WO2004005040A1 - Phase change type optical recording medium and process for producing the same - Google Patents

Phase change type optical recording medium and process for producing the same Download PDF

Info

Publication number
WO2004005040A1
WO2004005040A1 PCT/JP2003/008364 JP0308364W WO2004005040A1 WO 2004005040 A1 WO2004005040 A1 WO 2004005040A1 JP 0308364 W JP0308364 W JP 0308364W WO 2004005040 A1 WO2004005040 A1 WO 2004005040A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical recording
recording layer
layer
recording medium
light
Prior art date
Application number
PCT/JP2003/008364
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Mochizuki
Toshiko Mizokuro
Takashi Hiraga
Norio Tanaka
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to AU2003246175A priority Critical patent/AU2003246175A1/en
Publication of WO2004005040A1 publication Critical patent/WO2004005040A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/268Post-production operations, e.g. initialising phase-change recording layers, checking for defects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00454Recording involving phase-change effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/006Overwriting

Definitions

  • the present invention relates to a phase-change optical recording medium and a method for manufacturing the same, and more particularly, to a phase-change optical recording medium having a uniform thickness of a recording film and capable of performing high-density recording with light of a wide range of wavelengths. It relates to the manufacturing method. Background art
  • the optical recording medium is a read-only type (ROM) that reproduces recorded information, a write-once type (WO RM) that can be recorded only once, and an erasable type that can be erased and re-recorded after recording.
  • ROM read-only type
  • WO RM write-once type
  • erasable type that can be erased and re-recorded after recording.
  • Rew ritab 1 e A method of arranging a light source and a reading device with a transmission-type optical recording medium sandwiched in between Since the driving mechanism of the light source and the reading device becomes complicated, a light source is provided by providing a reflective layer in the optical recording medium. And the reading device are installed on the same side of the optical recording medium.
  • the mainstream optical recording media are required to have a reflectance of 70% or more and a CN ratio of 47 dB or more (CarireoNoiseRatio).
  • an optical recording medium on which information is recorded information can be reproduced by changing the reflectivity of the recording layer before and after recording due to physical deformation, phase change, magnetic property change, etc. . Further, in addition to the above-described high reflectance and high CN ratio characteristics, long-term storage stability and high recording sensitivity are required. Since the development of the optical recording medium, much research has been conducted to satisfy the above-mentioned requirements and to improve the required characteristics.
  • Japanese Patent Application Laid-Open No. 63-2681842 discloses a method of forming a sensitive layer on a substrate by vapor deposition of components such as gelatin, casein and polyvinyl alcohol, and an optical recording of a structure formed on the sensitive layer.
  • a medium is disclosed. According to such an optical recording medium, recording pits are formed by the metal thin film absorbing a laser beam used for recording and deforming the sensitive layer and the metal thin film. However, this recording pit is exposed type It is difficult to keep records for a long period of time.
  • U.S. Pat. No. 4,983,440 describes an optical recording medium in which a recording layer having a two-layer structure composed of a metal thin film and a protective layer for protecting the recording layer are sequentially laminated on a substrate. It has been disclosed.
  • the metal thin film cannot sufficiently serve as a reflection layer, the reflectance is as low as 20% or less, and there is no compatibility with CD.
  • information is recorded not by a recording method based on expansion and deformation of a substrate but by decomposition of a substrate material. Therefore, as the material of the metal film, a metal that generates high heat enough to decompose the substrate is used.
  • the CN ratio characteristics are not good.
  • U.S. Pat.No. 5,073,219 discloses that a metal, such as aluminum, gold, or copper, or an alloy thereof is vapor-deposited on the entire surface of a substrate to form a conductive film, which includes a liquid crystal and a dichroic dye.
  • a method for manufacturing an optical recording medium through a process of forming a layer and then orienting a liquid crystal and a dichroic hue by corona discharge, a magnetic field or shear stress is disclosed.
  • Such an optical recording medium uses a principle in which information is recorded according to a difference in reflectance due to a change in the orientation of the liquid crystal and the dichroic dye due to condensed light.
  • the difference in reflectance between the group and the land is small, and the tracking conditions are very complicated. As a result, the reflectivity of the recording portion decreases.
  • the recording layer which is the most important part, is generally formed by spin-coating a coating solution comprising a solvent and a dye on a substrate.
  • the recording layer formed by such a process has a problem that it is difficult to obtain uniform optical characteristics. That is, the recording layer is formed by spin-coating a coating solution on a substrate made of PC, methyl polymethacrylate, cellulose acetate, acrylic resin, etc., and its optical characteristics are determined by the uniformity and thickness of the coated film.
  • factors affecting the film thickness of the recording layer include the concentration of the spin coating liquid, the rotation speed and acceleration of the coating apparatus, the coating time, the flow rate of the coating liquid, and the dose time. It is not easy to properly adjust them, and it is also very difficult to adjust the viscosity that actually affects the film thickness.
  • the organic solvent of the coating solution for forming the recording layer includes the base of the optical recording medium. It is necessary to use a material that does not attack the plate, but such a solvent has a problem in that the ability to dissolve the dye is weak and the types of dyes that can be used are limited. Further, when the main component of the recording layer is composed of a dye, the signal is formed by thermal deformation of the dye and the substrate, so that it is difficult to finely adjust the magnitude of the signal during high-density recording.
  • U.S. Pat. No. 5,328,813 discloses that a flexible metal thin film is formed as a recording layer on a substrate, and a hard metal oxide layer is formed thereon to enhance the recording preservation property and improve the reflection stability. It is disclosed that the ratio is increased to 40 to 60%. However, there is a problem that as the reflectance increases, the CN ratio decreases. This makes it difficult to manufacture optical recording media having high reflectivity and high CN ratio. Disclosure of the invention
  • An object of the present invention is to provide a phase-change optical recording medium having a uniform thickness of a recording film and capable of performing high-density recording with light of a wide range of wavelengths, and a method for manufacturing the same.
  • the present invention provides at least a light-transmitting support and an optical recording layer, wherein the optical recording layer is made of at least a crystalline organic polymer compound, Alternatively, information is recorded by utilizing a phase change from a crystalline state to an amorphous state of the crystalline organic polymer compound in the optical recording layer, which is induced by infrared rays, and information of optical properties accompanying the phase change is recorded.
  • a phase change type optical recording medium characterized in that the recording is reproduced by utilizing a change.
  • the phase change type optical recording medium of the present invention may have a light reflection layer.
  • the present invention provides at least an optical recording layer made of the crystalline organic polymer compound in an amorphous state, and a surface of the optical recording layer made of the crystalline organic polymer compound.
  • a method for manufacturing a type optical recording medium is a cross-sectional view showing the configuration of the optical recording medium of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an optical waveguide manufacturing apparatus in the optical recording medium manufacturing method described in Examples 1 and 2 of the present invention.
  • FIG. 3 is a cross-sectional view schematically illustrating an optical waveguide manufacturing apparatus in the optical recording medium manufacturing method according to the third and fourth embodiments of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing an optical waveguide manufacturing apparatus in the optical recording medium manufacturing method according to the fifth embodiment of the present invention.
  • a polycarbonate resin represented by the following general formula (I) is preferably used as the crystalline organic polymer compound.
  • beta [Phi Alpha and ⁇ represent each a divalent aromatic hydrocarbon residue
  • X represents an oxygen ZanKiichi o-, sulfur residues - S-, sulfonate residues>
  • S
  • C O or an alkylene hydrocarbon residue> represents CR i R 2 , wherein R 1 and R 2 are a hydrogen atom or an alkyl group having 1 to 18 carbon atoms which may have a substituent. Wherein R 1 and R 2 may combine with each other to form a hydrocarbon ring.
  • PC Polycarbonate resin
  • O—R—O—CO— Ester carbonate bond
  • PC Used for various molded products, especially engineering plastics and films.
  • PC is widely used as a transparent support for optical recording media utilizing the above properties.
  • the organic low molecular weight compound is sublimated or evaporated under atmospheric pressure or reduced pressure to form a gas and then act on the PC surface. Also, by raising the temperature of the PC, Can be accelerated.
  • the lower limit of the temperature is the glass transition of the composition composed of the organic low molecular weight compound penetrating into the PC.
  • Temperature, and the upper limit of the temperature is the melting point of the composition. At these temperatures, the pressure in the container must be equal to or lower than the saturated vapor pressure of the low-molecular organic compound.
  • the crystallization of Pc proceeds from the surface to the inside of the optical recording layer due to the permeation of the organic low molecular weight compound.
  • the degree of progress from the surface can be controlled by the exposure time, temperature and pressure of the organic low-molecular compound gas, and the thickness is 1 to 200 nm when used as an optical recording medium. Is required, and it is preferably 10 to 100 nm.
  • the thickness of the crystallized layer depends on gas molecules, but when exposed to 2,2'-diphenylpropane, when the temperature is 100 to 120 ° C and the pressure is 10 to 4 Pascal or less, Achieved with an exposure time of 10 to 60 minutes.
  • the optical recording medium of the present invention is of a transmission type in which signal light (probe light) passes through the optical recording medium
  • the most basic structure is constituted by crystallizing the surface of an amorphous PC.
  • a configuration called “light-transmitting support (amorphous PC) Z optical recording layer (crystalline PC)” may be mentioned.
  • a protective film, an antioxidant film, an overcoat film, and the like may be appropriately added to the basic structure.
  • the most basic structure is a light-transmitting support (amorphous PC) / optical recording layer
  • the light reflecting layer may be made of aluminum, aluminum-chromium alloy, aluminum-titanium alloy, silver, gold, etc. Metals having high reflectivity are preferable, and the light reflecting film made of these metals is formed by a vapor deposition method or a sputtering method.
  • the PC used in the present invention has the chemical formula represented by the above (I), and preferably has an alkylene-type hydrocarbon residue, and RR 2 is methyl and methyl, methyl and ethyl, and methyl and ethyl, respectively. It is. Also! ⁇ 1 ⁇ 2: 1 and R 2 are bonded, may for example those to form a cyclohexane ring. More specifically, (Bisphenol-A.polycarbonate in which R 1 and R 2 are methyl groups can be suitably used.)
  • Organic polymer compounds that can be stably present in both crystalline and amorphous forms include polycarbonate resins, aromatic dicarboxylic acids such as terephthalic acid, and dihydric alcohols such as ethylene dalicol. Polyester, for example, polyethylene terephthalate can be mentioned.
  • FIG. 1A and 1 (b) are cross-sectional views schematically showing the basic structure of the optical recording medium of the present invention.
  • FIG. 1A in the case of the transmission type, a crystallized PC layer 20 is present on a PC substrate 10, and an overcoat layer 30 is provided thereon.
  • FIG. 1 (b) in the case of the reflection type, a crystallized PC layer 21 is present on the PC substrate 11 as in the case of the transmission type, and a reflection film 41 is provided thereon.
  • An overcoat layer 31 is provided thereon.
  • the light source used for recording and reading on the phase-change optical recording medium of the present invention is not particularly limited, but it is preferable to use a laser beam in order to increase the recording density to the diffraction limit of light.
  • any of ultraviolet light, visible light, and infrared light can be suitably used as long as the wavelength of the light source is light having a wavelength that transmits amorphous PC.
  • amorphous PC exhibits a transmittance of 80% or more to light of 350 nm or more, so that light of 350 nm or more is suitable.
  • the absorption wavelength of the dye is 350 nm or more. If the medium does not disperse the dye, the near-infrared to infrared light (600 to 1000 nm), which easily changes to heat, is more preferable. .
  • Recording on the phase-change optical recording medium of the present invention is performed as follows. That is, the recording focused on the crystallized PC layer in the optical recording layer provided on the PC substrate.
  • the writing light laser light
  • the temperature of the light irradiated part rises due to multiple reflection and scattering by the crystallized PC.
  • the power of the recording / writing light and the irradiation time are sufficient, the temperature of the light-irradiated portion rises above the melting point of PC, then drops to room temperature, and in the process, the crystallized portion becomes amorphous.
  • Be transparent This transparent amorphous portion becomes a pit representing recording.
  • the reading light for recording low-power light is used such that the temperature rise in the light-irradiated portion is far below the melting point of the PC.
  • the recording / reading light is polarized and adjusted so that the light receiving section of the reading light can correctly receive the polarized light, the CN ratio can be increased even with low power light.
  • the configuration of the optical recording medium is a transmission type
  • the readout light transmitted through the transparent pit is transmitted.
  • the configuration of the optical recording medium is a reflection type
  • the readout light is transmitted through the transparent pit. The recording pits can be detected by receiving the read light reflected by the reflection layer.
  • the reading light power should be 1 Z 2 or less, preferably 1 Z, below the minimum value of the light (recording / writing light) power required for optical recording. 5 or less, more preferably 1 Z 10 or less.
  • Examples of the method for manufacturing the optical recording medium of the present invention include, for example, the following four manufacturing methods.
  • the method of the present invention Is treated with the vapor of an organic low-molecular compound to crystallize.
  • the surface of the PC is treated with a vapor of a sublimable dye having an affinity for PC instead of the organic low molecular weight compound (dye impregnation treatment).
  • a reflection type an aluminum light reflection layer is formed by sputtering.
  • the protective layer is coated and formed with an ultraviolet curable resin on the crystallized PC layer in the case of the transmission type, and on the light reflection layer in the case of the reflection type, and the desired optical recording medium is formed. Make it.
  • PC is injection molded, and the land & group pattern is transferred from the stamper to the surface.
  • the surface of the PC is treated (dye-impregnated) with a vapor of a sublimable dye having an affinity for PC so as not to break the pattern, and the surface is colored. Crystallizes the surface of the PC.
  • an aluminum light reflection layer is formed by sputtering, and in the case of the transmission type, on the crystallized PC layer, in the case of the reflection type, on the light reflection layer, and in the case of the reflection type, the protective layer is made of ultraviolet light.
  • a desired optical recording medium is produced by coating with a cured resin.
  • the surface of the PC is formed of a colored organic low-molecular compound (dye) by the method of the present invention so as not to swell the pattern. It is treated with steam to crystallize the PC surface layer simultaneously with coloring. Thereafter, an aluminum light reflecting layer is formed by sputtering in the case of the reflection type, and on the crystallized PC layer in the case of the transmission type, and on the light reflection layer in the case of the reflection type, as described above. Then, the protective layer is coated and formed with an ultraviolet curable resin to produce a desired optical recording medium.
  • a colored organic low-molecular-weight compound that can simultaneously color the PC surface layer, for example, 2-methyl-4,12-throaline (yellow) can be used.
  • organic low-molecular compounds that crystallize amorphous PC include alcohol-based compounds, and more specifically, linear or branched compounds having 8 or less carbon atoms.
  • Alcohols are mentioned, preferably, methanol, ethanol, n-propyl alcohol, 2-propyl alcohol and n-butanol.
  • ketones include linear or branched ketones having 8 or less carbon atoms, preferably acetone, methylethylketone, getylketone, methylpropylketone. Tons.
  • examples of cellosolves include linear or branched cellosolves having 8 or less carbon atoms, preferably methoxyethanol and ethoxyethanol.
  • examples of the ester system include a linear or branched ester having 8 or less carbon atoms, preferably ethyl acetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate, propyl propionate and the like.
  • examples of the organic acid system include a linear or branched organic acid having 8 or less carbon atoms, and formic acid, acetic acid, propionic acid, and butanoic acid are preferable.
  • examples of the aromatic organic low-molecular compound include those having no straight-chain alkyl having 8 or more carbon atoms or branched alkyl having 12 or more carbon atoms as a substituent.
  • Examples of the colored organic low-molecular compound (dye) include dyes of cyanine type, phthalocyanine type, quinone type, sulfur type, azurenium type, thiol complex salt type, merocyanine type and the like.
  • the optical recording layer made of PC crystallized and simultaneously crystallized with a colored organic low-molecular compound writes recording pits efficiently with recording light having a light absorption wavelength of the organic compound (dye).
  • the wavelength of the reading light is By setting the wavelength different from the light absorption wavelength of the organic compound (dye) and using different wavelengths of the recording light and the reading light, the possibility of destruction of the recording pit due to reading can be extremely reduced.
  • FIG. 2 is a cross-sectional view illustrating a schematic configuration of an optical recording medium manufacturing apparatus used in this example.
  • a PC board 300 with a thickness of 1.20 mm, an outer diameter of 120 mm, and an inner diameter of 15 mm having a guide groove (group) with a depth of 80 nm, a width of 500 nm, and a pitch of 1600 nm was manufactured.
  • a vaporization source 240 (urethane sponge, eg, 5 mm thick, 10 mm wide, 400 mm long) was prepared by impregnating 2,2-diphenylpropane as a low-molecular organic compound into a porous sponge.
  • the PC board 300 is provided in a closed container 110, and the vaporization source 240 is provided in another closed container 120.
  • the two sealed containers 110 and 120 are connected by a pipe and pulp 195.
  • the outer wall of the sealed container 110 on which the PC board 300 is installed is made of stainless steel or aluminum, and has a structure (not shown) that can be vertically divided for taking in and out the board.
  • the inside 100 of the sealed container 110 is connected to a vacuum exhaust system 150 via a vacuum pulp 190 and a vacuum piping system 130. Then, when producing the optical recording medium, the vacuum pulp 190 is closed after evacuation is performed at room temperature (25 ° C.) until the pressure inside the sealed container 110 becomes 10-4 Pascal or less. Thereby, the closed container 110 is closed.
  • the vaporization source substrate heater 410, the resin substrate heater 400, and the vacuum pulp heater 790 used as heating means for example, those made of aluminum in which a sheathed electric heating wire of a vacuum specification is embedded can be used.
  • a heater made of a material having high heat conductivity without gaps By installing a heater made of a material having high heat conductivity without gaps, the inside 100 of the closed container 110 and the portion of the vacuum pulp 190 can be uniformly heated.
  • the interior 100 of the sealed container 110 is evacuated using a vacuum pulp 190, and then the vacuum pulp 190 is closed.
  • the temperature was controlled so that the whole temperature was 90 ° C.
  • the sealed container 120 in which the vaporization source 240 is placed and sealed is heated using the vaporization source substrate heater 410 in the same manner, and the temperature is set according to the set temperature of the sealed container 110 in which the PC board 300 is installed.
  • the pulp 195 connecting the two closed containers 110, 120 was opened and kept at the set temperature for 8 hours. After that, the internal temperature of the closed vessels 110 and 120 was gradually lowered to 25 ° C.
  • the inside 100 of the sealed container 110 was returned to the atmospheric pressure, and the PC substrate 300 was taken out.
  • the PC substrate 300 was crystallized from the surface to a depth of 10 nm and that the group was not deformed.
  • a reflective layer (reflective film) was formed on aluminum by vapor deposition on the recording layer thus obtained.
  • a protective layer (overcoat layer) of 5 ⁇ was provided thereon from an ultraviolet curable resin to produce a desired optical disk.
  • This optical recording medium is 73%, and as a result of recording an EFM-CD format signal at a linear velocity of 1.4 m / sec using a semiconductor laser with a wavelength of 785 nm, the optimal recording laser power is 1 OmW. Recording was possible. Next, this signal was reproduced by a CD player with a laser power of 0.5 mW. As a result, the CN ratio of the obtained signal was good.
  • Example 2 As in Example 1, a reflective layer of aluminum was formed by vapor deposition on a PC substrate having grooves formed by a stamper, and a protective layer was formed of an ultraviolet curable resin. I tried to record an EFM-CD format signal on this optical disc at a linear velocity of 1.4 m / sec using a semiconductor laser with a wavelength of 785 nm, but found that nothing could be recorded.
  • a PC substrate was produced in the same manner as in Example 1, and biphenyl was used as an organic low-molecular compound for crystallizing the surface.
  • the temperature of the inside 100 and the crystallization time of the inside of the sealed container 110 during the crystallization process of PC are 100 ° C and 12 hours, respectively.
  • the sealed container 120 on which 240 is placed is also heated in the same manner, except that it is heated to a temperature higher than the set temperature of the sealed container 110 on which the PC board 300 is placed (for example, 110 ° C).
  • the other steps were the same as in Example 1.
  • EFM-CD format signals could be recorded.
  • the obtained optical recording medium was reproduced by a CD player, the CN ratio of the signals was good.
  • FIG. 3 is a cross-sectional view illustrating a schematic configuration of an optical recording medium manufacturing apparatus used in the present example.
  • a PC board 301 with a thickness of 1.20 mm, an outer diameter of 120 mm, and an inner diameter of 15 mm with a guide groove (group) having a depth of 80 nm, a width of 500 nm, and a pitch of 1600 nm was produced.
  • a vaporization source 241 (urethane sponge, for example, 5 mm thick, 10 mm wide, 400 mm long) was prepared by impregnating a low-molecular organic compound (2,2-diphenyl lip pan) with a porous sponge.
  • the PC board 301 is installed in a closed container 111, and the vaporization source 241 is installed in another closed container 121. These two closed containers 111 and 121 are connected by a pipe and pulp 196.
  • the outer wall of the sealed container 111 on which the PC board 301 is installed is made of stainless steel or aluminum, and has a structure (not shown) that can be divided into upper and lower parts for taking in and out of the board.
  • the inside 101 of the sealed container 1 1 1 is connected to a vacuum exhaust system 151 via a vacuum valve 191 and a vacuum piping system 131. Evacuate until the pressure in the chamber falls below 10_4 Pascal, and then close the vacuum valve 191. As a result, the closed container 111 is closed.
  • the vaporization source substrate heater 411, the resin substrate heater 401, and the vacuum valve heater 791 used as heating means for example, those made of aluminum in which a sheathed electric heating wire of a vacuum specification is embedded can be used.
  • a heater made of a material having high heat conductivity without gaps By installing a heater made of a material having high heat conductivity without gaps, the inside 101 of the closed container 111 and the portion of the vacuum pulp 191 can be uniformly heated.
  • the valves 196 and 197 are closed, the vacuum pulp 191 is opened, and the valves are closed.
  • the vacuum pulp 191 was closed, and then heated by a resin substrate heater 401 to control the temperature so that the entire temperature reached 90 ° C.
  • the sealed container 121 in which the vaporization source 241 is placed and sealed is heated using the vaporization source substrate heater 411, and the set temperature of the sealed container 1 1 1 in which the PC board 301 is placed is set. (Eg, 100 ° C.).
  • the pulp 196 connecting the two closed containers 1 1 1 and 1 1 2 was opened and kept at the set temperature for 8 hours.
  • the pulp 196 was closed, while the vacuum pulp 191 was opened, and the inside 101 of the sealed container 111 was evacuated again.
  • the valve 197 was opened, and the resin substrate heater 401 was used to obtain D.
  • the temperature of the container 140 containing isperse B 1 ue 14 (1,4-bis (N-methylamino) anthraquinone) and the temperature of the sealed container 111 were gradually increased to 145 ° C and maintained for 2 hours.
  • the valve 197 was closed, the inside 101 of the sealed container 111 was returned to the atmospheric pressure, and the PC board 301 was taken out.
  • Disperse Blue 14 (1,4-bis ( ⁇ -methylamino) anthraquinone) had penetrated into the crystallized portion. , I confirmed that the group was not deformed.
  • aluminum as a reflection layer was formed on the recording layer thus obtained by vapor deposition.
  • a protective layer of 5 ⁇ was formed thereon from an ultraviolet-curable resin to produce a desired optical disk.
  • the reflectivity of this optical recording medium is 73%, and as a result of recording an EFM-CD format signal at a linear velocity of 1.4 m / sec using a semiconductor laser with a wavelength of 785 nm, the optimum recording laser power is 1 OmW could be recorded.
  • this signal was reproduced with a laser power of 0.5 mW using a CD player, and the CN ratio of the obtained signal was good.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of the optical waveguide manufacturing apparatus used in this embodiment, similarly to the third embodiment.
  • a PC board 301 with a thickness of 1.20 mm, an outer diameter of 120 mm, and an inner diameter of 15 mm with guide grooves (group) 80 nm deep, 500 nm wide and 1600 nm pitch was fabricated.
  • organic low molecular compounds (2, 2—
  • a vapor source 24 1 (urethane sponge, for example, 5 mm thick, 10 mm wide, 400 mm long) in which diphenylpropane) was impregnated into a porous sponge was prepared.
  • the PC board 301 is set in a closed container 1 1 1, and the vaporization source 2 41 is set in another closed container 1 2 1.
  • the two closed containers 1 1 1 1 and 1 2 1 are connected by piping and pulp 196.
  • the outer wall of the hermetically sealed container 111 on which the PC board 301 is installed is made of stainless steel or aluminum, and has a structure (not shown) that can be vertically divided for inserting and removing the board.
  • the interior 101 of the sealed container 1 1 1 is connected to the vacuum exhaust system 1 5 1 via the vacuum valve 1 9 1 and the vacuum piping system 1 3 1. Then, at the time of producing the optical recording medium, the inside of the sealed container 111 was evacuated at room temperature until the pressure inside the sealed container 110 became 10-4 Pa or less, and then the vacuum pulp 191 was closed. As a result, the closed container 1 1 1 is hermetically closed.
  • the vaporization source substrate heater 4 11, the resin substrate heater 4 0 1, and the vacuum pulp heater 7 9 1 used as heating means can be, for example, those made of aluminum in which a sheathed electric heating wire of a vacuum specification is embedded. .
  • a heater made of a material having high heat conductivity without gaps By installing a heater made of a material having high heat conductivity without gaps, the inside of the closed vessel 111 and the portion of the vacuum valve 91 can be uniformly heated.
  • the pulp 196 is first closed and the pulp 197 is opened.
  • open the vacuum valve 191 and open the inside of the sealed container 1 1 1 1 and the container 1 4 containing the Disperse Blue 14 (1,4-bis (N-methylamino) anthraquinone).
  • the vacuum pulp 1 9 1 is closed, and then heating is performed by a resin substrate heater 4 0 1, so that the inside of the sealed container 1 1 1 and the inside of the container 1
  • the temperature was controlled to 5 ° C., and the temperature was maintained for 2 hours.
  • closing the tube 197 the vacuum pulp 191 was opened, and the inside 101 of the sealed container 111 was evacuated again.
  • the vacuum pulp 191 is closed, the temperature of the PC board 301 and the inside 101 of the sealed container 111 are lowered to 90 ° C, while the vaporization source 241 is placed and sealed.
  • the closed container 1 2 1 is heated using the vaporization source substrate heater 4 1 1 and is heated to a temperature higher than the set temperature of the closed container 1 1 1 in which the PC board 301 is installed (for example, 1 0 0 ° C).
  • the two closed containers 1 1 1 1 and 1 2 1 Pulp 196 was opened and held at the set temperature for 8 hours.
  • the pulp 196 was closed, the inside 101 of the closed container 111 was returned to atmospheric pressure, and the PC substrate 301 was taken out.
  • Disperse Blue 14 (1,4-bis (N-methylamino) anthraquinone) had penetrated into the crystallized portion. And it was confirmed that the group was not deformed.
  • aluminum as a reflective layer was formed on the recording layer thus obtained by vapor deposition. Further, a protective layer of 5 ⁇ m was formed from an ultraviolet-curable resin on this, and a desired optical disk was manufactured. The reflectivity of this optical recording medium is 71%.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of an optical waveguide manufacturing apparatus used in this example.
  • a PC substrate 302 having a thickness of 1.20 mm, an outer diameter of 120 mm, and an inner diameter of 15 mm having a guide groove (group) having a depth of 80 nm, a width of 500 nm, and a pitch of 1600 nm was produced.
  • a vaporization source 242 equipped with an organic low molecular weight compound (4-methyl-3-nitro-2-arin) was prepared.
  • the PC board 302 is provided in a closed container 112, and the vaporization source 242 is provided in another closed container 122.
  • the two closed containers 1 1, 1 2 and 2 are connected by piping and pulp 198.
  • the outer wall of the sealed container 112 on which the PC board 302 is installed is made of stainless steel or aluminum, and has a structure (not shown) that can be vertically divided for taking in and out the board.
  • the inside 102 of the sealed container 112 is connected to a vacuum exhaust system 152 via a vacuum pulp 192 and a vacuum piping system 132. Then, at the time of producing the optical recording medium, the vacuum pulp 192 was closed after evacuation was performed at room temperature until the pressure in the inside 102 of the sealed container 112 became 10-4 Pascal or less. Thereby, the closed container 112 is closed.
  • the vaporization source substrate heater 4 12, the resin substrate heater 402 and the vacuum pulp heater 7 92 2 used as a heating means can be made of, for example, aluminum in which a sheathed electric heating wire of a vacuum specification is embedded. . By installing a heater made of a material having high heat conductivity without gaps, the inside 102 of the closed container 112 and the portion of the vacuum pulp 192 can be uniformly heated.
  • the vacuum pulp 192 is closed, followed by heating by the resin substrate heater 402 and sealing. Temperature control was performed so that the entire inside of the type container 112 was kept at 135 ° C.
  • the sealed container 1 2 2 in which the vaporization source 2 42 is placed and hermetically sealed is also heated using the vaporization source substrate heater 4 1 2, and the hermetically sealed container in which the PC substrate 302 is installed The container was heated to a temperature higher than the set temperature of the container 112 (for example, 140 ° C.). After that, the pulp 198 connecting the two closed vessels 112, 122 was opened and kept at the set temperature for 12 hours.
  • the internal temperature of the sealed containers 1 12 and 122 was gradually reduced to 25. Then, the inside 102 of the closed container 112 was returned to the atmospheric pressure, and the PC substrate 302 was taken out. As a result of observing the cross section of the obtained PC substrate 302 with a scanning microscope, it was confirmed that yellow crystallized from the surface to a depth of 10 nm and that the tube was not deformed. Next, aluminum as a reflection layer was formed on the recording layer thus obtained by vapor deposition. Further, a protective layer of 5 / m was provided thereon with a UV-curable resin to produce a desired optical disk. The reflectivity of this optical recording medium is 73%.
  • the optical recording medium of the present invention has a crystalline PC having a recording layer function on a transparent substrate, a complicated process is not required, and extremely high recording storability and good An optical recording medium having a high CN ratio can be provided.
  • the present invention has been described in detail, the scope of the present invention is not limited to the above description.
  • ROM read-only type
  • WORM write-once type
  • rewritable type that can be erased and re-recorded after recording.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

A phase change type optical recording medium having a uniform thickness of recording layer and capable of high-density recording by radiation of widely ranging wavelength; and a process for producing the same. In particular, a phase change type optical recording medium produced through steps of providing an optical recording layer comprised at least of a crystalline organic polymeric compound in amorphous form and causing an organic low-molecular compound capable of penetrating from the surface of the optical recording layer comprised of a crystalline organic polymeric compound toward the internal portion thereof in the form of gaseous molecules to act on the optical recording layer so that the crystalline organic polymeric compound undergoes a phase change from amorphous form to crystal form. Information is recorded by the utilization of phase change from crystal form to amorphous form of the crystalline organic polymeric compound of the phase change type optical recording layer which is induced by ultraviolet, visible light or infrared rays radiated from outside. The record is reproduced by the utilization of change of optical properties accompanying the phase change.

Description

明細書 相変化型光記録媒体およびその製造方法 技術分野  Description Phase change optical recording medium and method for manufacturing the same
本発明は相変化型光記録媒体およびその製造方法に係り、 詳しくは、 記録膜の 厚さが均一であり、 広範囲の波長の光による高密度の記録が可能な相変化型光記 録媒体およびその製造方法に関する。 背景技術  The present invention relates to a phase-change optical recording medium and a method for manufacturing the same, and more particularly, to a phase-change optical recording medium having a uniform thickness of a recording film and capable of performing high-density recording with light of a wide range of wavelengths. It relates to the manufacturing method. Background art
光記録媒体は、 記録された情報を再生する再生専用型 (R OM) 、 1回に限り 記録が可能な追記型 (WO RM) および記録後の消去、 再記録が可能な消去可 能型 .(R e.w r i t a b 1 e ).に分類される。.透過型の光記録媒体を挟んで光源 と読み取.り装置.を配置する方式 光源および読^^取り装置の駆動機構が複雑にな るため、 '光記録媒体中に反射層を設けて光源と読み取り装置を光記録媒体に対し て同じ側に設置する方式がもっぱら採用されている。 ¾在主流の ·光記録媒体にお いては、 7 0 %以上の反射率および 4 7 d B以上の C N比. (C a r r i e r t o N o i s e R a t i o ) が要求される。  The optical recording medium is a read-only type (ROM) that reproduces recorded information, a write-once type (WO RM) that can be recorded only once, and an erasable type that can be erased and re-recorded after recording. (Rew ritab 1 e). A method of arranging a light source and a reading device with a transmission-type optical recording medium sandwiched in between Since the driving mechanism of the light source and the reading device becomes complicated, a light source is provided by providing a reflective layer in the optical recording medium. And the reading device are installed on the same side of the optical recording medium. Currently, the mainstream optical recording media are required to have a reflectance of 70% or more and a CN ratio of 47 dB or more (CarireoNoiseRatio).
情報が記録された光記録媒体において、 情報の再生は、 記録前後の記録層にお ける、 物理的な変形、 相の変化、 磁気的な性質の変化、 などによる反射率の変化 により可能になる。 また、 上述した高反射率、 高い C N比特性のみならず、 記録 の長期保存性および高い記録感度も必要である。 光記録媒体の開発以来、 上述し' たような要件を満足させ、 要求される特性を向上させるための多くの研究が行わ れている。  In an optical recording medium on which information is recorded, information can be reproduced by changing the reflectivity of the recording layer before and after recording due to physical deformation, phase change, magnetic property change, etc. . Further, in addition to the above-described high reflectance and high CN ratio characteristics, long-term storage stability and high recording sensitivity are required. Since the development of the optical recording medium, much research has been conducted to satisfy the above-mentioned requirements and to improve the required characteristics.
特開昭 6 3 - 2 6 8 1 4 2号には、 基板上にゼラチン、 カゼィンおよびポリビ ニルアルコールなどの構成物の蒸着による敏感層と、 その敏感層上に形成されて いる構造の光記録媒体が開示されている。 このような光記録媒体によれば、 金属 薄膜が記録時に用いられるレーザービームを吸収して敏感層と金属薄膜を変形さ せることにより記録ピットを形成する。 しかしながら、 この記録ピットは露出型 で形成されるので、 記録の長期保存が困難である。 Japanese Patent Application Laid-Open No. 63-2681842 discloses a method of forming a sensitive layer on a substrate by vapor deposition of components such as gelatin, casein and polyvinyl alcohol, and an optical recording of a structure formed on the sensitive layer. A medium is disclosed. According to such an optical recording medium, recording pits are formed by the metal thin film absorbing a laser beam used for recording and deforming the sensitive layer and the metal thin film. However, this recording pit is exposed type It is difficult to keep records for a long period of time.
米国特許 4, 9 8 3, 4 4 0号には、 基板上に金属薄膜からなる 2層構造の記 録層と、 この記録層を保護する保護層が順次に積層している光記録媒体が開示さ れている。 しかしながら、 この光記録媒体は金属薄膜が反射層の役割を充分に行 うことができず、 反射率が 2 0 %以下と低く、 C Dとの互換性もない。 また、 光 記録媒体において、 情報は基板の膨張、 変形による記録方式でなく、 基板物質の 分解によって記録される。 そこで、 金属膜の材質としては、 基板が分解できる程 度に高熱を発生させる金属が用いられる。 しかしながら、 記録ピットの形成によ る変形が金属層自体に限られるため、 C N比特性が良好でない。  U.S. Pat. No. 4,983,440 describes an optical recording medium in which a recording layer having a two-layer structure composed of a metal thin film and a protective layer for protecting the recording layer are sequentially laminated on a substrate. It has been disclosed. However, in this optical recording medium, the metal thin film cannot sufficiently serve as a reflection layer, the reflectance is as low as 20% or less, and there is no compatibility with CD. In an optical recording medium, information is recorded not by a recording method based on expansion and deformation of a substrate but by decomposition of a substrate material. Therefore, as the material of the metal film, a metal that generates high heat enough to decompose the substrate is used. However, since the deformation due to the formation of the recording pit is limited to the metal layer itself, the CN ratio characteristics are not good.
米国特許 5 , 0 7 3 , 2 1 9号には、 アルミニウム、 金、 銅などの金属または これらの合金を基板の全面に蒸着して導電膜を形成し、 液晶と二色性色素を含む 記録層を形成した後、 コロナ放電、 磁場または剪断応力により液晶と二色性色相 を配向させる過程を通して光記録媒体を製造する方法が開示されている。 このよ うな光記録媒体は集光された光によって液晶と二色性色素の配向が変化による反 射率の差に応じて情報が記録される原理を用いる。 しかしながら、 グループとラ ンドとの反射率の差が少なく、 トラッキングの条件が非常に複雑である。 これに より、 記録部位の反射率が低下する。  U.S. Pat.No. 5,073,219 discloses that a metal, such as aluminum, gold, or copper, or an alloy thereof is vapor-deposited on the entire surface of a substrate to form a conductive film, which includes a liquid crystal and a dichroic dye. A method for manufacturing an optical recording medium through a process of forming a layer and then orienting a liquid crystal and a dichroic hue by corona discharge, a magnetic field or shear stress is disclosed. Such an optical recording medium uses a principle in which information is recorded according to a difference in reflectance due to a change in the orientation of the liquid crystal and the dichroic dye due to condensed light. However, the difference in reflectance between the group and the land is small, and the tracking conditions are very complicated. As a result, the reflectivity of the recording portion decreases.
色素を用いる追記型の記録媒体において、 最も重要な部位となる記録層は一般 に溶媒と色素などからなるコーティング溶液を、 基板上にスピンコーティングす ることにより形成される。 しかしながら、 このような工程により形成される記録 層は均一な光学特性が得にくいという問題がある。 すなわち、 記録層は; P C、 ポ リメタクリル酸メチル、 セルロースアセテート、 アクリル樹脂などからなる基板 上にコーティング溶液をスピンコーティングして形成され、 その光学特性はコー ティングされている膜の均一性および厚さに依存する。 ここで、 記録層の膜の厚 さに影響を及ぼす要素には、 スピンコーティング液の濃度、 コーティング装置の 回転速度および加速度、 コーティング時間、 コーティング液の流量、 ドーズ時間 などがある。 これらを適正に調節することは容易でなく、 また、 実際に膜の厚さ に影響を及ぼす粘度の調節も非常に困難である。  In a write-once type recording medium using a dye, the recording layer, which is the most important part, is generally formed by spin-coating a coating solution comprising a solvent and a dye on a substrate. However, the recording layer formed by such a process has a problem that it is difficult to obtain uniform optical characteristics. That is, the recording layer is formed by spin-coating a coating solution on a substrate made of PC, methyl polymethacrylate, cellulose acetate, acrylic resin, etc., and its optical characteristics are determined by the uniformity and thickness of the coated film. Depends on. Here, factors affecting the film thickness of the recording layer include the concentration of the spin coating liquid, the rotation speed and acceleration of the coating apparatus, the coating time, the flow rate of the coating liquid, and the dose time. It is not easy to properly adjust them, and it is also very difficult to adjust the viscosity that actually affects the film thickness.
また、 記録層形成用のコーティング溶液の有機溶媒としては、 光記録媒体の基 板を侵さないものを用いる必要があるが、 そのような溶媒は色素を溶解する力が 弱く、 利用可能な色素の種類が限定されるという問題がある。 更に、 記録層の主 成分が色素からなる場合、 信号が色素および基板の熱変形により形成されるため、 高密度の記録時、 信号の大きさの微細な調節が困難であるという短所がある。 ま 、 米国特許 5, 3 2 8 , 8 1 3号には、 基板上に記録層として柔軟な金属 薄膜を形成し、 その上に硬い金属酸化物層を形成して記録保存性を高め、 反射率 を 4 0〜6 0 %に向上させたものが開示されている。 しかしながら、 反射率が向 上すると、 C N比は低下するという問題がある。 これにより、 高反射率と高い C N比を有する光記録媒体の製造は困難である。 発明の開示 In addition, the organic solvent of the coating solution for forming the recording layer includes the base of the optical recording medium. It is necessary to use a material that does not attack the plate, but such a solvent has a problem in that the ability to dissolve the dye is weak and the types of dyes that can be used are limited. Further, when the main component of the recording layer is composed of a dye, the signal is formed by thermal deformation of the dye and the substrate, so that it is difficult to finely adjust the magnitude of the signal during high-density recording. U.S. Pat. No. 5,328,813 discloses that a flexible metal thin film is formed as a recording layer on a substrate, and a hard metal oxide layer is formed thereon to enhance the recording preservation property and improve the reflection stability. It is disclosed that the ratio is increased to 40 to 60%. However, there is a problem that as the reflectance increases, the CN ratio decreases. This makes it difficult to manufacture optical recording media having high reflectivity and high CN ratio. Disclosure of the invention
本発明は、 記録膜の厚さが均一であり、 広範囲の波長の光による高密度の記録 が可能な相変化型光記録媒体、 および、 その製造方法を提供することを目的とす る。  An object of the present invention is to provide a phase-change optical recording medium having a uniform thickness of a recording film and capable of performing high-density recording with light of a wide range of wavelengths, and a method for manufacturing the same.
前記の目的を達成するために本発明は、 少なくとも光透過性支持体と光記録層 を有し、 前記光記録層は少なくとも結晶性有機高分子化合物からなり、 外部から 照射された紫外線、 可視光線または赤外線によって誘起される、 前記光記録層に おける前記結晶性有機高分子化合物の結晶状態から非晶質状態への相変化を利用 して情報を記録し、 前記相変化にともなう光学的性質の変化を利用して前記記録 の再生を行うことを特徴とする相変化型光記録媒体を提供する。 本発明の相変化 型光記録媒体は光反射層を有しても良い。  In order to achieve the above object, the present invention provides at least a light-transmitting support and an optical recording layer, wherein the optical recording layer is made of at least a crystalline organic polymer compound, Alternatively, information is recorded by utilizing a phase change from a crystalline state to an amorphous state of the crystalline organic polymer compound in the optical recording layer, which is induced by infrared rays, and information of optical properties accompanying the phase change is recorded. A phase change type optical recording medium characterized in that the recording is reproduced by utilizing a change. The phase change type optical recording medium of the present invention may have a light reflection layer.
前記の目的を達成するために本発明は、 また、 少なくとも、 非晶質状態にある 前記結晶性有機高分子化合物からなる光記録層に、 前記結晶性有機高分子化合物 からなる光記録層の表面から内部へ浸透することのできる有機低分子化合物を気 体分子として作用させることによって前記結晶性有機高分子化合物を非晶質状態 から結晶状態へ相変化させる工程を有することを特徴とする相変化型光記録媒体 の製造方法を提供する。 図面の簡単な説明 図 1は、 本発明の光記録媒体の構成を示す断面図である。 In order to achieve the above-mentioned object, the present invention provides at least an optical recording layer made of the crystalline organic polymer compound in an amorphous state, and a surface of the optical recording layer made of the crystalline organic polymer compound. Phase changing the crystalline organic high molecular compound from an amorphous state to a crystalline state by causing a low molecular weight organic compound capable of penetrating from inside to the inside as a gas molecule. Provided is a method for manufacturing a type optical recording medium. BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a cross-sectional view showing the configuration of the optical recording medium of the present invention.
図 2は、 本発明の実施例 1、 2に記載の光記録媒体作製方法における光導波路 作製装置の概略を示す断面図である。  FIG. 2 is a cross-sectional view schematically showing an optical waveguide manufacturing apparatus in the optical recording medium manufacturing method described in Examples 1 and 2 of the present invention.
図 3は、 本発明の実施例 3、 4に記載の光記録媒体作製方法における光導波路 作製装置の概略を示す断面図である。  FIG. 3 is a cross-sectional view schematically illustrating an optical waveguide manufacturing apparatus in the optical recording medium manufacturing method according to the third and fourth embodiments of the present invention.
図 4は、 本発明の実施例 5の光記録媒体作製方法における光導波路作製装置の 概略を示す断面図である。 発明を実施するための最良の形態  FIG. 4 is a cross-sectional view schematically showing an optical waveguide manufacturing apparatus in the optical recording medium manufacturing method according to the fifth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の実施の実施の形態について、 図面に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
本発明では、 結晶性有機高分子化合物として下記の一般式 (I ) で表されるポ リカーポネ一ト系樹脂が好適に用いられる。  In the present invention, a polycarbonate resin represented by the following general formula (I) is preferably used as the crystalline organic polymer compound.
一 [ー0 - φ Α - X - φ Β— Ο— 0 (= 0) 一] η - … ( I ) Position [over 0 - φ Α - X - φ Β - Ο- 0 (= 0) one] η - ... (I)
(ここで、 Φ Αおよび φ Βは各々 2価の芳香族炭化水素残基を表し、 Xは、 酸素 残基一 Ο—、 硫黄残基— S—、 スルホン残基〉 S =〇、 カルポキシ残基 > C = O、 または、 アルキレン型炭化水素残基〉 C R i R 2を表し、 R 1および R 2は水素原 子または各々置換基を有しても良い炭素数 1から 1 8のアルキル基を表し、 R 1 および R 2は互いに結合して炭化水素環を形成しても良い。 ) (Here, beta [Phi Alpha and φ represent each a divalent aromatic hydrocarbon residue, X represents an oxygen ZanKiichi o-, sulfur residues - S-, sulfonate residues> S = 〇, Karupokishi remaining Group> C = O or an alkylene hydrocarbon residue> represents CR i R 2 , wherein R 1 and R 2 are a hydrogen atom or an alkyl group having 1 to 18 carbon atoms which may have a substituent. Wherein R 1 and R 2 may combine with each other to form a hydrocarbon ring.)
ポリカーボネート系樹脂 (以下、 「P C」 と略記する) は、 主鎖中に炭酸エス テル結合一 O— R— O— C O—をもつ線状高分子であり、 寸法安定性、 透明性が 良く、 特に耐衝擊性にすぐれている。 各種の成形物とくにエンジニアリングブラ スチック、 フィルムなどに利用される。 P Cは上記性質を利用して光記録メディ ァの透明支持体として広く用いられている。 我々はこの P Cに有機低分子化合物 の蒸気を作用させることによって、 有機低分子化合物の蒸気に曝露された P Cの 表面のみが結晶化することを見い出した。 有機低分子化合物の液体を P Cに直接 作用させても P Cの結晶化を起こすことはできるが、 結晶化の進行の制御、 特に 表面各位置における均一な結晶化の進行を制御することが容易でない。 すなわち、 有機低分子化合物を大気圧下または減圧下で昇華または蒸発させて気体とした後、 P C表面に作用させることが好ましい。 また、 P Cを昇温することによって結晶 化を加速することができる。 Polycarbonate resin (hereinafter abbreviated as “PC”) is a linear polymer having an ester carbonate bond O—R—O—CO— in the main chain, and has good dimensional stability and transparency. In particular, it has excellent impact resistance. Used for various molded products, especially engineering plastics and films. PC is widely used as a transparent support for optical recording media utilizing the above properties. We found that by applying the vapor of the low molecular weight compound to the PC, only the surface of the PC exposed to the vapor of the low molecular weight compound crystallized. PC crystallization can occur even when a liquid of an organic low-molecular compound is directly applied to PC, but it is not easy to control the progress of crystallization, especially the progress of uniform crystallization at each position on the surface. . That is, it is preferable that the organic low molecular weight compound is sublimated or evaporated under atmospheric pressure or reduced pressure to form a gas and then act on the PC surface. Also, by raising the temperature of the PC, Can be accelerated.
P Cに作用させる有機低分子化合物の種類を変えて種々実験した結果、 P Cの 結晶化の進行には、 有機低分子化合物の分子の大きさと P Cの自由体積とが密接 に関係していることがわかった。 すなわち、 有機低分子化合物が P Cを溶解する 良溶媒である場合は結晶化を発現することはできないこと、 一方、 P Cを溶解さ せず自由空間に侵入し、 P C主鎖どうしに潤滑性を生じさせる程度の分子体積を 有する有機低分子化合物は P Cの結晶化を円滑に進行させることを見い出した。  As a result of various experiments in which the type of organic low-molecular compound acting on PC was changed, it was found that the molecular size of the organic low-molecular compound and the free volume of PC are closely related to the progress of crystallization of PC. all right. In other words, if the organic low molecular weight compound is a good solvent that dissolves PC, it cannot exhibit crystallization.On the other hand, it penetrates into free space without dissolving PC and produces lubricity between PC main chains. It has been found that a low molecular weight organic compound having a molecular volume that allows the crystallization of PC to proceed smoothly.
P Cを圧力および温度を制御可能な密閉容器内に置き、 有機低分子化合物の蒸 気を作用させる場合、 温度の下限は P C中に有機低分子化合物が浸透して構成さ れる組成物のガラス転移温度であり、 温度の上限は該組成物の融点であり、 これ らの温度において、 容器内の圧力は有機低分子化合物の飽和蒸気圧以下とする必 要がある。  When the PC is placed in a closed container with controllable pressure and temperature and the vapor of the organic low molecular weight compound is allowed to act, the lower limit of the temperature is the glass transition of the composition composed of the organic low molecular weight compound penetrating into the PC. Temperature, and the upper limit of the temperature is the melting point of the composition. At these temperatures, the pressure in the container must be equal to or lower than the saturated vapor pressure of the low-molecular organic compound.
P cの結晶化は有機低分子化合物の浸透により、 光記録層の表面から内部へと 進行する。 表面からの進行程度すなわち結晶化 P Cの厚さは、 有機低分子化合物 気体の曝露時間、 温度および圧力によって制御可能であり、 光記録媒体として用 いる場合は 1〜 2 0 0 0 n mの厚さが必要であり、 好ましくは 1 0〜1 0 0 n m である。 上記結晶化層の厚さは気体分子にもよるが、 2, 2 ' ージフエニルプロ パンを曝露した場合、 温度を 1 0 0〜 1 2 0 °Cに、 圧力を 1 0— 4パスカル以下 の時、 1 0〜6 0分間の曝露時間で達成される。 The crystallization of Pc proceeds from the surface to the inside of the optical recording layer due to the permeation of the organic low molecular weight compound. The degree of progress from the surface, that is, the thickness of the crystallized PC, can be controlled by the exposure time, temperature and pressure of the organic low-molecular compound gas, and the thickness is 1 to 200 nm when used as an optical recording medium. Is required, and it is preferably 10 to 100 nm. The thickness of the crystallized layer depends on gas molecules, but when exposed to 2,2'-diphenylpropane, when the temperature is 100 to 120 ° C and the pressure is 10 to 4 Pascal or less, Achieved with an exposure time of 10 to 60 minutes.
本発明の光記録媒体の構成として、 信号光 (プローブ光) が光記録媒体を透過 する透過型の場合、 最も基本的な構造では、 非晶質 P Cの表面を結晶化させて構 成される 「光透過性支持体 (非晶質 P C) Z光記録層 (結晶性 P C) 」 という構 成が挙げられる。 更に、 上記基本構造に保護膜、 酸化防止膜、 オーバーコート膜 なども適宜加えられる。  When the optical recording medium of the present invention is of a transmission type in which signal light (probe light) passes through the optical recording medium, the most basic structure is constituted by crystallizing the surface of an amorphous PC. A configuration called “light-transmitting support (amorphous PC) Z optical recording layer (crystalline PC)” may be mentioned. Further, a protective film, an antioxidant film, an overcoat film, and the like may be appropriately added to the basic structure.
信号光 (プローブ光) が光記録媒体を透過後、 反射して反射光を検出する反射 型の場合、 最も基本的な構造では、 光透過性支持体 (非晶質 P C ) /光記録層 In the case of the reflection type, in which signal light (probe light) is transmitted through an optical recording medium and then reflected to detect reflected light, the most basic structure is a light-transmitting support (amorphous PC) / optical recording layer
(結晶性 P C) Z光反射層が挙げられ、 更に、 上記基本構造に保護膜、 酸化防止 膜、 オーバーコート膜なども適宜加えられる。 光反射層の材質としてはアルミ二 ゥム、 アルミニウム ·クロム合金、 アルミニウム 'チタン合金、 銀、 金など、 光 反射率の高い金属が好ましく、 これら金属からなる光反射膜は、 蒸着法あるいは スパッタリング法によって形成される。 (Crystalline PC) A Z light reflection layer is exemplified. Further, a protective film, an antioxidant film, an overcoat film, and the like are appropriately added to the basic structure. The light reflecting layer may be made of aluminum, aluminum-chromium alloy, aluminum-titanium alloy, silver, gold, etc. Metals having high reflectivity are preferable, and the light reflecting film made of these metals is formed by a vapor deposition method or a sputtering method.
本発明で用いられる P Cは前記 (I) に表せる化学式を有するものであり好ま しくはアルキレン型炭化水素残基を有するものであり R R2が、 それぞれ、 メチルとメチル、 メチルとェチル、 ェチルとェチルである。 また、 じ!^1!^2 の: 1と R 2が結合して、 例えばシクロへキサン環を形成したものでも良い。 更 に具体的には、 (^ぉょび が 一フェニレン、 R1および R 2がメチル基のビ スフエノールー A ·ポリカーボネートを好適に用いることができる。 The PC used in the present invention has the chemical formula represented by the above (I), and preferably has an alkylene-type hydrocarbon residue, and RR 2 is methyl and methyl, methyl and ethyl, and methyl and ethyl, respectively. It is. Also! ^ 1 ^ 2: 1 and R 2 are bonded, may for example those to form a cyclohexane ring. More specifically, (Bisphenol-A.polycarbonate in which R 1 and R 2 are methyl groups can be suitably used.)
結晶型と非晶質型のいずれにおいても安定に存在可能な有機高分子化合物とし ては、 ポリカーボネート系樹脂の他に、 テレフタル酸などの芳香族ジカルボン酸 とエチレンダリコールなどの 2価アルコールからなるポリエステル、 例えばポリ エチレンテレフタレートを挙げることができる。  Organic polymer compounds that can be stably present in both crystalline and amorphous forms include polycarbonate resins, aromatic dicarboxylic acids such as terephthalic acid, and dihydric alcohols such as ethylene dalicol. Polyester, for example, polyethylene terephthalate can be mentioned.
本発明の光記録媒体の基本構成概略を断面図として図 1 (a) , 図 1 (b) に 示す。 図 1 (a) に示すように、 透過型の場合、 PC基板 10上に結晶化 PC層 20が存在し、 その上にオーバーコート層 30を設けている。 また、 図 1 (b) に示すように、 反射型の場合は透過型と同様に PC基板 11上に結晶化 PC層 2 1が存在し、 その上に反射膜 41が設けられ、 更に、 その上にオーバーコート層 31を設けている。  1 (a) and 1 (b) are cross-sectional views schematically showing the basic structure of the optical recording medium of the present invention. As shown in FIG. 1A, in the case of the transmission type, a crystallized PC layer 20 is present on a PC substrate 10, and an overcoat layer 30 is provided thereon. Further, as shown in FIG. 1 (b), in the case of the reflection type, a crystallized PC layer 21 is present on the PC substrate 11 as in the case of the transmission type, and a reflection film 41 is provided thereon. An overcoat layer 31 is provided thereon.
本発明の相変化型光記録媒体への記録および読み出しに用いられる光源は特に 制限はないが、 記録密度を光の回析限界まで高めるためには、 レーザー光を用い ることが好ましい。 また、 本発明の利点として、 光源の波長として、 非晶質 PC を透過する波長の光であれば、 紫外線、 可視光線、 および赤外線のいずれをも、 好適に用いることができる。 周知のように非晶質 P Cは 350 nm以上の光に 8 0%以上の透過率を示すため、 350 nm以上の光であれば好適である。 色素を 分散する記録媒体であれば 350 nm〜色素の吸収波長が、 色素非分散の媒体で あれば、 より熱に変化しやすい近赤外から赤外光 (600〜1000 nm) がよ り好ましい。  The light source used for recording and reading on the phase-change optical recording medium of the present invention is not particularly limited, but it is preferable to use a laser beam in order to increase the recording density to the diffraction limit of light. Further, as an advantage of the present invention, any of ultraviolet light, visible light, and infrared light can be suitably used as long as the wavelength of the light source is light having a wavelength that transmits amorphous PC. As is well known, amorphous PC exhibits a transmittance of 80% or more to light of 350 nm or more, so that light of 350 nm or more is suitable. If the recording medium disperses the dye, the absorption wavelength of the dye is 350 nm or more.If the medium does not disperse the dye, the near-infrared to infrared light (600 to 1000 nm), which easily changes to heat, is more preferable. .
本発明の相変化型光記録媒体への記録は次のように行われる。 すなわち、 PC 基板上に設けられた光記録層中の結晶化 P C層に焦点を合わせて収束された記録 書き込み光 (レーザー光) が照射されると、 結晶化 P Cによる多重反射および散 乱によって、 光照射部分の温度が上昇する。 ここで、 記録書き込み光のパワーお よび照射時間が充分あれば、 光照射部分の温度は P Cの融点を超えるまで上昇し た後、 室温まで低下し、 その過程で結晶化部分は非晶質化し、 透明化する。 この 透明な非晶質部分が記録を表すピットとなる。 記録の読み出し光としては光照射 部分の温度上昇が P Cの融点を遙かに下回るような低パワー光が用いられる。 こ こで、 記録読み出し光を偏光とし、 読み出し光の受光部がこの偏光を正しく受光 できるように調整すれば、 低パワー光であっても C N比を高めることができる。 光記録媒体の構成が透過型の場合には、 上記の透明なピットを透過した読み出し 光を、 また、 光記録媒体の構成が反射型の場合には、 上記の透明なピットを透過 した後、 反射層で反射された読み出し光を、 それぞれ受光することによって記録 ピットを検出することが可能となる。 ここで、 記録ピットを読み出す光が、 非記 録部分、 すなわち、 P Cの結晶化部分の温度を上昇させて P Cの融点を超えるよ うなことがあると、 前記記録ピットは破壌される。 このように好ましくない事態 は、 光記録媒体の同一箇所を繰り返して読み取る場合 (例えば、 動画記録を行つ た光記録媒体から 「静止画像」 を抽出する場合) に惹起される懸念がある。 この ように読み出し光による記録ピット破壊を防ぐためには、 光記録を行うために必 要な光 (記録書き込み光) パワーの最低値よりも読み取り光のパワーを 1 Z 2以 下、 好ましくは 1 Z 5以下、 更に好ましくは 1 Z 1 0以下とすれば良い。 Recording on the phase-change optical recording medium of the present invention is performed as follows. That is, the recording focused on the crystallized PC layer in the optical recording layer provided on the PC substrate. When the writing light (laser light) is irradiated, the temperature of the light irradiated part rises due to multiple reflection and scattering by the crystallized PC. Here, if the power of the recording / writing light and the irradiation time are sufficient, the temperature of the light-irradiated portion rises above the melting point of PC, then drops to room temperature, and in the process, the crystallized portion becomes amorphous. , Be transparent. This transparent amorphous portion becomes a pit representing recording. As the reading light for recording, low-power light is used such that the temperature rise in the light-irradiated portion is far below the melting point of the PC. Here, if the recording / reading light is polarized and adjusted so that the light receiving section of the reading light can correctly receive the polarized light, the CN ratio can be increased even with low power light. When the configuration of the optical recording medium is a transmission type, the readout light transmitted through the transparent pit is transmitted. When the configuration of the optical recording medium is a reflection type, the readout light is transmitted through the transparent pit. The recording pits can be detected by receiving the read light reflected by the reflection layer. Here, if the light for reading the recording pits raises the temperature of the non-recording part, that is, the crystallized part of the PC, and may exceed the melting point of the PC, the recording pit is broken. Such an undesired situation may be caused when the same portion of the optical recording medium is repeatedly read (for example, when a “still image” is extracted from an optical recording medium on which a moving image has been recorded). In order to prevent the recording pit from being destroyed by the reading light, the reading light power should be 1 Z 2 or less, preferably 1 Z, below the minimum value of the light (recording / writing light) power required for optical recording. 5 or less, more preferably 1 Z 10 or less.
本発明の光記録媒体の製造方法を例示すると、 例えば次の 4つの製造方法が挙 げられる。  Examples of the method for manufacturing the optical recording medium of the present invention include, for example, the following four manufacturing methods.
( 1 ) P Cの射出成形を行い、 その際スタンパーからランド &グループパター ンを表面に転写し、 そのパターンを壌さないように、 本発明の方法によって P C の表面を有機低分子化合物の蒸気によって処理して、 結晶化する。 その後、 反射 型の場合は、 例えばアルミニウム製光反射層をスパッタリング法を用いて形成し、 更に透過型の場合には結晶化 P C層上に、 また反射型の場合には光反射層上に、 保護層を紫外線硬化樹脂で塗工形成し、 所望の光記録媒体を作製する。  (1) Injection molding of PC, transfer land & group pattern from stamper to the surface at this time, so that the surface of PC is vaporized by organic low-molecular compound vapor by the method of the present invention so as not to mess up the pattern. Process and crystallize. After that, in the case of the reflection type, for example, an aluminum light reflection layer is formed by a sputtering method, and further in the case of the transmission type, on the crystallized PC layer, and in the case of the reflection type, on the light reflection layer. The protective layer is formed by coating with an ultraviolet curable resin to produce a desired optical recording medium.
( 2 ) P Cの射出成形の際、 スタンパーからランド &グループパターンを表面 に転写する。 そのパターンを壊さないように、 本発明の方法によって P Cの表面 を有機低分子化合物の蒸気によって処理して、 結晶化する。 その後、 前記有機低 分子化合物の替わりに P Cと親和性のある昇華性色素の蒸気によって P C表面を 処理 (色素含浸処理) し、 反射型の場合は、 アルミニウム製光反射層をスパッタ リングで形成する。 次に、 上述同様、 透過型の場合には結晶化 P C層上に、 また 反射型の場合には光反射層上に、 保護層を紫外線硬化樹脂で塗工形成し、 所望の 光記録媒体を作製する。 (2) Transfer the land & group pattern from the stamper to the surface during PC injection molding. In order not to break the pattern, the method of the present invention Is treated with the vapor of an organic low-molecular compound to crystallize. After that, the surface of the PC is treated with a vapor of a sublimable dye having an affinity for PC instead of the organic low molecular weight compound (dye impregnation treatment). In the case of a reflection type, an aluminum light reflection layer is formed by sputtering. . Next, as described above, the protective layer is coated and formed with an ultraviolet curable resin on the crystallized PC layer in the case of the transmission type, and on the light reflection layer in the case of the reflection type, and the desired optical recording medium is formed. Make it.
( 3 ) P Cを射出成形し、 スタンパーからランド &グループパターンを表面に 転写する。 前記パターンを壊さないように P Cと親和性のある昇華性色素の蒸気 によって P C表面を処理 (色素含浸処理) して表面を着色し、 次に本発明の方法 によって P Cの表面を有機低分子化合物の蒸気によって処理して、 P Cの表面を 結晶化する。 その後、 反射型の場合、 アルミニウム製光反射層をスパッタリング で形成する、 更に、 透過型の場合には結晶化 P C層上に、 また反射型の場合には 光反射層上に、 保護層を紫外線硬化樹脂で塗工形成して所望の光記録媒体を作製 する。  (3) PC is injection molded, and the land & group pattern is transferred from the stamper to the surface. The surface of the PC is treated (dye-impregnated) with a vapor of a sublimable dye having an affinity for PC so as not to break the pattern, and the surface is colored. Crystallizes the surface of the PC. Then, in the case of the reflection type, an aluminum light reflection layer is formed by sputtering, and in the case of the transmission type, on the crystallized PC layer, in the case of the reflection type, on the light reflection layer, and in the case of the reflection type, the protective layer is made of ultraviolet light. A desired optical recording medium is produced by coating with a cured resin.
( 4 ) P Cを射出成形して、 スタンパーからランド &グルーブバターンを表面 に転写後、 前記パターンを壌さないように本発明の方法によって P Cの表面を有 色の有機低分子化合物 (色素) の蒸気によって処理を施して、 P C表面層の着色 と同時に結晶化を行う。 その後、 反射型の場合はアルミニウム製光反射層をスパ ッタリングで形成し、 更に、 上述同様、 透過型の場合には結晶化 P C層上に、 ま た反射型の場合には光反射層上に、 保護層を紫外線硬化樹脂で塗工形成して所望 の光記録媒体を作製する。 ここで、 P C表面層を着色すると同時に着色すること のできる、 有色の有機低分子化合物として、 例えば、 2—メチルー 4一二トロア 二リン (黄色) を用いることができる。  (4) After injection molding the PC and transferring the land and groove pattern from the stamper to the surface, the surface of the PC is formed of a colored organic low-molecular compound (dye) by the method of the present invention so as not to swell the pattern. It is treated with steam to crystallize the PC surface layer simultaneously with coloring. Thereafter, an aluminum light reflecting layer is formed by sputtering in the case of the reflection type, and on the crystallized PC layer in the case of the transmission type, and on the light reflection layer in the case of the reflection type, as described above. Then, the protective layer is coated and formed with an ultraviolet curable resin to produce a desired optical recording medium. Here, as a colored organic low-molecular-weight compound that can simultaneously color the PC surface layer, for example, 2-methyl-4,12-throaline (yellow) can be used.
非晶質の P Cを結晶化させる有機低分子化合物の具体例として、 まず、 アルコ ール系化合物を挙げることができ、 更に具体的には炭素数が 8以下の直鎖状もし くは分岐状アルコールが挙げられ、 好ましくは、 メタノール、 エタノール、 n - プロピルアルコール、 2—プロピルアルコール、 n—ブタノ一ノレである。 同様に ケトン系として、 炭素数が 8以下の直鎖状もしくは分岐状ケトンが挙げられ、 好 ましくは、 アセトン、 メチルェチルケトン、 ジェチルケトン、 メチルプロピルケ トンが挙げられる。 同様にセルソルブ系として、 炭素数が 8以下の直鎖状もしく は分岐状セルソルブが挙げられ、 好ましくはメトキシエタノール、 エトキシエタ ノールである。 同様にエステル系として、 炭素数が 8以下の直鎖状もしくは分岐 状エステルが挙げられ、 好ましくは酢酸ェチル、 酢酸プロピル、 酢酸プチル、 プ 口ピオン酸メチル、 プロピオン酸ェチル、 プロピオン酸プロピルなどである。 同 様に有機酸系として炭素.数が 8以下の直鎖状もしくは分岐状有機酸が挙げられ、 好ましくはギ酸、 酢酸、 プロピオン酸、 ブタン酸が良い。 更に、 同様に芳香族有 機低分子化合物としては、 炭素数が 8以上の直鎖状アルキルもしくはは炭素数が 1 2以上の分岐状アルキルを置換基として有しないものが挙げられる。 好ましく は、 ベンゼン、 キノン、 ヒ ドロキノン、 ビフエ二ノレ、 2—メチノレビフエ二ノレ、 3 ーメチノレビフエニル、 4ーメチノレビフエ二ノレ、 ナフタレン、 1ーメチノレナフタレ ン、 2—メチルナフタレン、 3—メチルナフタレン、 4ーメチルナフタレン、 2, 2—ジフエ二ノレプロパン、 2, 2—ジフエニノレブタン、 3 , 3—ジフエ二ノレペン タン、 ビチォフェン、 2—メチノレビチオフ ン、 3—メチノレビチォフェン、 4一 メチルビチォフェン、 2, 2, 一ビビリジン、 3—メチル _ 2, 2, —ビビリジ ン、 4ーメチルー 2, 2, 一ビビリジン、 5—メチル一 2 , 2 ' —ビビリジン、 6—メチル一 2, 2, 一ビビリジン、 ベンゾフラン、 ベンゾチアゾール、 ベンズ ォキサゾール、 インデン、 インダノン、 ベンズキノン、 キノリン、 フルオレン、 力ルバゾールなどが挙げられる。 Specific examples of organic low-molecular compounds that crystallize amorphous PC include alcohol-based compounds, and more specifically, linear or branched compounds having 8 or less carbon atoms. Alcohols are mentioned, preferably, methanol, ethanol, n-propyl alcohol, 2-propyl alcohol and n-butanol. Similarly, ketones include linear or branched ketones having 8 or less carbon atoms, preferably acetone, methylethylketone, getylketone, methylpropylketone. Tons. Similarly, examples of cellosolves include linear or branched cellosolves having 8 or less carbon atoms, preferably methoxyethanol and ethoxyethanol. Similarly, examples of the ester system include a linear or branched ester having 8 or less carbon atoms, preferably ethyl acetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate, propyl propionate and the like. . Similarly, examples of the organic acid system include a linear or branched organic acid having 8 or less carbon atoms, and formic acid, acetic acid, propionic acid, and butanoic acid are preferable. Further, similarly, examples of the aromatic organic low-molecular compound include those having no straight-chain alkyl having 8 or more carbon atoms or branched alkyl having 12 or more carbon atoms as a substituent. Preferably, benzene, quinone, hydroquinone, bipheninole, 2-methinolebiphenyl, 3-methinolebiphenyl, 4-methinolebiphenyl, naphthalene, 1-methinolenaphthalene, 2-methylnaphthalene, and 3-methyl Naphthalene, 4-methylnaphthalene, 2,2-dipheninolepropane, 2,2-dipheninolebutane, 3,3-dipheninolepentane, bithiophene, 2-methinolevitione, 3-methinolebitiophen, 4-1 Methylbithiophene, 2,2,1-biviridine, 3-methyl_2,2, -biviridine, 4-methyl-2,2,1-biviridine, 5-methyl-1,2,2'-viviridine, 6-methyl-1,2, 2, Bibiridin, benzofuran, benzothiazole, benzoxazole, indene, indanone, benzquinone, quinoline, Oren, such as force carbazole, and the like.
また、 有色の有機低分子化合物 (色素) としてはシァニン系、 フタロシアニン 系、 キノン系、 スヮリゥム系、 ァズレニウム系、 チオール錯塩系、 メロシアニン 系などの色素が挙げられる。  Examples of the colored organic low-molecular compound (dye) include dyes of cyanine type, phthalocyanine type, quinone type, sulfur type, azurenium type, thiol complex salt type, merocyanine type and the like.
また、 P Cにメチル二トロア二リン類の蒸気を作用させると、 P Cは黄色に着 色されると同時に結晶化することを見い出した。 メチル二トロアニリン類の具体 例としては、 2—メチルー 4—二 ト ロアニリンゃ 4ーメチノレ一 3 ト ロアニリ ンを好適に用いることができる。  It was also found that when a vapor of methyl ditroaline was applied to PC, the PC was colored yellow and crystallized at the same time. As a specific example of methylnitroaniline, 2-methyl-4-nitroaniline ゃ 4-methinole-13-toroaniline can be suitably used.
言うまでもなく、 有色の有機低分子化合物によって、 着色と同時に結晶化され た P Cからなる光記録層は、 該有機化合物 (色素) の光吸収波長の記録光によつ て、 効率良く記録ピットを書き込むことができる。 また、 読み取り光の波長を、 該有機化合物 (色素) の光吸収波長とは異なる波長とし、 記録光と読み取り光の 波長を別にすることによって、 読み取りによる記録ピット破壊の可能性を極めて 低くすることも可能となる。 実施例 Needless to say, the optical recording layer made of PC crystallized and simultaneously crystallized with a colored organic low-molecular compound writes recording pits efficiently with recording light having a light absorption wavelength of the organic compound (dye). be able to. In addition, the wavelength of the reading light is By setting the wavelength different from the light absorption wavelength of the organic compound (dye) and using different wavelengths of the recording light and the reading light, the possibility of destruction of the recording pit due to reading can be extremely reduced. Example
[実施例 1 ]  [Example 1]
図 2は本実施例で用いられる光記録媒体作製装置の概略構成を示す断面図であ る。 スタンパーによって、 深さ 80 n m、 幅 500 nm、 ピッチ 1600 nmの 案内溝 (グループ) を有する厚さ 1. 20mm、 外径 120mm、 内径 15 mm の PC基板 300を作製した。 一方、 有機低分子化合物として 2, 2—ジフエ二 ルプロパンを多孔質スポンジにしみ込ませてなる気化源 240 (ウレタンスポン ジ、 例えば厚さ 5mm、 横 10mm、 縦 400 mm) を作製した。 PC基板 30 0は密閉式容器 1 10に設置され、 気化源 240は別の密閉式容器 120に設置 されている。 そして、 この二つの密閉式容器 110, 120は配管とパルプ 19 5によって接続されている。 ここで、 PC基板 300が設置されている密閉式容 器 110の外壁はステンレスまたはアルミニウムからなり、 基板の出し入れのた めに上下分割可能な構造 (図示せず) とした。  FIG. 2 is a cross-sectional view illustrating a schematic configuration of an optical recording medium manufacturing apparatus used in this example. Using a stamper, a PC board 300 with a thickness of 1.20 mm, an outer diameter of 120 mm, and an inner diameter of 15 mm having a guide groove (group) with a depth of 80 nm, a width of 500 nm, and a pitch of 1600 nm was manufactured. On the other hand, a vaporization source 240 (urethane sponge, eg, 5 mm thick, 10 mm wide, 400 mm long) was prepared by impregnating 2,2-diphenylpropane as a low-molecular organic compound into a porous sponge. The PC board 300 is provided in a closed container 110, and the vaporization source 240 is provided in another closed container 120. The two sealed containers 110 and 120 are connected by a pipe and pulp 195. Here, the outer wall of the sealed container 110 on which the PC board 300 is installed is made of stainless steel or aluminum, and has a structure (not shown) that can be vertically divided for taking in and out the board.
密閉式容器 1 10の内部 100は真空パルプ 190および真空配管系 130を 経由して、 真空排気系 150に接続されている。 そして、 光記録媒体の作製の際 に、 室温 (25°C) 下において密閉式容器 110内部の圧力が 10— 4パスカル 以下になるまで排気を行ったのち真空パルプ 190を閉じる。 これによつて密閉 式容器 110は密閉される。  The inside 100 of the sealed container 110 is connected to a vacuum exhaust system 150 via a vacuum pulp 190 and a vacuum piping system 130. Then, when producing the optical recording medium, the vacuum pulp 190 is closed after evacuation is performed at room temperature (25 ° C.) until the pressure inside the sealed container 110 becomes 10-4 Pascal or less. Thereby, the closed container 110 is closed.
加熱手段として用いられる気化源基板ヒーター 410、 樹脂基板ヒーター 40 0および真空パルプヒーター 790は、 例えば真空仕様のシーズ電気発熱線を埋 め込んだアルミニゥムからなるものを用いることができる。 伝熱性の高い材質か らなるヒーターを隙間なく設置することで密閉式容器 110の内部 100および 真空パルプ 190の部分を均一に加熱することができる。  As the vaporization source substrate heater 410, the resin substrate heater 400, and the vacuum pulp heater 790 used as heating means, for example, those made of aluminum in which a sheathed electric heating wire of a vacuum specification is embedded can be used. By installing a heater made of a material having high heat conductivity without gaps, the inside 100 of the closed container 110 and the portion of the vacuum pulp 190 can be uniformly heated.
本実施例の場合、 真空パルプ 190を用いて密閉式容器 110の内部 100を 減圧にしたのち真空パルプ 190を閉じ、 次いで樹脂基板ヒーター 400によつ て加熱を行い全体が 90°Cになるように温度制御を行った。 また、 気化源 240 が载置され密閉されている密閉式容器 120も同様に気化源基板ヒーター 41 0 を用いて加熱し、 PC基板 300が設置してある密閉式容器 1 10の設定温度よ りも高温に加熱した (例えば 1 00°C) 。 その後二つの密閉式容器 1 10, 1 2 0を接続してあるパルプ 195を開け、 8時間設定温度で保持した。 その後密閉 式容器 1 10, 1 20の内部温度を 25 °Cまで徐々に低下させた。 次いで、 密閉 式容器 1 10の内部 1 00を大気圧に戻し、 PC基板 300を取り出した。 得ら れた PC基板 300の断面を走査顕微鏡により観察した結果、 表面から深さ 1 0 nmまで結晶化していることおよび、 グループが変形してないことを確認した。 次にこのようにして得られた記録層の上に蒸着によって反射層 (反射膜) である アルミニウムに形成した。 更にこの上に紫外線硬化樹脂より、 保護層 (オーバー コート層) 5 μπιを設けて所望の光ディスクを作製した。 この光記録媒体の反射 率は 73%であり、 波長 785 nmの半導体レーザーを利用して線速度 1. 4m / s e cで EFM— CDフォーマツト信号を記録した結果、 最適記録レーザーパ ヮ一が 1 OmWで記録が可能であった。 次にこの信号を CDプレーヤ一によりレ 一ザ一パワーを 0. 5 mWとして再生を行った結果、 得られた信号の CN比は良 好であった。 In the case of the present embodiment, the interior 100 of the sealed container 110 is evacuated using a vacuum pulp 190, and then the vacuum pulp 190 is closed. The temperature was controlled so that the whole temperature was 90 ° C. Also, the sealed container 120 in which the vaporization source 240 is placed and sealed is heated using the vaporization source substrate heater 410 in the same manner, and the temperature is set according to the set temperature of the sealed container 110 in which the PC board 300 is installed. Was also heated to a high temperature (eg, 100 ° C). Thereafter, the pulp 195 connecting the two closed containers 110, 120 was opened and kept at the set temperature for 8 hours. After that, the internal temperature of the closed vessels 110 and 120 was gradually lowered to 25 ° C. Next, the inside 100 of the sealed container 110 was returned to the atmospheric pressure, and the PC substrate 300 was taken out. As a result of observing a cross section of the obtained PC substrate 300 with a scanning microscope, it was confirmed that the PC substrate 300 was crystallized from the surface to a depth of 10 nm and that the group was not deformed. Next, a reflective layer (reflective film) was formed on aluminum by vapor deposition on the recording layer thus obtained. Further, a protective layer (overcoat layer) of 5 μπι was provided thereon from an ultraviolet curable resin to produce a desired optical disk. The reflectivity of this optical recording medium is 73%, and as a result of recording an EFM-CD format signal at a linear velocity of 1.4 m / sec using a semiconductor laser with a wavelength of 785 nm, the optimal recording laser power is 1 OmW. Recording was possible. Next, this signal was reproduced by a CD player with a laser power of 0.5 mW. As a result, the CN ratio of the obtained signal was good.
[比較例 1 ] [Comparative Example 1]
実施例 1と同様にスタンパーによってグルーブを形成した P C基板の上に蒸着 によってアルミニウムの反射層を形成し、 紫外線硬化樹脂により保護層を作製し て、 比較する光ディスクを作製した。 この光ディスクに波長 785 nmの半導体 レーザーを利用して線速度 1. 4m/s e cで E FM— C Dフォーマツト信号を 記録しょうと試みたが、 何も記録できないことがわかった。  As in Example 1, a reflective layer of aluminum was formed by vapor deposition on a PC substrate having grooves formed by a stamper, and a protective layer was formed of an ultraviolet curable resin. I tried to record an EFM-CD format signal on this optical disc at a linear velocity of 1.4 m / sec using a semiconductor laser with a wavelength of 785 nm, but found that nothing could be recorded.
[実施例 2] [Example 2]
実施例 1と同様に PC基板を作製し、 表面を結晶化させる有機低分子化合物と して、 ビフヱニルを用いた。 P Cの結晶化処理時の密閉式容器 1 10の内部 10 0の温度と結晶化処理時間はそれぞれ 100°Cと 1 2時間として、 また、 気化源 240が載置されている密閉式容器 120も同様に加熱し、 PC基板 300が設 置してある密閉式容器 1 1 0の設定温度よりも高温に加熱した (例えば 1 1 0°C) 以外、 他の工程は実施例 1と同様にした。 結果として EFM— CDフォー マツト信号の記録が可能であり、 得られた光記録媒体を CDプレ一ヤーによって 再生したところ信号の CN比は良好であった。 A PC substrate was produced in the same manner as in Example 1, and biphenyl was used as an organic low-molecular compound for crystallizing the surface. The temperature of the inside 100 and the crystallization time of the inside of the sealed container 110 during the crystallization process of PC are 100 ° C and 12 hours, respectively. The sealed container 120 on which 240 is placed is also heated in the same manner, except that it is heated to a temperature higher than the set temperature of the sealed container 110 on which the PC board 300 is placed (for example, 110 ° C). The other steps were the same as in Example 1. As a result, EFM-CD format signals could be recorded. When the obtained optical recording medium was reproduced by a CD player, the CN ratio of the signals was good.
[実施例 3 ] [Example 3]
図 3は本実施例で用いられる光記録媒体作製装置の概略構成を示す断面図であ る。 スタンパーによって、 深さ 80 nm、 幅 500 nm、 ピッチ 1600 nmの 案内溝 (グループ) を有する厚さ 1. 20mm、 外径 120mm、 内径 15 mm の: PC基板 301を作製した。 一方、 有機低分子化合物 (2, 2—ジフヱニルプ 口パン) を多孔質スポンジにしみ込ませた気化源 241 (ウレタンスポンジ、 例 えば厚さ 5mm、 横 10mm、 縦 400mm) を作製した。 PC基板 301は密 閉式容器 11 1に設置され、 気化源 241は別の密閉式容器 121に設置されて いる。 そして、 この二つの密閉式容器 111, 121は配管とパルプ 196によ つて接続されている。 ここで、 P C基板 301が設置されている密閉式容器 11 1の外壁はステンレスまたはアルミニウムからなり、 基板の出し入れのために上 下分割可能な構造 (図示せず) とする。  FIG. 3 is a cross-sectional view illustrating a schematic configuration of an optical recording medium manufacturing apparatus used in the present example. Using a stamper, a PC board 301 with a thickness of 1.20 mm, an outer diameter of 120 mm, and an inner diameter of 15 mm with a guide groove (group) having a depth of 80 nm, a width of 500 nm, and a pitch of 1600 nm was produced. On the other hand, a vaporization source 241 (urethane sponge, for example, 5 mm thick, 10 mm wide, 400 mm long) was prepared by impregnating a low-molecular organic compound (2,2-diphenyl lip pan) with a porous sponge. The PC board 301 is installed in a closed container 111, and the vaporization source 241 is installed in another closed container 121. These two closed containers 111 and 121 are connected by a pipe and pulp 196. Here, the outer wall of the sealed container 111 on which the PC board 301 is installed is made of stainless steel or aluminum, and has a structure (not shown) that can be divided into upper and lower parts for taking in and out of the board.
密閉式容器 1 1 1の内部 101は真空バルブ 191および真空配管系 131を 経由して、 真空排気系 151に接続されており、 光記録媒体の作製の際に、 室温 下において密閉式容器 111内部の圧力が 10 _ 4パスカル以下になるまで排気 を行ったのち真空バルブ 191を閉じる。 これによつて密閉式容器 1 11は密閉 される。  The inside 101 of the sealed container 1 1 1 is connected to a vacuum exhaust system 151 via a vacuum valve 191 and a vacuum piping system 131. Evacuate until the pressure in the chamber falls below 10_4 Pascal, and then close the vacuum valve 191. As a result, the closed container 111 is closed.
加熱手段として用いられる気化源基板ヒーター 411、 樹脂基板ヒーター 40 1および真空バルブヒーター 791は例えば真空仕様のシーズ電気発熱線を埋め 込んだアルミニゥムからなるものを用いることができる。 伝熱性の高い材質から なるヒーターを隙間なく設置することで密閉式容器 1 11の内部 101および真 空パルプ 191の部分を均一に加熱することができる。  As the vaporization source substrate heater 411, the resin substrate heater 401, and the vacuum valve heater 791 used as heating means, for example, those made of aluminum in which a sheathed electric heating wire of a vacuum specification is embedded can be used. By installing a heater made of a material having high heat conductivity without gaps, the inside 101 of the closed container 111 and the portion of the vacuum pulp 191 can be uniformly heated.
本実施例の場合、 バルブ 196, 197を閉じ、 真空パルプ 191を開けて密 閉式容器 1 1 1の内部 101を減圧したのち、 真空パルプ 19 1を閉じ、 次いで 樹脂基板ヒーター 401によって加熱を行い全体が設定温度に 90°Cになるよう に温度制御を行った。 また、 気化源 241が载置され密閉されている密閉式容器 121も同様に気化源基板ヒーター 41 1を用いて加熱し、 PC基板 301が設 置してある密閉式容器 1 1 1の設定温度よりも高温に加熱した (例えば 1 0 0°C) 。 その後二つの密閉式容器 1 1 1, 1 21を接続してあるパルプ 1 96を 開け、 8時間設定温度で保持した。 その後、 パルプ 1 96を閉じ、 一方真空パル プ 1 9 1を開け、 改めて密閉式容器 1 1 1の内部 1 01を真空にした後、 バルブ 197を開け、 更に樹脂基板ヒーター 401を用いて、 D i s p e r s e B 1 u e 14 ( 1, 4一ビス (N-メチルアミノ) アントラキノン) を収納した容 器 1 40と密閉容器 1 1 1の温度を 145 °Cまで徐々に上昇させ、 2時間保持し た。 次いで、 バルブ 1 97を閉じ、 密閉式容器 1 1 1の内部 101を大気圧に戻 し、 P C基板 301を取り出した。 得られた PC基板 301の断面を走査顕微鏡 により観察した結果、 結晶化している部分に D i s p e r s e B l u e 14 (1 , 4 -ビス (Ν-メチルアミノ) アントラキノン) が浸透していることおよ び、 グループが変形してないことを確認した。 次にこのようにして得られた記録 層の上に蒸着によつて反射層であるアルミニウムを形成した。 更にこの上に紫外 線硬化樹脂より、 保護層 5 μπιを設けて所望の光ディスクを作製した。 この光記 録媒体の反射率は 73 %であり、 波長 785 n mの半導体レーザーを利用して線 速度 1. 4m/s e cで EFM— CDフォーマット信号を記録した結果、 最適記 録レーザーパワーが 1 OmWで記録が可能であった。 次にこの信号を CDプレー ヤーによりレーザーパワーを 0. 5 mWとして再生を行った結果、 得られた信号 の C N比は良好であった。 In the case of this embodiment, the valves 196 and 197 are closed, the vacuum pulp 191 is opened, and the valves are closed. After depressurizing the inside 101 of the closed container 111, the vacuum pulp 191 was closed, and then heated by a resin substrate heater 401 to control the temperature so that the entire temperature reached 90 ° C. Similarly, the sealed container 121 in which the vaporization source 241 is placed and sealed is heated using the vaporization source substrate heater 411, and the set temperature of the sealed container 1 1 1 in which the PC board 301 is placed is set. (Eg, 100 ° C.). After that, the pulp 196 connecting the two closed containers 1 1 1 and 1 1 2 was opened and kept at the set temperature for 8 hours. Thereafter, the pulp 196 was closed, while the vacuum pulp 191 was opened, and the inside 101 of the sealed container 111 was evacuated again. Then, the valve 197 was opened, and the resin substrate heater 401 was used to obtain D. The temperature of the container 140 containing isperse B 1 ue 14 (1,4-bis (N-methylamino) anthraquinone) and the temperature of the sealed container 111 were gradually increased to 145 ° C and maintained for 2 hours. Next, the valve 197 was closed, the inside 101 of the sealed container 111 was returned to the atmospheric pressure, and the PC board 301 was taken out. Observation of the cross section of the obtained PC substrate 301 with a scanning microscope showed that Disperse Blue 14 (1,4-bis (Ν-methylamino) anthraquinone) had penetrated into the crystallized portion. , I confirmed that the group was not deformed. Next, aluminum as a reflection layer was formed on the recording layer thus obtained by vapor deposition. Further, a protective layer of 5 μπι was formed thereon from an ultraviolet-curable resin to produce a desired optical disk. The reflectivity of this optical recording medium is 73%, and as a result of recording an EFM-CD format signal at a linear velocity of 1.4 m / sec using a semiconductor laser with a wavelength of 785 nm, the optimum recording laser power is 1 OmW Could be recorded. Next, this signal was reproduced with a laser power of 0.5 mW using a CD player, and the CN ratio of the obtained signal was good.
[実施例 4] [Example 4]
本実施例で用いられる光導波路作製装置の概略構成を示す断面図は実施例 3と 同様、 図 3である。 スタンパーによって、 深さ 80 nm、 幅 500 nm、 ピッチ 1600 nmの案内溝 (グループ) を有する厚さ 1. 20mm、 外径 120mm、 内径 1 5 mmの PC基板 301を作製した。 一方、 有機低分子化合物 (2, 2— ジフエニルプロパン) を多孔質スポンジにしみ込ませた気化源 2 4 1 (ウレタン スポンジ、 例えば厚さ 5 mm、 横 1 0 mm、 縦 4 0 0 mm) を作製した。 P C基 板 3 0 1は密閉式容器 1 1 1に設置され、 気化源 2 4 1は別の密閉式容器 1 2 1 に設置されている。 そして、 この二つの密閉式容器 1 1 1, 1 2 1は配管とパル プ 1 9 6によって接続されている。 ここで、 P C基板 3 0 1が設置されている密 閉式容器 1 1 1の外壁はステンレスまたはアルミニウムからなり、 基板の出し入 れのために上下分割可能な構造 (図示せず) とする。 FIG. 3 is a cross-sectional view showing a schematic configuration of the optical waveguide manufacturing apparatus used in this embodiment, similarly to the third embodiment. Using a stamper, a PC board 301 with a thickness of 1.20 mm, an outer diameter of 120 mm, and an inner diameter of 15 mm with guide grooves (group) 80 nm deep, 500 nm wide and 1600 nm pitch was fabricated. On the other hand, organic low molecular compounds (2, 2— A vapor source 24 1 (urethane sponge, for example, 5 mm thick, 10 mm wide, 400 mm long) in which diphenylpropane) was impregnated into a porous sponge was prepared. The PC board 301 is set in a closed container 1 1 1, and the vaporization source 2 41 is set in another closed container 1 2 1. The two closed containers 1 1 1 and 1 2 1 are connected by piping and pulp 196. Here, the outer wall of the hermetically sealed container 111 on which the PC board 301 is installed is made of stainless steel or aluminum, and has a structure (not shown) that can be vertically divided for inserting and removing the board.
密閉式容器 1 1 1の内部 1 0 1は真空バルブ 1 9 1および真空配管系 1 3 1を 経由して、 真空排気系 1 5 1に接続されている。 そして、 光記録媒体作製時に室 温下において密閉式容器 1 1 1内部の圧力が 1 0— 4パスカル以下になるまで排 気を行ったのち真空パルプ 1 9 1を閉じた。 これによつて密閉式容器 1 1 1は密 閉される。  The interior 101 of the sealed container 1 1 1 is connected to the vacuum exhaust system 1 5 1 via the vacuum valve 1 9 1 and the vacuum piping system 1 3 1. Then, at the time of producing the optical recording medium, the inside of the sealed container 111 was evacuated at room temperature until the pressure inside the sealed container 110 became 10-4 Pa or less, and then the vacuum pulp 191 was closed. As a result, the closed container 1 1 1 is hermetically closed.
加熱手段として用いられる気化源基板ヒーター 4 1 1、 樹脂基板ヒーター 4 0 1および真空パルプヒーター 7 9 1は、 例えば真空仕様のシーズ電気発熱線を埋 め込んだアルミニウムからなるものを用いることができる。 伝熱性の高い材質か らなるヒーターを隙間なく設置することで密閉式容器 1 1 1の内部 1 0 1および 真空バルブ 9 1の部分を均一に加熱することができる。  The vaporization source substrate heater 4 11, the resin substrate heater 4 0 1, and the vacuum pulp heater 7 9 1 used as heating means can be, for example, those made of aluminum in which a sheathed electric heating wire of a vacuum specification is embedded. . By installing a heater made of a material having high heat conductivity without gaps, the inside of the closed vessel 111 and the portion of the vacuum valve 91 can be uniformly heated.
本実施例の場合、 まずパルプ 1 9 6を閉じ、 一方パルプ 1 9 7を開ける。 次に 真空バルブ 1 9 1を開けて、 密閉式容器 1 1 1の内部 1 0 1と D i s p e r s e B l u e 1 4 ( 1, 4一ビス (N-メチルアミノ) アントラキノン) が存在す る容器 1 4 0を減圧したのち、 真空パルプ 1 9 1を閉じ、 次いで樹脂基板ヒータ 一 4 0 1によって加熱を行い、 密閉式容器 1 1 1の内部 1 0 1と容器 1 4 0の内 部全体が 1 4 5 °Cになるように温度制御を行い、 2時間保持した。 次いで、 パル ブ 1 9 7を閉じた後、 真空パルプ 1 9 1を開け、 改めて密閉式容器 1 1 1の内部 1 0 1を真空にした。 その後、 真空パルプ 1 9 1を閉じ、 P C基板 3 0 1の温度、 および密閉式容器 1 1 1の内部 1 0 1を 9 0 °Cまで下げ、 一方気化源 2 4 1が载 置され密閉されている密閉式容器 1 2 1は気化源基板ヒーター 4 1 1を用いて加 熱し、 P C基板 3 0 1が設置してある密閉式容器 1 1 1の設定温度よりも高温に 加熱した (例えば 1 0 0 °C) 。 その後二つの密閉式容器 1 1 1, 1 2 1を接続す るパルプ 1 96を開け、 8時間設定温度で保持した。 次いで、 パルプ 1 96を閉 じ、 密閉式容器 1 1 1の内部 1 01を大気圧に戻し、 PC基板 301を取り出し た。 得られた PC基板 301の断面を走査電子顕微鏡にて観察した結果、 結晶化 している部分に D i s p e r s e B l u e 14 (1, 4—ビス (N-メチル ァミノ) アントラキノン) が浸透していることおよび、 グループが変形してない ことを確認した。 次にこのようにして得られた記録層の上に蒸着によって反射層 であるアルミニウムを形成した。 更にこの上に紫外線硬化樹脂より、 保護層 5 μ mを設けて所望の光ディスクを作製した。 この光記録媒体の反射率は 71%であ り、 波長 785 n mの半導体レーザーを利用して線速度 1. 4 m/ s e cで EF M— CDフォーマツト信号を記録した結果、 最適記録レーザーパワーが 1 OmW で記録が可能であった。 次にこの信号を CDプレーヤ一によりレーザーパワーを 0. 5 mWとして再生を行った結果、 得られた信号の CN比は良好であった。 In the case of this embodiment, the pulp 196 is first closed and the pulp 197 is opened. Next, open the vacuum valve 191, and open the inside of the sealed container 1 1 1 1 and the container 1 4 containing the Disperse Blue 14 (1,4-bis (N-methylamino) anthraquinone). After reducing the pressure of 0, the vacuum pulp 1 9 1 is closed, and then heating is performed by a resin substrate heater 4 0 1, so that the inside of the sealed container 1 1 1 and the inside of the container 1 The temperature was controlled to 5 ° C., and the temperature was maintained for 2 hours. Next, after closing the tube 197, the vacuum pulp 191 was opened, and the inside 101 of the sealed container 111 was evacuated again. After that, the vacuum pulp 191 is closed, the temperature of the PC board 301 and the inside 101 of the sealed container 111 are lowered to 90 ° C, while the vaporization source 241 is placed and sealed. The closed container 1 2 1 is heated using the vaporization source substrate heater 4 1 1 and is heated to a temperature higher than the set temperature of the closed container 1 1 1 in which the PC board 301 is installed (for example, 1 0 0 ° C). Then connect the two closed containers 1 1 1 and 1 2 1 Pulp 196 was opened and held at the set temperature for 8 hours. Next, the pulp 196 was closed, the inside 101 of the closed container 111 was returned to atmospheric pressure, and the PC substrate 301 was taken out. Observation of the cross section of the obtained PC substrate 301 with a scanning electron microscope showed that Disperse Blue 14 (1,4-bis (N-methylamino) anthraquinone) had penetrated into the crystallized portion. And it was confirmed that the group was not deformed. Next, aluminum as a reflective layer was formed on the recording layer thus obtained by vapor deposition. Further, a protective layer of 5 μm was formed from an ultraviolet-curable resin on this, and a desired optical disk was manufactured. The reflectivity of this optical recording medium is 71%. As a result of recording an EFM-CD format signal at a linear velocity of 1.4 m / sec using a semiconductor laser with a wavelength of 785 nm, the optimum recording laser power is 1 Recording was possible with OmW. Next, this signal was reproduced by a CD player with a laser power of 0.5 mW, and the CN ratio of the obtained signal was good.
[実施例 5 ] [Example 5]
図 4は本実施例で用いられる光導波路作製装置の概略構成を示す断面図である。 スタンパーによって、 深さ 80 nm、 幅 500 nm、 ピッチ 1 600 nmの案内 溝 (グループ) を有する厚さ 1. 20mm、 外径 120mm、 内径 1 5 mmの P C基板 302を作製した。 一方、 有機低分子化合物 (4—メチル—3—二トロア 二リン) を設置させた気化源 242を作製した。 PC基板 302は密閉式容器 1 12に設置され、 気化源 242は別の密閉式容器 122に設置されている。 そし て、 この二つの密閉式容器 1 1 2, 1 22は配管とパルプ 198によって接続さ れている。 PC基板 302が設置されている密閉式容器 1 1 2の外壁はステンレ スまたはアルミニウムからなり、 基板の出し入れのために上下分割可能な構造 (図示せず) とする。  FIG. 4 is a cross-sectional view showing a schematic configuration of an optical waveguide manufacturing apparatus used in this example. Using a stamper, a PC substrate 302 having a thickness of 1.20 mm, an outer diameter of 120 mm, and an inner diameter of 15 mm having a guide groove (group) having a depth of 80 nm, a width of 500 nm, and a pitch of 1600 nm was produced. On the other hand, a vaporization source 242 equipped with an organic low molecular weight compound (4-methyl-3-nitro-2-arin) was prepared. The PC board 302 is provided in a closed container 112, and the vaporization source 242 is provided in another closed container 122. The two closed containers 1 1, 1 2 and 2 are connected by piping and pulp 198. The outer wall of the sealed container 112 on which the PC board 302 is installed is made of stainless steel or aluminum, and has a structure (not shown) that can be vertically divided for taking in and out the board.
密閉式容器 1 1 2の内部 102は真空パルプ 192および真空配管系 132を 経由して、 真空排気系 1 52に接続されている。 そして、 光記録媒体作製時に、 室温下において密閉式容器 1 1 2の内部 102の圧力が 10— 4パスカル以下に なるまで排気を行ったのち真空パルプ 192を閉じた。 これによつて密閉式容器 1 12は密閉される。 加熱手段として用いられる気化源基板ヒーター 4 1 2、 樹脂基板ヒーター 4 0 2および真空パルプヒーター 7 9 2は、 例えば真空仕様のシーズ電気発熱線を埋 め込んだアルミニゥムからなるものを用いることができる。 伝熱性の高い材質か らなるヒーターを隙間なく設置することで密閉式容器 1 1 2の内部 1 0 2および 真空パルプ 1 9 2の部分を均一に加熱することができる。 The inside 102 of the sealed container 112 is connected to a vacuum exhaust system 152 via a vacuum pulp 192 and a vacuum piping system 132. Then, at the time of producing the optical recording medium, the vacuum pulp 192 was closed after evacuation was performed at room temperature until the pressure in the inside 102 of the sealed container 112 became 10-4 Pascal or less. Thereby, the closed container 112 is closed. The vaporization source substrate heater 4 12, the resin substrate heater 402 and the vacuum pulp heater 7 92 2 used as a heating means can be made of, for example, aluminum in which a sheathed electric heating wire of a vacuum specification is embedded. . By installing a heater made of a material having high heat conductivity without gaps, the inside 102 of the closed container 112 and the portion of the vacuum pulp 192 can be uniformly heated.
本実施例の場合、 真空パルプ 1 9 2を開け密閉式容器 1 1 2の内部 1 0 2を減 圧したのち、 真空パルプ 1 9 2を閉じ、 次いで樹脂基板ヒーター 4 0 2によって 加熱を行い密閉式容器 1 1 2の内部 1 0 2全体が 1 3 5 °Cになるように温度制御 を行った。 また、 気化源 2 4 2が载置され密閉されている密閉式容器 1 2 2も同 様に気化源基板ヒーター 4 1 2を用いて加熱し、 P C基板 3 0 2が設置してある 密閉式容器 1 1 2の設定温度よりも高温に加熱した (例えば 1 4 0 °C) 。 その後 二つの密閉式容器 1 1 2, 1 2 2を接続しているパルプ 1 9 8を開け、 1 2時間 設定温度で保持した。 その後密閉式容器 1 1 2, 1 2 2の内部温度を 2 5でまで 徐々に低下させた。 次いで、 密閉式容器 1 1 2の内部 1 0 2を大気圧に戻し、 P C基板 3 0 2を取り出した。 得られた P C基板 3 0 2の断面を走査顕微鏡により 観察した結果、 表面から深さ 1 0 n mまで黄色結晶化していることおよび、 ダル ーブが変形してないことを確認した。 次にこのようにして得られた記録層の上に 蒸着によつて反射層であるアルミニウムを形成した。 更にこの上に紫外線硬化榭 脂より、 保護層 5 / mを設けて所望の光ディスクを作製した。 この光記録媒体の 反射率は 7 3 %であり、 波長 7 8 5 n mの半導体レーザーを利用して線速度 1 . 4 m/ s e cで E F M— C Dフォーマツト信号を記録した結果、 最適記録レーザ 一パワーが 1 O mWで記録が可能であった。 次にこの信号を C Dプレーヤ一によ りレーザーパワーを 0 . 5 mWとして再生を行った結果、 得られた信号の C N比 は良好であった。  In the case of this embodiment, after opening the vacuum pulp 192 and reducing the pressure 102 inside the closed vessel 112, the vacuum pulp 192 is closed, followed by heating by the resin substrate heater 402 and sealing. Temperature control was performed so that the entire inside of the type container 112 was kept at 135 ° C. Similarly, the sealed container 1 2 2 in which the vaporization source 2 42 is placed and hermetically sealed is also heated using the vaporization source substrate heater 4 1 2, and the hermetically sealed container in which the PC substrate 302 is installed The container was heated to a temperature higher than the set temperature of the container 112 (for example, 140 ° C.). After that, the pulp 198 connecting the two closed vessels 112, 122 was opened and kept at the set temperature for 12 hours. After that, the internal temperature of the sealed containers 1 12 and 122 was gradually reduced to 25. Then, the inside 102 of the closed container 112 was returned to the atmospheric pressure, and the PC substrate 302 was taken out. As a result of observing the cross section of the obtained PC substrate 302 with a scanning microscope, it was confirmed that yellow crystallized from the surface to a depth of 10 nm and that the tube was not deformed. Next, aluminum as a reflection layer was formed on the recording layer thus obtained by vapor deposition. Further, a protective layer of 5 / m was provided thereon with a UV-curable resin to produce a desired optical disk. The reflectivity of this optical recording medium is 73%. As a result of recording an EFM-CD format signal at a linear velocity of 1.4 m / sec using a semiconductor laser with a wavelength of 785 nm, the optimum recording laser power However, recording was possible at 1 O mW. Next, this signal was reproduced by a CD player with a laser power of 0.5 mW, and as a result, the CN ratio of the obtained signal was good.
以上詳細に説明したように、 本発明の光記録媒体は透明基板上に記録層の機能 を有する結晶性 P Cを備えていることにより、 煩雑な工程を必要とせず、 極めて 高い記録保存性と良好な C N比を有する光記録媒体を提供することができる。 なお、 本発明について詳細に説明したが、 本発明の範囲は、 上記記載のものに 限定されるものではない。 産業上の利用可能性 As described in detail above, since the optical recording medium of the present invention has a crystalline PC having a recording layer function on a transparent substrate, a complicated process is not required, and extremely high recording storability and good An optical recording medium having a high CN ratio can be provided. Although the present invention has been described in detail, the scope of the present invention is not limited to the above description. Industrial applicability
広範囲の波長の光による高密度の記録が可能な相変化型光記録媒体として用いる ことができ、 更に、 記録された情報を再生する再生専用型 (ROM) 、 1回に限 り記録が可能な追記型 (WORM) および記録後の消去、 再記録が可能な消去 可能型 (R ewr i t a b l e) などの各種の光記録媒体として用いることがで きる。 . Can be used as a phase-change optical recording medium capable of high-density recording with light of a wide range of wavelengths. In addition, a read-only type (ROM) that reproduces recorded information, recording can be performed only once It can be used as various types of optical recording media such as write-once type (WORM) and rewritable type that can be erased and re-recorded after recording. .

Claims

請求の範囲 The scope of the claims
1. 少なくとも光透過性支持体と光記録層とを有し、 1. having at least a light-transmitting support and an optical recording layer,
更に前記光記録層は、 少なくとも結晶状態の結晶性有機高分子化合物からなる 結晶化層を有し、  Further, the optical recording layer has a crystallization layer made of at least a crystalline organic polymer compound in a crystalline state,
前記結晶化層の前記結晶性有機高分子化合物が、 外部からの紫外線、 可視光線 または赤外線のいずれか照射により結晶状態から非晶質状態へ相変化することを 利用して情報を前記光記録層に記録し、 前記相変化にともなう光学的性質の変化 を利用して前記光記録層に記録された情報の再生を行うことを特徴とする相変化 型光記録媒体。  Information is stored in the optical recording layer by utilizing the fact that the crystalline organic polymer compound of the crystallized layer undergoes a phase change from a crystalline state to an amorphous state by irradiation of any one of ultraviolet light, visible light and infrared light from outside. Wherein the information recorded in the optical recording layer is reproduced by utilizing the change in optical properties accompanying the phase change.
2. 更に、 再生時に読み取り光が照射される前記光記録層の面と反対側の光記 録層の面に光反射層が形成されていることを特徴とする請求の範囲 1に記載の相 変化型光記録媒体。 2. The phase according to claim 1, further comprising a light reflection layer formed on a surface of the optical recording layer opposite to a surface of the optical recording layer to which reading light is applied during reproduction. A changeable optical recording medium.
3. 前記結晶性有機高分子化合物として下記の一般式 (I) で表されるポリ力 ーボネート系樹脂が用いられていることを特徴とする請求の範囲 1に記載の相変 化型光記録媒体。 3. The phase-change optical recording medium according to claim 1, wherein a polycarbonate resin represented by the following general formula (I) is used as the crystalline organic polymer compound. .
一 [― O - φΑ - X - ΦΒ— Ο— C (=Ο) 一] η - … (I) One [- O - φ Α - X - ΦΒ- Ο- C (= Ο) one] η - ... (I)
(ここで、 φΑおよび φΒは各々 2価の芳香族炭化水素残基を表し、 Xは、 酸素 残基一 Ο—、 硫黄残基— S―、 スルホン残基 >s=o、 カルポキシ残基 >C==O、 または、 アルキレン型炭化水素残基 !^1!^ 2を表し、 R1および R2は水素原 子または炭素数 1から 1 8のアルキル基を表し、 R1および R2は互いに結合し て炭化水素環を形成するものも含む。 ) (Here, phi Alpha and phi beta represent each a divalent aromatic hydrocarbon residue, X represents an oxygen ZanKiichi o-, sulfur residues - S-, sulfonate residues> s = o, Karupokishi remaining group> C == O or represents an alkylene hydrocarbon residue! ^ 1! ^ 2, R 1 and R 2 represents an alkyl group having 1 to 8 hydrogen atom or a C 1 -C, R 1 and R 2 includes those bonded to each other to form a hydrocarbon ring.)
4. 前記光記録層中の結晶化層は、 紫外線、 可視光線または赤外線のいずれか を吸収する色素を含有することを特徴とする請求の範囲 1に記載の相変化型光記 録媒体。 4. The phase-change type optical recording medium according to claim 1, wherein the crystallization layer in the optical recording layer contains a dye that absorbs any one of ultraviolet light, visible light, and infrared light.
5 . 少なくとも、 非晶質状態にある結晶性有機高分子化合物からなる光記録層 に、 前記光記録層の表面から内部へ浸透可能な有機低分子化合物を気体分子とし て作用させ、 前記光記録層中の前記結晶性有機高分子化合物の少なくとも一部を 非晶質状態から結晶状態へ相変化させ前記光記録層内に結晶化層を形成する工程 を有することを特徴とする相変化型光記録媒体の製造方法。 5. At least an optical low-molecular compound that can penetrate from the surface of the optical recording layer to the inside thereof acts as gas molecules on the optical recording layer made of a crystalline organic polymer compound in an amorphous state, Forming a crystallized layer in the optical recording layer by changing at least a part of the crystalline organic polymer compound in the layer from an amorphous state to a crystalline state. Manufacturing method of recording medium.
6 . 更に、 前記有機低分子化合物が有色であることを特徴とする請求の範囲 5 に記載の相変化型光記録媒体の製造方法。 6. The method for producing a phase-change optical recording medium according to claim 5, wherein the organic low-molecular compound is colored.
7 . 少なくとも、 非晶質状態にある結晶性有機高分子化合物からなる光記録層 に、 前記光記録層の表面から内部へ浸透可能な有機低分子化合物を気体分子とし て作用させ、 前記光記録層中の前記結晶性有機高分子化合物の少なくとも一部を 非晶質状態から結晶状態へ相変化させ前記光記録層内に結晶化層を形成する工程 と、 7. At least an optical recording layer made of a crystalline organic polymer compound in an amorphous state is allowed to act as a gas molecule with an organic low molecular compound that can penetrate from the surface of the optical recording layer to the inside thereof, Forming a crystallized layer in the optical recording layer by changing at least a part of the crystalline organic polymer compound in the layer from an amorphous state to a crystalline state,
前記結晶性有機高分子化合物と親和性があり、 かつ、 昇華性を有し、 更に紫外 線、 可視光線または赤外線のいずれかを吸収する色素を気体分子として前記光記 録層の表面から内部に浸透させ、 前記光記録層内の結晶化層中に含有させる工程 と、 を有することを特徴とする相変化型光記録媒体の製造方法。  A dye that has an affinity for the crystalline organic polymer compound, has sublimability, and absorbs any one of ultraviolet, visible or infrared light as gas molecules from the surface of the optical recording layer to the inside; A method for producing a phase-change optical recording medium, comprising the steps of: infiltrating into a crystallized layer in the optical recording layer;
8 . 少なくとも、 非結晶状態にある結晶性有機高分子化合物からなる光記録層 に、 前記結晶性有機高分子化合物と親和性があり、 かつ、 昇華性の色素であって、 紫外線、 可視光線または赤外線を吸収する色素を気体分子として前記光記録層の 表面から内部へ浸透させ、 前記光記録層内に色素の層を形成する工程と、 非結晶状態にある前記結晶性有機高分子化合物からなる光記録層に、 前記光記録 層の表面から内部へ浸透可能な有機低分子化合物を気体分子として作用させ、 前 記光記録層の色素の層内の結晶性有機高分子化合物を非晶質状態から結晶状態へ 相変化させ色素含有結晶化層を形成する工程と、 を有することを特徴とする相変 化型光記録媒体の製造方法。 8. At least the optical recording layer made of the crystalline organic polymer compound in the non-crystalline state has an affinity for the crystalline organic polymer compound, and is a sublimable dye, such as ultraviolet light, visible light or Forming a dye layer in the optical recording layer by infiltrating a dye that absorbs infrared rays as gas molecules from the surface of the optical recording layer into the interior thereof; and forming the amorphous organic polymer compound in an amorphous state. An organic low molecular compound that can penetrate from the surface of the optical recording layer into the inside thereof acts on the optical recording layer as gas molecules, and the crystalline organic polymer compound in the dye layer of the optical recording layer is in an amorphous state. Forming a dye-containing crystallized layer by changing the phase from a crystalline state to a crystalline state. A method for producing a phase-change type optical recording medium, comprising:
PCT/JP2003/008364 2002-07-02 2003-07-01 Phase change type optical recording medium and process for producing the same WO2004005040A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003246175A AU2003246175A1 (en) 2002-07-02 2003-07-01 Phase change type optical recording medium and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-193572 2002-07-02
JP2002193572A JP3862164B2 (en) 2002-07-02 2002-07-02 Phase change optical recording medium and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2004005040A1 true WO2004005040A1 (en) 2004-01-15

Family

ID=30112283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008364 WO2004005040A1 (en) 2002-07-02 2003-07-01 Phase change type optical recording medium and process for producing the same

Country Status (3)

Country Link
JP (1) JP3862164B2 (en)
AU (1) AU2003246175A1 (en)
WO (1) WO2004005040A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4860273A (en) * 1986-07-31 1989-08-22 Fuji Photo Film Co., Ltd. Method of recording information and information recording medium employed for the same
JPH03199088A (en) * 1989-12-28 1991-08-30 Dainippon Printing Co Ltd Thermal data recording medium
JPH04197781A (en) * 1990-11-29 1992-07-17 Ricoh Co Ltd Recording
JPH0656983A (en) * 1992-08-05 1994-03-01 Toray Ind Inc Production of crystalline polycarbonate powder and production of high-molecular-weight polycarbonate
JPH07242065A (en) * 1994-03-04 1995-09-19 Tonen Corp Optical disk substrate and production of optical disk using the same
US5464673A (en) * 1991-08-08 1995-11-07 Hitachi Chemical Co., Ltd. Information recording medium having recording layer with organic polymer and dye contained therein
JPH097221A (en) * 1995-06-16 1997-01-10 Ricoh Co Ltd Optical information recording medium and recording and erasing method of optical information

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4860273A (en) * 1986-07-31 1989-08-22 Fuji Photo Film Co., Ltd. Method of recording information and information recording medium employed for the same
JPH03199088A (en) * 1989-12-28 1991-08-30 Dainippon Printing Co Ltd Thermal data recording medium
JPH04197781A (en) * 1990-11-29 1992-07-17 Ricoh Co Ltd Recording
US5464673A (en) * 1991-08-08 1995-11-07 Hitachi Chemical Co., Ltd. Information recording medium having recording layer with organic polymer and dye contained therein
JPH0656983A (en) * 1992-08-05 1994-03-01 Toray Ind Inc Production of crystalline polycarbonate powder and production of high-molecular-weight polycarbonate
JPH07242065A (en) * 1994-03-04 1995-09-19 Tonen Corp Optical disk substrate and production of optical disk using the same
JPH097221A (en) * 1995-06-16 1997-01-10 Ricoh Co Ltd Optical information recording medium and recording and erasing method of optical information

Also Published As

Publication number Publication date
JP2004034453A (en) 2004-02-05
AU2003246175A1 (en) 2004-01-23
JP3862164B2 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
JP4094610B2 (en) Limited playback optical media with improved shelf life and playback performance
JP3874727B2 (en) Limited reproduction type information storage medium and method for limiting access to data thereon
EP0463784B1 (en) Optical recording medium, optical recording method, and optical reproducing method
US4931336A (en) Information recording medium and method of optically recording information employing the same
JP2007505435A (en) Limited play type data storage medium and method of restricting access to data on the medium
WO2007080937A1 (en) Optical recording medium
JP3648823B2 (en) Optical recording medium and information recording method
JP3862164B2 (en) Phase change optical recording medium and manufacturing method thereof
JP2004160742A (en) Optical recording disc, its manufacturing method and optical data recording/ reproducing method for optical recording disc
JPH0554432A (en) Optical recording medium
JPH10172178A (en) Optical recording element
US5580631A (en) Optical recording medium and optical recording method
JP2523421B2 (en) Optical recording medium
JPH06150371A (en) Production of optical recording medium
JP3073266B2 (en) Manufacturing method of optical recording medium
JP2982925B2 (en) Optical recording method and reproduction method
JP2006236582A (en) Optical recording medium
JP2002133716A (en) Optical information recording medium and its manufacturing method
JP2004319067A (en) Optical recording medium
JP2000149340A (en) Optical information recording medium and its production
JPH03156744A (en) Information recording medium and production thereof
JPH06150403A (en) Production of optical recording medium
JPH04298388A (en) Optical recording medium
JPH11213442A (en) Optical recording medium and its manufacture
JPH083914B2 (en) Optical information recording disk

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase