WO2004005215A1 - Calcium silicate hardened article - Google Patents

Calcium silicate hardened article Download PDF

Info

Publication number
WO2004005215A1
WO2004005215A1 PCT/JP2003/008480 JP0308480W WO2004005215A1 WO 2004005215 A1 WO2004005215 A1 WO 2004005215A1 JP 0308480 W JP0308480 W JP 0308480W WO 2004005215 A1 WO2004005215 A1 WO 2004005215A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
solid mixture
aqueous slurry
calcium silicate
foaming agent
Prior art date
Application number
PCT/JP2003/008480
Other languages
French (fr)
Japanese (ja)
Inventor
Akihiro Ogawa
Hiroyoshi Matsuyama
Original Assignee
Asahi Kasei Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kabushiki Kaisha filed Critical Asahi Kasei Kabushiki Kaisha
Priority to GB0427475A priority Critical patent/GB2405402B/en
Priority to AU2003246260A priority patent/AU2003246260A1/en
Priority to DE10392839T priority patent/DE10392839B4/en
Priority to JP2004519255A priority patent/JP4343108B2/en
Publication of WO2004005215A1 publication Critical patent/WO2004005215A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00189Compositions or ingredients of the compositions characterised by analysis-spectra, e.g. NMR
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00267Materials permeable to vapours or gases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/30Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values
    • C04B2201/32Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values for the thermal conductivity, e.g. K-factors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a cured calcium silicate having dynamic thermal insulation. More specifically, the flexural strength is not less than 0.05 MPa, the thermal conductivity is from 0.02 to 0.1 l Wm— 1 , and
  • Permeability is 5 X 1 0 - 4 ⁇ A in lm 2 hi P a 1 or less, about calcium silicate hardened body showing the dynamic insulation properties.
  • the hardened calcium silicate of the present invention is required to have not only light weight and high strength, but also nonflammability, and also have high heat insulation and high air permeability, and therefore have dynamic heat insulation. It can be used advantageously as a wall material for construction. “Dynamic heat insulation” means a property that exhibits high air permeability and a heat insulation effect, and a building wall material having dynamic heat insulation is designed ventilation.
  • the present invention relates to a method for producing the above-mentioned cured product of calcium silicate. JP2003 / 008480
  • the dynamic insulation method is a method in which outside air is introduced into a room through heat insulating material in a wall or ceiling to recover heat loss from the wall or ceiling.
  • the air introduced into the room through the insulation is fresh and is supplied into the room while being warmed in the wall.
  • air supply preheating is realized and the indoor high air quality is maintained while reducing the apparent heat transmission rate.
  • organic foam-based heat insulating materials have been used as heat insulating materials.
  • organic foam-based heat insulating materials have a high closed cell rate and thus have low air permeability and are not suitable for the dynamic heat insulating method.
  • As an inorganic heat insulating material there is a foam glass obtained by foaming glass, but it is expensive, and has a high percentage of closed cells, and thus has a low air permeability and is not suitable for a dynamic heat insulating material. Also
  • WO 02/066693 and Japanese Patent Application Laid-Open Publication No. 2001-1226784 disclose techniques relating to a cured product of calcium silicate.
  • calcium silicate hardened obtained by these techniques is disclosed.
  • the body has low air permeability and does not function as dynamic insulation.
  • waste paper pulp is mainly used.
  • ⁇ Inorganic fibers such as crushed materials and rock wool are divided into a certain range and filled into a frame.
  • the thermal conductivity of the form itself was higher than that of the heat insulating material, so that heat was generated through the form and the effectiveness of dynamic insulation could not be fully exhibited.
  • heat insulation had to be applied to an unnecessarily thick thickness due to the heat loss caused by the gap between the mold and the heat insulating powder generated when the heat insulating material was injected.
  • Wood-cement board / concrete block which has been conventionally used as a building material, has a bulk specific gravity of 0.5 or more, and therefore has a large heat conductivity and a large heat energy loss due to heat conduction. Therefore, there was a problem that the effect of the dynamic insulation could not be sufficiently exhibited. Also, Japanese Patent Application Publication No. JP-A-2001-3482883 discloses a technology of a sound absorbing material. However, since the bulk specific gravity is around 0.35 and the thermal conductivity is large, dynamic Not suitable as thermal insulation.
  • rock wool ports / glass mats with low thermal conductivity has been considered.
  • a board or a mat it is not a hardened body, but only a cotton or a fibrous fiber intertwined. Therefore, the bending strength is low, and beams and frames are required at the time of construction. Therefore, there is a problem that heat conduction occurs from itself, and the effectiveness of dynamic insulation cannot be obtained.
  • many fine fibers, which are considered harmful when cutting on site The health of workers.
  • the air permeability is too high, it cannot be used alone as a dynamic heat insulator, and a plastic sheet with many fine holes must be placed indoors. Not only the construction becomes complicated, but also the non-combustibility of the whole heat insulating material is reduced.
  • the present inventors have intensively studied to solve the above-mentioned problems of the prior art.
  • at least one aluminum compound selected from the group consisting of siliceous raw materials, cement, aluminum sulfate and its hydrate, and other sulfur compounds, and
  • a foaming agent is added to an aqueous slurry of a solid mixture composed of calcareous raw materials and having a specific composition, and the aqueous slurry containing the foaming agent is injected into a mold and pre-cured.
  • the weight ratio of the water Z solid mixture in the aqueous slurry is adjusted to 0.6 or less, or the weight ratio is adjusted.
  • the bending strength is reduced to 0 by adding at least two members selected from the group consisting of a surfactant, a viscosity modifier and an antifoaming agent to the aqueous slurry. 0 5MPa or more, heat transfer The rate is 0 0 2 ⁇ 0 ⁇ l W m- and permeability is 5 X 1 0 -.
  • an object of the present invention is not only to be lightweight and high-strength, but also to be non-flammable, and to have high heat insulation and high air permeability, and therefore to have dynamic heat insulation.
  • An object of the present invention is to provide a hardened calcium silicate that can be advantageously used as a required building wall material.
  • Another object of the present invention is to provide a method for efficiently producing the above-mentioned cured product of calcium silicate.
  • CPS means coutntspersecond.
  • FIG. 2 is an X-ray diffraction diagram showing a method for calculating the diffraction peak intensity of the (220) plane.
  • Fig. 2 Powder X-ray diffraction data of the cured product of calcium silicate of Example 13 and I (220) [diffraction peak intensity of (220) plane of tobermorite], I (002) [ Tobermorite's
  • FIG. 6 is an X-ray diffraction diagram showing a method for calculating the (002) plane diffraction peak intensity].
  • FIG. 3 is a schematic explanatory view showing one example of an apparatus used for measuring the air permeability defined in the present invention. Explanation of reference numerals
  • the bending strength is more than 0.05MPa
  • the thermal conductivity is between 0.02 and 0.1 l Wm! ! — 1 , and
  • the air permeability is 5 X 10 _ 4 or more: L m 2 hiP a 1 or less,
  • a cured calcium silicate exhibiting dynamic thermal insulation is provided.
  • the bending strength is more than 0.05MPa
  • Air permeability is 5 X 10 — 4 or more; Lm 2 h 1 or less,
  • a method for producing a hardened calcium silicate comprising the following steps (1) to (4).
  • an aqueous slurry comprising water and a solid mixture, wherein the solid mixture is substantially at least selected from the group consisting of siliceous raw materials, cement, aluminum sulfate and hydrates thereof. It consists of one aluminum compound, another sulfuric acid compound and, in some cases, calcareous raw materials.
  • the amount of the aqueous in Sula rie of the aluminum compound, the terms of oxide (A 1 2 O 3) 0 by weight of the solid mixture in. 0 9-1 0% by weight, and other sulfuric acid compound is 0.15 to 15% by weight based on the weight of the solid mixture in terms of SO 3 ,
  • the weight ratio of the water to the solid mixture is 2.3 to 5.5;
  • the weight ratio of the calcareous raw material to the cement is 0.6 or less.
  • the foaming agent is at least one member selected from the group consisting of aluminum powder and an aqueous slurry containing aluminum, and the foaming agent is added to the weight of the solid mixture in terms of solids.
  • a method for producing a cured product of calcium silicate comprising the following steps (1) to (4).
  • aqueous slurry containing water and a solid mixture wherein the solid mixture is substantially selected from the group consisting of siliceous raw materials, cement, aluminum sulfate and hydrates thereof. Both consist of one aluminum compound, other sulfate compounds and, in some cases, calcareous raw materials.
  • the weight ratio of the calcareous raw material to the cement exceeds 0.6.
  • At least two members selected from the group consisting of a surfactant, a viscosity modifier and an antifoaming agent are added to the aqueous slurry, and at this time, the viscosity modifier and the antifoamer are added. Is added after step (1) and before step (2), and the surfactant is added simultaneously with the addition of the foaming agent in step (2).
  • the foaming agent is at least one foaming agent selected from the group consisting of aluminum powder and an aluminum-containing aqueous slurry, and the foaming agent is converted to a solid mixture in terms of solids.
  • the surfactant is at least one compound selected from the group consisting of higher alcohol sulfates, higher alcohol sodium sulfate and polyoxyethylene alkyl ether;
  • the surfactant is added to the solid equivalent weight of the foaming agent.
  • the viscosity modifier is at least one compound selected from the group consisting of methylcell monopolyvinyl alcohol, wherein the viscosity modifier is based on the weight of the solid mixture. 0.1 to 1% by weight or less. 10. The method according to any one of claims 1 to 9.
  • the antifoaming agent is at least one compound selected from the group consisting of silicones, fatty acids, fatty acid ester alcohols, and phosphoric acid esters, wherein the defoaming agent is The preceding paragraph characterized by using 0.001 to 3% by weight based on the weight of the mixture?
  • the “calcium silicate cured product” of the present invention is a general term for a material containing a calcium silicate compound and having an arbitrary shape obtained by curing, and is generally a concrete, a cured mortar, a lightweight foamed material. Concrete (hereinafter often referred to as “ALC”), fiber reinforced calcium silicate board (carbon board), etc.
  • the bending strength is more than 0.05MPa
  • the cured product of calcium silicate of the present invention can be advantageously used as a dynamic heat insulator.
  • the dynamic insulation is a material used in the dynamic insulation method.
  • the dynamic insulation method see, for example, B. J. Taylor et.
  • Envelopes (Building and Environment, Vol. 31, No. 6, p. 519-525, 1996), and “Research on Multifunctional Insulation Technology” (Survey Report No. 53, Housing in Hokkaido, Japan) Urban Research Institute, 1993) can be referred to.
  • planned ventilation can be performed at the same time while reducing thermal energy loss.
  • the indoor heat lost to the outside from the side wall and ceiling wall is recovered inside the side wall and ceiling wall by introducing outside air into the room through the heat insulating material in the side wall and ceiling wall, and the outside air is It is assumed that it will be supplied indoors while being heated inside the body.
  • the air introduced into the room through the insulation is excellent not only in recovering heat loss but also in being fresh. As a result, air supply preheating is achieved while reducing the apparent heat transmission rate, and high indoor air quality is maintained.
  • the cured product of calcium silicate of the present invention has a flexural strength of 0.05 Mpa or more, preferably 0.07 Mpa or more, and more preferably 0.1 Mpa or more. If the bending strength is less than 0.05 MPa, it becomes difficult to maintain a suitable panel shape as a dynamic heat insulating material, and workability is reduced.
  • the cured product of the calcium silicate of the present invention preferably has a thermal conductivity of 0.02 to 0.1 Wm— 1 , more preferably 0.02 to 0.08 Wm—.
  • the range is from 0 to 1 , particularly preferably from 0.02 to 0. O e Wm- 1 ! ⁇ — 1 . If the thermal conductivity exceeds 0.1 W m — 1 K- 1 , the heat insulation performance will decrease, and the wall itself will be used to obtain a sufficient heat insulation effect when using a cured calcium silicate as a heat insulating material. The thickness must be increased, which causes problems in workability. Further, the lower limit of the thermal conductivity of the cured product of calcium silicate of the present invention is 0.02 Wm- 1 from a practical viewpoint.
  • the ventilation rate of 5 X 1 0 one 4 ⁇ : lm S h - ipa - 1 a is and this is rather preferable, rather preferably Ri good is 1 X 1 0 - 3 ⁇ 0 5 m 2 h— i P a — 1 , particularly preferably 5 X 10 — 3 to 0.1 m 2 h- 1 P a — 1 or less.
  • Ri good is 1 X 1 0 - 3 ⁇ 0 5 m 2 h— i P a — 1 , particularly preferably 5 X 10 — 3 to 0.1 m 2 h- 1 P a — 1 or less.
  • Permeability is 5 X 1 0 - If less than 4 m 2 h one 1 P a- 1, does not function as a dynamic insulation material can not and this Komu Ri taken outside air and ventilation performance is lost .
  • the WO O 2/0 6 6 9 3 silicate months Rushiumu cured product obtained by the method described in the ventilation rate 5 X 1 0 - 4 m 2 h - for 1 P a 1 is less than, dynamic insulation It does not function as a material.
  • the passing air ratio is more than lm 2 h- a 1, only a Ri faster the flow velocity of the air, it is difficult to perform supply preheating. Also, if the air permeability is too high, the pressure differential across the wall will be small, and it will not be possible to create sufficient airflow required for dynamic insulation.
  • the side surfaces of the cylindrical sample (length L, cross-sectional area S) of the calcium silicate cured body except for both end surfaces are sealed with epoxy resin, and both ends of the sample are dried using a vacuum pump.
  • the differential pressure across the sample is 1 kPa
  • the flow rate of the air flowing through the sample is measured, and the value calculated by equation (1) is defined as the air permeability.
  • ⁇ P Pressure difference (P a)
  • the sample 1 is set in the sample holder 2 having a rubber packing which can be compressed by compressed air on the inner surface.
  • the pressure in the pressure adjustment tank 5 is controlled by the pressure adjustment valve 4 using the vacuum pump 3 and the flow rate of the air flowing into the sample when the differential pressure measured by the differential pressure gauge 6 is 1 kPa. Is measured by flow meter 7. From the obtained flow rate, the air permeability is calculated by the above equation (1).
  • the cured product of calcium silicate of the present invention is mainly composed of tobermorite (5Ca a ⁇ 6Sio2 ⁇ 5H, O), which is observed in powder X-ray diffraction.
  • the ratio (I b) of the diffraction peak intensity I b to the minimum value I a of the diffraction peak intensity I b in the angle region between the diffraction lines (2 0 0) and (0 2 2) of the two tobermorites / I a) is preferably 3 or more, more preferably 4 or more.
  • X-ray powder diffraction refers to powder X-ray diffraction using Cu ⁇ -rays as X-rays.
  • tobermorite is the main component in the cured calcium silicate of the present invention is determined as follows by using both a scanning electron microscope observation and a powder X-ray observation of the fracture surface of the cured calcium silicate. To judge.
  • the matrix other than the bubble portion was randomly observed at 20 points, and if the average area ratio where plate- or strip-shaped tobermorite particles were observed was 50% or more, tobermorite was mainly used. It consists of Further, the average of the area ratio is preferably 60% or more, and more preferably 80% or more.
  • the coarse bubble portion refers to the region around the coarse bubble and about 5 m from the coarse bubble, and a region where tobermorite is easily generated due to the free space.
  • the plate-like or strip-like particles refer to the plate-like or strip-like tobermorite particles observed at the microscope setting magnification of 250 ⁇ as described above, and the microscope setting magnification of 500 ⁇ .
  • the distance between two surfaces almost parallel to each other in one particle is equivalent to the minimum length of the particle (hereinafter referred to as “thickness”).
  • the maximum length of the particle is more than 5 times the minimum length.
  • the maximum length and thickness are the projected lengths in two dimensions.
  • the size of the particles of these tobermorites is not particularly limited, but it is preferable that the maximum length be a few ⁇ m to 10 ⁇ m.
  • CSH low crystalline calcium silicate hydrate
  • CSH When left in the air for a long time, these CSH easily react with carbon dioxide contained in the air to cause a carbonation reaction that decomposes into calcium carbonate and amorphous silicic acid. At this time, cracks and structural deterioration occur due to volume shrinkage. Therefore, even if it is determined by X-ray diffraction and electron microscopy that it mainly consists of tobermorite, it is preferable that CSH is not contained as much as possible.
  • CSH particles were obtained under the electron microscope under Tobermorite It is easily determined that they are not particles. However, because CSH takes various particle forms, it may not be clearly distinguishable from other trace coexisting substances, such as fibrous gypsum and particulate calcium carbonate, by electron microscopic observation. For this reason, it is difficult to determine the CSH content ratio using an electron microscope.
  • X-ray powder diffraction of the cured product in which tobermorite and CSH coexist shows that a broad region was found between the (220) diffraction peak and the (222) diffraction peak of tobermorite. CSH diffraction peaks are observed. This diffraction peak of CSH usually appears around 29.1 to 29.4 ° (20). When the amount of CSH is smaller than that of tobermorite, the diffraction peak of CSH becomes a form absorbed by the diffraction lines of tobermorite, and it is usually impossible to measure the diffraction intensity of CSH.
  • the diffraction intensity of X-rays in the region between the (220) diffraction peak and the (222) diffraction peak of tobermorite is larger than that of the knock ground. Therefore, it is possible to determine whether a large amount of CSH is present.
  • the hardened calcium silicate does not contain CSH at all and is mainly composed of high crystalline tobermorite, the lowest value of the X-ray intensity in the same region coincides with the background intensity.
  • the cured product of the low specific gravity calcium silicate of the present invention has the diffraction peak intensity I of the (002) plane, which is the diffraction peak of the (220) plane, among the diffraction peaks of tobermorite observed in powder X-ray diffraction.
  • the ratio (I (002) / I (220)) to the intensity I (220) is preferably 0.25 or more, and more preferably 0.25.
  • Plate-shaped or strip-shaped particles of tobermorite are considered to have the direction perpendicular to the plane, that is, the thickness direction, as the C-axis direction of the crystal. Therefore, an increase in the relative intensity of I (002) means an increase in the relative regularity in the C-axis direction, and accordingly, an increase in the thickness of the plate-like crystal. .
  • JCPDS Joint Committee on Powder Dif fraction Standard
  • the ideal tobermorite crystal I (002) / I (220) is described as 0.8. As the value approaches, the thickness of the crystal increases and the strength of the single crystal increases. As a result, the strength of the cured body composed of these crystals also increases.
  • I (002) and I (220) The calculation method of these I (002) and I (220) is shown in Fig. 2.I (002) is the diffraction angle around 6 to 9 ° (2 ⁇ ), and the back ground is This is the true diffraction intensity obtained by linear approximation, and I (220) is the true diffraction intensity obtained by linearly approximating the background over a diffraction angle of around 20 to 40 ° (20). Is the diffraction intensity.
  • the hardened calcium silicate of the present invention preferably has a bulk specific gravity of 0.05 to 0.25, more preferably 0.05 to 0.2, and particularly preferably 0.5 to 0.2. 0 5 to 0.18.
  • the bulk specific gravity as used herein refers to the bulk specific gravity when dried at 105 ° C for 24 hours, that is, the absolute specific gravity.
  • the cured calcium silicate of the present invention may or may not substantially contain air bubbles, but preferably contains air bubbles.
  • Foam refers to a foaming agent that uses a surfactant that is used in the foam-preform method and is made using aluminum powder as a foaming agent, which has been conventionally used in the manufacture of lightweight foam concrete. Refers to bubbles created using
  • the cured product of calcium silicate of the present invention contains bubbles.
  • the cured calcium silicate of the present invention can be advantageously used as a building wall material such as the above-mentioned dynamic heat insulating material, ordinary heat insulating material, and sound absorbing material.
  • a building wall material such as the above-mentioned dynamic heat insulating material, ordinary heat insulating material, and sound absorbing material.
  • the shape when used as a building wall material as described above it is preferable to have a panel shape, and the size and thickness are not particularly limited as long as the panel shape can be maintained. . By having the shape of the panel, it is easy to secure the airtightness required for the dynamic insulation technology, and the construction is simplified.
  • the cured product of calcium silicate of the present invention can be produced by a method comprising the following steps (1) to (4).
  • An aqueous slurry containing water and a solid mixture is provided, wherein the solid mixture is substantially selected from the group consisting of siliceous raw materials, cement, aluminum sulfate and hydrates thereof. It is composed of one aluminum compound, other sulfate compounds and, in some cases, calcareous raw materials.
  • the amount of the aqueous in Sula rie of the aluminum compound, the 0.0 9-1 0% by weight, and other sulfuric acid compound relative to the weight of the solid mixture in terms of oxide (A 1 2 ⁇ 3)
  • the aqueous slurry The amount in the Li one is, is rather also the aluminum sulfate including their hydrates, than zero. 1 5 to 1 5 wt% der relative to the weight of the solid mixture with S 0 3 amount conversion,
  • the weight ratio of the water to the solid mixture is 2.3 to 5.5;
  • the weight ratio of the calcareous raw material to the cement is 0.6 or less.
  • the siliceous material S i 0 content 2 7 0 wt% or more, say a raw material containing metal oxides such as aluminum oxide and with the remaining ingredients.
  • crystalline siliceous raw materials are silica stone, silica sand, quartz, and rocks with a high content of them, such as powder X-rays, single quartz or list barite in diffraction. A substance that exhibits a sharp diffraction peak.
  • the amorphous silicic acid raw material refers to diatomaceous earth, silica fume, fly ash, etc., which do not show a distinctive diffraction peak in powder X-ray diffraction.
  • the cement refers to a cement mainly composed of a silicate component and a calcium component, such as ordinary portant cement, early-strength portant cement, and belite cement.
  • quicklime and calcareous material C a O
  • slaked lime and the remaining components C a (OH) 2
  • carbonate Karushiu arm C a C_ ⁇ 3
  • Et al is, in the present invention, the aluminum sulfate, I ⁇ formula (A 1 2 (SO 4) 3) or refers to Ranaru material, and hydrates thereof e.g., the formula (A 1 2 (S ⁇ 4 ) Refers to a compound containing water of crystallization as shown in 3 ⁇ 17H 20 ). It is a raw material form powder, but may be any Sula rie, while excluding the water of crystallization (A l 2 (S 0 4 ) 3) and to use those containing 8 0 wt% or more.
  • the addition amount of aluminum sulfate is also rather its hydrates, 0 in terms of oxide (A 1 2 O 3) relative to the total weight of the solid mixture.
  • than zero 9-1 0% by weight Dea rather then preferred Is from 0.2 to 10% by weight, more preferably from 0.5 to 8% by weight.
  • the addition amount of other acid compounds of that is 0 relative to the total weight of rather also sulfuric aluminum of the solid mixture with S ⁇ 3 terms including their hydrates 1 5 ⁇ :.
  • S ⁇ 3 terms including their hydrates 1 5 ⁇ :.
  • L 5 wt% And preferably from 0.2 to 10% by weight.
  • the weight ratio of the calcareous raw material to cement is preferably 0.6 or less, more preferably 0.4 or less, particularly in terms of oxide (CaO conversion). Is less than 0.3.
  • the aqueous slurry is selected from the group consisting of a surfactant, a viscosity modifier and an antifoaming agent. By adding at least two of them, the cured calcium silicate of the present invention can be obtained. At that time, the addition of the viscosity modifier and the antifoaming agent is performed after the step (1) and before the step (2), and the addition of the surfactant is performed in the step (2).
  • a surfactant even when the weight ratio of the calcareous raw material to the cement is 0.6 or less, a surfactant, a viscosity modifier, an antifoaming agent and the like may be added in the same manner.
  • the above-mentioned surfactants include anionic surfactants such as higher alcohol sulfates or higher alcohol sodium sulfate, and non-ionic surfactants such as polyoxygen.
  • anionic surfactants such as higher alcohol sulfates or higher alcohol sodium sulfate
  • non-ionic surfactants such as polyoxygen.
  • Ethylene alkyl ether and the like in an amount of 0.01 to 200% by weight based on the weight of the foaming agent in terms of solids, and more preferably 0.1 to: L 0. % By weight.
  • the above-mentioned viscosity modifier is at least one selected from the group consisting of methylcellulose and polyvinyl alcohol, and the amount of addition is 0.01 to 1% by weight based on the weight of the solid mixture. Yes, more preferably from 0.02 to 0.5% by weight.
  • Antifoaming agents include dimethyl silicone, silicone such as alkyl-modified silicone in which the methyl group is substituted with a hydrocarbon having 2 or more carbon atoms, fatty acids such as glycerin fatty acid, and glycerin fatty acid ester. And fatty acid esters such as sucrose fatty acid esters, higher alcohols such as octyl alcohol, and phosphoric esters such as aromatic phosphates and aliphatic phosphates. In addition,
  • Especially dimethyl silicone and alkyl-modified silicone are preferably used, and the amount of addition is 0.01 to 3% by weight, preferably 0.00, based on the weight of the solid mixture. It is between 5 and 2% by weight, more preferably between 0.01 and 2% by weight.
  • the weight ratio of water to the weight of the solid mixture needs to be 2.3 to 5.5. If this ratio is less than 2.3, a molded article having a bulk specific gravity aimed at by the present invention cannot be obtained, and the heat conductivity tends to increase. If it exceeds 5.5, when the aqueous slurry is poured into a mold, the solid raw material and water are separated, and a molded body tends not to be obtained.
  • the foaming agent is an aluminum powder or the like generally used in a lightweight cellular concrete.
  • the addition form of the aluminum powder is not particularly limited, and the addition form usually used for producing a lightweight cellular concrete can be used, and the aluminum powder is added in the powder state.
  • Method in order to improve the dispersibility, separate the part of the water to be used in advance, mix the aluminum powder with the water and add it as aluminum slurry, lightweight air bubbles
  • a method of adding an aluminum base for producing concrete see US Pat. No. 4,318,270
  • the term “aluminum slurry” refers to a dispersion of aluminum powder in water.
  • the concentration of the aluminum powder in the aluminum slurry is 0.1 to 50% by weight, preferably 1 to 30% by weight, more preferably 2 to 10% by weight with respect to water. It is.
  • the amount of the foaming agent to be added is from 0.03 to 0.95% by weight, preferably from 0.05 to 0.7% by weight, based on the total weight of the solid mixture in terms of solids of the foaming agent. More preferably, it is 0.08 to 0.5% by weight.
  • the ratio of the volume after foaming to the slurry of the raw material is preferably from 1.5 to 4.0, more preferably from 2.0 to 3.5, and particularly preferably from 2.0 to 3.5. Or 2.5 to 3.5.
  • the molar ratio S i 0 2 of C a O contained in the raw material (C a O / S i 0 2) is from 0.5 to 1.1 is Shi preferred More preferably, they are mixed in an aqueous slurry state so as to be 0.6 or more and less than 1.0.
  • the siliceous raw material used is crystalline.
  • the crystalline siliceous raw material is preferably fine silica powder having a specific surface area of at least 500 cm 2 Zg, more preferably at least 700 cm 2 Zg. Even if the finely divided silica stone is too fine, it is more difficult to handle it. Therefore, it is preferable that the fineness of the fine silica stone is not more than 300,000 cm 2 Zg as measured by the Blaine specific surface area.
  • At least one aluminum compound selected from the group consisting of siliceous raw materials, cement, aluminum sulfate and hydrates thereof is substantially used.
  • An aqueous slurry containing a solid mixture of sulphate, other sulphate compounds and, if appropriate, calcareous raw materials is stirred.
  • the aqueous slurry temperature is preferably from 40 ° C to 100 ° C, more preferably from 50 ° C to 80 ° C.
  • the stirring time is preferably 2 minutes or more, more preferably 10 minutes or more.
  • Mixing of these solid mixtures with aqueous slurries containing water involves the use of mixers commonly used in industry.
  • a stirrer having high-speed rotating blades for low-viscosity mortar for example, a paddle mixer having a baffle plate in a stirring tank is preferably used.
  • the calcareous raw material when a calcareous raw material is used, if all of the calcareous raw material is mixed simultaneously with the siliceous raw material and the cement, the calcareous raw material may delay the initial hydration of the cement. Therefore, if it is desired to accelerate pre-curing, the components of the solid mixture other than the calcareous raw material and water, or the solid mixture containing a part of the calcareous raw material and water should be in a slurry state at 40 to 100 ° C. After performing the first step of mixing for at least 10 minutes and less than 5 hours at a temperature of 40 to 100 ° C., preferably adding all of the calcareous material or the remainder of the calcareous material.
  • a method of performing a second step of mixing in 30 seconds or more and within 1 hour, more preferably 1 minute or more and 30 minutes or less, and then pouring into a mold and pre-curing.
  • the addition to the aqueous slurry in the first first step is the primary charge
  • the addition to the aqueous slurry in the second step is the second charge, and thereafter.
  • the above aluminum compound is preferably added in the first step together with the other solid mixture components and water, and mixed at 40 to 100 ° C for 10 minutes or more and less than 5 hours.
  • the viscosity adjusting agent and the defoaming agent may be added at any time as long as they are before the foaming agent is added, but are preferably added immediately after the solid mixture is charged.
  • the surfactant is foaming Add surfactant to aqueous slurry at the same time as adding surfactant.
  • the foaming agent is preferably added after the above-mentioned solid mixture is charged, and the stirring time after adding the foaming agent is preferably 10 seconds or more and 3 minutes or less, and 20 seconds or more and 1 minute. Within is more preferred. If the time is less than 10 seconds, the foaming agent does not disperse uniformly, and coarse bubbles tend to be generated due to the coalescence of the bubbles. If the time exceeds 3 minutes, the foaming agent reacts during stirring, which tends to cause coalescence and defoaming.
  • the calcium silicate cured product of the present invention can also be obtained by a preform method. That is, a method of forming a foam by blowing air into a foaming agent or an aqueous solution thereof and mixing the foam with the above-mentioned aqueous slurry (Japanese Patent Application Laid-Open No. 63-29554) A method of mixing a foaming agent with an aqueous slurry and then forming a foam with a foaming machine is preferably used.
  • the preform method it is necessary to add a viscosity modifier and an antifoaming agent, and the amount of addition is the same as when a foaming agent is used.
  • the foaming agent those conventionally used in this field can be used, and the type thereof is not particularly limited. Examples thereof include a synthetic surfactant-based foaming agent and a resin soap-based foaming agent. And hydrolyzed protein foaming agents.
  • the cured product of calcium silicate of the present invention preferably contains 0.1 to 3.0% by weight of a water-repellent substance.
  • the method for imparting water repellency using a water repellent substance is not particularly limited. However, it is preferable to develop a high water contact angle of 100 ° or more, for example, by a vapor deposition method.
  • the water-repellent substance is not particularly limited.
  • siloxane compounds, alkoxysilane compounds, fatty acids, fatty acid salts, epoxy resins, urethane resins, silicone resins, vinyl acetate resins It is a water-repellent substance such as a resin resin or a resin emulsion such as a styrene-butadiene resin, and one or a mixture of two or more thereof can be used.
  • siloxane compounds that is, silicone oils in which part of the methyl groups of polydimethylsiloxane or polydimethylsiloxane are replaced with hydrogen, phenyl groups, trifluoropropyl groups, or the like, and alkoxysilane compounds
  • an alkylalkoxysilane compound such as methyltriethoxysilane, ethyltriethoxysilane, propyltriethoxysilane, or isobutyltriethoxysilane.
  • the content of the water-repellent substance is preferably from 0.1 to 3.0% by weight, and more preferably from 0.5 to 2% by weight. If it is less than 0.1% by weight, water repellency cannot be expected, and if it is more than 3.0% by weight, strength decreases.
  • the hardened calcium silicate of the present invention can also contain a small amount of reinforcing fiber, light aggregate, resin, etc. within a range that does not affect the physical properties.
  • Reinforcing fibers are preferably used to increase the strength.
  • Reinforcement fibers here are alkali-resistant glass fibers, It is an inorganic fiber such as carbon fiber, stainless steel fiber, ceramic fiber, and asbestos fiber, and an organic fiber such as aramid fiber, vinylon fiber, polypropylene fiber, and pulp fiber. One type or a mixture of two or more types can be used.
  • pulp fibers are preferably used because they are inexpensive, and finely ground pulp is particularly preferably used.
  • the fiber length of the reinforcing fiber is not particularly limited, it is preferably 1 to 20 mm, more preferably 3 to 10 mm, and more preferably, from the viewpoint of reinforcing performance and formability. It is preferably between 5 and 8 mm.
  • the content of the reinforcing fiber is not particularly limited, it is preferably 0.05 to 3 vol%, more preferably 0.1 to 3 vol% with respect to the volume of the cured body including the voids. ⁇ 2 vol%.
  • the lightweight aggregate is, for example, shirasu balloon or pearlite, and may be any material that is generally used to reduce the weight of concrete.
  • the amount of the lightweight aggregate is not particularly limited, but is preferably 0.1 to 30% by weight based on the weight of the solid mixture. It is preferably 1 to 20% by weight.
  • the resin is preferably a resin having heat resistance, such as a phenol resin or a resole resin.
  • the amount of the resin to be added is not particularly limited, but is 0.1 to 30% by weight or less, preferably 1 to 20% by weight or less based on the weight of the solid mixture.
  • the aqueous slurry thus mixed is mixed with a water-repellent substance or a reinforcing fiber as necessary, and the mixture is directly poured into a mold and molded. At this time, if necessary, it is poured into a formwork in which a reinforcing steel bar or a reinforcing wire mesh is arranged to be formed. At this time, it is preferable that the reinforcing steel bar or the reinforcing wire mesh has been subjected to a waterproof treatment.
  • the aqueous slurry injected into the mold is pre-cured by self-heating or external heating, preferably at 40 to 100 ° C for 1 to 48 hours or more. .
  • Preliminary hardening is preferably performed in an environment where moisture evaporation is suppressed, such as in a steam curing room.
  • the obtained pre-cured body is cut into an arbitrary shape as needed, and then cured at high temperature and pressure using an autoclave.
  • an autoclave For cutting, a method generally used for manufacturing lightweight cellular concrete, for example, a wire cutting method can be used.
  • the conditions of the autoclave are above 160 ° C (gauge pressure: about 5.3 kgf / cm 2 ) and 220 ° C (gauge pressure: about 22.6 kgf / cm 2 ). cm 2 )
  • the obtained cured product is dried to obtain the calcium silicate cured product of the present invention.
  • the thus obtained cured product of calcium silicate according to the present invention has high heat insulating properties and air permeability, so that it can be used as a suitable dynamic heat insulating material. Further, the cured calcium silicate of the present invention is most suitable as a dynamic heat insulating material because it is easy to construct, inexpensive, has high strength, and is nonflammable.
  • the thermal conductivity was measured at a low temperature plate of 5 ° C and a high temperature plate of 35 ° C according to the plate heat flow meter method of JIS A1412.
  • the shape of the test piece was 200 ⁇ 200 mm, the thickness was 25 mm, and the weight became constant under the conditions of a temperature of 20 ° C. and a humidity of 60%.
  • ⁇ P Pressure difference (P a)
  • the sample used had a constant weight at a temperature of 20 ° C. and a humidity of 60%.
  • the bulk specific gravity was calculated from the weight and size (volume) of the cured product having the same dimensions as those subjected to the bending test after curing in the autoclave and dried at 105 ° C for 24 hours. .
  • the X-ray diffractometer (RINT 2000; manufactured by Rigaku Denki Co., Ltd., Japan) is used to obtain the above-mentioned diffraction peak of Cu K line.
  • the strength Ib and the minimum value Ia were determined.
  • the measurement conditions are as follows: acceleration voltage of 40 kV, acceleration current of 200 mA, light receiving slit width of 0.15 mm, scanning speed of 4 ° / min, and sampling of 0.2 °.
  • the X-ray diffraction lines were monochromatic and counted by the monochromator on the graph item.
  • the following solid mixtures and water were used in the amounts shown in Table 1 as raw materials for the cured product. That is, as the siliceous raw material, ground silica powder (blane specific surface area: 11,100 cm Vg) and silica fume (EFACO, Egypt) were used. Further, as a cement, an early Portland cement was used in Examples 1 to 8, and a normal Portland cement was used in Examples 9 to 13. Quicklime (purity 98%) as calcareous raw material, its octahydrate as aluminum sulfate, gypsum dihydrate as other sulfate compound, surfactant In Examples 1 to 5, polyoxyethylene alkyl ether, a nonionic surfactant, was used.
  • Emal 20T an anionic surfactant
  • methylcellulose as a viscosity modifier
  • alkyl-modified silicone Shin-Etsu Chemical Co., Ltd., Japan
  • finely ground pulp as organic fibers (Examples 10 and 1). 3) was used.
  • aluminum sulfate 18 hydrate and gypsum dihydrate are shown in Table 1 by weight of their anhydrates. Further, the amount of the surfactant added was represented by weight% based on the solid content of the foaming agent.
  • the water Z solid ratio shown in Table 1 is the weight ratio of water to the weight of the solid mixture.
  • Example 1 in a 15 L stainless steel tank charged with water heated to 50 ° C, ground silica powder, silica fume, quicklime, high-speed portland cement, and sulfuric acid were used. Aluminium octahydrate, gypsum, gypsum, a viscosity modifier and an antifoaming agent were first charged, and the stainless steel tank was heated to 50 ° C while a stirrer (Ultra stirrer DC—CHRM 25 The mixture was stirred and mixed under atmospheric pressure for 2 hours at a rotation speed of 1200 rpm (Japan, manufactured by Inuchi Seieido Co., Ltd.) while suppressing the evaporation of water.
  • a stirrer Ultra stirrer DC—CHRM 25
  • the aqueous slurry was heated to 40 ° C, and then quicklime was secondly injected and stirred at 40 ° C for 1 minute. After all components of the solid mixture were mixed, aluminum powder to which a surfactant was added was added as a foaming agent, and the mixture was stirred for 20 seconds. The slurry was poured into a mold (30 cm ⁇ 30 cm ⁇ 20 cm) and foamed in the mold. Immediately after the aqueous slurry was poured into the mold, the temperature was maintained at 60 in a state where evaporation of water was prevented, and pre-cured.
  • Example 9 ordinary Portland cement was used as the cement, and water was heated to 60 ° C, and the mixture was stirred while heating at 60 ° C. Other than the above, the procedure was the same as in Example 1. However, only in Example 13 quicklime was secondarily charged and stirred at 60 ° C for 1 minute.
  • the pre-cured product is removed from the mold, cured at 190 ° C. for 4 hours under a high-temperature and high-pressure atmosphere in a saturated steam atmosphere in an autoclave, and then dried to obtain a molded product (calcium silicate cured). Body) was obtained.
  • Table 3 shows various physical properties of the obtained molded body. 1 and 2 show powder X-ray charts of the cured calcium silicate obtained in Example 13. Example 14
  • Example 15 Using the raw materials shown in Table 1, molding was carried out in the same manner as in Example 9 except that no surfactant and antifoaming agent were used. Table 3 shows various physical properties of the obtained molded body. Example 15
  • a molded product was obtained in the same manner as in Examples 4 and 13, except that the surfactant, the viscosity modifier and the defoamer were not added.
  • Table 4 shows various physical properties of the obtained molded body. Comparative Example 3
  • Aluminum powder (parts by weight) 1.1 9 1 .1 9 1 .1 9 1 .1 4 .1 .4 Surfactant (% by weight) 2 1 0 1 0 0 1 0 1 0 0 0
  • Viscosity modifier (parts by weight) 0.180.180.180.180.18 Defoamer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  • Comparative Example 6 the aluminum powder was used in the form of an aluminum slurry.
  • the concentration of aluminum powder in the aluminum slurry was 5% by weight based on the water used
  • Comparative Example 7 Comparative Example 8 Comparative Example 9 Comparative Example 1 0 Comparative Example 1 1 Comparative Example 1 2 Shiri ⁇ - ⁇ ⁇ cr
  • the hardened calcium silicate of the present invention is required to have not only light weight and high strength, but also nonflammability, and also have high heat insulation and high air permeability, and therefore have dynamic heat insulation. It can be used advantageously as a building wall material (dynamic insulation material) or sound absorbing material.
  • the cured calcium silicate of the present invention is non-combustible and can have the shape of a panel. Therefore, the construction is simple and the airtightness required for the dynamic insulation technology can be easily secured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Building Environments (AREA)

Abstract

A calcium silicate hardened article which has a flexural strength of 0.05 MPa or more, a heat conductivity of 0.02 to 0.1 Wm-1K-1, and an air permeability of 5 X 10-4 to 1 m2h-1Pa-1 or less, and exhibits dynamic insulating property.

Description

0  0
明 細 書 珪酸カルシウム硬化体 技術分野 Description Calcium silicate cured product Technical field
本発明は、 動的断熱性を有する珪酸カルシウム硬化体に 関する。 更に詳し く は、 曲げ強度が 0 . 0 5 M P a以上、 熱伝導率が 0 . 0 2 〜 0 . l Wm—ェ — 1、 及び The present invention relates to a cured calcium silicate having dynamic thermal insulation. More specifically, the flexural strength is not less than 0.05 MPa, the thermal conductivity is from 0.02 to 0.1 l Wm— 1 , and
通気率が 5 X 1 0 — 4〜 l m 2 h i P a 1以下であって、 動的断熱性を示す珪酸カルシウム硬化体に関する。 本発明 の珪酸カルシウム硬化体は、 軽量且つ高強度であるだけで なく 、 不燃性であ り 、 更に高い断熱性と高い通気性を併せ 持つこ とか ら、 動的断熱性を有する こ とが要求される建築 用壁材などと して有利に用いる こ とができる。 なお、 「動 的断熱性」 とは、 高い通気性を示し且つ断熱効果を示す特 性を意味し、 動的断熱性を有する建築用壁材は、 計画換気 Permeability is 5 X 1 0 - 4 ~ A in lm 2 hi P a 1 or less, about calcium silicate hardened body showing the dynamic insulation properties. The hardened calcium silicate of the present invention is required to have not only light weight and high strength, but also nonflammability, and also have high heat insulation and high air permeability, and therefore have dynamic heat insulation. It can be used advantageously as a wall material for construction. “Dynamic heat insulation” means a property that exhibits high air permeability and a heat insulation effect, and a building wall material having dynamic heat insulation is designed ventilation.
(常時又は定期的に換気を行なう こ とによって、 常に室内 の空気を新鮮に保つよ う にする こ と) を行う と同時に熱ェ ネルギー損失の低減を図るダイナミ ッ クイ ンシユ レーショ ン法 (以下、 「動的断熱法」 と称す) に有利に用いる こ と ができる。 また、 本発明は、 上記珪酸カルシウム硬化体の 製造方法に関する。 JP2003/008480 (Always keep the air in the room fresh by constantly or regularly ventilating the air) and at the same time reduce the energy loss by the dynamic insulation method (hereinafter referred to as “the method”). It can be used advantageously for the “dynamic adiabatic method”. Further, the present invention relates to a method for producing the above-mentioned cured product of calcium silicate. JP2003 / 008480
従来技術 Conventional technology
化石燃料の枯渴や、 化石燃料を大量に使用する ことによ る大気汚染や二酸化炭素による地球温暖化が大きな社会問 題となっている現在、 省エネルギーの必要性はますます高 まっている。 中でも、 住宅やビルでのエネルギー消費量は 冷暖房を利用 した快適な生活空間を望む傾向が強まるとと もに上昇している ことから、 建物の高断熱高気密化による 省ェネルギ一化が取り組まれてきた。 しかしながら、 高断 熱高気密化によ り密閉された空間においては、 生活活動に よ りその空気質が悪化することから、 清浄な状態を維持す るために除湿器、 加湿器、 空気清浄機が使用されてきた。  With the death of fossil fuels, air pollution due to the use of fossil fuels in large quantities, and global warming caused by carbon dioxide, as major social issues, the need for energy conservation is increasing more and more. Above all, the energy consumption of houses and buildings has been increasing as the desire for a comfortable living space using air conditioning and heating has increased, and efforts have been made to conserve energy by making buildings highly insulated and airtight. Have been. However, since air quality deteriorates due to daily activities in a closed space due to high thermal insulation and high airtightness, dehumidifiers, humidifiers, and air purifiers are required to maintain a clean state. Has been used.
その結果、 省エネルギーに対する効果が失われてしまって いる。 このことから、 近年では高断熱高気密化の建物に対 しては計画換気 (常時又は定期的に換気を行なう ことによ つて、 常に室内の空気を新鮮に保つよう にする こ と) が必 要とされ、 断熱と換気の両者の機能を併せ持つ設計及び材 料が求められている。 As a result, the effect on energy conservation has been lost. For this reason, in recent years, planned ventilation (by always or periodically providing ventilation to keep the room air fresh) is required for buildings with high insulation and high airtightness. Design and materials that have both functions of heat insulation and ventilation are required.
一方で、 建物の壁や天井部分における熱貫流率の低減に は構造上の限界があ り、 熱エネルギー損失低減にも限界が ある ことがわかっている。  On the other hand, it has been found that there is a structural limit to reducing the heat transfer coefficient on the walls and ceilings of buildings, and that there is a limit to reducing thermal energy loss.
このような状況下、 熱エネルギー損失の低減を図 りなが ら、 同時に計画換気を行なえるダイナミ ックイ ンシユ レ一 シヨ ン法 (以下、 「動的断熱法」 と称す) が北欧諸国を中 心に研究されている。 動的断熱法とは、 外気を壁や天井体 内の断熱材を通して室内に導入し、 壁や天井体内からの熱 損失を回収しょう とする方法である。 この方法においては 断熱材を通して室内に導入された空気は新鮮であ り、 壁体 内で暖められた状態で室内に供給される。 その結果、 見か け上の熱貫流率の低減を図 りながら、 給気予熱が実現され 室内の高い空気質が維持される。 Under such circumstances, the dynamic insulation method (hereinafter referred to as the “dynamic insulation method”), which can simultaneously perform planned ventilation while reducing heat energy loss, has been adopted in Scandinavian countries. Researched in mind. The dynamic insulation method is a method in which outside air is introduced into a room through heat insulating material in a wall or ceiling to recover heat loss from the wall or ceiling. In this method, the air introduced into the room through the insulation is fresh and is supplied into the room while being warmed in the wall. As a result, air supply preheating is realized and the indoor high air quality is maintained while reducing the apparent heat transmission rate.
有効な動的断熱法を実現するためには、 高い断熱性に加 えて、 優れた通気性を併せ持つ材料が必要となる。 また、 施工が容易で、 安価で、 強度が高い材料が求め られている さ らに、 耐火要求の観点から材料の不燃性も求め られてい る。  In order to achieve an effective dynamic insulation method, a material that has both high heat insulation and excellent air permeability is required. In addition, there is a need for materials that are easy to construct, are inexpensive, and have high strength. In addition, materials are required to be nonflammable from the viewpoint of fire resistance requirements.
従来、 断熱材と しては有機発泡系断熱材が使われてきた しかし、 有機発泡系断熱材は独立気泡率を高めているため 通気率が低く 、 動的断熱法には適さない。 また、 不燃性に 問題がある。 無機系断熱材として、 ガラスを発泡して得ら れるフォームグラスがあるが、 高価であ り、 独立気泡の割 合が多いため通気率が低く 、 動的断熱材に適さない。 また Conventionally, organic foam-based heat insulating materials have been used as heat insulating materials. However, organic foam-based heat insulating materials have a high closed cell rate and thus have low air permeability and are not suitable for the dynamic heat insulating method. There is also a problem with incombustibility. As an inorganic heat insulating material, there is a foam glass obtained by foaming glass, but it is expensive, and has a high percentage of closed cells, and thus has a low air permeability and is not suitable for a dynamic heat insulating material. Also
W O 0 2 / 0 6 6 9 3や日本国特開 2 0 0 1 — 1 2 2 6 7 4 に珪酸カルシウム硬化体に関する技術が開示されている しかし、 これらの技術によって得られた珪酸カルシウム硬 化体は、 通気率が低く動的断熱材と しては機能しない。 WO 02/066693 and Japanese Patent Application Laid-Open Publication No. 2001-1226784 disclose techniques relating to a cured product of calcium silicate. However, calcium silicate hardened obtained by these techniques is disclosed. The body has low air permeability and does not function as dynamic insulation.
これまでの動的断熱法においては、 主と して古紙パルプ の粉砕物やロ ッ クウール等の無機系繊維を一定範囲に区切 ■ られた枠内に充填する方法が取られてきた。 その結果、 型 枠自身の熱伝導率が断熱材より も高いために型枠を通して 熱伝導が生じ、 動的断熱の有効性が発揮しきれないという 問題があった。 さ らに、 断熱材吹き込みの際に生じる型枠 と断熱材粉末の隙間によって起こる熱損失ために、 実際に は必要以上の厚さに断熱材を施工しなければいけないとい う問題があった。 In the conventional thermal insulation method, waste paper pulp is mainly used. ■ Inorganic fibers such as crushed materials and rock wool are divided into a certain range and filled into a frame. As a result, there was a problem that the thermal conductivity of the form itself was higher than that of the heat insulating material, so that heat was generated through the form and the effectiveness of dynamic insulation could not be fully exhibited. In addition, there was a problem in that heat insulation had to be applied to an unnecessarily thick thickness due to the heat loss caused by the gap between the mold and the heat insulating powder generated when the heat insulating material was injected.
従来か ら建材として用いられてきた木質セメ ン ト板ゃコ ンク リ ー トブロ ッ クでは、 嵩比重が 0 . 5 以上であるため、 熱伝導率が大きく 、 熱伝導による熱エネルギー損失が大き くなるため、 動的断熱の効果を十分に発揮できないという 問題があった。 また、 日本国特開 2 0 0 1 — 3 4 8 2 8 3 号に吸音材の技術が開示されているが、 嵩比重が 0 . 3 5 付近であ り 、 熱伝導率が大きいため、 動的断熱材として適 さない。  Wood-cement board / concrete block, which has been conventionally used as a building material, has a bulk specific gravity of 0.5 or more, and therefore has a large heat conductivity and a large heat energy loss due to heat conduction. Therefore, there was a problem that the effect of the dynamic insulation could not be sufficiently exhibited. Also, Japanese Patent Application Publication No. JP-A-2001-3482883 discloses a technology of a sound absorbing material. However, since the bulk specific gravity is around 0.35 and the thermal conductivity is large, dynamic Not suitable as thermal insulation.
また、 熱伝導率が低いロックウールポー ドゃガラスゥ一 ルマッ トの使用 も検討されてきた。 しかし、 ボー ド状やマ ッ ト状といっても硬化体でなく 、 綿状あるいは繊維状の繊 維が絡み合つているだけなので、 曲げ強度が低く 、 施工時 に梁や枠が必要とな り、 それ自身からの熱伝導が生じ、 動 的断熱の有効性が得られないという 問題があった。 さ ら に、 現場での切断時に有害とされている微細繊維が多く 飛散し て作業者の健康を害する という 問題があった。 さ ら に、 通 気率が髙すぎるために単独では動的断熱材と して用いる こ とができず、 微細な穴を多数開けたプラスチッ ク シー ト を 室内側に配する必要があ り 、 施工が煩雑になるだけでなく 断熱材全体と しての不燃性が低下する という 問題があつ た 発明の概要 Also, the use of rock wool ports / glass mats with low thermal conductivity has been considered. However, even if it is called a board or a mat, it is not a hardened body, but only a cotton or a fibrous fiber intertwined. Therefore, the bending strength is low, and beams and frames are required at the time of construction. Therefore, there is a problem that heat conduction occurs from itself, and the effectiveness of dynamic insulation cannot be obtained. In addition, many fine fibers, which are considered harmful when cutting on site, The health of workers. Furthermore, since the air permeability is too high, it cannot be used alone as a dynamic heat insulator, and a plastic sheet with many fine holes must be placed indoors. Not only the construction becomes complicated, but also the non-combustibility of the whole heat insulating material is reduced.
以上の状況に鑑み、 本発明者らは、 従来技術の上記問 題を解決するために鋭意研究した。 その結果、 意外にも、 実質的に、 珪酸質原料、 セメ ン ト、 硫酸アルミニウムとそ の水和物か らなる群よ り選ばれる少なく とも 1 種のアルミ ニゥム化合物、 その他の硫酸化合物、 及び場合によっては 石灰質原料か らなる、 特定の組成を有する固体混合物の水 性ス ラ リ ーに発泡剤を添加し、 発泡剤を含む該水性スラ リ —を型枠に注入し、 予備硬化した後にォ一 トク レーブ養生 する こ と によ り 珪酸カルシウム硬化体を得る方法において 該水性ス ラ リ ーにおける水 Z固体混合物重量比を 0 . 6 以 下に調整するか、 も しく は上記重量比が 0 . 6 を超える場 合には、 該水性スラ リ ーに界面活性剤、 粘度調整剤及び消 泡剤か らなる群よ り選ばれる少なく とも 2 種を添加する こ とによって、 曲げ強度が 0 . 0 5 M P a以上、 熱伝導率が 0 . 0 2 〜 0 · l W m— 及び通気率が 5 X 1 0 — 4 〜 1 m 2 h— 1 P a 1以下であって、 動的断熱性を示す珪 酸カルシウム硬化体が得られる こ とを見出 した。 上記の珪 酸カルシウム硬化体は、 軽量且つ高強度であるだけでな く 不燃性であ り 、 更に高い断熱性と高い通気性を併せ持つ こ とか ら、 動的断熱性を有する こ とが要求される建築用壁材 などと して有利に用いる こ とができる。 この知見に基づき 本発明を完成した。 In view of the above situation, the present inventors have intensively studied to solve the above-mentioned problems of the prior art. As a result, surprisingly, at least one aluminum compound selected from the group consisting of siliceous raw materials, cement, aluminum sulfate and its hydrate, and other sulfur compounds, and In some cases, a foaming agent is added to an aqueous slurry of a solid mixture composed of calcareous raw materials and having a specific composition, and the aqueous slurry containing the foaming agent is injected into a mold and pre-cured. In the method for obtaining a hardened calcium silicate by autoclaving, the weight ratio of the water Z solid mixture in the aqueous slurry is adjusted to 0.6 or less, or the weight ratio is adjusted. When it exceeds 0.6, the bending strength is reduced to 0 by adding at least two members selected from the group consisting of a surfactant, a viscosity modifier and an antifoaming agent to the aqueous slurry. 0 5MPa or more, heat transfer The rate is 0 0 2 ~ 0 · l W m- and permeability is 5 X 1 0 -. 4 ~ A is 1 m 2 h- 1 P a 1 or less, silicotungstic showing the dynamic insulation properties It has been found that a hardened calcium acid product can be obtained. The above-mentioned cured product of calcium silicate is required to have not only light weight and high strength but also nonflammability, and also to have dynamic heat insulating properties because it has both high heat insulating properties and high air permeability. It can be used advantageously as a wall material for buildings. The present invention has been completed based on this finding.
従っ て、 本発明の目的は、 軽量且つ高強度であるだけで な く 、 不燃性であ り 、 更に高い断熱性と高い通気性を併せ 持つ こ とか ら、 動的断熱性を有する こ とが要求される建築 用壁材などと して有利に用いる こ とができる珪酸カルシゥ ム硬化体を提供する こ とにある。  Accordingly, an object of the present invention is not only to be lightweight and high-strength, but also to be non-flammable, and to have high heat insulation and high air permeability, and therefore to have dynamic heat insulation. An object of the present invention is to provide a hardened calcium silicate that can be advantageously used as a required building wall material.
本発明の他の 1 つの目的は、 上記珪酸カルシウム硬化体 を効率よ く 製造する方法を提供する こ とにある。  Another object of the present invention is to provide a method for efficiently producing the above-mentioned cured product of calcium silicate.
本発明の上記及び他の諸目的、 諸特徴並びに諸利益は、 添付の図面を参照しながら述べる次の詳細な説明及び請求 範囲か ら明 らかになる。 図面の簡単な説明  The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the appended claims, taken in conjunction with the accompanying drawings. BRIEF DESCRIPTION OF THE FIGURES
図 1 及び図 2 は、 実施例 1 3 の珪酸カルシウム硬化体の 粉末 X線回折データ、 及び I a 、 I b の算出方法を示す X 線回折図である。 なお、 各図において C P S とは、 c o u n t s p e r s e c o n d の意味である。  1 and 2 are X-ray powder diffraction data of the cured calcium silicate of Example 13 and X-ray diffraction diagrams showing a method of calculating Ia and Ib. In each of the drawings, CPS means coutntspersecond.
図 1 : 実施例 1 3 の珪酸カルシウム硬化体の粉末 X線回 折データ、 及び I a [トバモライ トの ( 2 2 0 ) 面と ( 2 2 2 ) 面の 2本の回折ピーク に挟まれた角度領域における 回折強度の最低値]、 I b [トパモライ トの ( 2 2 0 ) 面の 回折ピーク強度]の算出方法を示す X線回折図である。 Figure 1: Powder X-ray diffraction of cured calcium silicate of Example 13 Data and Ia [the lowest value of the diffraction intensity in the angle region between the two diffraction peaks of the (220) plane and the (222) plane of tobermorite], and Ib [ FIG. 2 is an X-ray diffraction diagram showing a method for calculating the diffraction peak intensity of the (220) plane.
図 2 : 実施例 1 3 の珪酸カルシウム硬化体の粉末 X線回 折データ、 及び I ( 2 2 0 ) [トバモライ トの ( 2 2 0 ) 面の回折ピーク強度] 、 I ( 0 0 2 ) [トバモライ トの Fig. 2: Powder X-ray diffraction data of the cured product of calcium silicate of Example 13 and I (220) [diffraction peak intensity of (220) plane of tobermorite], I (002) [ Tobermorite's
( 0 0 2 ) 面の回折ピーク強度]の算出方法を示す X線回 折図である。 FIG. 6 is an X-ray diffraction diagram showing a method for calculating the (002) plane diffraction peak intensity].
図 3 : 本発明で定義される通気率の測定に用いる装置の 1例を示す概略説明図である。 符号の説明  FIG. 3 is a schematic explanatory view showing one example of an apparatus used for measuring the air permeability defined in the present invention. Explanation of reference numerals
1 サンプル  1 sample
2 ゴム付きサンプルホルダ―  2 Sample holder with rubber
3 真空ポンプ  3 Vacuum pump
圧力調整弁  Pressure regulating valve
5 圧力調整槽  5 Pressure adjustment tank
6 差圧計  6 Differential pressure gauge
7 流量計 発明の詳細な説明  7 Detailed description of the invention
即ち、 本発明の 1つの態様によれば、 ( 1 ) 曲げ強度が 0 . 0 5 M P a以上、 That is, according to one aspect of the present invention, (1) The bending strength is more than 0.05MPa,
( 2 ) 熱伝導率が 0 . 0 2 〜 0 . l Wm—ェ !!— 1、 及ぴ(2) The thermal conductivity is between 0.02 and 0.1 l Wm! ! — 1 , and
( 3 ) 通気率が 5 X 1 0 _ 4〜 : L m 2 h i P a 1以下であ つて、 (3) The air permeability is 5 X 10 _ 4 or more: L m 2 hiP a 1 or less,
動的断熱性を示す珪酸カルシウム硬化体が提供される。 A cured calcium silicate exhibiting dynamic thermal insulation is provided.
次に、 本発明の理解を容易にするために、 まず本発明の 基本的諸特徴及び好ま しい態様を列挙する。  Next, in order to facilitate understanding of the present invention, first, basic characteristics and preferred embodiments of the present invention will be listed.
1 . ( 1 ) 曲げ強度が 0 . 0 5 M P a以上、 1. (1) The bending strength is more than 0.05MPa,
( 2 ) 熱伝導率が 0 . 0 2 〜 0 . l Wm— 及び (2) thermal conductivity of 0.02 to 0.1 Wm— and
( 3 ) 通気率が 5 X 1 0 — 4〜 ; L m 2 h 1以下であ つて、 (3) Air permeability is 5 X 10 — 4 or more; Lm 2 h 1 or less,
動的断熱性を示す珪酸カルシウム硬化体。 Calcium silicate cured product showing dynamic heat insulation.
2 . 熱伝導率が 0 . 0 2 〜 0 . 0 8 Wm— 1以下であ る こ とを特徴とする前項 1 に記載の珪酸カルシウム硬化体 2. The cured product of calcium silicate as described in 1 above, wherein the thermal conductivity is 0.02 to 0.08 Wm- 1 or less.
3 . 熱伝導率が 0 . 0 2 〜 0 . O e Wm- 1 :^— 1以下であ る こ とを特徴とする前項 1 に記載の珪酸カルシウム硬化体 3. The cured product of calcium silicate as described in 1 above, wherein the thermal conductivity is 0.02 to 0. O e Wm- 1 : ^ -1 or less.
4 . 主と して トバモライ トからな り 、 粉末 X線回折におけ る トパモライ ト の ( 2 2 0 ) 面の回折ピーク強度 I bが、 トバモライ トの ( 2 2 0 ) 面と ( 2 2 2 ) 面の 2本の回折 ピークに挟まれた角度領域における回折強度の最低値 I a との間に、 I b Z l a 3 となる関係を持つ こ とを特徴と する前項 1 〜 3 に記載の珪酸カルシウム硬化体。 4. It consists mainly of tobermorite, and the diffraction peak intensity Ib of the (220) plane of topamolites in powder X-ray diffraction is higher than that of (2220) and (222) planes of tobermorite. ) Two diffractions on the surface 4. The cured calcium silicate according to any one of items 1 to 3, wherein the cured product has a relationship of IbZla3 with the lowest value Ia of the diffraction intensity in the angle region sandwiched by the peaks.
5 . 以下工程 ( 1 ) 〜 ( 4 ) を包含する こ とを特徴とする 珪酸カルシウム硬化体の製造方法。 5. A method for producing a hardened calcium silicate, comprising the following steps (1) to (4).
( 1 ) 水及び固体混合物を含む水性スラ リ ーを提供し、 該固体混合物は、 実質的に、 珪酸質原料、 セメ ン ト、 硫酸 アルミニウムとその水和物からなる群よ り選ばれる少なく とも 1 種のアルミ ニウム化合物、 その他の硫酸化合物、 及 び場合によっては石灰質原料からな り 、  (1) Providing an aqueous slurry comprising water and a solid mixture, wherein the solid mixture is substantially at least selected from the group consisting of siliceous raw materials, cement, aluminum sulfate and hydrates thereof. It consists of one aluminum compound, another sulfuric acid compound and, in some cases, calcareous raw materials.
該アルミニウム化合物の該水性スラ リ ー中の量が、 酸化 物換算 ( A 1 2 O 3 ) で固体混合物の重量に対して 0 . 0 9 〜 1 0 重量%、 及びその他の該硫酸化合物の該水性スラ リ ー中の量が、 上記硫酸アルミニウムも し く はその水和物 を含めて、 S O 3量換算で固体混合物の重量に対して 0 . 1 5 〜 1 5 重量%であ り 、 The amount of the aqueous in Sula rie of the aluminum compound, the terms of oxide (A 1 2 O 3) 0 by weight of the solid mixture in. 0 9-1 0% by weight, and other sulfuric acid compound The amount in the aqueous slurry, including the aluminum sulfate or the hydrate thereof, is 0.15 to 15% by weight based on the weight of the solid mixture in terms of SO 3 ,
該水の該固体混合物に対する重量比が 2 . 3 〜 5 . 5 で あ り、  The weight ratio of the water to the solid mixture is 2.3 to 5.5;
該石灰質原料の該セメ ン ト に対する重量比が 0 . 6 以下 である。  The weight ratio of the calcareous raw material to the cement is 0.6 or less.
( 2 ) 該水性ス ラ リ ーに発泡剤を添加する。  (2) Add a foaming agent to the aqueous slurry.
( 3 ) 該水性ス ラ リ ーを型枠に注入する。 ( 4 ) 該水性スラ リ ーを予備硬化した後、 オー ト ク レープ 養生する。 (3) Inject the aqueous slurry into a mold. (4) After the aqueous slurry is pre-cured, it is cured by autoclaving.
6 . 該発泡剤が、 アルミ ニウム粉末及びアルミニウム含有 水性スラ リ ーか らなる群よ り選ばれる少な く と も 1 種であ つて、 該発泡剤を、 固体換算で、 固体混合物の重量に対し て 0 . 0 3 〜 0 . 9 5 重量%用いる こ とを特徵とする前項 5 に記載の方法。 6. The foaming agent is at least one member selected from the group consisting of aluminum powder and an aqueous slurry containing aluminum, and the foaming agent is added to the weight of the solid mixture in terms of solids. The method according to the above item 5, characterized in that it is used in an amount of 0.03 to 0.95% by weight.
7 . 以下工程 ( 1 ) 〜 ( 4 ) を包含する こ とを特徴とする 珪酸カルシウム硬化体の製造方法。 7. A method for producing a cured product of calcium silicate, comprising the following steps (1) to (4).
( 1 ) 水及び固体混合物を含む水性ス ラ リ ーを提供し、 該固体混合物は、 実質的に、 珪酸質原料、 セメ ン ト、 硫酸 アルミニウム とその水和物からなる群よ り選ばれる少なく とも 1 種のアルミ ニウム化合物、 その他の硫酸化合物、 及 び場合によっ ては石灰質原料か らな り 、  (1) An aqueous slurry containing water and a solid mixture is provided, wherein the solid mixture is substantially selected from the group consisting of siliceous raw materials, cement, aluminum sulfate and hydrates thereof. Both consist of one aluminum compound, other sulfate compounds and, in some cases, calcareous raw materials.
該アルミ ニウム化合物の該水性スラ リ ー中の量が、 酸化 物換算 ( A 1 2 0 3 ) で固体混合物の重量に対して 0 . 0 9 ~ 1 0 重量%、 及びその他の該硫酸化合物の該水性スラ リ ー中の量が、 上記硫酸アルミニウム も し く はその水和物 を含めて、 S 0 3量換算で固体混合物の重量に対して 0 . 1 5 〜 1 5 重量%であ り 、 The amount of the aqueous in Sula rie of the aluminum compound, the 0.0 9-1 0% by weight, and other sulfuric acid compound relative to the weight of the solid mixture in terms of oxide (A 1 2 0 3) the amount in the aqueous Sula rie is the rather also the aluminum sulfate including their hydrates, than zero. 1 5 to 1 5 wt% der relative to the weight of the solid mixture with S 0 3 weight basis ,
該水の該固体混合物に対する重量比が 2 . 3 〜 5 . 5 で あ り 、 A weight ratio of the water to the solid mixture of 2.3 to 5.5; Yes,
該石灰質原料の該セメ ン ト に対する重量比が 0 . 6 を超 える。  The weight ratio of the calcareous raw material to the cement exceeds 0.6.
( 2 ) 該水性ス ラ リ ーに発泡剤を添加する。  (2) Add a foaming agent to the aqueous slurry.
( 3 ) 該水性ス ラ リ ーを型枠に注入する。  (3) Inject the aqueous slurry into a mold.
( 4 ) 該水性ス ラ リ ーを予備硬化した後、 ォ一 ト ク レーブ 養生する。 '  (4) After pre-curing the aqueous slurry, it is autoclaved. '
但し、 該水性ス ラ リ ーに、 界面活性剤、 粘度調整剤及び 消泡剤か らなる群よ り選ばれる少なく と も 2種を添加し、 その際、 該粘度調整剤及び該消泡剤の添加は、 工程 ( 1 ) の後であっ て工程 ( 2 ) の前に行ない、 該界面活性剤の添 加は工程 ( 2 ) において該発泡剤の添加と同時に行なう。  However, at least two members selected from the group consisting of a surfactant, a viscosity modifier and an antifoaming agent are added to the aqueous slurry, and at this time, the viscosity modifier and the antifoamer are added. Is added after step (1) and before step (2), and the surfactant is added simultaneously with the addition of the foaming agent in step (2).
8 . 該発泡剤が、 アルミニウム粉末及びアルミ ニウム含有 水性スラ リ ーか らなる群よ り選ばれる少なく と も 1 種の発 泡剤であっ て、 該発泡剤を、 固体換算で、 該固体混合物の 重量に対して 0 . 0 3 〜 0 . 9 5 重量%用いる こ とを特徴 とする前項 7 に記載の方法。 8. The foaming agent is at least one foaming agent selected from the group consisting of aluminum powder and an aluminum-containing aqueous slurry, and the foaming agent is converted to a solid mixture in terms of solids. 8. The method according to the above item 7, characterized in that it is used in an amount of 0.03 to 0.95% by weight based on the weight of the compound.
9 . 該界面活性剤が、 高級アルコール硫酸エステル、 高級 アルコール硫酸ナ ト リ ゥム及びポ リ オキシエチレンアルキ ルエーテルか らなる群よ り選ばれる少な く と も 1 種の化合 物であっ て、 該界面活性剤を、 該発泡剤の固体換算重量に 対して 0 . 0 1 〜 2 0 0 重量%用いる こ とを特徴とする前 項 7 又は 8 に記載の方法。 9. The surfactant is at least one compound selected from the group consisting of higher alcohol sulfates, higher alcohol sodium sulfate and polyoxyethylene alkyl ether; The surfactant is added to the solid equivalent weight of the foaming agent. The method according to the above item 7 or 8, characterized in that 0.01 to 200% by weight is used.
1 0 . 該粘度調整剤が、 メチルセル口一スゃポリ ビニルァ ルコールか らなる群よ り選ばれる少なく と も 1 種の化合物 であって、 該粘度調整剤を、 該固体混合物の重量に対して 0 . 0 1 〜 1 重量%以下用いる こ とを特徴とする前項 ? 〜 9 のいずれかに記載の方法。 10. The viscosity modifier is at least one compound selected from the group consisting of methylcell monopolyvinyl alcohol, wherein the viscosity modifier is based on the weight of the solid mixture. 0.1 to 1% by weight or less. 10. The method according to any one of claims 1 to 9.
1 1 . 該消泡剤が、 シリ コーン、 脂肪酸、 脂肪酸エステル アルコール、 及びリ ン酸エステルか らなる群よ り選ばれる 少なく と も 1 種の化合物であって、 該消泡剤を、 該固体混 合物の重量に対して 0 . 0 0 1 〜 3 重量%用いる こ とを特 徴とする前項 ? 〜 1 0 のいずれかに記載の方法。 本発明の珪酸カルシウム硬化体とは、 珪酸カルシウム化 合物を含み、 かつ硬化して得られる任意の形状を有する材 料の総称であ り 、 一般にコ ンク リー ト、 硬化モルタル、 軽 量気泡コ ンク リ ー ト (以下、 屡々 「A L C」 と称する)、 繊維補強珪酸カルシウム板 (ケィカル板) 等を指す。 11. The antifoaming agent is at least one compound selected from the group consisting of silicones, fatty acids, fatty acid ester alcohols, and phosphoric acid esters, wherein the defoaming agent is The preceding paragraph characterized by using 0.001 to 3% by weight based on the weight of the mixture? The method according to any one of claims 1 to 10. The “calcium silicate cured product” of the present invention is a general term for a material containing a calcium silicate compound and having an arbitrary shape obtained by curing, and is generally a concrete, a cured mortar, a lightweight foamed material. Concrete (hereinafter often referred to as “ALC”), fiber reinforced calcium silicate board (carbon board), etc.
本発明の珪酸カルシウム硬化体は、  The calcium silicate cured product of the present invention,
( 1 ) 曲げ強度が 0 . 0 5 M P a以上、  (1) The bending strength is more than 0.05MPa,
( 2 ) 熱伝導率が 0 . 0 2 〜 0 . 1 W m— 1 K _ 1、 及び ( 3 ) 通気率が 5 X 1 0 — 4〜 l m 2 h i P a 1以下であ つて、 (2) thermal conductivity 0. 0 2 ~ 0. 1 W m- 1 K _ 1 and, (3) When the air permeability is 5 X 10 — 4 to lm 2 hi Pa 1 or less,
動的断熱性を示す。 従って、 本発明の珪酸カルシウム硬化 体は動的断熱材として有利に使用できる。 こ こで動的断熱 材とは、 動的断熱法に用いる材料のことである。 動的断熱 法に関しては、 例えば、 B. J.Taylor et Shows dynamic thermal insulation. Therefore, the cured product of calcium silicate of the present invention can be advantageously used as a dynamic heat insulator. Here, the dynamic insulation is a material used in the dynamic insulation method. For the dynamic insulation method, see, for example, B. J. Taylor et.
al.、 Analytic l Investigation of the Steady-State Behavior of Dynamic and Diffusive Building al., Analytic l Investigation of the Steady-State Behavior of Dynamic and Diffusive Building
Envelopes (Building and Environment, Vol. 31, No. 6 , p. 519 - 525, 1996)、 及び 「多機能型断熱技術に関する研 究」 (調査報告 N o . 5 3 、 日本国北海道立寒地住宅都市 研究所、 1 9 9 3 ) などを参照する ことができる。 動的断 熱法では、 熱エネルギー損失の低減を図りながら、 同時に 計画換気を行なう ことができる。 すなわち、 側壁や天井壁 から外へ失われる室内の熱を、 外気を側壁や天井壁中の断 熱材を介して室内に導入する こ とによって、 側壁や天井壁 内で回収し、 外気が壁体内で暖められた状態で室内に供給 されるとするものである。 さ らに、 断熱材を通して室内に 導入された空気は単に熱損失を回収する という点だけでな く 、 新鮮であるという点でも優れている。 その結果、 見か け上の熱貫流率の低減を図 り ながら、 給気予熱が実現され、 室内の高い空気質が維持される。 Envelopes (Building and Environment, Vol. 31, No. 6, p. 519-525, 1996), and “Research on Multifunctional Insulation Technology” (Survey Report No. 53, Housing in Hokkaido, Japan) Urban Research Institute, 1993) can be referred to. In the dynamic thermal insulation method, planned ventilation can be performed at the same time while reducing thermal energy loss. In other words, the indoor heat lost to the outside from the side wall and ceiling wall is recovered inside the side wall and ceiling wall by introducing outside air into the room through the heat insulating material in the side wall and ceiling wall, and the outside air is It is assumed that it will be supplied indoors while being heated inside the body. Furthermore, the air introduced into the room through the insulation is excellent not only in recovering heat loss but also in being fresh. As a result, air supply preheating is achieved while reducing the apparent heat transmission rate, and high indoor air quality is maintained.
本発明の珪酸カルシウム硬化体は、 曲げ強度が 0 . 0 5 M P a以上であ り 、 好ま し く は 0 . 0 7 M P a以上、 よ り 好ま し く は 0 . 1 M P a 以上である。 曲げ強度が 0 . 0 5 M P a未満では動的断熱材と して好適なパネル形状を維持 する こ とが困難とな り 、 施工性が低下する。 The cured product of calcium silicate of the present invention has a flexural strength of 0.05 Mpa or more, preferably 0.07 Mpa or more, and more preferably 0.1 Mpa or more. If the bending strength is less than 0.05 MPa, it becomes difficult to maintain a suitable panel shape as a dynamic heat insulating material, and workability is reduced.
本発明の珪酸カルシウム硬化体は、 熱伝導率が 0 . 0 2 〜 0 . l Wm— 1である こ とが好まし く 、 よ り好ま し く は 0 . 0 2 〜 0 . 0 8 Wm—ェ — 1 の範囲であ り 、 特に 好ま し く は 0 . 0 2 〜 0 . O e Wm - 1 !^— 1 の範囲である。 熱伝導率が 0 . 1 W m _ 1 K— 1 を超える と、 断熱性能が低 下し、 珪酸カルシウム硬化体を断熱材と して用いる場合に、 十分な断熱効果を得るために、 壁自身の厚みを大き く しな ければな らず、 施工性に問題が生じる。 また、 本発明の珪 酸カルシウム硬化体の熱伝導率の下限は、 実用面か ら考え て、 0 . 0 2 Wm— 1である。 The cured product of the calcium silicate of the present invention preferably has a thermal conductivity of 0.02 to 0.1 Wm— 1 , more preferably 0.02 to 0.08 Wm—. The range is from 0 to 1 , particularly preferably from 0.02 to 0. O e Wm- 1 ! ^ — 1 . If the thermal conductivity exceeds 0.1 W m — 1 K- 1 , the heat insulation performance will decrease, and the wall itself will be used to obtain a sufficient heat insulation effect when using a cured calcium silicate as a heat insulating material. The thickness must be increased, which causes problems in workability. Further, the lower limit of the thermal conductivity of the cured product of calcium silicate of the present invention is 0.02 Wm- 1 from a practical viewpoint.
本発明の珪酸カルシウム硬化体は、 通気率が 5 X 1 0 一 4〜 : l m S h - i p a — 1である こ とが好ま し く 、 よ り好まし く は 1 X 1 0 — 3〜 0 . 5 m 2 h— i P a— 1であ り 、 特に好 ま し く は 5 X 1 0 — 3〜 0 . 1 m 2 h - 1 P a — 1以下である。 通気率が上記の範囲に入る こ とによ り、 珪酸カルシウム硬 化体を動的断熱材と して用いた際に、 実質的な熱貫流率の 低減及び換気が実現できる。 通気率が 5 X 1 0 — 4 m 2 h 一 1 P a— 1未満になる と、 外気を取 り込むこ とができず動的 断熱材と して機能せず、 また換気性能が失われる。 例えば、 上記 WO O 2 / 0 6 6 9 3 に記載の方法で得られた珪酸カ ルシゥム硬化体は通気率が 5 X 1 0 - 4 m 2 h - 1 P a 1未 満であるため、 動的断熱材と しては機能しない。 また、 通 気率が l m 2 h— a 1 を超える と、 空気の流速が速く な り過ぎ、 給気予熱を行う ことが困難となる。 また、 通気 率が大き く な り過ぎる と、 壁の両側での圧力差が小さ く な り 、 動的断熱に必要である十分な空気の流れをつ く る こ と ができなく なる。 Calcium silicate hardened product of the present invention, the ventilation rate of 5 X 1 0 one 4 ~: lm S h - ipa - 1 a is and this is rather preferable, rather preferably Ri good is 1 X 1 0 - 3 ~ 0 5 m 2 h— i P a — 1 , particularly preferably 5 X 10 — 3 to 0.1 m 2 h- 1 P a — 1 or less. When the permeability is in the above range, when the calcium silicate cured body is used as a dynamic heat insulating material, a substantial reduction in heat transmission rate and ventilation can be realized. Permeability is 5 X 1 0 - If less than 4 m 2 h one 1 P a- 1, does not function as a dynamic insulation material can not and this Komu Ri taken outside air and ventilation performance is lost . For example, The WO O 2/0 6 6 9 3 silicate months Rushiumu cured product obtained by the method described in the ventilation rate 5 X 1 0 - 4 m 2 h - for 1 P a 1 is less than, dynamic insulation It does not function as a material. Further, when the passing air ratio is more than lm 2 h- a 1, only a Ri faster the flow velocity of the air, it is difficult to perform supply preheating. Also, if the air permeability is too high, the pressure differential across the wall will be small, and it will not be possible to create sufficient airflow required for dynamic insulation.
具体的に、 本発明においては、 珪酸カルシウム硬化体の 円柱形のサンプル (長さ L、 断面積 S ) の両端の面を除く 側面部をエポキシ樹脂でシールし、 真空ポンプ用いて該サ ンプル両端での圧力を制御し、 該サンプル両端での差圧が 1 k P a の ときサンプル内に流れた空気の流量を測定し、 式 ( 1 ) によ り計算した値を通気率と定義する。  Specifically, in the present invention, the side surfaces of the cylindrical sample (length L, cross-sectional area S) of the calcium silicate cured body except for both end surfaces are sealed with epoxy resin, and both ends of the sample are dried using a vacuum pump. When the differential pressure across the sample is 1 kPa, the flow rate of the air flowing through the sample is measured, and the value calculated by equation (1) is defined as the air permeability.
通気率 ( m 2 ~ 1 P a " 1 ) Ventilation rate (m 2 ~ 1 P a " 1)
= W X L Z S / A P · · · ( 1 )  = W X L Z S / A P (1)
W : 空気の流量 (m S h - 1 ) W: Air flow rate (mSh- 1 )
L : サンプルの長さ (m)  L: Length of sample (m)
S : サンプルの断面積 ( m 2 ) S: Cross section of sample (m 2 )
△ P : 圧力差 ( P a ) 以下、 図 3 に参照して、 通気率の測定方法を説明する。 サンプル 1 を、 圧縮空気によ り圧着可能なゴムパッキン を内面に有するサンプルホルダー 2 にセ ッ トする。 真空ポ ンプ 3 を用いて圧力調整弁 4で圧力調整槽 5 内の圧力を制 御し、 差圧計 6 によ り測定した差圧が 1 k P a のときサン プル内に流れた空気の流量を流量計 7 によ り測定する。 得 られた流量か ら、 上記式 ( 1 ) によ り通気率を計算する。 本発明の珪酸カルシウム硬化体は、 主と して トバモライ ト ( 5 C a 〇 · 6 S i 0 2 · 5 H , O ) か らな り 、 粉末 X 線回折において観察される、 トバモライ ト の ( 2 2 0 ) 回 折ピーク強度 I b の、 2 つの トバモライ ト の回折線 ( 2 2 0 )、 ( 0 2 2 ) に挟まれた角度領域における回折強度の最 低値 I a に対する比 ( I b / I a ) が 3 以上である こ とが 好ま しく 、 4 以上である こ とがよ り好ま しい。 こ こで X線 粉末回折とは、 X線と して C u Κ α線を用いた粉末 X線回 折を言う。 ΔP: Pressure difference (P a) A method for measuring the air permeability will be described below with reference to FIG. The sample 1 is set in the sample holder 2 having a rubber packing which can be compressed by compressed air on the inner surface. The pressure in the pressure adjustment tank 5 is controlled by the pressure adjustment valve 4 using the vacuum pump 3 and the flow rate of the air flowing into the sample when the differential pressure measured by the differential pressure gauge 6 is 1 kPa. Is measured by flow meter 7. From the obtained flow rate, the air permeability is calculated by the above equation (1). The cured product of calcium silicate of the present invention is mainly composed of tobermorite (5Ca a · 6Sio2 · 5H, O), which is observed in powder X-ray diffraction. The ratio (I b) of the diffraction peak intensity I b to the minimum value I a of the diffraction peak intensity I b in the angle region between the diffraction lines (2 0 0) and (0 2 2) of the two tobermorites / I a) is preferably 3 or more, more preferably 4 or more. Here, X-ray powder diffraction refers to powder X-ray diffraction using CuΚα-rays as X-rays.
本発明の珪酸カルシウム硬化体において、 トバモライ ト が主体であるか否かは、 珪酸カルシウム硬化体の破断面の 走査型電子顕微鏡観察と粉末 X線観察を併用する こ とによ り 以下のよ う に判断する。  Whether or not tobermorite is the main component in the cured calcium silicate of the present invention is determined as follows by using both a scanning electron microscope observation and a powder X-ray observation of the fracture surface of the cured calcium silicate. To judge.
まず第一に、 粉末 X線回折において、 トバモライ トの最 強線 ( 2 2 0 ) を越える他の回折ピークが存在しないこ と である。 ただし トバモライ ト と ともに、 結晶質シリ カ、 炭 酸カルシウム、 石膏が共存する場合、 トバモライ トが主体 であっても、 これら共存物質の高い結晶性のために、 これ らの物質の最強線が トバモライ トの最強線を超える場合が ある。 そ こで第二に、 破断面を走査型電子顕微鏡を用いて、 顕微鏡の設定倍率 2 5 0 0 倍、 3 5 . 4 1 m X 1 8 . 9 mの領域で、 後述する気泡剤による粗大気泡部以外のマ ト リ ッ クスを無造作に 2 0 箇所観察し、 板状あるいは短冊状 の トバモライ ト粒子が観測される面積割合の平均が 5 0 % 以上であれば、 主と して トバモライ トか らなる とする。 ま た、 上記面積割合の平均は、 6 0 %以上である こ とが好ま しく 、 8 0 %以上である こ とがよ り好ま しい。 こ こで粗大 気泡部とは、 粗大気泡および粗大気泡か ら周囲約 5 mの 領域をいい、 自 由空間が存在するために トバモライ トが生 成しやすい領域をい う。 しかし、 このよ う な場合でも、 粉 末 X線回折において、 トバモライ ト の ( 2 2 0 ) 面の回折 ピーク強度 I b に対する トバモライ ト以外の高結晶性の共 存物質、 すなわち結晶質シリカ、 炭酸カルシウム、 石膏の 最強線の回折強度 I c の比 ( I c Z I b ) が 3 以下である ことが好ま し く 、 2 以下である こ とがよ り 好ま しい。 こ こ で板状あるいは短冊状の粒子とは、 上記のよう に顕微鏡の 設定倍率 2 5 0 0 倍で観測された板状ある いは短冊状の ト バモライ ト粒子を顕微鏡の設定倍率 5 0 0 0 倍で観察し、 1 つの粒子において、 互いにほぼ平行な 2 つの表面間の距 離がその粒子の最小長さ (以下 「厚み」 と称する) に相当 し、 その粒子の最大長さが最小長さの 5 倍以上である粒子 とする。 もちろん、 こ こで言う最大長さ、 厚みは二次元へ の投影長さである。 これら トバモライ ト の粒子の大きさは 特に規定はしないが、 最大長さが数 ^ m〜 1 0 ^ mである こ とが好ま しい。 First, in X-ray powder diffraction, there is no other diffraction peak exceeding the strongest line (220) of tobermorite. However, when crystalline silica, calcium carbonate, and gypsum coexist with tobermorite, tobermorite is mainly used. Nevertheless, due to the high crystallinity of these coexisting substances, the strongest line of these substances may exceed the strongest line of tobermorite. Secondly, using a scanning electron microscope, the fractured surface was coarsened by a foaming agent (described later) in the area of the microscope's set magnification of 250,000 times and 35.41 mx 18.9 m. The matrix other than the bubble portion was randomly observed at 20 points, and if the average area ratio where plate- or strip-shaped tobermorite particles were observed was 50% or more, tobermorite was mainly used. It consists of Further, the average of the area ratio is preferably 60% or more, and more preferably 80% or more. Here, the coarse bubble portion refers to the region around the coarse bubble and about 5 m from the coarse bubble, and a region where tobermorite is easily generated due to the free space. However, even in such a case, in powder X-ray diffraction, a highly crystalline coexisting substance other than tobermorite with respect to the diffraction peak intensity Ib of the (220) plane of tobermorite, that is, crystalline silica, carbonate The ratio (IcZIb) of the diffraction intensity Ic of the strongest line of calcium and gypsum is preferably 3 or less, and more preferably 2 or less. Here, the plate-like or strip-like particles refer to the plate-like or strip-like tobermorite particles observed at the microscope setting magnification of 250 × as described above, and the microscope setting magnification of 500 ×. Observed at 0x, the distance between two surfaces almost parallel to each other in one particle is equivalent to the minimum length of the particle (hereinafter referred to as “thickness”). And the maximum length of the particle is more than 5 times the minimum length. Of course, the maximum length and thickness here are the projected lengths in two dimensions. The size of the particles of these tobermorites is not particularly limited, but it is preferable that the maximum length be a few ^ m to 10 ^ m.
通常 トバモライ ト は、 低結晶性ケィ酸カルシウム水和物 (これ以後 C S H と略記する。) と共存する こ とが多い。 C S Hは様々な粒子形態を とる こ とが知 られているが、 通 常、 繊維状、 粒状、 塊状の粒子形態をとるために電子顕微 鏡下で トバモライ ト粒子でない こ とを明確に区別できる。 このよ う な C S Hは、 トバモライ トの基本骨格を崩さない 範囲で含有できる。 しかし、 C S Hは強度、 耐候性、 耐久 性等建材と しての様々な必要性能を低下させる こ とがある。 珪酸カルシウム硬化体中に C S Hが多量に存在する と、 乾 湿繰 り返し時の寸法安定性が低下する。 さ ら に長期間大気 中に放置される と、 これら C S Hは大気中に含まれる二酸 化炭素と容易に反応して、 炭酸カルシウム と非晶質珪酸に 分解する炭酸化反応を起こす。 この時、 体積の収縮を伴う こ とか ら亀裂、 組織劣化が発生する。 従って、 X線回折並 びに電子顕微鏡観察で、 主として トバモライ トからなる と 判定された場合でも、 C S Hを可能な限 り含有しないこ と が好ま しい。  Usually, tobermorite often coexists with low crystalline calcium silicate hydrate (hereinafter abbreviated as CSH). It is known that CSH takes various particle forms. However, since it usually takes a fibrous, granular, or massive particle form, it can be clearly distinguished from non-tobermorite particles under an electron microscope. Such CSH can be contained within a range that does not destroy the basic skeleton of tobermorite. However, CSH may reduce various required properties for building materials such as strength, weather resistance, and durability. If a large amount of CSH is present in the hardened calcium silicate, the dimensional stability during repeated wet and dry operations is reduced. When left in the air for a long time, these CSH easily react with carbon dioxide contained in the air to cause a carbonation reaction that decomposes into calcium carbonate and amorphous silicic acid. At this time, cracks and structural deterioration occur due to volume shrinkage. Therefore, even if it is determined by X-ray diffraction and electron microscopy that it mainly consists of tobermorite, it is preferable that CSH is not contained as much as possible.
上述のよ う に C S H粒子は電子顕微鏡下、 トバモライ ト 粒子で無い こ とは容易に判断される。 しかし、 C S Hが 様々な粒子形態をとるために、 他の微量共存物質、 例えば 繊維状の石膏、 粒子状の炭酸カルシウム等と電子顕微鏡観 察で明確に区別できない場合がある。 このため、 電子顕微 鏡で C S H含有割合を決定する こ とは難しい。 トバモライ ト と C S Hが共存する硬化体について、 粉末 X線回折を行 う と、 トバモライ トの ( 2 2 0 ) 回折ピーク と ( 2 2 2 ) 回折ピ一ク に挾まれた領域に、 ブロー ドな C S Hの回折ピ ークが認め られる。 この C S Hの回折ピークは通常 2 9 . 1 〜 2 9 . 4 ° ( 2 0 ) 付近に出現する。 また、 C S Hが トバモライ ト に比べて少ない場合、 C S Hの回折ピーク は、 トバモライ トの回折線に吸収された形になり 、 通常 C S H の回折強度の測定は不可能となる。 As described above, CSH particles were obtained under the electron microscope under Tobermorite It is easily determined that they are not particles. However, because CSH takes various particle forms, it may not be clearly distinguishable from other trace coexisting substances, such as fibrous gypsum and particulate calcium carbonate, by electron microscopic observation. For this reason, it is difficult to determine the CSH content ratio using an electron microscope. X-ray powder diffraction of the cured product in which tobermorite and CSH coexist shows that a broad region was found between the (220) diffraction peak and the (222) diffraction peak of tobermorite. CSH diffraction peaks are observed. This diffraction peak of CSH usually appears around 29.1 to 29.4 ° (20). When the amount of CSH is smaller than that of tobermorite, the diffraction peak of CSH becomes a form absorbed by the diffraction lines of tobermorite, and it is usually impossible to measure the diffraction intensity of CSH.
と ころが C S Hが多量に存在する場合、 トバモライ トの ( 2 2 0 ) 回折ピーク と ( 2 2 2 ) 回折ピーク に挟まれた 領域における X線の回折強度は、 ノ ッ ク グラ ン ド に比べて 高い値となる こ とカ ら、 C S Hが多量に存在するかどう か を判定する こ とができる。 珪酸カルシウム硬化体が C S H を全く 含まず、 かつ高結晶性の トバモライ トを主体とする 場合、 同領域における X線強度の最低値はバッ ク グラ ン ド 強度と一致する。  However, when a large amount of CSH is present, the diffraction intensity of X-rays in the region between the (220) diffraction peak and the (222) diffraction peak of tobermorite is larger than that of the knock ground. Therefore, it is possible to determine whether a large amount of CSH is present. When the hardened calcium silicate does not contain CSH at all and is mainly composed of high crystalline tobermorite, the lowest value of the X-ray intensity in the same region coincides with the background intensity.
一方、 たとえ C S Hが存在しない場合でも、 トバモライ ト の結晶性が低い場合には、 I b ' / I a は小さ く なる。 こ れは ( 2 2 0 ) と ( 2 2 2 ) が近接しているために、 ピ一 ク のすそのが重な り合う ためである。 トバモライ トの結晶 性が低いと、 珪酸カルシウム硬化体の強度低下、 及び耐候 性の低下が起こる。 On the other hand, even if CSH is not present, if the crystallinity of tobermorite is low, Ib '/ Ia will be small. This This is because (220) and (222) are close to each other, and the peaks of the peaks overlap. When the crystallinity of tobermorite is low, the strength of the cured calcium silicate and the weather resistance are reduced.
従って、 トバモライ ト の ( 2 2 0 ) 面の回折ピーク強度 Therefore, the diffraction peak intensity of the (220) plane of tobermorite
1 b の、 2 つの トバモライ トの回折線、 ( 2 2 0 ) と ( 21b, two tobermorite diffraction lines, (2 2 0) and (2
2 2 ) に挟まれた角度領域における回折強度の最低値 I a に対する比 ( I b / I a ) が大きい程、 珪酸カルシウム硬 化体中に含有される C S Hが少ない、 も し く は トバモライ トの結晶性が高い。 なお、 こ こでの強度 I a及び I bは、 バッ ク グラ ン ド強度を含めた値であ り 、 I a、 I b の算出 方法を図 1 に示す。 22 The larger the ratio (Ib / Ia) of the diffraction intensity to the minimum value Ia in the angle region sandwiched by 2), the smaller the CSH contained in the hardened calcium silicate or the higher the tobermorite Has high crystallinity. Here, the intensities Ia and Ib are values including the background intensity, and the method of calculating Ia and Ib is shown in FIG.
本発明の低比重珪酸カルシウム硬化体は粉末 X線回折に おいて観察される トバモライ トの回折ピーク のう ち、 ( 0 0 2 ) 面の回折ピーク強度 I の ( 2 2 0 ) 面の回折ピーク 強度 I ( 2 2 0 ) に対する比 ( I ( 0 0 2 ) / I ( 2 2 0 )) が好ま し く は 0 . 2 5 以上、 さ ら に好ま し く は 0 . The cured product of the low specific gravity calcium silicate of the present invention has the diffraction peak intensity I of the (002) plane, which is the diffraction peak of the (220) plane, among the diffraction peaks of tobermorite observed in powder X-ray diffraction. The ratio (I (002) / I (220)) to the intensity I (220) is preferably 0.25 or more, and more preferably 0.25.
3 0 以上である。 トバモライ トの板状あるいは短冊状の粒 子は、 平面に垂直な方向すなわち厚み方向が結晶の C軸方 向と考え られている。 従って I ( 0 0 2 ) の相対強度が増 加する こ とは、 C軸方向の相対的な規則性が増すこ とであ り 、 それに伴い板状結晶の厚みも増加する こ と を意味する。 J C P D S (Joint Commi ttee on Powder Dif fraction Standard)カー ド N o . 1 9 — 1 3 6 4 によれば、 理想的 な トバモライ 卜結晶の I ( 0 0 2 ) / I ( 2 2 0 ) は 0 . 8 と記載されてお り 、 この値に近づく こ とで結晶の厚みが 増し、 単一結晶の強度が増加する。 結果と して、 これら結 晶か ら構成される硬化体の強度も増加する。 これら、 I ( 0 0 2 )、 I ( 2 2 0 ) の算出方法を図 2 に示すが、 I ( 0 0 2 ) は回折角 6 〜 9 ° ( 2 Θ ) 付近にかけて、 バッ ク グラン ドを直線近似して得られた真の回折強度であ り 、 I ( 2 2 0 ) は回折角 2 0 〜 4 0 ° ( 2 0 ) 付近にかけて バッ ク グラ ン ド を直線近似して得られた真の回折強度であ る。 30 or more. Plate-shaped or strip-shaped particles of tobermorite are considered to have the direction perpendicular to the plane, that is, the thickness direction, as the C-axis direction of the crystal. Therefore, an increase in the relative intensity of I (002) means an increase in the relative regularity in the C-axis direction, and accordingly, an increase in the thickness of the plate-like crystal. . JCPDS (Joint Committee on Powder Dif fraction Standard) According to the card No. 1 9 — 1 364, the ideal tobermorite crystal I (002) / I (220) is described as 0.8. As the value approaches, the thickness of the crystal increases and the strength of the single crystal increases. As a result, the strength of the cured body composed of these crystals also increases. The calculation method of these I (002) and I (220) is shown in Fig. 2.I (002) is the diffraction angle around 6 to 9 ° (2Θ), and the back ground is This is the true diffraction intensity obtained by linear approximation, and I (220) is the true diffraction intensity obtained by linearly approximating the background over a diffraction angle of around 20 to 40 ° (20). Is the diffraction intensity.
本発明の珪酸カルシウム硬化体は、 嵩比重が 0 . 0 5 〜 0 . 2 5 である こ とが好ま しく 、 更に好ま し く は 0 . 0 5 〜 0 . 2 、 特に好ま し く は 0 . 0 5 〜 0 . 1 8 である。 こ こで言う嵩比重とは、 1 0 5 °Cで 2 4時間乾燥させた際の 嵩比重、 すなわち絶乾比重を指す。  The hardened calcium silicate of the present invention preferably has a bulk specific gravity of 0.05 to 0.25, more preferably 0.05 to 0.2, and particularly preferably 0.5 to 0.2. 0 5 to 0.18. The bulk specific gravity as used herein refers to the bulk specific gravity when dried at 105 ° C for 24 hours, that is, the absolute specific gravity.
本発明の珪酸カルシウム硬化体は実質的に気泡を含有し ていても、 含有していなく ても良いが、 気泡を含有してい る方が好ま しい。 気泡とは、 従来か ら軽量気泡コ ンク リ ー ト の製造に用い られているアルミニウム粉末を発泡剤と し て用いて作製した気泡ゃプレフ ォ一ム法で用い られる界面 活性剤を起泡剤と して用いて作製した気泡を指す。  The cured calcium silicate of the present invention may or may not substantially contain air bubbles, but preferably contains air bubbles. Foam refers to a foaming agent that uses a surfactant that is used in the foam-preform method and is made using aluminum powder as a foaming agent, which has been conventionally used in the manufacture of lightweight foam concrete. Refers to bubbles created using
本発明の珪酸カルシウム硬化体において、 気泡を含有す る場合、 気泡以外の骨格を形成する部分 (マ ト リ ッ クス) に細孔を持つ こ とが好ま しい。 また、 気泡間のマ ト リ ッ ク スの厚みが小さ い こ と も好ま しい。 The cured product of calcium silicate of the present invention contains bubbles. In this case, it is preferable to have pores in the part (matrix) that forms the skeleton other than the bubbles. It is also preferable that the thickness of the matrix between the bubbles is small.
本発明の珪酸カルシウム硬化体は、 上記の動的断熱材や 通常の断熱材、 吸音材などの建築用壁材と して有利に用い る こ とができる。 上記のような建築用壁材と して用いる際 の形状に関しては、 パネルの形状を有する こ とが好ま し く 、 その大きさ、 厚みはパネルの形状が保持できれば、 特に限 定するものではない。 パネルの形状を有する こ とによ り 、 動的断熱技術に必要な気密性を確保する こ とが容易 とな り、 施工が簡便となる。  The cured calcium silicate of the present invention can be advantageously used as a building wall material such as the above-mentioned dynamic heat insulating material, ordinary heat insulating material, and sound absorbing material. Regarding the shape when used as a building wall material as described above, it is preferable to have a panel shape, and the size and thickness are not particularly limited as long as the panel shape can be maintained. . By having the shape of the panel, it is easy to secure the airtightness required for the dynamic insulation technology, and the construction is simplified.
以下、 本発明の珪酸カルシウム硬化体の製造方法につい て説明する。  Hereinafter, the method for producing the cured calcium silicate of the present invention will be described.
本発明の珪酸カルシウム硬化体は、 以下工程 ( 1 ) 〜 ( 4 ) を包含する方法によって製造する こ とができる。  The cured product of calcium silicate of the present invention can be produced by a method comprising the following steps (1) to (4).
( 1 ) 水及び固体混合物を含む水性ス ラ リ ーを提供し、 該固体混合物は、 実質的に、 珪酸質原料、 セメ ン ト、 硫酸 アルミニウム とその水和物からなる群よ り選ばれる少なく と も 1 種のアルミニウム化合物、 その他の硫酸化合物、 及 び場合によっては石灰質原料からな り 、  (1) An aqueous slurry containing water and a solid mixture is provided, wherein the solid mixture is substantially selected from the group consisting of siliceous raw materials, cement, aluminum sulfate and hydrates thereof. It is composed of one aluminum compound, other sulfate compounds and, in some cases, calcareous raw materials.
該アルミ ニウム化合物の該水性スラ リ ー中の量が、 酸化 物換算 ( A 1 23 ) で固体混合物の重量に対して 0 . 0 9 ~ 1 0 重量%、 及びその他の該硫酸化合物の該水性ス ラ リ一中の量が、 上記硫酸アルミニウムも し く はその水和物 を含めて、 S 0 3量換算で固体混合物の重量に対して 0 . 1 5 〜 1 5 重量%であ り 、 The amount of the aqueous in Sula rie of the aluminum compound, the 0.0 9-1 0% by weight, and other sulfuric acid compound relative to the weight of the solid mixture in terms of oxide (A 1 23) The aqueous slurry The amount in the Li one is, is rather also the aluminum sulfate including their hydrates, than zero. 1 5 to 1 5 wt% der relative to the weight of the solid mixture with S 0 3 amount conversion,
該水の該固体混合物に対する重量比が 2 . 3 〜 5 . 5 で あ り 、  The weight ratio of the water to the solid mixture is 2.3 to 5.5;
該石灰質原料の該セメ ン トに対する重量比が 0 . 6以下 である。  The weight ratio of the calcareous raw material to the cement is 0.6 or less.
( 2 ) 該水性ス ラ リ ーに発泡剤を添加する。  (2) Add a foaming agent to the aqueous slurry.
( 3 ) 該水性ス ラ リ ーを型枠に注入する。  (3) Inject the aqueous slurry into a mold.
( 4 ) 該水性ス ラ リ ーを予備硬化した後、 オー ト ク レープ 養生する。  (4) After the aqueous slurry is pre-cured, it is cured by autoclaving.
本発明において、 珪酸質原料とは、 S i 0 2の含有量が 7 0 重量%以上、 残り の成分と して酸化アルミニウム等の 金属酸化物を含む原料を言う。 たとえば、 結晶質の珪石、 珪砂、 石英及びそれら の含有率の高い岩石、 並びに珪藻土、 シリ カ ヒューム、 フ ライ アッ シュ、 天然の粘土鉱物及びそ れらの焼成物等である。 これらのう ちで結晶質の珪酸質原 料とは、 珪石、 珪砂、 石英及.びそれらの含有率の高い岩石 であ り 、 粉末 X線.回折において 一石英あるいはク リ ス ト バライ ト等のシャープな回折ピーク を呈する ものをいう 。 また、 非晶質珪酸原料とは、 珪藻土、 シ リ カ ヒューム、 フ ライ ア ッ シュ等の粉末 X線回折において固有の明瞭な回折 ピーク を示さないものを言う。 本発明において、 セメ ン ト とは普通ポル ト ラ ン トセメ ン ト、 早強ポル ト ラ ン トセメ ン ト、 ビーライ トセメ ン ト等の 珪酸成分とカルシウム成分を主体とするセメ ン トを言う。 また、 石灰質原料とは生石灰 ( C a O ) を 5 0重量%以上、 残り の成分と して消石灰 ( C a ( O H) 2 )、 炭酸カルシゥ ム ( C a C〇 3 ) などを含む原料である。 In the present invention, the siliceous material, S i 0 content 2 7 0 wt% or more, say a raw material containing metal oxides such as aluminum oxide and with the remaining ingredients. For example, crystalline silica stone, silica sand, quartz, and rocks with high content thereof, diatomaceous earth, silica fume, fly ash, natural clay minerals, and fired products thereof. Among these, crystalline siliceous raw materials are silica stone, silica sand, quartz, and rocks with a high content of them, such as powder X-rays, single quartz or list barite in diffraction. A substance that exhibits a sharp diffraction peak. The amorphous silicic acid raw material refers to diatomaceous earth, silica fume, fly ash, etc., which do not show a distinctive diffraction peak in powder X-ray diffraction. In the present invention, the cement refers to a cement mainly composed of a silicate component and a calcium component, such as ordinary portant cement, early-strength portant cement, and belite cement. Moreover, quicklime and calcareous material (C a O) 5 0 wt% or more, slaked lime and the remaining components (C a (OH) 2), carbonate Karushiu arm (C a C_〇 3) the raw material, including is there.
さ らに、 本発明において、 硫酸アルミニウム とは、 ィ匕学 式 ( A 1 2 ( S O 4 ) 3 ) か らなる物質を言い、 その水和物 とは例えば、 化学式 ( A 1 2 ( S 〇 4 ) 3 · 1 7 H 20 ) で 示されるよ うな結晶水を含む化合物を言う 。 原料形態と し ては粉末、 スラ リ ーいずれでも構わないが、 結晶水を除い た状態で (A l 2 ( S 04 ) 3 ) と して 8 0重量%以上含有 する ものを用いる。 硫酸アルミニウムも し く はその水和物 の添加量は、 固体混合物の総重量に対して酸化物換算 ( A 1 2 O 3 ) で 0 . 0 9 〜 1 0重量%でぁ り 、 好ま し く は 0 . 2 〜 : 1 0重量%であ り、 よ り好ま し く は 0 . 5 〜 8重量% である。 Et al is, in the present invention, the aluminum sulfate, I匕学formula (A 1 2 (SO 4) 3) or refers to Ranaru material, and hydrates thereof e.g., the formula (A 1 2 (S 〇 4 ) Refers to a compound containing water of crystallization as shown in 3 · 17H 20 ). It is a raw material form powder, but may be any Sula rie, while excluding the water of crystallization (A l 2 (S 0 4 ) 3) and to use those containing 8 0 wt% or more. The addition amount of aluminum sulfate is also rather its hydrates, 0 in terms of oxide (A 1 2 O 3) relative to the total weight of the solid mixture. Than zero 9-1 0% by weight Dea, rather then preferred Is from 0.2 to 10% by weight, more preferably from 0.5 to 8% by weight.
さ ら に、 その他の硫酸化合物とは、 特に限定される もの ではな く 、 S 〇 3あるいは S 〇 4を含有する化合物であれ ばよい。 例えば、 亜硫酸、 硫酸、 無水石膏 ( C a S 04 )、 二水石膏 ( C a S 〇 4 . 2 H 2〇)、 半水石膏 ( C a S O 4 - 1 / 2 H 20 ) 等の石膏の水和物、 硫酸マグネシウム 等のアルカ リ 土類金属の硫酸塩、 硫酸ナ ト リ ウム等のアル カ リ 金属の硫酸塩、 硫酸銅や硫酸銀等の金属硫酸塩等であ り 、 これら を単独で用いても、 複数同時に用いても良いが、 好ま し く は二水石膏も し く はその水和物が用い られる。 そ の他の硫酸化合物の添加量は上記の硫酸アルミ ニウムも し く はその水和物を含めて S 〇 3換算で固体混合物の総重量 に対して 0 . 1 5 〜 : L 5 重量%であ り 、 好まし く は 0 . 2 〜 1 0 重量%である。 It is found in, and other sulfate compounds, rather name in particularly limited, any compound containing S 〇 3 or S 〇 4 Bayoi. For example, sulfite, sulfate, (4 C a S 0) anhydrite, gypsum (C a S 〇 4 2 H 2 〇.), Hemihydrate gypsum (C a SO 4 - 1/ 2 H 2 0) , such as Hydrate of gypsum, alkali such as magnesium sulfate, etc.Sulfate of earth metal, sodium sulfate, etc. Sulphate of metal sulfates, metal sulphates such as copper sulphate and silver sulphate, etc., which may be used alone or in combination, but are preferably gypsum or dihydrate Hydrates are used. The addition amount of other acid compounds of that is 0 relative to the total weight of rather also sulfuric aluminum of the solid mixture with S 〇 3 terms including their hydrates 1 5 ~:. In L 5 wt% And preferably from 0.2 to 10% by weight.
また、 上記石灰質原料のセメ ン ト に対する重量比は酸化物 換算 ( C a O換算) で 0 . 6以下である こ とが好ま し く 、 よ り好ま し く は 0 . 4以下で、 特に好ま し く は 0 . 3 以下 である。 また、 上記の該石灰質原料の該セメ ン ト に対する 重量比が 0 . 6 を超す場合でも、 該水性ス ラ リ ーに、 界面 活性剤、 粘度調整剤及び消泡剤か らなる群よ り選ばれる少 なく と も 2 種を添加する こ とによ り 、 本発明の珪酸カルシ ゥム硬化体を得る こ とができる。 その際、 該粘度調整剤及 び該消泡剤の添加は、 工程 ( 1 ) の後であって工程 ( 2 ) の前に行ない、 該界面活性剤の添加は工程 ( 2 ) において 該発泡剤の添加と同時に行なう 。 尚、 上記の該石灰質原料 の該セメ ン トに対する重量比が 0 . 6 以下の場合でも、 同 様に界面活性剤、 粘度調整剤、 消泡剤等を添加 してもよい。 Further, the weight ratio of the calcareous raw material to cement is preferably 0.6 or less, more preferably 0.4 or less, particularly in terms of oxide (CaO conversion). Is less than 0.3. Even when the weight ratio of the calcareous raw material to the cement exceeds 0.6, the aqueous slurry is selected from the group consisting of a surfactant, a viscosity modifier and an antifoaming agent. By adding at least two of them, the cured calcium silicate of the present invention can be obtained. At that time, the addition of the viscosity modifier and the antifoaming agent is performed after the step (1) and before the step (2), and the addition of the surfactant is performed in the step (2). And simultaneously with the addition of Incidentally, even when the weight ratio of the calcareous raw material to the cement is 0.6 or less, a surfactant, a viscosity modifier, an antifoaming agent and the like may be added in the same manner.
上記の界面活性剤とは、 ァニオン性界面活性剤である高 級アルコール硫酸エステルまたは高級アルコール硫酸ナ ト リ ウム等、 または非イ オン性界面活性剤であるポ リ オキシ エチレンアルキルエーテル等であ り 、 その添加量は発泡剤 の固体換算における重量に対して 0 . 0 1 〜 2 0 0 重量% であ り、 よ り好まし く は 0 . 1 〜 : L 0 0重量%である。 The above-mentioned surfactants include anionic surfactants such as higher alcohol sulfates or higher alcohol sodium sulfate, and non-ionic surfactants such as polyoxygen. Ethylene alkyl ether and the like, in an amount of 0.01 to 200% by weight based on the weight of the foaming agent in terms of solids, and more preferably 0.1 to: L 0. % By weight.
上記の粘度調整剤とは、 メチルセルロース及びポ リ ビニ ルアルコールからなる群よ り 選ばれる少なく とも 1 種であ り 、 その添加量は固体混合物の重量に対して 0 . 0 1 〜 1 重量%であ り 、 よ り好ま し く は 0 . 0 2 〜 0 . 5重量%で めな 。  The above-mentioned viscosity modifier is at least one selected from the group consisting of methylcellulose and polyvinyl alcohol, and the amount of addition is 0.01 to 1% by weight based on the weight of the solid mixture. Yes, more preferably from 0.02 to 0.5% by weight.
また、 消泡剤とは、 ジメチルシリ コーンやそのメチル基 が炭素数 2 以上の炭化水素で置換されたアルキル変性シリ コーン等のシリ コーン、 グリ セ リ ン脂肪酸などの脂肪酸、 グリ セ リ ン脂肪酸エステル、 ショ糖脂肪酸エステル等の脂 肪酸エステル、 ォクチルアルコール等の高級アルコール、 芳香族リ ン酸エステル、 脂肪族リ ン酸エステル等の リ ン酸 エステル等が用い られるが、 撥水性の付与と併せてシリ コ Antifoaming agents include dimethyl silicone, silicone such as alkyl-modified silicone in which the methyl group is substituted with a hydrocarbon having 2 or more carbon atoms, fatty acids such as glycerin fatty acid, and glycerin fatty acid ester. And fatty acid esters such as sucrose fatty acid esters, higher alcohols such as octyl alcohol, and phosphoric esters such as aromatic phosphates and aliphatic phosphates. In addition,
—ン、 中でもジメチルシ リ コーン、 アルキル変性シ リ コー ンが好ま し く 用い られ、 その添加量は固体混合物の重量に 対して 0 . 0 0 1 〜 3重量%、 好ま し く は 0 . 0 0 5 〜 2 重量%、 よ り好ま し く は 0 . 0 1 〜 2重量%である。 , Especially dimethyl silicone and alkyl-modified silicone are preferably used, and the amount of addition is 0.01 to 3% by weight, preferably 0.00, based on the weight of the solid mixture. It is between 5 and 2% by weight, more preferably between 0.01 and 2% by weight.
また、 本発明の方法において、 上記固体混合物の重量に 対する水の重量比 (水 Z固体比) は、 2 . 3 〜 5 . 5であ る必要がある。 この比が 2 . 3 未満である と本発明の目的 とする嵩比重の成型体が得られず、 熱伝導が大き く なる傾 向があ り 、 5 . 5 を超すと水性スラ リーを型枠に注入した 際、 固体原料と水が分離し成型体が得られない傾向がある。 Further, in the method of the present invention, the weight ratio of water to the weight of the solid mixture (water Z solids ratio) needs to be 2.3 to 5.5. If this ratio is less than 2.3, a molded article having a bulk specific gravity aimed at by the present invention cannot be obtained, and the heat conductivity tends to increase. If it exceeds 5.5, when the aqueous slurry is poured into a mold, the solid raw material and water are separated, and a molded body tends not to be obtained.
本発明において、 発泡剤とは、 一般に軽量気泡コ ンク リ ― トで用い られているアルミニウム粉末などである。 アル ミ ニゥム粉末の添加形態は特に限定される ものではなく 、 通常軽量気泡コ ンク リー 卜の製造に用い られる添加形態を 用いる こ とができ、 アルミ ニウム粉末を粉末のま まの状態 で添加する方法、 分散性をよ くするために、 使用する水の —部をあ らかじめ別にしておき、 その水にアルミ ニウム粉 末を混合してアルミ ニウムス ラ リ ーとして添加する方法、 軽量気泡コ ンク リ ー ト製造用のアルミニウムべ一ス ト (米 国特許第 4 , 3 1 8 , 2 7 0 号明細書参照) を添加する方 法などを用いる こ とができる。 こ こでアルミニウムスラ リ 一とは、 アルミニウム粉末を水に分散させたものを指す。 上記アルミニウムス ラ リ ーにおけるアルミニウム粉末の濃 度は、 水に対して 0 . 1 〜 5 0 重量%、 好ま し く は 1 〜 3 0 重量%、 よ り好ま し く は 2 〜 1 0 重量%である。 発泡剤 の添加量は、 発泡剤の固体換算で固体混合物の総重量に対 して 0 . 0 3 〜 0 . 9 5 重量%、 好ま し く は 0 . 0 5 〜 0 . 7 重量%、 よ り 好ま し く は 0 . 0 8 〜 0 . 5 重量%である。 また、 発泡後の体積の原料ス ラ リ ーに対する体積比が 1 . 5 〜 4 . 0 である こ とが好ま し く 、 よ り好ま し く は 2 . 0 〜 3 . 5 で、 特に好ま し く は 2 . 5 〜 3 . 5 である。 本発明の製造方法において使用されるすべての原料は、 原料に含まれる C a Oの S i 02に対するモル比 ( C a O / S i 02 ) は 0 . 5 〜 1 . 1 が好ま し く 、 よ り好まし く は 0 . 6 以上 1 . 0未満となるよ う に水性ス ラ リ ー状態で 混合される。 In the present invention, the foaming agent is an aluminum powder or the like generally used in a lightweight cellular concrete. The addition form of the aluminum powder is not particularly limited, and the addition form usually used for producing a lightweight cellular concrete can be used, and the aluminum powder is added in the powder state. Method, in order to improve the dispersibility, separate the part of the water to be used in advance, mix the aluminum powder with the water and add it as aluminum slurry, lightweight air bubbles For example, a method of adding an aluminum base for producing concrete (see US Pat. No. 4,318,270) can be used. Here, the term “aluminum slurry” refers to a dispersion of aluminum powder in water. The concentration of the aluminum powder in the aluminum slurry is 0.1 to 50% by weight, preferably 1 to 30% by weight, more preferably 2 to 10% by weight with respect to water. It is. The amount of the foaming agent to be added is from 0.03 to 0.95% by weight, preferably from 0.05 to 0.7% by weight, based on the total weight of the solid mixture in terms of solids of the foaming agent. More preferably, it is 0.08 to 0.5% by weight. The ratio of the volume after foaming to the slurry of the raw material is preferably from 1.5 to 4.0, more preferably from 2.0 to 3.5, and particularly preferably from 2.0 to 3.5. Or 2.5 to 3.5. All ingredients used in the manufacturing method of the present invention, the molar ratio S i 0 2 of C a O contained in the raw material (C a O / S i 0 2) is from 0.5 to 1.1 is Shi preferred More preferably, they are mixed in an aqueous slurry state so as to be 0.6 or more and less than 1.0.
本発明の珪酸カルシウム硬化体を製造する にあたっては、 用いる珪酸質原料のう ち 5 0重量%以上が結晶質である こ とが好ま しい。 また、 結晶質の珪酸質原料は、 ブレーン比 表面積で測定して 5 0 0 0 c m 2 Z g以上の微粉珪石が好 ま しく 、 よ り好ましく は 7 0 0 0 c m 2 Z g以上である。 微粉珪石は余り細かく しても、 却って取 り扱いに く いとい う弊害が生じる こ とか ら ブレーン比表面積で測定して 3 0 0 0 0 0 c m 2 Z g以下である こ とが好ま しい。 In producing the cured calcium silicate of the present invention, it is preferable that 50% by weight or more of the siliceous raw material used is crystalline. The crystalline siliceous raw material is preferably fine silica powder having a specific surface area of at least 500 cm 2 Zg, more preferably at least 700 cm 2 Zg. Even if the finely divided silica stone is too fine, it is more difficult to handle it. Therefore, it is preferable that the fineness of the fine silica stone is not more than 300,000 cm 2 Zg as measured by the Blaine specific surface area.
本発明の珪酸カルシウム硬化体の製造方法においては、 実質的に、 珪酸質原料、 セメ ン ト、 硫酸アルミ ニウム とそ の水和物か らなる群よ り 選ばれる少なく とも 1 種のアルミ ニゥム化合物、 その他の硫酸化合物、 及び場合によっては 石灰質原料か らなる固体混合物を含む水性ス ラ リ ーを攪拌 する。 該水性ス ラ リ ー温度は 4 0 °C以上 1 0 0 以下であ る こ とが好ま し く 、 よ り好まし く は 5 0 °C以上 8 0 °C以下 である。 また、 攪拌時間は 2分以上が好ま し く 、 よ り好ま し く は 1 0 分以上である。 これら固体混合物と水を含む水 性スラ リ ーの混合には、 通常工業的に使用 される ミ キサ一 が使用可能であるが、 好ま しく は低粘度モルタル用の高速 回転羽根を持っ た攪拌機、 例えば攪拌槽に邪魔板を有する パ ドルミキサーが用い られる。 In the method for producing a cured calcium silicate of the present invention, at least one aluminum compound selected from the group consisting of siliceous raw materials, cement, aluminum sulfate and hydrates thereof is substantially used. An aqueous slurry containing a solid mixture of sulphate, other sulphate compounds and, if appropriate, calcareous raw materials is stirred. The aqueous slurry temperature is preferably from 40 ° C to 100 ° C, more preferably from 50 ° C to 80 ° C. The stirring time is preferably 2 minutes or more, more preferably 10 minutes or more. Mixing of these solid mixtures with aqueous slurries containing water involves the use of mixers commonly used in industry. However, a stirrer having high-speed rotating blades for low-viscosity mortar, for example, a paddle mixer having a baffle plate in a stirring tank is preferably used.
本発明の製造方法において、 石灰質原料を用いる場合、 石灰質原料の全部を珪酸質原料及びセメ ン ト と同時に混合 する と、 石灰質原料がセメ ン トの初期水和を遅らせる場合 もある。 従って、 予備硬化を早めたい場合には、 石灰質原 料以外の固体混合物の成分と水、 または石灰質原料の一部 を含む固体混合物と水を 4 0 〜 1 0 0 °Cで、 スラ リ ー状態 で 1 0 分以上 5 時間未満混合する第一工程を行った後に、 石灰質原料の全部も し く は石灰質原料の残 り を加えて、 さ らに 4 0 〜 1 0 0 °Cで好ま しく は 3 0秒以上 1 時間以内、 よ り好ま し く は 1 分以上 3 0 分以内で混合する第二工程を 経てか ら型枠に注入して予備硬化させる方法も好ま しく用 いられる。 こ こで原料の投入にあた り 、 最初の第一工程に おける水性ス ラ リ ーへの添加を一次投入、 後の第二工程に おける水性スラ リ ーへの添加を二次投入と以後称する。  In the production method of the present invention, when a calcareous raw material is used, if all of the calcareous raw material is mixed simultaneously with the siliceous raw material and the cement, the calcareous raw material may delay the initial hydration of the cement. Therefore, if it is desired to accelerate pre-curing, the components of the solid mixture other than the calcareous raw material and water, or the solid mixture containing a part of the calcareous raw material and water should be in a slurry state at 40 to 100 ° C. After performing the first step of mixing for at least 10 minutes and less than 5 hours at a temperature of 40 to 100 ° C., preferably adding all of the calcareous material or the remainder of the calcareous material. It is also preferable to use a method of performing a second step of mixing in 30 seconds or more and within 1 hour, more preferably 1 minute or more and 30 minutes or less, and then pouring into a mold and pre-curing. Here, when the raw materials are charged, the addition to the aqueous slurry in the first first step is the primary charge, and the addition to the aqueous slurry in the second step is the second charge, and thereafter. Name.
上記アルミニウム化合物は、 それ以外の固体混合物の成 分及び水と一緒に第一工程に於いて添加し 4 0 〜 1 0 0 °C で 1 0 分以上 5 時間未満混合する こ とが好ま しい。  The above aluminum compound is preferably added in the first step together with the other solid mixture components and water, and mixed at 40 to 100 ° C for 10 minutes or more and less than 5 hours.
粘度調整剤及び消泡剤は、 発泡剤を添加する前であれば 添加するタイ ミ ングは特に問わないが、 固体混合物投入直 後に添加する こ とが好ま しい。 また、 界面活性剤は、 発泡 剤に界面活性剤を入れる と同時に水性ス ラ リ ーに添加する。 発泡剤は、 上記の固体混合物を投入した後に添加する こ とが好ま し く 、 発泡剤を添加した後の攪拌時間は 1 0秒以 上 3 分以内が好ま し く 、 2 0秒以上 1 分以内がよ り好ま し い。 1 0 秒未満では、 発泡剤が均一に分散せず、 気泡の合 一による粗大気泡が発生する傾向がある。 また、 3 分を超 える と撩拌中に発泡剤が反応し気泡の合一や脱泡が発生す る傾向がある。 The viscosity adjusting agent and the defoaming agent may be added at any time as long as they are before the foaming agent is added, but are preferably added immediately after the solid mixture is charged. Also, the surfactant is foaming Add surfactant to aqueous slurry at the same time as adding surfactant. The foaming agent is preferably added after the above-mentioned solid mixture is charged, and the stirring time after adding the foaming agent is preferably 10 seconds or more and 3 minutes or less, and 20 seconds or more and 1 minute. Within is more preferred. If the time is less than 10 seconds, the foaming agent does not disperse uniformly, and coarse bubbles tend to be generated due to the coalescence of the bubbles. If the time exceeds 3 minutes, the foaming agent reacts during stirring, which tends to cause coalescence and defoaming.
本発明の珪酸カルシウム硬化体はプレフ オーム法でも得 られる。 すなわち、 起泡剤またはその水溶液に空気を送 り 込んでフ ォームを形成し、 そのフォ一ムを上記の水性ス ラ リ ーに混合させる方法 (日本国特開昭 6 3 - 2 9 5 4 8 7 号公報参照)、 起泡剤を水性スラ.リ ーに混合した後に起泡 機によっ てフォームを形成させる方法が好ま し く 用い られ る。 但し、 プレフオーム法では粘度調整剤及び消泡剤を入 れる こ とが必要であ り、 その添加量は発泡剤を用いたとき と同様である。 こ こで、 起泡剤はこの分野で従来用い られ ている ものを用いる こ とができ、 その種類は特に限定され ないが、 例えば、 合成界面活性剤系起泡剤、 樹脂セッケン 系起泡剤、 加水分解たんばく 質系起泡剤等が挙げられる。  The calcium silicate cured product of the present invention can also be obtained by a preform method. That is, a method of forming a foam by blowing air into a foaming agent or an aqueous solution thereof and mixing the foam with the above-mentioned aqueous slurry (Japanese Patent Application Laid-Open No. 63-29554) A method of mixing a foaming agent with an aqueous slurry and then forming a foam with a foaming machine is preferably used. However, in the preform method, it is necessary to add a viscosity modifier and an antifoaming agent, and the amount of addition is the same as when a foaming agent is used. Here, as the foaming agent, those conventionally used in this field can be used, and the type thereof is not particularly limited. Examples thereof include a synthetic surfactant-based foaming agent and a resin soap-based foaming agent. And hydrolyzed protein foaming agents.
本発明の珪酸カルシウム硬化体は、 撥水性物質を 0 . 1 〜 3 . 0 重量%含有する こ とが好ま しい。 撥水性物質を用 いて撥水性を付与する方法は、 特に限定される ものではな いが、 例えば気相蒸着法によって、 1 0 0 ° 以上の高い水 接触角を発現させる こ とが好ま しい。 The cured product of calcium silicate of the present invention preferably contains 0.1 to 3.0% by weight of a water-repellent substance. The method for imparting water repellency using a water repellent substance is not particularly limited. However, it is preferable to develop a high water contact angle of 100 ° or more, for example, by a vapor deposition method.
撥水性物質も特に限定される ものではないが、 例えばシ ロキサン化合物、 アルコキシシラ ン化合物、 脂肪酸、 脂肪 酸塩、 エポキシ系樹脂、 ウレタ ン系樹脂、 シリ コーン系樹 脂、 酢酸ビニル系樹脂、 アク リ ル系樹脂、 スチレン -ブタ ジェン系榭脂等の榭脂ェマルジョ ン等の撥水性物質であ り 、 このう ち一種または二種以上の混合物を用いる こ ともでき る。 この中でも特に、 シロキサン化合物、 すなわち、 ポ リ ジメチルシロキサンやポリ ジメチルシロキサンのメチル基 の一部が水素、 フエニル基、 ト リ フルォロプロ ピル基等で 置換されたシリ コーンオイル、 アルコキシシラ ン化合物、 すなわち、 メチル ト リ エ トキシシラ ン、 ェチル ト リ エ トキ シシラ ン、 プロ ピル ト リ エ トキシシラ ン、 イ ソブチル ト リ エ トキシシラ ン等のアルキルアルコキシシラ ン化合物を使 用する こ とがさ ら に好ましい。 撥水性物質の含有量は 0 . 1 〜 3 . 0 重量%が好ましく 、 さ ら に好ま し く は、 0 . 5 〜 2 重量%である。 0 . 1 重量%未満では撥水性が期待で きず、 3 . 0 重量%よ り多いと強度が低下する。  The water-repellent substance is not particularly limited. For example, siloxane compounds, alkoxysilane compounds, fatty acids, fatty acid salts, epoxy resins, urethane resins, silicone resins, vinyl acetate resins, It is a water-repellent substance such as a resin resin or a resin emulsion such as a styrene-butadiene resin, and one or a mixture of two or more thereof can be used. Among them, siloxane compounds, that is, silicone oils in which part of the methyl groups of polydimethylsiloxane or polydimethylsiloxane are replaced with hydrogen, phenyl groups, trifluoropropyl groups, or the like, and alkoxysilane compounds, It is more preferable to use an alkylalkoxysilane compound such as methyltriethoxysilane, ethyltriethoxysilane, propyltriethoxysilane, or isobutyltriethoxysilane. The content of the water-repellent substance is preferably from 0.1 to 3.0% by weight, and more preferably from 0.5 to 2% by weight. If it is less than 0.1% by weight, water repellency cannot be expected, and if it is more than 3.0% by weight, strength decreases.
本発明の珪酸カルシウム硬化体は、 少量の補強繊維、 軽 量骨材、 樹脂等も物性に影響のない範囲で含有する こ とが できる。 補強繊維は、 強度を向上するために好ま しく 用い られる。 こ こでいう補強繊維とは、 耐アルカ リ ガラス繊維、 カーボン繊維、 ステンレス繊維、 セラミ ッ ク繊維、 ァスべ ス ト繊維等の無機繊維、 ァラ ミ ド繊維、 ビニロ ン繊維、 ポ リ プロ ピレン繊維、 パルプ繊維等の有機繊維であ り 、 この う ち一種、 あるいは二種類以上の混合物と して用いる こ と ができる。 珪酸カルシウム硬化体において、 目的の補強性 能を得るためには、 ァラ ミ ド繊維、 耐アルカ リ ガラス繊維、 力一ボン繊維が好まし く 、 さ ら にパラ系ァラミ ド繊維を用 いる こ とが好ま しい。 また、 安価である こ とから、 パルプ 繊維が好適に用い られ、 特に微粉砕されたパルプが好ま し く 用い られる。 補強繊維の繊維長も特に限定されるもので はないが、 補強性能と成形性の観点か ら好まし く は 1 〜 2 0 mm、 よ り好まし く は 3 〜 1 0 mm、 さ らに好ま し く は 5 〜 8 mmである。 補強繊維の含有量も特に限定される も のではないが、 空隙まで含めた硬化体の体積に対して、 0 . 0 5〜 3 v o l %が好ま し く 、 よ り 好ま し く は 0 . 1 〜 2 v o l %である。 0 . 0 5 v o l %未満では所望の補強効 果が得られず、 一方 3 V o 1 % を超える と混合時に繊維が か ら まって糸ま り状の塊 (フ ァイバーポール) ができやす く 、 硬化体中への均一な分散が困難になる。 軽量骨材とは、 例えばシラスバルーンやパーライ ト等であ り 、 一般にコ ン ク リ ー トの軽量化に使用 されるものであればよい。 軽量骨 材の添加量は特に限定されるものではないが、 好ま し く は 固体混合物の重量に対して 0 . 1 〜 3 0 重量%であ り 、 更 に好ま し く は 1 〜 2 0 重量%である。 また、 樹脂とは、 耐 熱性のある ものが好ま し く 、 例えば、 フエノール樹脂、 レ ゾール樹脂等である。 樹脂の添加量は特に限定される もの ではないが、 固体混合物の重量に対して 0 . 1 〜 3 0重 量%以下であ り 、 好ま し く は 1 〜 2 0 重量%以下である。 The hardened calcium silicate of the present invention can also contain a small amount of reinforcing fiber, light aggregate, resin, etc. within a range that does not affect the physical properties. Reinforcing fibers are preferably used to increase the strength. Reinforcement fibers here are alkali-resistant glass fibers, It is an inorganic fiber such as carbon fiber, stainless steel fiber, ceramic fiber, and asbestos fiber, and an organic fiber such as aramid fiber, vinylon fiber, polypropylene fiber, and pulp fiber. One type or a mixture of two or more types can be used. In order to obtain the desired reinforcing performance of the cured calcium silicate, it is preferable to use aramide fiber, alkali-resistant glass fiber, and carbon fiber, and furthermore, use para-aramid fiber. Is preferred. In addition, pulp fibers are preferably used because they are inexpensive, and finely ground pulp is particularly preferably used. Although the fiber length of the reinforcing fiber is not particularly limited, it is preferably 1 to 20 mm, more preferably 3 to 10 mm, and more preferably, from the viewpoint of reinforcing performance and formability. It is preferably between 5 and 8 mm. Although the content of the reinforcing fiber is not particularly limited, it is preferably 0.05 to 3 vol%, more preferably 0.1 to 3 vol% with respect to the volume of the cured body including the voids. ~ 2 vol%. If it is less than 0.05 vol%, the desired reinforcing effect cannot be obtained, while if it exceeds 3 Vo 1%, the fibers are entangled during mixing and fiber-like lumps are likely to be formed. However, uniform dispersion in the cured product becomes difficult. The lightweight aggregate is, for example, shirasu balloon or pearlite, and may be any material that is generally used to reduce the weight of concrete. The amount of the lightweight aggregate is not particularly limited, but is preferably 0.1 to 30% by weight based on the weight of the solid mixture. It is preferably 1 to 20% by weight. The resin is preferably a resin having heat resistance, such as a phenol resin or a resole resin. The amount of the resin to be added is not particularly limited, but is 0.1 to 30% by weight or less, preferably 1 to 20% by weight or less based on the weight of the solid mixture.
この様にして混合された水性ス ラ リ ーに、 必要に応じて 撥水性物質あるいは補強繊維が混合され、 そのまま型枠に 流し こまれ成形される。 この時、 必要に応じて補強鉄筋あ る いは補強金網が配置された型枠に流し込まれ成形される。 この時、 補強鉄筋ある いは補強金網は防鲭処理が施されて いる こ とが好ましい。 型枠に注入された水性ス ラ リ ーは、 自己発熱あるいは外部加熱等によ り 、 好ま し く は 4 0 〜 1 0 0 °Cの間で 1 〜 4 8 時間以上かけて予備硬化される。 予 備硬化は、 蒸気養生室等の水分蒸発を抑制した環境下で行 う こ とが好ましい。 得'られた予備硬化体は、 必要に応じて 任意の形状に切断された後に、 ォー トク レーブを用いて高 温高圧養生される。 切断は軽量気泡コ ンク リ ー ト の製造に 一般に用 い られる方法、 例えばワイ ヤーによる切断法も使 用できる。 ォ一 ト ク レーブの条件と しては 1 6 0 °C (ゲー ジ圧力 : 約 5 . 3 k g f / c m 2 ) 以上、 2 2 0 °C (ゲ一 ジ圧力 : 約 2 2 . 6 k g f / c m 2 ) 以下が好ま しい。 得 られた硬化体は乾燥され、 本発明の珪酸カルシウム硬化体 が得られる。 このよ う にして得られた本発明の珪酸カルシウム硬化体 は高い断熱性に加えて、 通気性を併せ持つので好適な動的 断熱材と して使用できる。 また、 施工が容易で、 安価で、 強度が高いこ とに加え、 不燃性である こ とか ら も、 本発明 の珪酸カルシウム硬化体は動的断熱材と して最適である。 The aqueous slurry thus mixed is mixed with a water-repellent substance or a reinforcing fiber as necessary, and the mixture is directly poured into a mold and molded. At this time, if necessary, it is poured into a formwork in which a reinforcing steel bar or a reinforcing wire mesh is arranged to be formed. At this time, it is preferable that the reinforcing steel bar or the reinforcing wire mesh has been subjected to a waterproof treatment. The aqueous slurry injected into the mold is pre-cured by self-heating or external heating, preferably at 40 to 100 ° C for 1 to 48 hours or more. . Preliminary hardening is preferably performed in an environment where moisture evaporation is suppressed, such as in a steam curing room. The obtained pre-cured body is cut into an arbitrary shape as needed, and then cured at high temperature and pressure using an autoclave. For cutting, a method generally used for manufacturing lightweight cellular concrete, for example, a wire cutting method can be used. The conditions of the autoclave are above 160 ° C (gauge pressure: about 5.3 kgf / cm 2 ) and 220 ° C (gauge pressure: about 22.6 kgf / cm 2 ). cm 2 ) The following is preferred. The obtained cured product is dried to obtain the calcium silicate cured product of the present invention. The thus obtained cured product of calcium silicate according to the present invention has high heat insulating properties and air permeability, so that it can be used as a suitable dynamic heat insulating material. Further, the cured calcium silicate of the present invention is most suitable as a dynamic heat insulating material because it is easy to construct, inexpensive, has high strength, and is nonflammable.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 実施例及び比較例によ り本発明を更に詳細に説明 するが、 本発明は、 何ら これに限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
以下の実施例及び比較例において、 採用される各種の測 定方法は以下の とお りである。  In the following examples and comparative examples, various measurement methods adopted are as follows.
[熱伝導率] [Thermal conductivity]
低温板 5 °C、 高温板 3 5 °Cで J I S A 1 4 1 2 の平板 熱流計法に従い、 熱伝導率を測定した。 試験体の形状は、 2 0 0 X 2 0 0 mm、 厚さ 2 5 mmであ り 、 温度 2 0 °C、 湿度 6 0 %条件下で恒量になったものを用いた。  The thermal conductivity was measured at a low temperature plate of 5 ° C and a high temperature plate of 35 ° C according to the plate heat flow meter method of JIS A1412. The shape of the test piece was 200 × 200 mm, the thickness was 25 mm, and the weight became constant under the conditions of a temperature of 20 ° C. and a humidity of 60%.
[通気率] [Ventilation rate]
図 3 に示す装置を用いて、 以下の方法で測定した。 円 柱形のサンプル 1 (断面積 ( S ) = 5 0 mm , 長さ  The measurement was performed by the following method using the apparatus shown in FIG. Cylindrical sample 1 (Cross-sectional area (S) = 50 mm, length
( L ) - 5 0 mm) の両端の面を除く 側面部をエポキシ樹 脂でシールし、 圧縮空気によ り圧着可能なゴムパッキンを 内面に有するサンプルホルダー 2 にセッ ト した。 真空ボン プ 3 を用いて圧力調整弁 4で圧力調整槽 5 内の圧力を制御 し、 差圧計 6 によ り測定した差圧が 1 k P a のときサンプ ル内に流れた空気の流量を流量計 7 によ り 測定し、 下式 (L)-50 mm), except for the sides at both ends, were sealed with epoxy resin, and set on a sample holder 2 having a rubber packing on the inner surface that could be pressed with compressed air. The pressure in the pressure regulating tank 5 is controlled by the pressure regulating valve 4 using the vacuum pump 3, and when the differential pressure measured by the differential pressure gauge 6 is 1 kPa, the flow rate of the air flowing into the sample is reduced. Measured by flow meter 7
( 1 ) によ り算出 した。 通気率 (m 2 h— i p a ェ) It was calculated by (1). Ventilation rate (m 2 h- ipa E)
=W X L / S / A P ( 1 )  = W X L / S / A P (1)
W : 空気の流量 (m3 h— W: Air flow rate (m 3 h—
L : サンプルの長さ (m)  L: Length of sample (m)
S : サンプルの断面積 ( m 2 ) S: Cross section of sample (m 2 )
△ P : 圧力差 ( P a ) なおサンプルは、 温度 2 0 °C、 湿度 6 0 %条件下で恒量 なったも のを用いた。  ΔP: Pressure difference (P a) The sample used had a constant weight at a temperature of 20 ° C. and a humidity of 60%.
[曲げ強度、 圧縮強度] [Bending strength, compression strength]
2 0 °C、 相対湿度 ( R H ) 6 0 %の恒温恒湿槽中に硬化 体を置き、 絶乾状態を基準と した含水量が、 1 0 ± 2 % に なつた時点の硬化体を測定用試料と した。 測定は、 J I S R 5 2 0 1 の曲げ強さ及び圧縮強さの測定に準じて行な つた。 すなわち、 曲げ強度測定に用いた試験片寸法は.、 4 0 m m X 4 O mm X I 6 0 mmであ り 、 スパン幅は 1 0 0 m mである。 また、 曲げ試験で割れた半分の試験片におい て、 加圧面 4 0 mm X 4 0 mmで最大荷重を測定し、 これ を圧縮強度 と した。 [嵩比重] Place the cured product in a constant temperature / humidity bath at 20 ° C and 60% relative humidity (RH), and measure the cured product when the water content reaches 10 ± 2% based on the absolute dry condition. It was used as a test sample. The measurement was performed according to the measurement of bending strength and compressive strength of JISR5201. That is, the test piece dimensions used for the bending strength measurement were 40 mm × 40 mm × 60 mm, and the span width was 100 mm. The maximum load was measured on a pressurized surface of 40 mm X 40 mm on half of the test piece cracked in the bending test, and this was taken as the compressive strength. [Bulk specific gravity]
曲げ試験に供したものと同じ寸法のォ一 ト ク レーブ養生 後の硬化体を、 1 0 5 °Cにて 2 4時間乾燥させた時の重量 と寸法 (体積) か ら嵩比重を算出した。  The bulk specific gravity was calculated from the weight and size (volume) of the cured product having the same dimensions as those subjected to the bending test after curing in the autoclave and dried at 105 ° C for 24 hours. .
[粉末 X線回折 : I a , I b の測定] [Powder X-ray diffraction: Measurement of Ia and Ib]
曲げ強度試験に用いた試料を乳鉢中で粉砕した後に、 X 線回折装置 ( R I N T 2 0 0 0 ; 日本国、 理学電気 (株) 製) を用いて、 C u の K ひ線の前記回折ピーク強度 I b及 び前記最低値 I a を求めた。 測定条件は、 加速電圧 4 0 k V、 加速電流 2 0 0 mA、 受光ス リ ッ ト幅 0 . 1 5 mm、 走査速度 4 ° /分、 サンプリ ング 0 · 0 2 ° である。 なお X線回折線はグラフ アイ トのモノ ク ロ メータ一によ り単色 化されてカ ウ ン ト された。  After pulverizing the sample used in the bending strength test in a mortar, the X-ray diffractometer (RINT 2000; manufactured by Rigaku Denki Co., Ltd., Japan) is used to obtain the above-mentioned diffraction peak of Cu K line. The strength Ib and the minimum value Ia were determined. The measurement conditions are as follows: acceleration voltage of 40 kV, acceleration current of 200 mA, light receiving slit width of 0.15 mm, scanning speed of 4 ° / min, and sampling of 0.2 °. The X-ray diffraction lines were monochromatic and counted by the monochromator on the graph item.
2 つの ト ノ モ ライ ト回折線 ( 2 2 0 )、 ( 2 2 2 ) に挟ま れた角度領域におけるバッ ク グラ ン ド を含めた回折強度の 最低値を I a 、 及びバッ ク グラ ン ド を含めた トバモライ ト 回折線 ( 2 2 0 ) の最大強度を I b とする。 なおこれら 2 つ の回折線はそれぞれ 2 9 . 0 ° 、 3 0 . 0 ° ( 2 Θ ) 付 近に見られる回折線に対応する。 図 1 に算出方法の模式図 を示す。  The minimum value of the diffraction intensity including the background in the angle region between the two tonolight diffraction lines (220) and (222) is Ia, and the background is Let I b be the maximum intensity of the tobermorite diffraction line (2 0) including. Note that these two diffraction lines correspond to the diffraction lines near 29.0 ° and 30.0 ° (2 °), respectively. Figure 1 shows a schematic diagram of the calculation method.
[粉末 X線回折 : I ( 0 0 2 )、 I ( 2 2 0 ) の測定] 試料及び測定条件は、 上記 I a 、 I b の測定の場合と同 様に行った。 ただし、 I ( 0 0 2 ) は、 回折角 6 〜 9 ° [Powder X-ray diffraction: Measurement of I (002) and I (220)] The sample and the measurement conditions were the same as in the above-mentioned measurement of Ia and Ib. Where I (002) is the diffraction angle of 6 to 9 °
( 2 Θ ) 付近にかけて、 バック グラ ン ドを直線近似して得 られた真の回折強度である。 同様に I ( 2 2 0 ) は、 回折 角 2 0 〜 4 0 ° ( 2 Θ ) 付近にかけて、 ノ ック グラ ン ドを 直線近似して得られた真の回折強度である。 なお、 トバモ ライ ト の ( 0 0 2 ) 回折線は、 7 . 7 ° ( 2 0 ) 付近に見 られる回折線に対応する。 図 2 に算出方法の模式図を示す。  It is the true diffraction intensity obtained by linearly approximating the background over (2Θ). Similarly, I (220) is the true diffraction intensity obtained by linearly approximating the knock ground over a diffraction angle of around 20 to 40 ° (2 °). Note that the (002) diffraction line of tobamolite corresponds to a diffraction line observed near 7.7 ° (20). Figure 2 shows a schematic diagram of the calculation method.
[鋸引き性 ] [Sawability]
' 木工用鋸を用いて硬化体を切断し、 切断しやすさ、 切断 面の状況か ら評価した。 実施例 1 〜 1 3  '' The hardened body was cut using a woodworking saw and evaluated based on the ease of cutting and the condition of the cut surface. Examples 1 to 13
これらの実施例において硬化体の原料と して表 1 に示す 配合量で次の固体混合物及び水を用いた。 すなわち、 珪酸 質原料と して珪石粉砕粉 (ブレーン比表面積 1 1 , 0 0 0 c m V g ) と シ リ カ ヒューム (エジプ ト国、 E F A C O 社製) を用いた。 さ ら に、 セメ ン ト と して、 実施例 1 〜 8 には早強ポル ト ラン ドセメ ン ト を用い、 実施例 9 〜 1 3 に は普通ポル ト ラ ン 卜セメ ン トを用いた。 石灰質原料と して 生石灰 (純度 9 8 % )、 硫酸アルミニウム と してその 1 8 水和物、 その他の硫酸化合物と して二水石膏、 界面活性剤 と して実施例 1 〜 5 には非イオン界面活性剤であるポリ オ キシエチレンアルキルエーテル、 実施例 6 〜 1 3 にはァニ オン性界面活性剤であるエマール 2 0 T (日本国、 花王株 式会社製)、 粘度調整剤と してメチルセルロース、 消泡剤 と してアルキル変性シリ コーン (日本国、 信越化学工業 製)、 及び有機繊維と して微粉碎パルプ (実施例 1 0 及び 1 3 ) を用いた。 こ こで、 硫酸アルミニウム 1 8 水和物及 び二水石膏は、 それらの無水和物の重量部を表 1 に示して いる。 また、 界面活性剤の添加量は、 発泡剤の固形分に対 する重量% を示した。 表 1 に示した水 Z固体比とは固体混 合物の重量に対する水の重量比である。 In these examples, the following solid mixtures and water were used in the amounts shown in Table 1 as raw materials for the cured product. That is, as the siliceous raw material, ground silica powder (blane specific surface area: 11,100 cm Vg) and silica fume (EFACO, Egypt) were used. Further, as a cement, an early Portland cement was used in Examples 1 to 8, and a normal Portland cement was used in Examples 9 to 13. Quicklime (purity 98%) as calcareous raw material, its octahydrate as aluminum sulfate, gypsum dihydrate as other sulfate compound, surfactant In Examples 1 to 5, polyoxyethylene alkyl ether, a nonionic surfactant, was used. In Examples 6 to 13, Emal 20T, an anionic surfactant, was used (Kao, Japan). Co., Ltd.), methylcellulose as a viscosity modifier, alkyl-modified silicone (Shin-Etsu Chemical Co., Ltd., Japan) as a defoamer, and finely ground pulp as organic fibers (Examples 10 and 1). 3) was used. Here, aluminum sulfate 18 hydrate and gypsum dihydrate are shown in Table 1 by weight of their anhydrates. Further, the amount of the surfactant added was represented by weight% based on the solid content of the foaming agent. The water Z solid ratio shown in Table 1 is the weight ratio of water to the weight of the solid mixture.
実施例 1 ~ 8 では、 5 0 °Cに加温した水を投入した容量 1 5 L のステンレス槽に珪石粉砕粉、 シリ カ フ ューム、 生 石灰、 早強ポル ト ラ ン トセメ ン ト、 硫酸アルミ ニウム 1 8 水和物、 二水石膏、 粘度調整剤及び消泡剤を一次投入し、 ステンレス槽を 5 0 °Cに加温しながら、 攪拌機 (ウル ト ラ 攛拌機 D C— C H R M 2 5 ; 日本国、 (株) 井内盛栄堂 製) の回転数 1 2 0 0 r p mで水分の蒸発を抑制した状態 で大気圧下に 2 時間攪拌、 混合した。 次いで、 実施例 4及 び 5 のみ水性ス ラ リ ーを 4 0 °Cにした後、 生石灰を二次投 入し、 4 0 °Cの条件下で 1 分間攪拌した。 固体混合物の成 分を全て混合した後に、 発泡剤と して、 界面活性剤を添加 したアルミ ニウム粉末を投入し 2 0 秒攪拌し、 得られた水 性ス ラ リ ーを型枠 ( 3 0 c m X 3 0 c m X 2 0 c m) に流 し込み型枠内で発泡させた。 型枠に水性スラ リ ーを流し込 んだ直後から水分の蒸発を防いだ状態で 6 0 に保持して、 予備硬化させた。 実施例 9 〜 1 3 では、 セメ ン ト と して普 通ポル ト ラン ドセメ ン ト を用い、 6 0 °Cに加温した水を用 い、 6 0 °Cで加温しながら攪拌した事以外は実施例 1 と同 様に行っ た。 但し、 実施例 1 3 のみ生石灰を二次投入し、 6 0 °Cの条件下で 1 分間攪拌した。 In Examples 1 to 8, in a 15 L stainless steel tank charged with water heated to 50 ° C, ground silica powder, silica fume, quicklime, high-speed portland cement, and sulfuric acid were used. Aluminium octahydrate, gypsum, gypsum, a viscosity modifier and an antifoaming agent were first charged, and the stainless steel tank was heated to 50 ° C while a stirrer (Ultra stirrer DC—CHRM 25 The mixture was stirred and mixed under atmospheric pressure for 2 hours at a rotation speed of 1200 rpm (Japan, manufactured by Inuchi Seieido Co., Ltd.) while suppressing the evaporation of water. Next, only in Examples 4 and 5, the aqueous slurry was heated to 40 ° C, and then quicklime was secondly injected and stirred at 40 ° C for 1 minute. After all components of the solid mixture were mixed, aluminum powder to which a surfactant was added was added as a foaming agent, and the mixture was stirred for 20 seconds. The slurry was poured into a mold (30 cm × 30 cm × 20 cm) and foamed in the mold. Immediately after the aqueous slurry was poured into the mold, the temperature was maintained at 60 in a state where evaporation of water was prevented, and pre-cured. In Examples 9 to 13, ordinary Portland cement was used as the cement, and water was heated to 60 ° C, and the mixture was stirred while heating at 60 ° C. Other than the above, the procedure was the same as in Example 1. However, only in Example 13 quicklime was secondarily charged and stirred at 60 ° C for 1 minute.
次いで、 予備硬化体を脱型して、 ォ一 トク レーブ中で飽 和水蒸気雰囲気下に 1 9 0 °Cで 4時間、 高温高圧養生を行 なった後、 乾燥して成型体 (珪酸カルシウム硬化体) を得 た。  Next, the pre-cured product is removed from the mold, cured at 190 ° C. for 4 hours under a high-temperature and high-pressure atmosphere in a saturated steam atmosphere in an autoclave, and then dried to obtain a molded product (calcium silicate cured). Body) was obtained.
得られた成型体の各種物性を表 3 に示す。 また、 実施例 1 3 で得られた珪酸カルシウム硬化体の粉末 X線チヤ一 ト を図 1 及び 2 に示す。 実施例 1 4  Table 3 shows various physical properties of the obtained molded body. 1 and 2 show powder X-ray charts of the cured calcium silicate obtained in Example 13. Example 14
表 1 に示した原料を用いて、 界面活性剤及び消泡剤を用 いない こ と以外は実施例 9 と同様にして成型した。 得られ た成型体の各種物性を表 3 に示す。 実施例 1 5  Using the raw materials shown in Table 1, molding was carried out in the same manner as in Example 9 except that no surfactant and antifoaming agent were used. Table 3 shows various physical properties of the obtained molded body. Example 15
表 1 に示した原料を用いて、 界面活性剤及び消泡剤を用 いない こ と以外は実施例 1 1 と同様にして成型した。 得ら れた成型体の各種物性を表 3 に示す。 比較例 1 及び 2 Using the raw materials shown in Table 1, surfactants and defoamers Except for that, molding was performed in the same manner as in Example 11. Table 3 shows various physical properties of the obtained molded body. Comparative Examples 1 and 2
界面活性剤、 粘度調整剤、 消泡剤を添加しなかったこ と 以外はそれぞれ実施例 4及び 1 3 と同様に行い成型体を得 た。 得られた成型体の各種物性を表 4 に示す。 比較例 3  A molded product was obtained in the same manner as in Examples 4 and 13, except that the surfactant, the viscosity modifier and the defoamer were not added. Table 4 shows various physical properties of the obtained molded body. Comparative Example 3
表 2 に示した原料を用いて、 比較例 2 と同様に成型を行 つ た。 得られた成型体の各種物性を表 4 に示す。 比較例 4及び 5  Molding was performed in the same manner as in Comparative Example 2 using the raw materials shown in Table 2. Table 4 shows various physical properties of the obtained molded body. Comparative Examples 4 and 5
界面活性剤、 消泡剤、 粉碎パルプを添加しなかったこ と 以外は、 実施例 1 3 と同様に成型を行っ た。 得 られた成型 体の各種物性を表 4 に示す。 比較例 6  Molding was carried out in the same manner as in Example 13 except that no surfactant, antifoaming agent, and ground pulp were added. Table 4 shows various physical properties of the obtained molded body. Comparative Example 6
界面活性剤、 消泡剤を添加しなかっ た こ と以外は、 実施 例 1 3 と同様に成型を行った。 得られた成型体の各種物性 を表 4 に示す。 比較例 7 表 2 に示した原料を用いて、 粘度調整剤及びアルミニゥ ム粉を用 いない こ と以外は実施例 1 4 と同様に成型を行つ た。 得られた成型体の各種物性を表 4に示す。 比較例 8 Molding was performed in the same manner as in Example 13 except that the surfactant and the antifoaming agent were not added. Table 4 shows various physical properties of the obtained molded body. Comparative Example 7 Using the raw materials shown in Table 2, molding was performed in the same manner as in Example 14 except that no viscosity modifier and aluminum powder were used. Table 4 shows various physical properties of the obtained molded body. Comparative Example 8
市販の断熱材用 A L C ( HEBEL DAMMPLATTE : ドイ ツ国 ALC for commercial insulation (HEBEL DAMMPLATTE: Germany
H E B E L社製) からサンプルを採取し、 各種物性を測定 した。 得 られた結果を表 4 に示す。 比較例 9 HEBEL) and various physical properties were measured. Table 4 shows the obtained results. Comparative Example 9
平均粒径 2 O ^ m程度の珪石 5 1 重量部、 早強ポル ト ラ ン ドセメ ン ト 4 2重量部、 生石灰 5 重量部、 二水石膏 2重 量部の固形分に 4 5 °Cの水 7 8 重量部、 界面活性剤と して エマ一ル 2 0 T (日本国、 花王株式会社製) 0 . 5重量部 粘度調整剤 と してメチルセルロース 0 . 4重量部及びメ ラ ミ ン系減粘剤 0 . 4重量部、 消泡剤と してアルキル変性シ リ コ一ンオイ ル (日本国、 信越化学工業製) 0 . 4重量部 発泡剤 と して金属アルミニウム粉末 0 . 1 2重量部を加え て均一に 2 分間混合した後、 こ の水性ス ラ リ ーを型枠に流 し込んで半硬化状態になるまで 4 5 °Cで養生した。 なお、 型枠に流し込む前の水性スラ リ ーの温度は 4 3 °Cとした。 その後、 予備硬化体を脱型して、 オー ト ク レープ中で飽和 水蒸気雰囲気下に 1 8 0 °Cで 1 0気圧、 4時間高温高圧養 生を行っ た。 乾燥後、 各種物性を測定し、 表 4 に示す。 比較例 1 0 Silica with an average particle size of about 2 O ^ m 51 parts by weight, early-strength Portland cement 42 parts by weight, quicklime 5 parts by weight, gypsum dihydrate 2 parts by weight of solid content of 45 ° C 78 parts by weight of water, Emul 20 T as a surfactant (manufactured by Kao Corporation, Japan) 0.5 part by weight 0.4 part by weight of methylcellulose as a viscosity modifier and melamine-based 0.4 parts by weight of thickener, alkyl-modified silicone oil (made by Shin-Etsu Chemical Co., Ltd., Japan) as defoamer 0.4 parts by weight Metal aluminum powder as foaming agent 0.12 parts by weight The aqueous slurry was poured into a mold and cured at 45 ° C until it became a semi-cured state. The temperature of the aqueous slurry before pouring into the mold was 43 ° C. After that, the pre-cured product is removed from the mold, and the autoclave is heated and heated at 180 ° C and 10 atmospheres for 4 hours under saturated steam atmosphere. Lived. After drying, various physical properties were measured and are shown in Table 4. Comparative Example 10
市販の A L C吸音材 (シズカ ライ ト ; 日本国、 ク リ オン 株式会社製) の無筋部サンプルを採取し、 各種物性を測定 した。 得られた結果を表 4 に示す。 比較例 1 1  A straight part sample of a commercially available ALC sound absorbing material (Shizuka Light; manufactured by Clion Corporation, Japan) was sampled and various physical properties were measured. Table 4 shows the obtained results. Comparative Example 1 1
市販のロ ッ ク ウール (ホームマッ ト ; 日本国、 二チアス 株式会社製) を採取し、 各種物性を測定した。 得られた結 果を表 4 に示す。 曲げ強度及び圧縮強度はサンプルの形状 が保持できないため測定できなかっ た。 また、 鋸引き性は 繊維が引つ かか り切断できないため評価ができなかった。 比較例 1 2  A commercially available rock wool (Homemat; manufactured by Nichias Co., Ltd. in Japan) was collected and various physical properties were measured. Table 4 shows the results. Flexural strength and compressive strength could not be measured because the shape of the sample could not be maintained. In addition, the sawing property could not be evaluated because the fiber was pulled and could not be cut. Comparative Example 1 2
市販のグラスウール (マッ トエース ; 曰本国、 旭フ アイ バ一グラス製) を採取し、 各種物性を測定した。 得られた 結果を表 4 に示す。 曲げ強度及び圧縮強度はサンプルの形 状が保持できないため測定できなかった。 また、 鋸引き性 は繊維が引 つ かか り切断できないため評価ができなかっ た 実施例 実施例 実施例 実施例 実施例 Commercially available glass wool (Mat Ace; manufactured by Asahi Fiber Glass Co., Ltd., home country) was collected and various physical properties were measured. Table 4 shows the obtained results. Flexural strength and compressive strength could not be measured because the shape of the sample could not be maintained. Sawability could not be evaluated because the fiber could not be cut because it was pulled Example Example Example Example Example Example
原料 1 2 3 4 5 Raw material 1 2 3 4 5
セメ ン 卜 一次 1 2 3 . 2 1 2 3 . 2 1 2 3 . 2 6 1 . 8 6 1 . 8 生石灰 一次 dan 24. 6 24. 6 24. 6 2 0. 9 2 0. 9 生石灰 二次 (重量部) 0 . 0 0 . 0 0 . 0 4 8 . 8 4 8 . 8 逢石粉 ί¥粉 ―次 (重蓖部) 6 0 . 0 6 0 . 0 6 0 . 0 6 9 . 8 6 9 . 8 ン リ カ ノ ム 一次 里里部 4 0 . 0 4 0 . 0 4 0 . 0 4 6 . 5 4 6 . 5 石膏 一次 (重量部) 1 1 . 7 1 1 . 7 1 1 . 7 1 1 . 7 1 1 . 7 硫酸アルミ ニウム 一次 (重量部) 1 0 . 8 1 0 . 8 1 0 . 8 1 0 . 8 1 0 . 8 水 (重量部) 8 7 8 . 5 8 7 8 . 5 8 7 8 . 5 8 7 8 . 5 8 7 8 . 5 粉砕パルプ (重量部) 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 Primary cement 1 2 3 .2 1 2 3 .2 1 2 3 .2 6 1 .8 6 1 .8 Quick lime primary dan 24.6 24 .6 24 .6 2 0 .9 2 0 .9 Quick lime secondary (Parts by weight) 0.0 0 .0.0 0 .0 48.8 .8 48.8 Aishite powder-powder (next cast) 60.0 .0 6 .0 6 .0 .0 6 .8 6 9.8 Primary Lithuary Part 40.0 4 0 .0 4 0 .0 4 6.5 .5 46.5 Gypsum Primary (parts by weight) 1 1 .7 1 1 .7 1 1 .7 1 1.7 1 1.7 Aluminum sulphate primary (parts by weight) 10.8 10.8 10.8 10.8 10.8 10.8 water (parts by weight) 8 7 8.5 5 8 7 8. 5 8 7 8 5 8 7 8 5 8 7 8.5 Pulverized pulp (parts by weight) 0.0 0 0 0 0 0 0 0 0 0 0 0
アルミ ニウム粉 (重量部) 1 . 1 9 1 . 1 9 1 . 1 9 1 . 1 4 1 . 1 4 界面活性剤 (重量% ) 2 1 0 1 0 0 1 0 1 0 0 Aluminum powder (parts by weight) 1.1 9 1 .1 9 1 .1 9 1 .1 4 .1 .4 Surfactant (% by weight) 2 1 0 1 0 0 1 0 1 0 0
粘度調整剤 (重量部) 0 . 1 8 0 . 1 8 0 . 1 8 0 . 1 8 0 . 1 8 消泡剤 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Viscosity modifier (parts by weight) 0.180.180.180.180.18 Defoamer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C a O / S i O 2 (モル比) 0 . 9 3 0 . 9 3 0 . 9 3 0 . 9 3 0 . 9 3 水/固体比 (重量比) 3 . 2 5 3 . 2 5 3 . 2 5 3 . 2 5 3 . 2 5 C a O / S i O 2 (molar ratio) 0.93 0.93 0.93 0.93 0.93 0.93 water / solids ratio (weight ratio) 3.25.30.253. 2 5 3 .2 5 3 .2 5
C a 〇 Zセメ ン ト 0 . 2 0 . 2 0 . 2 1 . 1 1 . 1  C a 〇 Z cement 0 .2 0 .2 0 .2 1 .1 1 .1
酸化物換算 Oxide conversion
1 . 2 1 . 2 1 . 2 1 . 2 1 . 2  1.2 1 1.2 1 1.2 1.2
( A 1 2 0 (A 1 2 0
酸化物換算 Oxide conversion
(重量% ) 3 . 5 3 . 5 3 . 5 3 . 5 3 . 5  (% By weight) 3.5 3.5 3.5 3.5 3.5 3.5
( S O  (S O
4 表 1 (つづき) Four Table 1 (continued)
実施例 実施例 実施例 実施例 実施例  Example Example Example Example Example Example
原料 material
6 7 8 9 1 0  6 7 8 9 1 0
セメ ン ト 一次 (重量部) 1 2 3 . 2 1 2 3 . 2 1 2 3 . 2 1 2 7 . 1 1 2 7 . 1 生石灰 一次 (重量部) 2 4 . 6 2 4 . 6 2 4 . 6 2 5 . 4 2 5 . 4 Cement primary (parts by weight) 1 2 3 .2 1 2 3 .2 1 2 3 .2 1 2 7 .1 1 27.1 .1 Quick lime primary (parts by weight) 2 4 .6 2 4 .6 2 4. 6 2 5 .4 2 5 .4
生石灰 二次 (重量部) 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 Quicklime secondary (parts by weight) 0.00.00.00.00.00.00.00.0
珪石粉碎粉 一次 (重量部) 6 0 . 0 6 0 . 0 6 0 . 0 6 0 . 0 6 0 . 0 シ リ カ フューム 一次 (重量部) 4 0 . 0 4 0 . 0 4 0 . 0 4 0 . 0 4 0 . 0 石膏 一次 (重量部) 1 1 . 7 1 1 . 7 1 1 . 7 1 0 . 6 1 0 . 6 硫酸アルミ ニウム 一次 (重量部) 1 0 . 8 1 0 . 8 1 0 . 8 1 1 . 0 1 1 . 0 水 (重量部) 8 7 8 . 5 8 7 8 . 5 8 7 8 . 5 7 5 5 . 6 7 5 5 . 6 粉碎パルプ (重量部) 0 . 0 0 . 0 0 . 0 0 . 0 2 . 8 ^ アルミ ニウム粉 (重量部) 1 . 1 9 1 . 1 9 1 . 1 9 1 . 1 5 1 . 1 5 界面活性剤 4 4 0 1 0 0 0 . 1 0 0 . 1 0 粘度調整剤 (重量部) 0 . 1 8 0 . 1 8 0 . 1 8 0 . 1 5 0 . 1 5 消泡剤 (重量部) 0 . 2 8 0 . 2 8 0 . 2 8 0 . 0 3 0 . 0 3 Primary silica powder (parts by weight) 60.0.600.0.060.0.600.0.06.00 Primary silica fume primary (parts by weight) 40.0.040.040.04.0 0.0 40.0 0.0 Gypsum primary (parts by weight) 1 1.7 1 1.7 1 1 .7 110 .6 10.6 Primary aluminum sulfate (parts by weight) 1 0.8 1 0.81 0.8 1 1 .0 1 1 .0 Water (parts by weight) 8 7 8.5 .5 8 7 8 .5 8 7 8 .5 7 5 5 .6 7 5 5.6 Crushed pulp (parts by weight) 0.0 0.00.00.00.02.8 ^ aluminum powder (parts by weight) 1.19.111.91.19.111.51.15 Surfactant 4 4 0 1 0 0 0 100.10 Viscosity modifier (parts by weight) 0.180.180.180.150.15 Antifoamer (parts by weight) 0.280.280 . 2 8 0. 0 3 0. 0 3
C a 0 / S i 0 2 (モル比) 0 . 9 3 0 . 9 3 0 . 9 3 0 . 9 3 0 . 9 3 水 Z固体比 (重量比) 3 . 2 5 3 . 2 5 3 . 2 5 2 . 7 2 . 7  C a 0 / S i 0 2 (molar ratio) 0.93 0.93 0.93 0.93 0.93 0.93 water Z solid ratio (weight ratio) 3.25.30.253. 2 5 2 .7 2.7 .7
C a O /セメ ン ト 0 . 2 0 . 2 0 . 2 0 . 2 0 . 2  CaO / cement 0.20 0.20 0.20 0.2
酸化物換算 Oxide conversion
1 . 2 1 . 2 1 . 2 1 . 2 1 . 2  1.2 1 1.2 1 1.2 1.2
( A 1 2 O 3 ) (A 1 2 O 3)
酸化物換算 Oxide conversion
(重量% ) 3 . 5 3 . 5 3 . 5 3 . 2 3 . 2  (Weight%) 3.5 3.5 3.5 3.5 3.2 3.2
( S O , ) (SO,)
表 1 (つづき) Table 1 (continued)
実施例 実施例 実施例 実施例 実施例 原料  Example Example Example Example Example Example Raw material
1 1 1 2 1 3 1 4 1 5 セメ ン ト 一次 (重量部) 1 2 7 . 0 1 2 7 . 0 5 3 . 8 1 2 7 . 1 1 2 7 . 0 生石灰 一次 (重量部) 2 5 . 4 2 5 . 4 1 8 . 3 2 5 . 4 2 5 . 4 生石灰 二次 (重量部) 0 . 0 0 . 0 4 2 . 5 0 · 0 0 . 0 珪石粉砕粉 一次 (重量部) 6 0 . 0 6 0 . 0 6 0 . 0 6 0 . 0 6 0 . 0 シリ カ フューム 一次 (重量部) 4 0 . 0 4 0 . 0 4 0 . 0 4 0 . 0 4 0 . 0 石膏 一次 (重量部) 1 1 . 1 1 0 . 6 9 . 0 1 0 . 6 1 1 . 1 硫酸アルミ ニウム 一次 (重量部) 2 3 . 0 1 1 . 0 9 . 4 1 1 . 0 2 3 . 0 水 (重量部) 1 0 0 8 . 2 1 0 8 9 . 9 6 4 2 . 0 7 5 5 . 6 1 0 0 8 . 2 粉碎パルプ (重量部) 0 . 0 0 . 0 7 . 2 0 . 0 0 . 0 アルミ ニウム粉 (重量部) 1 . 5 3 0 . 9 9 0 . 9 8 1 . 1 5 1 . 5 3 界面活性剤 (重量% ) 0 . 1 0 0 . 1 0 0 . 1 0 0 0 粘度調整剤 (重量部) 0 . 2 1 0 . 2 2 0 . 1 3 0 . 1 5 0 . 2 1 消泡剤 (重量部) 0 . 0 3 0 . 0 3 0 . 0 2 0 . 0 0 0 . 0 0 1 1 1 2 1 3 1 4 1 5 Cement primary (parts by weight) 1 2 7 .0 1 2 7 .0 5 3 .8 1 2 7 .1 1 2 7 .0 Quick lime primary (parts by weight) 2 5 4 2 5 .4 1 8 .3 2 5 .4 2 5 .4 Quick lime secondary (parts by weight) 0.0 0.04 0 2 .5 0 0 .0 Silica crushed powder primary (parts by weight) 6 0.060.0.060.0.060.0.06.00 Silicon fume primary (parts by weight) 40.0.400.0.040.040.040.00.0 Gypsum primary ( Parts by weight) 1 1 1 1 1 1 0 6 .0 1 0 .6 1 1 .1 aluminum sulphate primary (parts by weight) 2 3 .0 1 1 .1 0 .9 .4 1 1 .1 0. (Parts by weight) 100 8 10 8 9 9 9 6 4 2 .0 7 5 5 6 1 0 0 8. 2 2 Ground pulp (parts by weight) 0 .0 0 .0 7 .2 0 .0 0.0 Aluminum powder (parts by weight) 1.5 0.99. 0.91 0.95 1.1.5 3 3 Surfactant (% by weight) 0.10 0.10 0.10 0 Viscosity modifier (parts by weight) 0.210.20.13.0.150.20.2 Antifoaming agent (parts by weight) 0.030.0.0.030.0.0.0 0 0. 0 0
C a O / S i O 2 (モル比) 0 . 9 3 0 . 9 3 0 . 9 3 0 . 9 3 0 . 9 3 水ノ固体比 (重量比) 3 . 5 4 . 0 2 . 7 2 . 7 3 . 5C a O / S i O 2 (molar ratio) 0.930.9.0.930.930.930.93 water / solid ratio (weight ratio) 3.5.4.02.7.72 7 3.5
C a O Zセメ ン ト 0 . 2 0 . 2 1 . 1 0 · 2 0 . 2 酸化物換算 C a O Z cement 0.2 0 .2 1 .1 0 .20.2 oxide equivalent
(重量% ) 2 . 4 1 . 2 1 . 2 1 . 2 2 . 4 ( A 1 2 O 3 ) (Wt%) 2. 4 1. 2 1. 2 1. 2 2. 4 (A 1 2 O 3)
酸化物換算 Oxide conversion
(重量% ) 4 . 2 3 . 2 3 . 2 3 . 2 4 . 2 ( S 0 3 ) (Wt%) 4. 2 3. 2 3. 2 3. 2 4. 2 (S 0 3)
表 2 Table 2
Figure imgf000049_0001
Figure imgf000049_0001
注 : 比較例 6 において、 アルミ ニウム粉はアルミ ニウムス ラ リ ーの形状で使用 された。 アルミ ニウムス ラ リ ーにおける アルミ ニウム粉の濃度は使用 した水に対して 5 重量%であっ た Note: In Comparative Example 6, the aluminum powder was used in the form of an aluminum slurry. The concentration of aluminum powder in the aluminum slurry was 5% by weight based on the water used
表 3 Table 3
実施例 実施例 実施例 実施例 実施例  Example Example Example Example Example Example
1 2 3 4 5 比重 ( g / c m 3 ) 0 . 1 2 0 . 1 4 0 . 1 5 0 . 1 6 0 . 1 5 粉末 X線回折による 1 2 3 4 5 Specific gravity (g / cm 3 ) 0.120.140.150.160.15 By powder X-ray diffraction
3 . 5 3 . 3 3 - 4 4 . 2 4 . 1  3.5 5 3 .3 3-4 4 .2 4 .1
I b / I a I b / I a
粉末 X線回折による X-ray powder diffraction
0 . 3 2 0 . 3 3 0 . 3 3 0 . 3 6 0 . 3 5  0. 3 2 0 .3 3 0 .3 3 0 .3 6 0 .3 5
I ( 0 0 2 ) / \ ( 2 2 0 )  I (0 0 2) / \ (2 2 0)
曲げ強度 (N/mm2) 0 . 1 3 0 . 1 4 0 . 1 5 0 . 2 0 0 . 2 1 4 4 0 . 5 7 0 . 5 7 00 圧縮強度 (N/mm2) 0 . 3 1 0 . 3 8 0 . 熱伝導率 (W/mK) 0 . 0 4 8 0 . 0 5 2 0 . 0 5 3 0 . 0 5 5 0 . 0 5 4 通気率 (mVh P a ) 6. 1 X 10 - 3 1. 3 X 10— 2 1. 3 X 10 -2 8. 3 X 10 -3 8. 7 X 10_3 鋸引き性 目視 良好 良好 良好 良好 良好 Bending strength (N / mm 2 ) 0.13 0 .14 0 .15 0 .2 0 0 .2 1 4 4 0 .5 7 0 .5 7 00 Compressive strength (N / mm 2 ) 0.3 10 .38 0 .Thermal conductivity (W / mK) 0 .04 8 0 .05 2 0 .0 5 3 0 .0 5 5 0 .0 5 4 Air permeability (mVh Pa) 6.1 X 10 - 3 1. 3 X 10- 2 1. 3 X 10 - 2 8. 3 X 10 - 3 8. 7 X 10_ 3 sawing of visually good good good good good
表 3 (つづき) Table 3 (continued)
実施例 実施例 実施例 実施例 実施例 6 7 8 9 1 0 比重 ( g / c m 3 ) 0 . 1 1 0 . 1 6 0 . 1 1 0 . 1 1 0 . 1 1 粉末 X線回折によ る Example Example Example Example Example 6 7 8 9 10 Specific gravity (g / cm 3 ) 0.110.160.10.110.110.11 By powder X-ray diffraction
3 . 5 3 . 3 3 . 4 3 . 7 3 . 7 I b / I a  3.5 5 3 .3 3 .4 3 .7 3.7 Ib / Ia
粉末 X線回折によ る X-ray powder diffraction
0 . 3 3 0 . 3 2 0 . 3 3 0 . 3 0 0 . 3 1 I ( 0 0 2 ) / \ ( 2 2 0 )  0. 3 3 0. 3 2 0. 3 3 0. 3 0 0. 3 1 I (0 0 2) / \ (2 2 0)
曲げ強度 (N/mm2) 0 . 1 5 0 . 1 4 0 . 1 6 0 . 1 3 0 . 1 5 圧縮強度 (N/mm2) 0 . 3 8 0 . 3 9 0 . 3 7 0 . 2 7 0 . 3 0 熱伝導率 (W/mK) 0 . 0 4 7 0 . 0 5 5 0 . 0 4 6 0 . 0 4 6 0 . 0 4 5 通気率 (mVh P a) 3. 8X 10-3 1. 1 X 10 - 2 9. 5X 10—3 3. 4 X 10 -3 2. 3 X 10一3 鋸引 き性 目視 良好 良好 良好 良好 良好 Bending strength (N / mm 2 ) 0.15 0 .14 0 .16 0 .13 0 .15 Compressive strength (N / mm 2 ) 0.38 0 .3 9 0.30. 27.30 Thermal conductivity (W / mK) 0.047 0 .55 0 .04 6 .0 4 .6 0 .0 4 5 Air permeability (mVh Pa) 3.8 X 10 - 3 1. 1 X 10 - 2 9. 5X 10- 3 3. 4 X 10 - 3 2. 3 X 10 one 3 sawing can of visually good good good good good
表 3 (つづき) Table 3 (continued)
実施例 実施例 ま施例 実施例 実施例  Example Example Example Example Example Example Example
1 1 1 2 1 3 1 4 1 5 比重 ( g / c m 3 ) 0 . 0 8 3 0 . 0 9 4 0 . 1 1 0 . 1 1 0 . 0 8 2 粉末 X線回折による 1 1 1 2 1 3 1 4 1 5 Specific gravity (g / cm 3 ) 0.083 0 .09 4 0.
4 . 0 3 . 3 4 . 0 3 . 7 4 . 1  4.03.3.4.3.03.7.4.1.
I b / I a I b / I a
粉末 X線回折によ る X-ray powder diffraction
0 . 4 0 0 . 3 9 0 . 3 4 0 . 3 1 0 . 3 2  0. 4 0 .0 .3 9 0 .3 4 0 .3 1 0 .3 2
I ( 0 0 2 ) / I ( 2 2 0 )  I (0 0 2) / I (2 2 0)
曲げ強度 (Nノ mm2) 0 . 0 7 4 0 . 0 8 1 0 . 1 5 0 . 1 4 0 . 0 7 3 Bending strength (N Roh mm 2) 0. 0 7 4 0. 0 8 1 0. 1 5 0. 1 4 0. 0 7 3
(N/mm2) 0 . 1 2 0 . 1 4 0 . 3 5 0 - 2 8 0 . 1 2 O 圧縮強度 熱伝導率 (W/mK) 0 . 0 4 2 0 . 0 4 3 0 . 0 4 5 0 . 0 4 5 0 . 0 4 1 通気率 (m2/h P a) 5. 4X 10-3 3. 3 X 10一3 6. 5 X 10一4 1. 8 X 1 0一3 4. 0 X 10一3 鋸引 き性 目 視 良好 良好 良好 良好 良好 (N / mm 2 ) 0.12 0 .14 0 .3 5 0 -2 8 0 .12 O Compressive strength Thermal conductivity (W / mK) 0.0 4 2 0 .0 4 3 0 .0 4 5 0.0 4 5 0.0 4 1 air permeability (m 2 / h P a) 5. 4X 10- 3 3. 3 X 10 one 3 6. 5 X 10 one 4 1. 8 X 1 0 one 3 4. 0 X 10 one 3 sawing woody eye view good good good good good
表 4 Table 4
比較例 1 比較例 2 比較例 3 比較例 4 比較例 5 比較例 6 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6
Pトレu里香 S/ cm 0. 1 1 0 1 1 j Π 1 P tray u Rika S / cm 0.1 1 0 1 1 j Π 1
•Ri木 ±■ A ώ$ IB OT iに-^よ Ri tree ± ■ A ■ $ IB OT i- ^
4. 0 4. 1 4 - 2 2 4. 2 5 4. 5 1 4. 6 4.0 4.14-2 2 4.2.5 54.5 14.6
I b / I a 粉末 X線回折による I b / I a powder X-ray diffraction
0. 3 3 0. 3 3 0. 3 4 2 0. 3 3 0. 2 9 0. 3 1 I (0 0 2)/ I (2 2 0 )  0.33 0.3 3 0.3 4 2 0.3 3 0.2 9 0.3 1 I (0 0 2) / I (2 2 0)
曲げ強度 (NZmm2) 0. 1 5 0. 1 4 0 - 1 3 0 . 2 7 0. 5 2 0 . 4 9 圧縮強度 (N/mm2) 0 . 3 2 0 . 3 1 0 . 2 3 0 . 7 5 1 . 4 1 . 3 9 熱伝導率 (W/mK) 0 . 0 4 6 0 . 0 4 6 0 . 0 4 5 0 . 0 5 4 0. 0 6 8 0 . 0 7 0 通気率 (mVhPa) 3. 1 X 10— 5 1. 1 X 10— 4 1. 9X 10— 5 9. 8X 10—6 1. 8X 10— 6 2. 2X 10— 6 鋸引き性 目視 良好 良好 良好 良好 良好 良好 Bending strength (NZmm 2 ) 0.15 0.14 0-1 3 0 .2 7 0 .5 2 0 .4 9 Compressive strength (N / mm 2 ) 0.3 2 0 .3 1 0 .2 3 0.75 1 .4 1 .3 9 Thermal conductivity (W / mK) 0.0 4 6 0 .0 4 6 0 .0 4 5 0 .0 5 4 0 .0 6 8 0 .0 7 0 Ventilation rate (mVhPa) 3. 1 X 10- 5 1. 1 X 10- 4 1. 9X 10- 5 9. 8X 10- 6 1. 8X 10- 6 2. 2X 10- 6 sawing of visually good good good good Good good
表 4 (つづき) Table 4 (continued)
比較例 7 比較例 8 比較例 9 比較例 1 0 比較例 1 1 比較例 1 2 し里 υ - 丄 Π cr  Comparative Example 7 Comparative Example 8 Comparative Example 9 Comparative Example 1 0 Comparative Example 1 1 Comparative Example 1 2 Shiri υ-Π Π cr
U . o o o p U π υ . ο ϋ π u Π Γ\ 0 A Π U . U ώ Π U o o o p U π υ ο ϋ π u Π Γ \ 0 A Π U.
\g/ cm U 粉末 X線回折による \ g / cm U powder X-ray diffraction
4. 2 4 . 4 3 . 4 3 . 6 ― I b/ I a 粉末 X線回折による  4.2.3.4.3.4.3.6 ― Ib / Ia powder X-ray diffraction
0. 2 9 0 . 3 5 0 . 3 5 0 . 4 4 ― ― 1 (0 0 2)/ 1 (2 2 0) 曲げ強度 (N/mm2) 1. 5 9 0 . 1 7 0 . 4 2 0 0 . 4 4 0 圧縮強度 (N/mm2) 5. 4 0 . 5 1 1 . 3 0 1 . 5 0 熱伝導率 (W/mK) 0. 1 0 6 0 . 0 4 3 0 . 1 3 2 0 . 1 2 1 0 . 0 4 2 0 . 0 4 通気率 (mVhPa) 1. 1X 10— 8 1. 5X10— 4 9. 4X10—3 2. 1X10— 2 0 . 1 3 0 . 1 5 鋸引き性 目視 良好 粉落ち多い 良好 良好 切断不可 切断不可 0.2 9 0 3 5 0 3 5 0 4 4 -... -.. 1 (0 0 2) / 1 (2 2 0) Bending strength (N / mm 2) 1. 5 9 0 1 7 0 4 200.440 Compressive strength (N / mm 2 ) 5.4.0.5 11.3 1.5 .5 0 Thermal conductivity (W / mK) 0.10 60.0 .04 43.0. 1 3 2 0.1 2 1 0.0 4 2 0.0 4 air permeability (mVhPa) 1. 1X 10- 8 1. 5X10- 4 9. 4X10-3 2. 1X10- 2 0. 1 3 0. 1 5 Sawability Visually good Good powder loss Good Good Cannot be cut Not cut
産業上の利用可能性 Industrial applicability
本発明の珪酸カルシウム硬化体は、 軽量且つ高強度であ るだけでなく 、 不燃性であ り 、 更に高い断熱性と高い通気 性を併せ持つ こ とか ら、 動的断熱性を有する こ とが要求さ れる建築用壁材 (動的断熱材) や吸音材などと して有利に 用いる こ とができる。  The hardened calcium silicate of the present invention is required to have not only light weight and high strength, but also nonflammability, and also have high heat insulation and high air permeability, and therefore have dynamic heat insulation. It can be used advantageously as a building wall material (dynamic insulation material) or sound absorbing material.
従来の動的断熱材は、 完全に不燃性の材料で構成されな かっ たのに対して、 本発明の珪酸カルシウム硬化体は不燃 性であ り 、 パネルの形状を有する こ とが可能な こ とから、 施工が簡便で、 かつ動的断熱技術に必要な気密性を容易に 確保する こ とが可能となる。  Whereas conventional dynamic insulation materials were not completely made of non-combustible materials, the cured calcium silicate of the present invention is non-combustible and can have the shape of a panel. Therefore, the construction is simple and the airtightness required for the dynamic insulation technology can be easily secured.

Claims

請 求 の 範 囲 The scope of the claims
1 . ( 1 ) 曲げ強度が 0. 0 5 M P a以上、 1. (1) The bending strength is more than 0.05MPa,
( 2 ) 熱伝導率が 0. 0 2〜 0. l Wm— i K— 1 , 及び (2) Thermal conductivity is 0.02 ~ 0.1 l Wm- i K- 1 , and
( 3 ) 通気率が 5 X 1 0 - 4〜 1 m 2 h - 1 P a一 1以下であつて、 動的断熱性を示す珪酸カルシウム硬化体。 (3) permeability is 5 X 1 0 - 4 ~ 1 m 2 h - 1 shall apply in P a one 1 below, calcium silicate hardened body showing the dynamic insulation properties.
2 . 熱伝導率が 0 . 0 2 〜 0 . 0 8 Wm—ェ !!— 1以下であ る こ とを特徴とする請求項 1 に記載の珪酸カルシウム硬化 体。 2. The thermal conductivity is between 0.02 and 0.08 Wm! ! The cured product of claim 1, wherein the cured product is not more than 1 .
3 . 熱伝導率が 0 . 0 2 〜 0 · 0 6 Wm— 1以下であ る こ とを特徴とする請求項 1 に記載の珪酸カルシウム硬化 体。 3. The cured calcium silicate according to claim 1, wherein the thermal conductivity is 0.02 to 0.6 Wm- 1 or less.
4. 主と して トバモライ トか らな り 、 粉末 X線回折におけ る トバモライ ト の ( 2 2 0 ) 面の回折ピーク強度 I bが、 トバモライ トの ( 2 2 0 ) 面と ( 2 2 2 ) 面の 2本の回折 ピーク に挟まれた角度領域における回折強度の最低値 I a との間に、 I b I a≥ 3 となる関係を持つ こ とを特徴と する請求項 1 〜 3 に記載の珪酸カルシウム硬化体。 4. It consists mainly of tobermorite, and the diffraction peak intensity Ib of the (220) plane of tobermorite in powder X-ray diffraction is higher than that of (2220) and (22) planes of tobermorite. 2) A relationship of IbIa≥3 between the minimum value of the diffraction intensity Ia and the minimum value of the diffraction intensity Ia in the angle region between the two diffraction peaks of the surface. The cured product of calcium silicate according to item 1.
5 . 以下工程 ( 1 ) 〜 ( 4 ) を包含する こ とを特徴とする 珪酸カルシウム硬化体の製造方法。 5. It is characterized by including the following steps (1) to (4) A method for producing a cured product of calcium silicate.
( 1 ) 水及び固体混合物を含む水性スラ リ ーを提供し、 該固体混合物は、 実質的に、 珪酸質原料、 セメ ン ト、 硫 酸アルミニウムとその水和物からなる群よ り選ばれる少な く と も 1 種のアルミニウム化合物、 その他の硫酸化合物、 及び場合によっては石灰質原料か らな り 、  (1) To provide an aqueous slurry containing water and a solid mixture, wherein the solid mixture is substantially selected from the group consisting of siliceous raw materials, cement, aluminum sulfate and hydrates thereof. It consists of at least one aluminum compound, other sulphate compounds and, in some cases, calcareous raw materials.
該アルミニウム化合物の該水性スラ リ ー中の量が、 酸化 物換算 ( A 1 2 0 3 ) で固体混合物の重量に対して 0 . 0 9 〜 1 0 重量%、 及びその他の該硫酸化合物の該水性ス ラ リ 一中の量が、 上記硫酸アルミニウムも し く はその水和物 を含めて、 S 0 3量換算で固体混合物の重量に対して 0 . 1 5 〜 1 5 重量%であ り 、 The amount of the aqueous in Sula rie of the aluminum compound, the terms of oxide (A 1 2 0 3) 0 by weight of the solid mixture. 0 9-1 0% by weight, and other sulfuric acid compound the amount of aqueous scan La Li one is, is rather also the aluminum sulfate including their hydrates, than zero. 1 5 to 1 5 wt% der relative to the weight of the solid mixture with S 0 3 weight basis ,
該水の該固体混合物に対する重量比が 2 . 3 〜 5 . 5 で あ り 、  The weight ratio of the water to the solid mixture is 2.3 to 5.5;
該石灰質原料の該セメ ン ト に対する重量比が 0 . 6 以下 め る。  The weight ratio of the calcareous raw material to the cement is 0.6 or less.
( 2 ) 該水性スラ リ ーに発泡剤を添加する。  (2) Add a foaming agent to the aqueous slurry.
( 3 ) 該水性スラ リ ーを型枠に注入する。  (3) Inject the aqueous slurry into a mold.
( 4 ) 該水性スラ リ ーを予備硬化した後、 オー ト ク レープ 養生する 。  (4) After the aqueous slurry has been pre-cured, it is cured by autoclaving.
6 . 該発泡剤が、 アルミ ニウム粉末及びアルミ ニウム含有 水性ス ラ リ ーか らなる群よ り選ばれる少なく と も 1 種であ つて、 該発泡剤を、 固体換算で、 固体混合物の重量に対し て 0 . 0 3 〜 0 . 9 5 重量%用いる こ とを特徴とする請求 項 5 に記載の方法。 6. The foaming agent is at least one selected from the group consisting of aluminum powder and aluminum-containing aqueous slurry. 6. The method according to claim 5, wherein the foaming agent is used in an amount of from 0.03 to 0.95% by weight, based on the weight of the solid mixture, in terms of solids.
7 . 以下工程 ( 1 ) 〜 ( 4 ) を包含する こ とを特徴とする 珪酸カルシウム硬化体の製造方法。 7. A method for producing a cured product of calcium silicate, comprising the following steps (1) to (4).
( 1 ) 水及び固体混合物を含む水性スラ リ ーを提供し、 該固体混合物は、 実質的に、 珪酸質原料、 セメ ン ト、 硫 酸アルミニウムとその水和物か らなる群よ り選ばれる少な く と も 1 種のアルミ ニウム化合物、 その他の硫酸化合物、 及び場合によっては石灰質原料からな り 、  (1) Providing an aqueous slurry containing water and a solid mixture, wherein the solid mixture is substantially selected from the group consisting of siliceous raw materials, cement, aluminum sulfate and hydrates thereof At least one aluminium compound, other sulfate compounds, and possibly calcareous raw materials,
該アルミニウム化合物の該水性スラ リ ー中の量が、 酸化 物換算 ( A 1 2 O 3 ) で固体混合物の重量に対して 0 . 0 9 〜 1 0 重量%、 及びその他の該硫酸化合物の該水性スラ リ 一中の量が、 上記硫酸アルミニウムも し く はその水和物 を含めて、 S 〇 3量換算で固体混合物の重量に対して 0 . 1 5 〜 1 5 重量%であ り 、 The amount of the aqueous in Sula rie of the aluminum compound, the terms of oxide (A 1 2 O 3) 0 by weight of the solid mixture in. 0 9-1 0% by weight, and other sulfuric acid compound the amount of aqueous Sula Li one is, is rather also the aluminum sulfate including their hydrates, than zero. 1 5 to 1 5 wt% der relative to the weight of the solid mixture with S 〇 3 weight basis,
該水の該固体混合物に対する重量比が 2 . 3 〜 5 . 5 で あ り 、  The weight ratio of the water to the solid mixture is 2.3 to 5.5;
該石灰質原料の該セメ ン ト に対する重量比が 0 . 6 を超 える。  The weight ratio of the calcareous raw material to the cement exceeds 0.6.
( 2 ) 該水性スラ リ ーに発泡剤を添加する。  (2) Add a foaming agent to the aqueous slurry.
( 3 ) 該水性スラ リ ーを型枠に注入する。 ( ) 該水性ス ラ リ ーを予備硬化した後、 オー ト ク レープ 養生する。 (3) Inject the aqueous slurry into a mold. (4) After the aqueous slurry is pre-cured, it is cured by autoclaving.
但し、 該水性ス ラ リ ーに、 界面活性剤、 粘度調整剤及び 消泡剤か らなる群よ り選ばれる少なく と も 2種を添加し、 その際、 該粘度調整剤及び該消泡剤の添加は、 工程 ( 1 ) の後であっ て工程 ( 2 ) の前に行ない、 該界面活性剤の添 加は工程 ( 2 ) において該発泡剤の添加と同時に行なう。  However, at least two members selected from the group consisting of a surfactant, a viscosity modifier and an antifoaming agent are added to the aqueous slurry, and at this time, the viscosity modifier and the antifoamer are added. Is added after step (1) and before step (2), and the surfactant is added simultaneously with the addition of the foaming agent in step (2).
8 . 該発泡剤が、 アルミニウム粉末及びアルミ ニウム含有 水性ス ラ リ ーか らなる群よ り選ばれる少なく と も 1 種の発 泡剤であっ て、 該発泡剤を、 固体換算で、 該固体混合物の 重量に対して 0 . 0 3 〜 0 . 9 5 重量%用いる こ とを特徴 とする請求項 7 に記載の方法。 8. The foaming agent is at least one foaming agent selected from the group consisting of aluminum powder and an aluminum-containing aqueous slurry, and the foaming agent is converted to a solid in terms of solids. The method according to claim 7, characterized in that 0.03 to 0.95% by weight is used based on the weight of the mixture.
9 . 該界面活性剤が、 高級アルコール硫酸エステル、 高級 アルコール硫酸ナ ト リ ゥム及びポ リ ォキシエチレンアルキ ルェ一テルか らなる群よ り選ばれる少なく とも 1 種の化合 物であって、 該界面活性剤を、 該発泡剤の固体換算重量に 対して 0 . 0 1 〜 2 0 0 重量%用いる こ とを特徴とする請 求項 7 又は 8 に記載の方法。 9. The surfactant is at least one compound selected from the group consisting of higher alcohol sulfates, higher alcohol sulfates, and polyoxyethylene alkyl ethers, The method according to claim 7 or 8, wherein the surfactant is used in an amount of 0.01 to 200% by weight based on the solid weight of the foaming agent.
1 0 . 該粘度調整剤が、 メチルセルロースやポ リ ビニルァ ルコールか らなる群よ り選ばれる少なく と も 1 種の化合物 であって、 該粘度調整剤を、 該固体混合物の重量に対して 0 . 0 1 〜 1 重量%以下用いる こ と を特徴とする請求項 7 〜 9 のいずれかに記載の方法。 10. The viscosity modifier is at least one compound selected from the group consisting of methylcellulose and polyvinyl alcohol. The method according to any one of claims 7 to 9, wherein the viscosity modifier is used in an amount of 0.01 to 1% by weight based on the weight of the solid mixture.
1 1 . 該消泡剤が、 シリ コーン、 脂肪酸、 脂肪酸エステル、 アルコール、 及びリ ン酸エステルか らなる群よ り選ばれる 少な く と も 1 種の化合物であって、 該消泡剤を、 該固体混 合物の重量に対して 0 . 0 0 1 〜 3 重量%用ぃる こ とを特 徴とする請求項 7〜 1 0 のいずれかに記載の方法。 11. The antifoaming agent is at least one compound selected from the group consisting of silicones, fatty acids, fatty acid esters, alcohols, and phosphoric esters, wherein the antifoaming agent is The method according to any of claims 7 to 10, characterized in that 0.001 to 3% by weight based on the weight of the solid mixture is used.
PCT/JP2003/008480 2002-07-03 2003-07-03 Calcium silicate hardened article WO2004005215A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB0427475A GB2405402B (en) 2002-07-03 2003-07-03 Cured form of calcium silicate
AU2003246260A AU2003246260A1 (en) 2002-07-03 2003-07-03 Calcium silicate hardened article
DE10392839T DE10392839B4 (en) 2002-07-03 2003-07-03 Dynamically insulating, hardened, mainly Tobermorit containing molding and method for its preparation
JP2004519255A JP4343108B2 (en) 2002-07-03 2003-07-03 Calcium silicate hardened body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-194991 2002-07-03
JP2002194991 2002-07-03

Publications (1)

Publication Number Publication Date
WO2004005215A1 true WO2004005215A1 (en) 2004-01-15

Family

ID=30112321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008480 WO2004005215A1 (en) 2002-07-03 2003-07-03 Calcium silicate hardened article

Country Status (7)

Country Link
JP (1) JP4343108B2 (en)
CN (1) CN100352786C (en)
AU (1) AU2003246260A1 (en)
DE (1) DE10392839B4 (en)
GB (1) GB2405402B (en)
TW (1) TWI227702B (en)
WO (1) WO2004005215A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077539A (en) * 2004-09-13 2006-03-23 Asahi Kasei Corp Wall structure
JP2006213594A (en) * 2005-02-04 2006-08-17 Xella Dammsysteme Gmbh Mineral thermal insulation material and method for producing the same
JP2021046343A (en) * 2019-09-20 2021-03-25 旭化成ホームズ株式会社 Light-weight cellular concrete

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008017703U1 (en) * 2008-09-15 2010-05-12 Xella Technologie- Und Forschungsgesellschaft Mbh cellular concrete material
JP5497958B1 (en) * 2013-10-16 2014-05-21 ニチアス株式会社 Calcium silicate plate and method for producing the same
CN116375442A (en) * 2023-03-02 2023-07-04 武汉理工大学 High-strength calcium silicate board containing white calcium zeolite and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177657A (en) * 1984-09-25 1986-04-21 東洋電化工業株式会社 Lightweight calcium silicate molded body
US5520729A (en) * 1993-06-08 1996-05-28 Sicowa Verfahrenstechnik Fur Baustoffe Gmbh & Co. Kg Process for producing heat-insulating material
JP2000109377A (en) * 1998-10-01 2000-04-18 Kenzai Techno Kenkyusho:Kk Heat-insulating material made of low-heat conductive light-weight cellular concrete
EP1142848A1 (en) * 2000-02-15 2001-10-10 Nichias Co., Ltd. Calcium silicate board and method of manufacturing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2109886C1 (en) * 1993-06-24 1998-04-27 Сканска Текник АБ Heat-insulating outer wall of building
ES2125731T3 (en) * 1996-07-04 1999-03-01 Hebel Ag PROCEDURE FOR THE MANUFACTURE OF A THERMO-INSULATING, LIGHTWEIGHT, OPEN-PORE AND MINERAL PLATE.
JP2001122674A (en) * 1999-08-19 2001-05-08 Asahi Kasei Corp High strength calcium silicate-hardened body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177657A (en) * 1984-09-25 1986-04-21 東洋電化工業株式会社 Lightweight calcium silicate molded body
US5520729A (en) * 1993-06-08 1996-05-28 Sicowa Verfahrenstechnik Fur Baustoffe Gmbh & Co. Kg Process for producing heat-insulating material
JP2000109377A (en) * 1998-10-01 2000-04-18 Kenzai Techno Kenkyusho:Kk Heat-insulating material made of low-heat conductive light-weight cellular concrete
EP1142848A1 (en) * 2000-02-15 2001-10-10 Nichias Co., Ltd. Calcium silicate board and method of manufacturing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077539A (en) * 2004-09-13 2006-03-23 Asahi Kasei Corp Wall structure
JP4562469B2 (en) * 2004-09-13 2010-10-13 旭化成ホームズ株式会社 Wall structure
JP2006213594A (en) * 2005-02-04 2006-08-17 Xella Dammsysteme Gmbh Mineral thermal insulation material and method for producing the same
JP4630829B2 (en) * 2005-02-04 2011-02-09 ゼラ ダムシステム ゲゼルシャフト ミット ベシュレンクテル ハフツング Mineral heat insulating material and manufacturing method thereof
JP2021046343A (en) * 2019-09-20 2021-03-25 旭化成ホームズ株式会社 Light-weight cellular concrete
JP7393167B2 (en) 2019-09-20 2023-12-06 旭化成ホームズ株式会社 lightweight aerated concrete

Also Published As

Publication number Publication date
TWI227702B (en) 2005-02-11
JP4343108B2 (en) 2009-10-14
DE10392839B4 (en) 2008-02-07
GB2405402A (en) 2005-03-02
TW200402395A (en) 2004-02-16
CN1780800A (en) 2006-05-31
AU2003246260A1 (en) 2004-01-23
GB2405402B (en) 2006-01-04
GB0427475D0 (en) 2005-01-19
CN100352786C (en) 2007-12-05
JPWO2004005215A1 (en) 2005-11-04
DE10392839T5 (en) 2005-07-07

Similar Documents

Publication Publication Date Title
KR101808663B1 (en) Thermal Insulation Material and Method For Manufacturing Same
CA2986224C (en) Lightweight composite materials produced from carbonatable calcium silicate and methods thereof
Jitchaiyaphum et al. Cellular lightweight concrete containing pozzolan materials
JP6525992B2 (en) Concrete element containing sound absorbing material
WO2002066396A1 (en) Hardened calcium silicate having high strength
Nas et al. Mechanical, durability and microstructure properties of concrete containing natural zeolite
JP4396969B2 (en) Lightweight cellular concrete and method for producing the same
KR100405397B1 (en) Cured calcium silicate object with high strength
WO2004005215A1 (en) Calcium silicate hardened article
EP3592717B1 (en) Inorganic foam based on geopolymers
Rashad et al. Thermal insulation and durability of alkali-activated lightweight slag mortar modified with silica fume and fly ash
EP3535226B1 (en) Method for applying a non-portland cement-based material
KR100830550B1 (en) Autoclaved light-weight concrete
KR20110109286A (en) Autoclaved lightweight concrete using base materials for high strength concrete and its preparing method
JP4176395B2 (en) Manufacturing method of low specific gravity calcium silicate hardened body
JP4628584B2 (en) Lightweight cellular concrete
TW201228994A (en) Thermal insulation material and method for making the same
JP4090837B2 (en) Dynamic insulation
JP2010047426A (en) Frost damage resistance improver and method for producing mortar or concrete with frost damage resistance
JP2011213536A (en) Water absorption preventing material, fiber cement board raw material slurry composition, method for manufacturing fiber cement board, and fiber cement board
JP2001058884A (en) Production of calcium silicate hardened body
Vejmelková et al. Basic physical, mechanical and hygric properties of renders suitable for historical buildings
RU2786460C2 (en) Inorganic foam based on calcium sulfoaluminate
JP2010083718A (en) Spraying insulating material having humidity-controlling property
TR2022003068A2 (en) THERMAL INSULATION FOAM WITH INORGANIC BINDING

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004519255

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 0427475

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20030703

WWE Wipo information: entry into national phase

Ref document number: 20038156857

Country of ref document: CN

RET De translation (de og part 6b)

Ref document number: 10392839

Country of ref document: DE

Date of ref document: 20050707

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10392839

Country of ref document: DE

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607