光学素子の洗浄方法を用いることにより、 露光装置の照明 光学系や投影光学系等を構成する光学素子を容易に且つ効率良〈洗浄することが できるので、 常に露光装置の光学系を良好な状態に維持することができる。 これ により、 半導体素子や液晶表示素子等のマイクロデバィスの製造における歩留ま りや生産性を向上させることができる。 When the transfer of the reticle pattern to one shot area is completed, the wafer stage WST is step-moved by one shot area in the X-axis direction, and the scanning exposure for the next shot area is similarly performed. By repeating the step movement and the scanning exposure in this manner, a predetermined number of shots of the exposure pattern are transferred onto the wafer W. In this embodiment, the method of cleaning the beam matching unit, the illumination optical system, and the projection optical system of the exposure apparatus has been described. However, the air supply pipe connected to the housing of the optical system desired to be cleaned. By controlling only the solenoid valve of the system as described above, it is also possible to selectively clean only some of the optical systems (for example, only the illumination optical system, or the beam matching unit and the projection optical system). it can. Since the water concentration is low in the housing of the optical system where cleaning is not performed, it is possible to suppress the energy absorption of laser light due to the influence of the water in the housing. Thus, effective cleaning of the optical element can be performed even in a projection optical system which is considered to be far from the light source. Further, in the present embodiment, the beam matching unit of the exposure apparatus, and the method of cleaning the optical elements of the illumination optical system and the projection optical system have been described. By controlling and irradiating the exposure beam, it is also possible to clean the optical element in the reticle chamber, that is, the reticle. In the present embodiment, the optical element is cleaned while the first nitrogen gas and the first helium gas in the optical system are replaced with the second nitrogen gas and the second helium gas, respectively. The present invention is not limited to this. For example, instead of the second nitrogen gas, the moisture concentration may be supplied mixed gas of nitrogen gas and Saizo emissions 0 3 is 1 ppm. Further, instead of the second helium gas, water content concentration but it may also be supplied mixed gas of Heriumugasu ozone 0 3 is 1 ppm. A mixed gas of nitrogen gas or helium gas and ozone 0 3 was filled in the housing or lens barrel, further irradiating F 2 excimer laser light (vacuum ultraviolet light). In analogy to the present implementation embodiment, organic contaminants Substance in adhering to the optical element surface in the housing or barrel is cut by the energy of the F 2 excimer one laser light, in addition to the oxidizing action of 0 H the radical Le The optical element can be more efficiently cleaned by the oxidizing action of ozone contained in the mixed gas. Further, in this embodiment, after the supply of the second nitrogen gas or the helium gas into the housing of the beam matching unit and the illumination optical system and the lens barrel of the projection optical system is completed, the optical element is cleaned by irradiating a laser beam. However, the optical element may be cleaned by irradiating the optical element with laser light in a state where the second nitrogen gas or the room gas is continuously supplied into each housing. Thus, the atmosphere in the housing can be maintained at a predetermined moisture concentration, so that the optical element can be efficiently cleaned in a stable state. Therefore, the optical element can be sufficiently cleaned in a shorter time, that is, the irradiation time of the F 2 excimer laser beam (vacuum ultraviolet light) can be shortened, so that the glass material constituting the optical element is damaged. Can be reduced. Further, in the present embodiment, the supply of the gas into the housing is stopped while the optical element is being cleaned by irradiating the laser beam, but the second nitrogen gas or the helium gas is supplied at a predetermined rate. After the supply for a time, the first nitrogen gas or the helium gas may be supplied during the cleaning of the optical element. In the present embodiment, nitrogen gas and helium gas having a water concentration of 1 ppm were used. The concentration of water contained in the gas is not limited to this, but may be any as long as the concentration of water is in the range of 0.5 ppm to 10 ppm. If the water concentration is lower than 0.5 ppm, a predetermined amount of 0 H radical cannot be obtained, so that the oxidizing action is not sufficient and the cleaning effect of the optical element is reduced. On the other hand, if the water concentration is higher than 1 O ppm, light is absorbed by the water in the housing during the cleaning process, and the cleaning effect of the optical element decreases as the distance from the light source increases. In the present embodiment, the nitrogen gas is supplied to the beam matching unit and the illumination optical system, but a helium gas may be supplied instead of the nitrogen gas. Similarly, in this embodiment, helium gas is supplied to the projection optical system, but nitrogen gas may be supplied instead of helium gas. In any case, it goes without saying that a gas whose moisture concentration is within a predetermined range is used. In this embodiment, the nitrogen gas is supplied to the reticle chamber RR and the wafer chamber WR, but a helium gas may be supplied instead of the nitrogen gas. The projection optical system of the exposure apparatus of the present invention is not limited to a projection optical system in which all optical elements are composed of refractive lenses. It may be a catadioptric projection optical system composed of elements. Further, the projection optical system is not limited to a reduction system projection optical system, and may be a unit magnification system or an enlargement system projection optical system. In this embodiment, the gas is supplied by directly connecting the pipe to the lens barrel of the projection optical system. However, the projection optical system may be housed in a gas-sealed chamber, and the gas may be supplied into such a chamber. . In the exposure apparatus of the present embodiment, an F 2 excimer laser is used as a light source, but the light source is not limited to this, and an excimer laser such as ArF or KrF, EUV light, or the like may be used. Also, for example, the oscillation wavelength is set to any of the wavelengths of 248 nm, 193 nm, and 157 nm. A harmonic of a fixed laser such as a YAG laser having a vector may be used. In addition, a single-wavelength laser beam in the infrared or visible range oscillated by a DFB semiconductor laser or fiber laser is amplified by, for example, a fiber amplifier doped with erbium (or both erbium and ytterbium). Alternatively, a harmonic converted into a wavelength of ultraviolet light using a nonlinear optical crystal may be used. For example, if the oscillation wavelength of a single-wavelength laser is in the range of 1.51 to 1.59 Atm, a 10th harmonic with a generated wavelength in the range of 151 to 159 nm will be output. . In particular, when the oscillation wavelength is in the range of 1.57-1.58171, the 10th harmonic whose generated wavelength is in the range of 157-158 nm, that is, the wavelength substantially equal to that of the F 2 excimer laser Ultraviolet light can be obtained. If the oscillation wavelength is in the range of 1.03 to 1.12 m, a 7th harmonic whose output wavelength is in the range of 147 to 160 nm is output. When the wavelength is within the range of 0 99 to 1.106 yum, it is possible to obtain a 7th harmonic having a generation wavelength within the range of 157 to 158 Aim, that is, ultraviolet light having substantially the same wavelength as the F 2 excimer laser. Can be. At this time, a ytterbium-doped-fiber laser is used as the single-wavelength oscillation laser. In the present embodiment, a scanning exposure apparatus for manufacturing a semiconductor in which a pattern on a reticle as a mask is transferred to a plurality of shot areas on a wafer as a substrate by a step-and-scan method has been described. However, the present invention is not limited to this, and is not limited to a step-and-repeat type projection exposure apparatus (stepper), but also a step-and-scan type and a step-and-repeat type for a liquid crystal. The present invention can also be applied to a projection exposure apparatus. The structure and exposure operation of a scanning exposure apparatus is described in detail, for example, in U.S. Patent No. 6,341,007 B1, and to the extent permitted by the laws of the country designated or selected in this international application, This US patent is incorporated herein by reference. In the exposure apparatus of the present invention, optical adjustment is performed after an illumination optical system and a projection optical system composed of a plurality of lenses are incorporated into the exposure apparatus main body, and a reticle stage and a wafer stage including a large number of mechanical parts are used. Wiring and piping are carried out after the laser is attached to the exposure apparatus body, and overall adjustments (electrical adjustment, operation confirmation, etc.) are performed. It is desirable that the manufacture of the exposure apparatus be performed in a clean room where the temperature, cleanliness, etc. are controlled. Further, a semiconductor device can be manufactured by using the exposure apparatus of the present invention. A semiconductor device is designed using a design process for designing according to the function and performance of the device, a reticle manufacturing process for manufacturing a reticle based on the design, a wafer manufacturing process for obtaining a wafer from silicon material, and an exposure apparatus. A wafer exposure step of transferring the pattern formed on the reticle onto the wafer, a wafer processing step of performing physical and chemical treatment on the wafer on which the reticle pattern has been transferred, and a processing of the processed wafer into a device. It is manufactured through a device assembly process (including a dicing process, a bonding process, and a packaging process), an inspection process for inspecting device functions and performance, and the like. INDUSTRIAL APPLICABILITY In the present invention, by using the above-described method for cleaning an optical element, an optical element constituting an illumination optical system, a projection optical system, or the like of an exposure apparatus can be easily and efficiently cleaned. Therefore, the optical system of the exposure apparatus can always be maintained in a good state. As a result, the yield and productivity in manufacturing micro devices such as semiconductor devices and liquid crystal display devices can be improved.

Claims

請求の範囲 The scope of the claims
1 . 露光ビームをマスクに照射する照明光学系と、 上記マスクを介して照射さ れた露光ビームを感光性基板に照射する投影光学系とを用いて、 上記マスク上に 形成されたパターンを上記感光性基板に転写する露光方法であって、 1. Using an illumination optical system that irradiates the exposure beam onto the mask and a projection optical system that irradiates the photosensitive substrate with the exposure beam irradiated via the mask, the pattern formed on the mask is An exposure method for transferring to a photosensitive substrate,
上記照明光学系及び上記投影光学系の少なくとも一方を包囲するハウジング内 に、 感光性基板露光時におけるハウジング内の気体より高い水分濃度を有する気 体を供給する工程と ;  Supplying a gas having a higher moisture concentration than the gas in the housing during exposure of the photosensitive substrate into a housing surrounding at least one of the illumination optical system and the projection optical system;
上記高い水分濃度を有する気体が供給されたハウジングに包囲された上記照明 光学系及び上記投影光学系の上記少なくとも一方に、 上記露光ビームを照射する ことにより、 上記照明光学系及び上記投影光学系の上記少な〈とも一方を構成す る光学素子を洗浄する工程と;を含む露光方法。  By irradiating at least one of the illumination optical system and the projection optical system surrounded by the housing supplied with the gas having the high moisture concentration with the exposure beam, the illumination optical system and the projection optical system A step of cleaning at least one of the optical elements.
2 . 上記高い水分濃度が、 0 . 5 P p m〜1 0 p p mであることを特徴とする 請求項 1に記載の露光方法。 2. The exposure method according to claim 1, wherein the high water concentration is from 0.5 Ppm to 10 Ppm.
3 . 上記高い水分濃度を有する気体が窒素またはヘリゥ厶を含むことを特徴と する請求項 1に記載の露光方法。 3. The exposure method according to claim 1, wherein the gas having a high water concentration contains nitrogen or helium.
4 . 上記気体がさらにオゾンを含むことを特徴とする請求項 3に記載の露光方 法。 4. The exposure method according to claim 3, wherein the gas further contains ozone.
5 . さらに、 上記照明光学系及び上記投影光学系の少なくとも一方の露光ビー ムに対する透過率を計測し、 計測された透過率が所定値以下に低下したときに、 上記洗浄工程を実行することを特徴とする請求項 1に記載の露光方法。 5. Further, the transmittance of at least one of the illumination optical system and the projection optical system to the exposure beam is measured, and when the measured transmittance falls below a predetermined value, the cleaning step is performed. 2. The exposure method according to claim 1, wherein:
6 . 上記露光ビームが、 F 2エキシマレ一ザ光であることを特徴とする請求項 1に記載の露光方法。 6. The exposure beam exposure method according to claim 1, characterized in that the F 2 excimer one laser light.
7 . 露光ビームで所定バタ一ンのマスクを介して感光性基板を露光する露光装 置であって、 7. An exposure apparatus for exposing a photosensitive substrate with an exposure beam through a mask having a predetermined pattern,
上記露光ビームを発生させる光源と ;  A light source for generating the exposure beam;
光学素子を含み、 上記光源から発生した露光ビームを上記マスクに照射するた めの照明光学系と;  An illumination optical system for irradiating the mask with an exposure beam generated from the light source;
光学素子を含み、 上記マスクのパターンを上記感光性基板に投影するための投 影光学系と ;  A projection optical system including an optical element for projecting the pattern of the mask onto the photosensitive substrate;
上記照明光学系及び上記投影光学系の少なくとも一方を包囲するハウジング と;  A housing surrounding at least one of the illumination optical system and the projection optical system;
該ハウジング内の水分濃度を露光工程及び光学素子の洗浄工程に応じて調節す るための水分濃度調節装置と;を備える露光装置。  A water concentration adjusting device for adjusting the water concentration in the housing in accordance with the exposure step and the optical element cleaning step.
8 . 上記水分濃度調節装置は、 上記ハウジング内の水分濃度を露光工程よりも 光学素子の洗浄工程の方が高〈なるように調節することを特徴とする請求項 7に 記載の露光装置。 8. The exposure apparatus according to claim 7, wherein the moisture concentration adjusting device adjusts the moisture concentration in the housing such that the cleaning step of the optical element is higher than the exposure step.
9 . さらに、 上記照明光学系及び上記投影光学系の少な〈とも一方の透過率を 検出する透過率検出装置を備え、 上記水分濃度調節装置は、 上記透過率検出装置 で検出された透過率に応じてハウジング内の水分濃度を調節することを特徴とす る請求項 7に記載の露光装置。 9. The apparatus further includes a transmittance detector that detects transmittance of at least one of the illumination optical system and the projection optical system, and the moisture concentration adjustment device is configured to detect the transmittance detected by the transmittance detector. 8. The exposure apparatus according to claim 7, wherein the moisture concentration in the housing is adjusted according to the condition.
1 0 . 上記水分濃度調節装置が、 上記ハウジングに接続され第 1の気体が収納 されている第 1 タンクと、 上記ハウジングに接続され第 1 タンクに充填されてい る気体よりも水分濃度が高い第 2の気体が充填されている第 2タンクと、 上記照 明光学系及び上記投影光学系の少なくとも一方を包囲するハウジングへの第 1 夕 ンクからの第 1の気体と第 2タンクからの第 2の気体の供給を切り替える切替弁 とを備えることを特徴とする請求項 7に記載の露光装置。 10. The water concentration adjusting device is connected to the housing and stores a first gas in the first tank and a first tank connected to the housing and having a higher water concentration than the gas filled in the first tank. 10. A second tank filled with the second gas, a first gas from the first tank and a second gas from the second tank into a housing surrounding at least one of the illumination optical system and the projection optical system. The exposure apparatus according to claim 7, further comprising: a switching valve that switches supply of the gas.
1 1 . さらに、 上記照明光学系及び上記投影光学系の少なくとも一方の透過率 を検出する透過率検出装置と、 上記切替弁を制御する制御装置とを備え、 該制御 装置は上記透過率検出装置で検出された透過率に応じて上記切替弁を制御するこ とを特徴とする請求項 1 0に記載の露光装置。 11. A transmittance detection device for detecting transmittance of at least one of the illumination optical system and the projection optical system, and a control device for controlling the switching valve, wherein the control device includes the transmittance detection device. 10. The exposure apparatus according to claim 10, wherein the switching valve is controlled according to the transmittance detected in the step (a).
1 2 . 第 2の気体の水分濃度が 0 . 5 p p m〜1 0 p p mであることを特徴と する請求項 7に記載の露光装置。 12. The exposure apparatus according to claim 7, wherein the moisture concentration of the second gas is 0.5 to 10 ppm.
1 3 . 第 1及び第 2の気体が窒素またはヘリウムを含むことを特徴とする請求 項 7に記載の露光装置。 13. The exposure apparatus according to claim 7, wherein the first and second gases include nitrogen or helium.
1 4 . 第 2の気体が、 さらにオゾンを含むことを特徴とする請求項 1 3に記載
Figure imgf000028_0001
14. The method of claim 13, wherein the second gas further comprises ozone.
Figure imgf000028_0001
1 5 . 上記光源が F 2エキシマレ一ザであることを特徴とする請求項 7に記載
Figure imgf000028_0002
15. The light source according to claim 7, wherein the light source is an F 2 excimer laser.
Figure imgf000028_0002
1 6 . 上記光源と上記照明光学系との間に設けられ、 光学素子を備えるビーム マッチングュニッ 卜と、 該ビームマッチングュニッ トを包囲するハウジングとを さらに備え、 上記水分濃度調節装置は、 上記ビームマッチングュニッ 卜を包囲す るハウジング内の水分濃度を、 露光工程よりも光学素子の洗浄工程の方が高くな るように調節することを特徴とする請求項 7に記載の露光装置。 16. A beam matching unit provided between the light source and the illumination optical system, the beam matching unit including an optical element, and a housing surrounding the beam matching unit. 8. The exposure apparatus according to claim 7, wherein the water concentration in the housing surrounding the matching unit is adjusted so that the cleaning step of the optical element is higher than the exposure step.
PCT/JP2003/008415 2002-07-03 2003-07-02 Method of exposure and aligner WO2004006309A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004519235A JPWO2004006309A1 (en) 2002-07-03 2003-07-02 Exposure method and exposure apparatus
AU2003246243A AU2003246243A1 (en) 2002-07-03 2003-07-02 Method of exposure and aligner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002194108 2002-07-03
JP2002-194108 2002-07-03

Publications (1)

Publication Number Publication Date
WO2004006309A1 true WO2004006309A1 (en) 2004-01-15

Family

ID=30112296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008415 WO2004006309A1 (en) 2002-07-03 2003-07-02 Method of exposure and aligner

Country Status (3)

Country Link
JP (1) JPWO2004006309A1 (en)
AU (1) AU2003246243A1 (en)
WO (1) WO2004006309A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004598A (en) * 2004-07-22 2012-01-05 Asml Netherlands Bv Method for operating detector within gas conditioned environment
WO2019111393A1 (en) * 2017-12-07 2019-06-13 ギガフォトン株式会社 Optical-element moving apparatus, narrow-band laser apparatus, and electronic-device manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10289853A (en) * 1997-04-15 1998-10-27 Canon Inc Exposure
WO2000041225A1 (en) * 1998-12-28 2000-07-13 Nikon Corporation Method for cleaning optical device, exposure apparatus and exposure method, method for manufacturing device, and device
JP2001223148A (en) * 2000-02-08 2001-08-17 Nikon Corp Cleaning method, method and device for exposure, and method of manufacturing device
US20010026354A1 (en) * 2000-03-27 2001-10-04 Nikon Corporation Optical instrument, gas replacement method and cleaning method of optical instrument, exposure apparatus, exposure method and manufacturing method for devices
JP2002075839A (en) * 2000-08-30 2002-03-15 Canon Inc Exposure system, mask structure used therefor, exposure method, semiconductor device manufactured by using the same, and method of manufacturing semiconductor device
JP2003188096A (en) * 2001-11-19 2003-07-04 Asml Netherlands Bv Lithographic projection apparatus, device manufacturing method, device manufactured thereby, cleaning unit and method of cleaning contaminated object

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10289853A (en) * 1997-04-15 1998-10-27 Canon Inc Exposure
WO2000041225A1 (en) * 1998-12-28 2000-07-13 Nikon Corporation Method for cleaning optical device, exposure apparatus and exposure method, method for manufacturing device, and device
JP2001223148A (en) * 2000-02-08 2001-08-17 Nikon Corp Cleaning method, method and device for exposure, and method of manufacturing device
US20010026354A1 (en) * 2000-03-27 2001-10-04 Nikon Corporation Optical instrument, gas replacement method and cleaning method of optical instrument, exposure apparatus, exposure method and manufacturing method for devices
JP2002075839A (en) * 2000-08-30 2002-03-15 Canon Inc Exposure system, mask structure used therefor, exposure method, semiconductor device manufactured by using the same, and method of manufacturing semiconductor device
JP2003188096A (en) * 2001-11-19 2003-07-04 Asml Netherlands Bv Lithographic projection apparatus, device manufacturing method, device manufactured thereby, cleaning unit and method of cleaning contaminated object

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004598A (en) * 2004-07-22 2012-01-05 Asml Netherlands Bv Method for operating detector within gas conditioned environment
WO2019111393A1 (en) * 2017-12-07 2019-06-13 ギガフォトン株式会社 Optical-element moving apparatus, narrow-band laser apparatus, and electronic-device manufacturing method
CN111566533A (en) * 2017-12-07 2020-08-21 极光先进雷射株式会社 Optical element moving device, narrow band laser device, and method for manufacturing electronic device
US11081853B2 (en) 2017-12-07 2021-08-03 Gigaphoton Inc. Optical element moving apparatus, narrowed-line laser apparatus, and method for manufacturing electronic device

Also Published As

Publication number Publication date
JPWO2004006309A1 (en) 2005-11-10
AU2003246243A1 (en) 2004-01-23

Similar Documents

Publication Publication Date Title
TW490734B (en) Exposure apparatus, exposure method, and device manufacturing method
US5559584A (en) Exposure apparatus
US7315346B2 (en) Lithographic apparatus and device manufacturing method
JP2003188096A (en) Lithographic projection apparatus, device manufacturing method, device manufactured thereby, cleaning unit and method of cleaning contaminated object
JP4026943B2 (en) Exposure apparatus and device manufacturing method
WO2000031780A1 (en) Optical device, exposure system, and laser beam source, and gas feed method, exposure method, and device manufacturing method
US7455880B2 (en) Optical element fabrication method, optical element, exposure apparatus, device fabrication method
EP1050900A1 (en) Exposure system, exposure apparatus, and coating developing exposure apparatus
EP1670040A1 (en) Projection exposure device, projection exposure method, and device manufacturing method
US6191843B1 (en) Exposure device, method of making and using same, and objects exposed by the exposure device
JP2006245401A (en) Aligner and device manufacturing method
WO2000041225A1 (en) Method for cleaning optical device, exposure apparatus and exposure method, method for manufacturing device, and device
WO2004006309A1 (en) Method of exposure and aligner
JP2010010380A (en) Optical system, aligner, and device manufacturing method
JP4208532B2 (en) Method for measuring the transmittance of an optical element
WO2007083686A1 (en) Exposure apparatus
JP4510433B2 (en) Exposure apparatus and cleaning method
US20030156268A1 (en) Exposure apparatus, exposure method and device production method
JP4174239B2 (en) Gas supply apparatus, exposure system, and device manufacturing method
WO2003036695A1 (en) Method for feeding purge gas to exposure apparatus, exposure apparatus, and method for manufacturing device
JP4273421B2 (en) Temperature control method and apparatus, and exposure method and apparatus
JP2003163159A (en) Method of supplying purge gas, exposure apparatus, and method of manufacturing devices
JP2005166897A (en) Aligner
WO2002065183A1 (en) Lens-barrel, exposure device, and method of manufacturing device
JP2002050815A (en) Light source device, projection aligner, method for manufacturing projection aligner, and device- manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004519235

Country of ref document: JP

122 Ep: pct application non-entry in european phase