WO2004004070A1 - Antenna device and its directional gain adjusting method - Google Patents

Antenna device and its directional gain adjusting method Download PDF

Info

Publication number
WO2004004070A1
WO2004004070A1 PCT/JP2003/007416 JP0307416W WO2004004070A1 WO 2004004070 A1 WO2004004070 A1 WO 2004004070A1 JP 0307416 W JP0307416 W JP 0307416W WO 2004004070 A1 WO2004004070 A1 WO 2004004070A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
distance
reflecting
antenna device
reflector
Prior art date
Application number
PCT/JP2003/007416
Other languages
French (fr)
Japanese (ja)
Inventor
Hideaki Oshima
Tatsuo Matsushita
Original Assignee
Nippon Sheet Glass Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co.,Ltd. filed Critical Nippon Sheet Glass Co.,Ltd.
Priority to JP2004517254A priority Critical patent/JPWO2004004070A1/en
Publication of WO2004004070A1 publication Critical patent/WO2004004070A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures

Definitions

  • the present invention relates to an antenna device that can be mounted on a vehicle and a method of adjusting the directional gain of the antenna device, and more particularly to an antenna device using a reflector and a method of adjusting the directional gain of such an antenna device.
  • Vehicle-mounted antenna devices that receive radio waves from ground stations and satellites are required to ensure directional gain over a wide range. If an antenna has a bidirectional radiation pattern, Therefore, it is expected that the directional gain will be improved if the radiated power in one direction is reflected and superimposed on the radiated power in the other direction.
  • the antenna using the reflector those described in, for example, JP-A-2002-26642 and JP-A-2001-257524 are known.
  • Figure 1 shows the concept of improving the directivity gain when a flat reflector is used.
  • 10 indicates an antenna having a bidirectional radiation pattern
  • 12 indicates a reflector.
  • XYZ axes are shown for convenience of explanation.
  • the antenna 10 is a dipole antenna
  • power is radiated in both directions of the Z direction and the ⁇ Z direction. Reflects radiated power in the Z direction to improve gain in the + Z direction.
  • the obtained directional gain pattern is determined by the distance L between the antenna 10 and the reflector 12.
  • the figures showing the directivity gain and the amount of change in gain are used, but the zenith angle 0 is assumed as shown in Fig. 2. That is, the angle measured from the zenith direction T of the hemisphere on the ground. Note that Y in the figure On the Z plane, the angle measured rightward from the zenith direction is positive, and the angle measured leftward is negative.
  • Figure 3 shows the directivity gain when a dipole antenna is used as the antenna 10 and the distance from the reflector 12 is 0.25, and 0.5 ⁇ (where ⁇ is the wavelength of the received wave). .
  • the directional gain of a dipole antenna without a reflector (called the default antenna) is shown in the figure.
  • Figure 4 shows the amount of gain change (d ⁇ ) from the default antenna obtained from the results in Fig. 3.
  • the zenith angle ⁇ is about 70 ° to 90 ° and about ⁇ 70 ° 90 °
  • the default antenna is The gain change is smaller than that of the default antenna at a zenith angle of 30 ° to 30 ° when the distance is 0.5. This is because there is a gain improvement effect at the angle where the direct wave and the reflected wave are combined in the same phase, but a null point is generated at the angle combined with the opposite phase.
  • An object of the present invention is to provide an antenna device with improved directivity gain.
  • Another object of the present invention is to improve the directional gain in an antenna device.
  • the purpose of the present invention is to provide a directional gain adjustment method for the purpose.
  • the reflecting plate is formed in a multi-stage shape, the number of planar reflecting surfaces corresponding to the number of stages is formed, and a plurality of distance relationships between the antenna and the reflecting surface are obtained.
  • a first aspect of the present invention is an antenna having a bidirectional radiation pattern, and a reflector provided near the antenna and reflecting the radiated power in one direction of the antenna and superimposing the radiated power on the other direction.
  • An antenna device comprising: a plurality of flat reflecting surfaces having a multi-stage shape on a side facing the antenna; and a reflecting plate protruding toward the antenna.
  • a gain adjustment of an antenna device comprising: an antenna having a bidirectional radiation pattern; and a reflector for reflecting radiation power in one direction of the antenna and superimposing the radiation power on the radiation power in the other direction.
  • a method comprising: forming a reflecting surface of a reflecting plate facing an antenna by a plurality of multi-stage planar reflecting surfaces projecting toward the antenna; and each reflecting surface and the antenna. This is a method of adjusting the directivity gain including the step of selecting the distance between and.
  • the antenna device according to the present invention can be mounted on a vehicle, and particularly, can be installed on a window glass of the vehicle.
  • Fig. 1 is a diagram showing an image of gain improvement when a flat reflector is used.
  • Figure 2 is a diagram explaining how to determine the zenith angle.
  • Fig. 3 shows the directivity gain when a flat reflector is used. You.
  • FIG. 5 is a perspective view showing one embodiment of the reflection plate according to the present invention.
  • FIG. 6 is a view showing another embodiment of the reflector.
  • FIG. 7 is a diagram showing an embodiment of the present invention in which a square two-stage reflecting plate is configured.
  • FIG. 8 is a diagram showing a cross dipole antenna.
  • FIG. 9 is a diagram showing the directivity gain of the antenna of FIG.
  • FIG. 10 is a diagram showing the amount of change in the directivity gain of FIG.
  • FIG. 11 is a diagram showing another embodiment of the present invention when the antenna is a planar antenna.
  • FIG. 12 is a diagram showing a planar antenna in which the radiating element is surrounded by a ground conductor.
  • FIG. 13 is a diagram showing the amount of change in the directivity gain of the default antenna.
  • FIG. 14 is a diagram illustrating the average directivity gain in the elevation angle plane when the reflector is provided on the planar antenna and when the reflector is not provided.
  • FIG. 15 is a diagram illustrating the amount of change in the directivity gain of a planar antenna provided with a reflector.
  • FIG. 5 is a perspective view showing one embodiment of the reflection plate of the present invention.
  • the multi-stage reflector 14 has a shape in which rectangular flat reflectors of different sizes are stacked in multiple stages, and has planar reflection surfaces SI, S 2 and S 3 from above. .
  • the distance between each reflecting surface and the antenna 10 is LI, L2, L3,. Note that such a reflection plate is formed of a conductor.
  • the directivity gain is determined by the distance between the antenna and the reflector. Therefore, the rectangular flat reflectors of different sizes shown in Fig. 5 are stacked in multiple stages. It can be considered that the reflector 14 having such a shape has a directional gain obtained by combining the directional gain when each of the flat reflectors is provided.
  • the number of steps and the distance can be selected according to the desired directivity gain.
  • a large zenith angle (low elevation angle) and a good distance for example, 0.5 mm
  • a reflector having a plurality of reflecting surfaces is formed at a small zenith angle (high elevation angle) and at a distance with good characteristics (for example, 0.25 mm).
  • the multi-stage reflecting plate may have a shape other than a rectangular shape.
  • the shape can be an elliptical multi-stage shape or a circular multi-stage shape.
  • FIG. 7 shows an embodiment in which a square two-stage reflecting plate 18 is configured.
  • This reflecting plate has square planar reflecting surfaces S 1 and S 2, and the dimension of one side of the reflecting surface S 1 Is 0.75 ⁇ , and the dimension of one side of the reflection surface S2 is 3 ⁇ .
  • the distance L 1 between the antenna 10 and the reflection surface S 1 is 0.25 mm, and the distance between the antenna 10 and the reflection surface
  • the distance L 2 from S 2 is set to 0.5.
  • antenna 10 was a cross dipole antenna 19 that can receive radio waves (circularly polarized waves) from satellites, and the directivity gain was measured.
  • the cross dipole antenna is a circularly polarized excitation antenna in which orthogonal dipole antennas are arranged close to each other and the feeding phase of each antenna is shifted by 90 degrees.
  • Figure 9 shows the measurement results. Note that Fig. 9 shows the differentials for comparison. It shows the directivity gain of the ortho antenna. Fig. 10 shows the gain change (dB) from the default antenna obtained from the results in Fig. 9. The directivity gain in Fig. 9 does not show a sharp drop unlike in the past. Also, from FIG. 10, it can be seen that the directivity gain is improved over the entire region.
  • FIG. 11 shows the reflector 20 when the antenna is a planar antenna 22.
  • a square two-stage reflecting plate was used as the reflecting plate 20.
  • the planar antenna 22 is of a type in which the radiating element is surrounded by a ground conductor.
  • Figure 1.2 shows this planar antenna.
  • 24 denotes a radiating element
  • 26 denotes a ground conductor
  • 29 denotes a feed point.
  • the power supply point 29 includes the connection points to the radiating element and the ground conductor.
  • a coaxial cable is used, the core wire of which is connected to the radiating element, and the mesh wire is connected to the ground conductor. I do.
  • the radiating element 24 is square, but cuts 28 and 28 are provided at two diagonally located corners to realize a circularly polarized antenna.
  • Such a planar antenna is provided on the inner surface of a vehicle window glass.
  • it is provided on the surface (corresponding to the inner surface of the window glass) of one glass plate 30 facing the reflection plate 20.
  • the two-stage shape of the reflecting plate 20 has square reflecting surfaces S 1 and S 2 as in the first embodiment, and the dimension of one side of the reflecting surface S 1 is 0.75.
  • the size of one side is 1.5 mm.
  • the distance between the reflecting surface S 1 and the planar antenna 22 is 0.35, and the distance between the reflecting surface S 2 and the planar antenna 22 is 0.5 mm.
  • the wavelength of the radio wave of satellite radio broadcasting is 127.5 mm (2.35 GHz)
  • 0.35 ⁇ 44.625 mm
  • 5 1 6 3.75 mm.
  • Figure 13 shows the gain variation of the default antenna when the distance between the antenna and the reflector consisting of a plane is 0.35.
  • FIG. 14 shows the effect of improving the directivity gain of the planar antenna 22 in which the reflector 20 is arranged as described above.
  • FIG. 14 shows the average directivity gain (dB) in the elevation plane when the reflector 20 is provided and when the reflector 20 is not provided. This result also indicates that the provision of the reflection plate 20 improves the directivity gain.
  • the elevation angle is an angle of (90 ° - ⁇ ) in the figure explaining the zenith angle 0 in FIG.
  • Figure 15 shows the gain change (dB) for the range of elevation angles from 0 to 90 °. It can be seen that the gain variation in FIG. 15 does not decrease and the gain is improved as compared with the gain variation in FIG. Industrial applicability
  • the reflector since the reflector has a multi-stage structure, the effect of a plurality of reflecting surfaces can be equivalently obtained. As a result, it is as if the directivity gain improvement areas of each other were added, and the sharp drop in directivity gain caused by each single reflecting surface should be interpolated by other reflecting surfaces. Can be. Therefore, the directivity gain improvement effect can be obtained over a wide range, and the sharp drop in directivity gain that occurs when a normal flat reflector is used does not occur.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

An antenna device having an improved directional gain. The antenna device comprises an antenna having a bi-directional radiation pattern and a reflective plate adapted to reflect the radiation power in one direction of the antenna and superimpose the radiation power on the radiation power in another direction, provided with planar reflective surfaces with multiple steps provided on the side opposed to the antenna, and projecting toward the antenna. The reflective plate is rectangular, elliptic, or circular. The antenna device has an improved directional gain in a wide range, and the directional gain, that may sharply decline when a conventional planar reflective plate is used, does not decline.

Description

明 細 書  Specification
アンテナ装置およびその指向性利得調整方法 技 術 分 野  Antenna device and directional gain adjustment method thereof
本発明は、 車両に搭載可能なアンテナ装置およびアンテナ装置の 指向性利得調整方法、 特に反射板を用いたアンテナ装置およびこの よ う なアンテナ装置の指向性利得調整方法に関する。 背 景 技 術  The present invention relates to an antenna device that can be mounted on a vehicle and a method of adjusting the directional gain of the antenna device, and more particularly to an antenna device using a reflector and a method of adjusting the directional gain of such an antenna device. Background technology
地上局および衛星からの電波を受信する車両搭載可能なアンテナ 装置は、 広い範囲に渡って指向性利得を確保する こ と が要求される アンテナが、 双方向性の放射パターンを有する場合、 反射板によ り 一方向の放射電力を反射させて他方向の放射電力に重畳させれば 指向性利得が改善する と予測される。 反射板を用いたアンテナは、 例えば特開 2 0 0 2 — 2 6 6 4 2号および特開 2 0 0 1 — 2 5 7 5 2 4号の公報に記載のものが知られている。  Vehicle-mounted antenna devices that receive radio waves from ground stations and satellites are required to ensure directional gain over a wide range.If an antenna has a bidirectional radiation pattern, Therefore, it is expected that the directional gain will be improved if the radiated power in one direction is reflected and superimposed on the radiated power in the other direction. As the antenna using the reflector, those described in, for example, JP-A-2002-26642 and JP-A-2001-257524 are known.
そこで、 本発明者らは、 反射板と して平板状の反射板を用いて、 その効果を確かめた。 図 1 に、 平板状の反射板を使用 した場合の指 向性利得改善の概念を示す。 図中、 1 0 は双方向性の放射パターン を有するアンテナを、 1 2 は反射板を示す。 さ らに、 図には、 説明 の便宜上 X Y Z軸を示してある。 アンテナ 1 0がダイ ポールアンテ ナの場合には、 Z方向および— Z方向の双方向に電力は放射される , 反射板 1 2 を X Y平面に平行に配置する こ と で、 アンテナ 1 0 から 一 Z方向への放射電力を反射させ、 + Z方向の利得向上を図る。 得 られる指向性利得パターンは、 アンテナ 1 0 と反射板 1 2 との間の 距離 Lによ り決定される。  Then, the present inventors used a flat-plate-like reflector as a reflector, and confirmed the effect. Figure 1 shows the concept of improving the directivity gain when a flat reflector is used. In the figure, 10 indicates an antenna having a bidirectional radiation pattern, and 12 indicates a reflector. Further, in the figure, XYZ axes are shown for convenience of explanation. When the antenna 10 is a dipole antenna, power is radiated in both directions of the Z direction and the −Z direction. Reflects radiated power in the Z direction to improve gain in the + Z direction. The obtained directional gain pattern is determined by the distance L between the antenna 10 and the reflector 12.
なお、 以下の説明において指向性利得, 利得変化量を示す図を用 いるが、 天頂角 0は図 2 で示すよ う に取る ものとする。 すなわち、 地上の半球領域の天頂方向 Tから測った角度である。 なお、 図の Y Z面において、 天頂方向から右方向へ測った角度を正、 左方向へ測 つた角度を負とする ものとする。 In the following description, the figures showing the directivity gain and the amount of change in gain are used, but the zenith angle 0 is assumed as shown in Fig. 2. That is, the angle measured from the zenith direction T of the hemisphere on the ground. Note that Y in the figure On the Z plane, the angle measured rightward from the zenith direction is positive, and the angle measured leftward is negative.
アンテナ 1 0 にダイポールアンテナを用い、 反射板 1 2 との距離 を 0 . 2 5 え, 0 . 5 λ ( λは受信波の波長である) と した場合の 指向性利得を、 図 3 に示す。 なお図には、 比較のために、 反射板を 設けないダイポールアンテナ (デフォル トアンテナと言う) の指向 性利得を示している。 図 4 には、 図 3 の結果から求めたデフォル ト アンテナからの利得変化量 ( d Β ) を示す。  Figure 3 shows the directivity gain when a dipole antenna is used as the antenna 10 and the distance from the reflector 12 is 0.25, and 0.5 λ (where λ is the wavelength of the received wave). . For comparison, the directional gain of a dipole antenna without a reflector (called the default antenna) is shown in the figure. Figure 4 shows the amount of gain change (dΒ) from the default antenna obtained from the results in Fig. 3.
図 3 に示す指向性利得からわかるよ う に、 距離 0 . 5 えでは、 デ フオル トアンテナにはみられない、 鋭い利得の落ち込みが現れる。 これは、 アンテナから直接放射される電波と、 反射板によ り 反射さ れた電波の相互干渉によって指向性利得が決まる こ と に起因 してい る。 ,  As can be seen from the directional gain shown in Fig. 3, at a distance of 0.5 or less, a sharp drop in gain appears that is not seen in the default antenna. This is because the directivity gain is determined by the mutual interference between the radio wave directly radiated from the antenna and the radio wave reflected by the reflector. ,
また、: 図 4 の利得変化量からわかる よ う に、 距離 0 . 2 5 λでは、 天頂角 Θが約 7 0 ° 〜 9 0 ° および約— 7 0 ° 9 0 ° で、 デフ オル トアンテナに比べ利得変化量が低下し、 距離 0 . 5 えでは、 天 頂角一 3 0 ° 〜 3 0 ° でデフォル トアンテナに比べ利得変化量が低 下している。 これは、 直接波と反射波が同位相で合成される角度で は利得改善効果があるが、 逆位相で合成される角度については、 ヌ ル点が生成されるこ と に起因 している。  Also, as can be seen from the gain change in Fig. 4, at a distance of 0.25λ, the zenith angle 約 is about 70 ° to 90 ° and about −70 ° 90 °, and the default antenna is The gain change is smaller than that of the default antenna at a zenith angle of 30 ° to 30 ° when the distance is 0.5. This is because there is a gain improvement effect at the angle where the direct wave and the reflected wave are combined in the same phase, but a null point is generated at the angle combined with the opposite phase.
このよ う に平板状の反射板では、 反射板とアンテナとの間の距離 によっては、 指向性利得において、 デフォル トアンテナにはみられ ない鋭い落ち込み (低下) が発生し、 — 9 0 ° 〜 + 9 0 ° の天頂角 範囲に渡って指向性利得を確保するこ と は困難である。 発 明 の 開 示  In such a flat reflector, depending on the distance between the reflector and the antenna, a sharp drop (decrease) occurs in the directional gain that is not seen in the default antenna, and the It is difficult to secure directivity gain over the zenith angle range of + 90 °. Disclosure of the invention
本発明の 目的は、 指向性利得を改善したアンテナ装置を提供する こ と にある。  An object of the present invention is to provide an antenna device with improved directivity gain.
本発明の他の目的は、 アンテナ装置における指向性利得を改善す るための指向性利得調整方法を提供する こ と にある。 Another object of the present invention is to improve the directional gain in an antenna device. The purpose of the present invention is to provide a directional gain adjustment method for the purpose.
本発明によれば、 反射板を多段形状に し、 段数に応 じた数の平面 状反射面を構成し、 アンテナと反射面までの距離関係が複数得られ る よ う にする。 このよ う にする こ と によ り 、 各反射面特有の指向性 利得改善範囲が等価的に合成されるよ う にな り 、 指向性利得が改善 される天頂角範囲の拡大が可能と なる。  According to the present invention, the reflecting plate is formed in a multi-stage shape, the number of planar reflecting surfaces corresponding to the number of stages is formed, and a plurality of distance relationships between the antenna and the reflecting surface are obtained. By doing so, the directivity gain improvement range peculiar to each reflecting surface is equivalently combined, and the zenith angle range in which the directivity gain is improved can be expanded. .
また、 多段形状の反射板を使用 した場合、 各反射面特有の指向性 利得の落ち込みポイ ン トを相互に補完するため、 全体と しては鋭い 落ち込みはなく なる。  In addition, when a multi-stage reflector is used, since the drop points of the directivity gain peculiar to each reflecting surface complement each other, no sharp drop is eliminated as a whole.
本発明の第 1 の態様は、 双方向性の放射パターンを有するアンテ ナと、 アンテナの近く に設け られ、 アンテナの一方向の放射電力を 反射させて他方向の放射電力に重畳させる反射板であって、 アンテ ナに対向する側に、 多段形状の複数の平面状反射面を有し、 アンテ ナに向って凸状をなす反射板と を備えるアンテナ装置である。  A first aspect of the present invention is an antenna having a bidirectional radiation pattern, and a reflector provided near the antenna and reflecting the radiated power in one direction of the antenna and superimposing the radiated power on the other direction. An antenna device comprising: a plurality of flat reflecting surfaces having a multi-stage shape on a side facing the antenna; and a reflecting plate protruding toward the antenna.
本発明の第 2の態様は、 双方向性の放射パターンを有するアンテ ナと、 アンテナの一方向の放射電力を反射させて他方向の放射電力 に重畳させる反射板と を備えるアンテナ装置の利得調整方法であつ て、 反射板のアンテナに対向する反射面を、 前記アンテナに向って 凸状をなす多段形状の複数の平面状反射面によ り 構成するステ ップ と、 各反射面と前記アンテナとの間の距離を選定するステ ップと を 含む指向性利得を調整する方法である。  According to a second aspect of the present invention, a gain adjustment of an antenna device comprising: an antenna having a bidirectional radiation pattern; and a reflector for reflecting radiation power in one direction of the antenna and superimposing the radiation power on the radiation power in the other direction. A method comprising: forming a reflecting surface of a reflecting plate facing an antenna by a plurality of multi-stage planar reflecting surfaces projecting toward the antenna; and each reflecting surface and the antenna. This is a method of adjusting the directivity gain including the step of selecting the distance between and.
本発明に係るアンテナ装置は、 車両に搭載でき、 特に車両の窓ガ ラスに設置する こ とができ る。 図面の簡単な説明  The antenna device according to the present invention can be mounted on a vehicle, and particularly, can be installed on a window glass of the vehicle. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 平板状の反射板を利用 した場合の利得改善のイ メージを 示す図である。  Fig. 1 is a diagram showing an image of gain improvement when a flat reflector is used.
図 2 は、 天頂角のと り方を説明する図である。  Figure 2 is a diagram explaining how to determine the zenith angle.
図 3 は、 平板状の反射板を用いた場合の指向性利得を示す図であ る。 Fig. 3 shows the directivity gain when a flat reflector is used. You.
図 4 は、 図 3の指向性利得の変化量を示す図である。  FIG. 4 is a diagram showing the amount of change in the directivity gain of FIG.
図 5 は、 本発明に係る反射板の一実施例を示す斜視図である。 図 6 は、 反射板の他の実施例を示す図である。  FIG. 5 is a perspective view showing one embodiment of the reflection plate according to the present invention. FIG. 6 is a view showing another embodiment of the reflector.
図 7 は、 正方形の 2段形状の反射板を構成した本発明の一実施例 を示す図である。  FIG. 7 is a diagram showing an embodiment of the present invention in which a square two-stage reflecting plate is configured.
図 8 は、 ク ロスダイポールアンテナを示す図である。  FIG. 8 is a diagram showing a cross dipole antenna.
図 9 は、 図 7 のアンテナの指向性利得を示す図である。  FIG. 9 is a diagram showing the directivity gain of the antenna of FIG.
図 1 0は、 図 9の指向性利得の変化量を示す図である。  FIG. 10 is a diagram showing the amount of change in the directivity gain of FIG.
図 1 1 は、 アンテナが平面アンテナである場合の、 本発明の他の 実施例を示す図である。  FIG. 11 is a diagram showing another embodiment of the present invention when the antenna is a planar antenna.
図 1 2は、 放射素子の周囲をアース導体で取り 囲んだ平面アンテ ナを示す図である。  FIG. 12 is a diagram showing a planar antenna in which the radiating element is surrounded by a ground conductor.
図 1 3は、 デフォル トアンテナの指向性利得変化量を示す図であ る。  FIG. 13 is a diagram showing the amount of change in the directivity gain of the default antenna.
図 1 4は、 平面アンテナに反射板を設けた場合と、 設けなかった 場合の仰角平面内平均指向性利得を示す図である。  FIG. 14 is a diagram illustrating the average directivity gain in the elevation angle plane when the reflector is provided on the planar antenna and when the reflector is not provided.
図 1 5は、 反射板を設けた平面アンテナの指向性利得変化量を示 す図である。 発明を実施するための最良の形態  FIG. 15 is a diagram illustrating the amount of change in the directivity gain of a planar antenna provided with a reflector. BEST MODE FOR CARRYING OUT THE INVENTION
図 5 は、 本発明の反射板の一実施例を示す斜視図である。 多段形 状の反射板 1 4は、 サイズの異なる矩形の平板状の反射板が多段に 積層された形状であ り、 上方よ り 平面状反射面 S I , S 2 , S 3 を有している。 各反射面とアンテナ 1 0 との間の距離は、 L I , L 2 , L 3…である。 なお、 このよ うな反射板は、 導体で形成される。 前述したよ う に、 平板状の反射板を用いた場合、 指向性利得は、 アンテナと反射板との間の距離によって決定される。 したがって、 図 5 に示した、 サイズの異なる矩形の平板状の反射板が多段に積層 された形状の反射板 1 4 は、 平板状の各反射板をそれぞれ設けた場 合の指向性利得を合成 した指向性利得を有する ものと考える こ と が でき る。 FIG. 5 is a perspective view showing one embodiment of the reflection plate of the present invention. The multi-stage reflector 14 has a shape in which rectangular flat reflectors of different sizes are stacked in multiple stages, and has planar reflection surfaces SI, S 2 and S 3 from above. . The distance between each reflecting surface and the antenna 10 is LI, L2, L3,. Note that such a reflection plate is formed of a conductor. As described above, when a flat reflector is used, the directivity gain is determined by the distance between the antenna and the reflector. Therefore, the rectangular flat reflectors of different sizes shown in Fig. 5 are stacked in multiple stages. It can be considered that the reflector 14 having such a shape has a directional gain obtained by combining the directional gain when each of the flat reflectors is provided.
したがって段数および距離は、 所望の指向性利得に応じて選択す る こ とができ る。 たと えば一 9 0 ° 〜十 9 0 ° の範囲にわたっての 半球領域全域にて利得改善を行 う ためには、 大きい天頂角 (低仰 角) で特性の良い距離 (例えば 0 . 5 え) から、 小さい天頂角 (高 仰角) で特性の良い距離 (例えば 0 . 2 5 え) の間で、 複数の反射 面を有する反射板を構成する。 これによ り 、 所望の領域全域にわた つての利得改善が得られる と と もに、 指向性利得の落ち込みについ ても、 相互に補完する こ とができ る。  Therefore, the number of steps and the distance can be selected according to the desired directivity gain. For example, in order to improve the gain over the entire hemisphere range from 90 ° to 90 °, a large zenith angle (low elevation angle) and a good distance (for example, 0.5 mm) are required. A reflector having a plurality of reflecting surfaces is formed at a small zenith angle (high elevation angle) and at a distance with good characteristics (for example, 0.25 mm). As a result, the gain can be improved over the entire desired region, and the drop in the directional gain can be complemented by each other.
なお、 多段形状の反射板は、 矩形状以外の形状であっても よい。 例えば、 図 6 の反射板 1 6 に示すよ う に楕円の多段形状、 あるいは 円の多段形状とする こ とができ る。  Note that the multi-stage reflecting plate may have a shape other than a rectangular shape. For example, as shown in a reflection plate 16 in FIG. 6, the shape can be an elliptical multi-stage shape or a circular multi-stage shape.
以下に、 具体的な実施例を説明する。  Hereinafter, specific examples will be described.
(実施例 1 )  (Example 1)
図 7 に、 正方形の 2段形状の反射板 1 8 を構成 した実施例を示す, この反射板は、 正方形の平面状反射面 S 1 および S 2 を有し、 反射 面 S 1 の一辺の寸法は 0 . 7 5 λ、 反射面 S 2 の一辺の寸法は 3 λ である。  FIG. 7 shows an embodiment in which a square two-stage reflecting plate 18 is configured. This reflecting plate has square planar reflecting surfaces S 1 and S 2, and the dimension of one side of the reflecting surface S 1 Is 0.75λ, and the dimension of one side of the reflection surface S2 is 3λ.
このよ う な反射板 1 8 を、 アンテナ 1 0 に対して配置したと き、 アンテナ 1 0 と反射面 S 1 と の間の距離 L 1 が 0 . 2 5 ぇ、 アンテ ナ 1 0 と反射面 S 2 との間の距離 L 2 は 0 . 5 となる よ う にする。  When such a reflection plate 18 is arranged with respect to the antenna 10, the distance L 1 between the antenna 10 and the reflection surface S 1 is 0.25 mm, and the distance between the antenna 10 and the reflection surface The distance L 2 from S 2 is set to 0.5.
アンテナ 1 0 を、 図 8 に示すよ う に、 衛星からの電波 (円偏波) を受信でき る ク ロスダイポールアンテナ 1 9 と し、 指向性利得を測 定した。 なお、 ク ロスダイ ポールアンテナは、 直交するダイ ポール アンテナを近接配置して、 それぞれのアンテナの給電位相を 9 0度 シフ ト させた円偏波励振アンテナである。  As shown in Fig. 8, antenna 10 was a cross dipole antenna 19 that can receive radio waves (circularly polarized waves) from satellites, and the directivity gain was measured. The cross dipole antenna is a circularly polarized excitation antenna in which orthogonal dipole antennas are arranged close to each other and the feeding phase of each antenna is shifted by 90 degrees.
測定結果を、 図 9 に示す。 なお、 図 9 には、 比較のために、 デフ オル トアンテナの指向性利得を示している。 図 1 0 には、 図 9 の結 果から求めたデフォル トアンテナからの利得変化量 ( d B ) を示す, 図 9 の指向性利得には、 従来のよ う な鋭い落ち込みは現れない。 また図 1 0 から、 全領域に渡って指向性利得が改善されている こ と がわかる。 Figure 9 shows the measurement results. Note that Fig. 9 shows the differentials for comparison. It shows the directivity gain of the ortho antenna. Fig. 10 shows the gain change (dB) from the default antenna obtained from the results in Fig. 9. The directivity gain in Fig. 9 does not show a sharp drop unlike in the past. Also, from FIG. 10, it can be seen that the directivity gain is improved over the entire region.
(実施例 2 )  (Example 2)
図 1 1 に、 アンテナが平面アンテナ 2 2 である場合の、 反射板 2 0 を示す。 この反射板 2 0 には、 実施例 1 と 同様に、 正方形の 2段 形状の反射板を用いた。  FIG. 11 shows the reflector 20 when the antenna is a planar antenna 22. As in the first embodiment, a square two-stage reflecting plate was used as the reflecting plate 20.
平面アンテナ 2 2 は、 放射素子の周囲をアース導体で取り 囲んだ タイプのものである。 図 1.2 に、 この平面アンテナを示す。 2 4 は 放射素子を、 2 6 はアース導体を、 2 9 は給電点を示す。 なお、 給 電点 2 9 は、 放射素子およびアース導体への接続点を含めて示して おり 、 実際には、 同軸ケーブルを用い、 その芯線を放射素子に接続 し、 網線をアース導体に接続する。  The planar antenna 22 is of a type in which the radiating element is surrounded by a ground conductor. Figure 1.2 shows this planar antenna. 24 denotes a radiating element, 26 denotes a ground conductor, and 29 denotes a feed point. The power supply point 29 includes the connection points to the radiating element and the ground conductor.In practice, a coaxial cable is used, the core wire of which is connected to the radiating element, and the mesh wire is connected to the ground conductor. I do.
放射素子 2 4 は、 正方形であるが、 円偏波アンテナを実現するた めに、 対角に位置する 2個のコーナーに切 り 込み 2 8 , 2 8 が設け られている。  The radiating element 24 is square, but cuts 28 and 28 are provided at two diagonally located corners to realize a circularly polarized antenna.
このよ う な平面アンテナは、 車両の窓ガラスの内側面に設けられ る。 図 1 1 では、 1枚のガラス板 3 0の、 反射板 2 0 と対向する面 (窓ガラスの内側面に相当する) に設けている。  Such a planar antenna is provided on the inner surface of a vehicle window glass. In FIG. 11, it is provided on the surface (corresponding to the inner surface of the window glass) of one glass plate 30 facing the reflection plate 20.
反射板 2 0 の 2段形状は、 実施例 1 と同様に、 正方形の反射面 S 1 および S 2 を有し、 反射面 S 1 の一辺の寸法は 0. 7 5 え、 反射 面 S 2 の一辺の寸法は 1 . 5 えである。  The two-stage shape of the reflecting plate 20 has square reflecting surfaces S 1 and S 2 as in the first embodiment, and the dimension of one side of the reflecting surface S 1 is 0.75. The size of one side is 1.5 mm.
また、 反射面 S 1 と平面アンテナ 2 2 との間の距離は 0 . 3 5 、 反射面 S 2 と平面アンテナ 2 2 との間の距離は 0 . 5 えである。 例 えば衛星ラ ジオ放送の電波の波長えが、 1 2 7 . 5 mm ( 2 . 3 5 G H z ) である場合、 0 . 3 5 λ = 4 4 . 6 2 5 mmであ り 、 0 . 5 1 = 6 3 . 7 5 mmである。 なお、 参考までに、 アンテナと平面からなる反射板との間の距離 を 0 . 3 5 え と した と きのデフォル ト アンテナの利得変化量のダラ フを図 1 3 に示す。 The distance between the reflecting surface S 1 and the planar antenna 22 is 0.35, and the distance between the reflecting surface S 2 and the planar antenna 22 is 0.5 mm. For example, if the wavelength of the radio wave of satellite radio broadcasting is 127.5 mm (2.35 GHz), then 0.35 λ = 44.625 mm. 5 1 = 6 3.75 mm. For reference, Figure 13 shows the gain variation of the default antenna when the distance between the antenna and the reflector consisting of a plane is 0.35.
以上のよ う な反射板 2 0 を配置した平面アンテナ 2 2の指向性利 得改善の効果を、 図 1 4に示す。 図 1 4は、 反射板 2 0を設けた場 合と、 設けなかった場合の仰角平面内平均指向性利得 ( d B ) を示 す。 この結果からも、 反射板 2 0 を設けるこ とによ り 、 指向性利得 が改善されているこ とがわかる。 なお、 仰角は、 図 2の天頂角 0を 説明する図において、 ( 9 0 ° — Θ ) の角度である。  FIG. 14 shows the effect of improving the directivity gain of the planar antenna 22 in which the reflector 20 is arranged as described above. FIG. 14 shows the average directivity gain (dB) in the elevation plane when the reflector 20 is provided and when the reflector 20 is not provided. This result also indicates that the provision of the reflection plate 20 improves the directivity gain. The elevation angle is an angle of (90 ° -Θ) in the figure explaining the zenith angle 0 in FIG.
図 1 5 は仰角 0〜 9 0 ° の範囲に対する利得変化量 ( d B ) を示 す。 図 1 5 の利得変化量は図 1 3の.利得変化量に比べて利得の低下 がなく 、 利得が改善されているこ とがわかる。 産業上の利用可能性  Figure 15 shows the gain change (dB) for the range of elevation angles from 0 to 90 °. It can be seen that the gain variation in FIG. 15 does not decrease and the gain is improved as compared with the gain variation in FIG. Industrial applicability
本発明によれば、 反射板を多段構造にするため、 等価的に複数の 反射面の効果が得られる。 これによ り、 お互いの指向性利得改善ェ リ アが加算されたよ う になり 、 またそれぞれ単独の反射面で生じる 鋭い指向性利得の落ち込みについては、 他の反射面によ り補間する こ とができる。 したがって、 広範囲に渡って指向性利得改善効果が 得られ、 通常の平板状の反射板を用いた際に見られる、 鋭い指向性 利得の落ち込みが生じない。  According to the present invention, since the reflector has a multi-stage structure, the effect of a plurality of reflecting surfaces can be equivalently obtained. As a result, it is as if the directivity gain improvement areas of each other were added, and the sharp drop in directivity gain caused by each single reflecting surface should be interpolated by other reflecting surfaces. Can be. Therefore, the directivity gain improvement effect can be obtained over a wide range, and the sharp drop in directivity gain that occurs when a normal flat reflector is used does not occur.
このよ う に本発明によれば、 指向性利得を改善したアンテナ装置 および指向性利得を改善するための指向性利得調整方法を実現でき る。  As described above, according to the present invention, it is possible to realize an antenna device with improved directional gain and a directional gain adjustment method for improving directional gain.

Claims

請 求 の 範 囲 The scope of the claims
1 . 双方向性の放射パターンを有するアンテナと、  1. An antenna having a bidirectional radiation pattern;
前記アンテナの近く に設け られ、 前記アンテナの一方向の放射電 力を反射させて他方向の放射電力に重畳させる反射板であって、 前 記アンテナに対向する側に、 多段形状の複数の平面状反射面を有し 前記アンテナに向って凸状をなす反射板と、  A reflector provided near the antenna, for reflecting the radiated power in one direction of the antenna and superimposing the radiated power in the other direction, wherein a plurality of multi-stage planar surfaces are provided on the side facing the antenna. A reflective plate having a convex reflective surface and projecting toward the antenna,
を備えるァンテナ装置。 An antenna device comprising:
2 . 前記反射板は、 前記アンテナから見た形状が矩形である、 請求 項 1 に記載のアンテナ装置。 2. The antenna device according to claim 1, wherein the reflector has a rectangular shape as viewed from the antenna.
3 . 前記反射板は、 前記アンテナから見た形状が楕円である、 請求 項 1 に記載のアンテナ装置。 3. The antenna device according to claim 1, wherein the reflector has an elliptical shape as viewed from the antenna.
4 . 前記反射板は、 前記アンテナから見た形状が円形である、 請求 項 1 に記載のアンテナ装置。 4. The antenna device according to claim 1, wherein the reflector has a circular shape as viewed from the antenna.
5 . 前記アンテナが受信する電波の波長を え と した と き、 前記複数 の反射面と前記アンテナとの間の距離が 0 . 2 5 λ〜 0 . 5 えの範 囲にある、 請求項 1 〜 4 のいずれかに記載のアンテナ装置。 5. The distance between the plurality of reflecting surfaces and the antenna is within a range of 0.25λ to 0.5 mm when the wavelength of a radio wave received by the antenna is selected. The antenna device according to any one of claims 1 to 4.
6 . 前記反射板は、 2段の第 1 および第 2 の平面状反射面を有する、 請求項 5 に記載のアンテナ装置。 6. The antenna device according to claim 5, wherein the reflection plate has two stages of first and second planar reflection surfaces.
7 . 前記第 1 の反射面と前記アンテナとの間の距離が 0 . 2 5 えで あ り 、 7. The distance between the first reflecting surface and the antenna is 0.25 mm,
前記第 2 の反射面と前記アンテナと の間の距離が 0 . 5 えである、 請求項 6 に記載のアンテナ装置。 The antenna device according to claim 6, wherein a distance between the second reflection surface and the antenna is 0.5 mm.
8 . 前記第 1 の反射面と前記アンテナと の間の距離が 0 . 3 5 えで あ り 、 前記第 2の反射面と前記アンテナとの間の距離が 0 . 5 えで ある、 請求項 6 に記載のアンテナ装置。 8. The distance between the first reflecting surface and the antenna is 0.35 mm, and the distance between the second reflecting surface and the antenna is 0.5 mm. 7. The antenna device according to 6.
9 . 前記アンテナは、 ク ロスダイ ポールアンテナである、 請求項 7 に記載のアンテナ装置。 9. The antenna device according to claim 7, wherein the antenna is a cross dipole antenna.
1 0 . 前記アンテナは、 放射素子と、 この放射素子を取り 囲むァー ス導体とからなる平面アンテナである、 請求項 8 に記載のアンテナ 10. The antenna according to claim 8, wherein the antenna is a planar antenna including a radiating element and a ground conductor surrounding the radiating element.
1 1 . 前記アンテナ装置は、 車両に搭載される ものである、 請求項 1 に記載のアンテナ装置。 11. The antenna device according to claim 1, wherein the antenna device is mounted on a vehicle.
1 2 . 前記アンテナ装置は、 前記車両の窓ガラスに設置される もの である、 請求項 1 1 に記載のアンテナ装置。 12. The antenna device according to claim 11, wherein the antenna device is installed on a window glass of the vehicle.
1 3 . 双方向性の放射パターンを有するアンテナと、 前記アンテナ の一方向の放射電力を反射させて他方向の放射電力に重畳させる反 射板と を備えるアンテナ装置の指向性利得調整方法であって、 13. A directional gain adjustment method for an antenna device comprising: an antenna having a bidirectional radiation pattern; and a reflector for reflecting radiated power in one direction of the antenna and superimposing the radiated power on the other direction. hand,
前記反射板の前記アンテナに対向する反射面を、 前記アンテナに 向って凸状をなす多段形状の複数の平面状反射面によ り構成する ス テ ツプと、  A step in which the reflecting surface of the reflecting plate facing the antenna is constituted by a plurality of multi-stage planar reflecting surfaces that are convex toward the antenna;
前記各反射面と前記アンテナとの間の距離を選定するステ ップと, を含む指向性利得を調整する方法。  Selecting a distance between each of the reflecting surfaces and the antenna; and adjusting the directivity gain.
1 4 . 前記各反射面と前記アンテナとの間の距離を選定するステ ツ プは、 前記アンテナが受信する電波の波長を ; と した と き、 前記複 数の反射面を、 前記アンテナとの間の距離が 0 . 2 5 ぇ〜 0 . 5 λ の範囲に選定するステ ップを含む請求項 1 3 に記載の指向性利得調 整方法。 14. The step of selecting the distance between each of the reflecting surfaces and the antenna is as follows: When the wavelength of the radio wave received by the antenna is: Distance between 0.25 2 and 0.5λ 14. The directional gain adjustment method according to claim 13, further comprising a step of selecting a range within the range.
1 5 . 前記複数の反射面が、 第 1 および第 2 の反射面よ り なる場合 に、 前記各反射面と前記アンテナとの間の距離を選定するステ ップ は、 15. In the case where the plurality of reflecting surfaces are composed of first and second reflecting surfaces, the step of selecting the distance between each of the reflecting surfaces and the antenna is as follows:
前記第 1 の反射面と前記アンテナと の間の距離を 0 . 2 5 λに選 定するステップと、  Selecting the distance between the first reflecting surface and the antenna to be 0.25λ;
前記第 2 の反射面と前記アンテナと の間の距離を 0 . 5 えに選定 するステ ップと、  A step of selecting a distance between the second reflecting surface and the antenna to 0.5 mm;
を含む請求項 1 3 に記載の指向性利得調整方法。 14. The directional gain adjustment method according to claim 13, comprising:
1 6 . 前記複数の反射面が、 第 1 および第 2 の反射面よ り なる場合 に、 前記各反射面と前記アンテナとの間の距離を選定するステ ップ は、 16. When the plurality of reflecting surfaces are composed of first and second reflecting surfaces, the step of selecting the distance between each of the reflecting surfaces and the antenna is as follows:
前記第 1 の反射面と前記アンテナと の間の距離を 0 . 3 5 えに選 定するステ ップと、  A step of selecting a distance between the first reflecting surface and the antenna to 0.35;
前記第 2 の反射面と前記アンテナと の間の距離を 0 . 5 えに選定 するステ ップと、  A step of selecting a distance between the second reflecting surface and the antenna to 0.5 mm;
を含む請求項 1 3 に記載の指向性利得調整方法。 14. The directional gain adjustment method according to claim 13, comprising:
1 7 . 前記アンテナは、 ク ロスダイポールアンテナである、 請求項 1 5 に記載の指向性利得調整方法。 17. The directional gain adjustment method according to claim 15, wherein the antenna is a cross dipole antenna.
1 8 . 前記アンテナは、 放射素子と、 この放射素子を取り 囲むァー ス導体と からなる平面アンテナである、 請求項 1 6 に記載の指向性 利得調整方法。 18. The directional gain adjustment method according to claim 16, wherein the antenna is a planar antenna including a radiating element and a ground conductor surrounding the radiating element.
PCT/JP2003/007416 2002-06-11 2003-06-11 Antenna device and its directional gain adjusting method WO2004004070A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004517254A JPWO2004004070A1 (en) 2002-06-11 2003-06-11 ANTENNA DEVICE AND DIRECTIONAL GAIN ADJUSTMENT METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-169469 2002-06-11
JP2002169469 2002-06-11

Publications (1)

Publication Number Publication Date
WO2004004070A1 true WO2004004070A1 (en) 2004-01-08

Family

ID=29996449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007416 WO2004004070A1 (en) 2002-06-11 2003-06-11 Antenna device and its directional gain adjusting method

Country Status (2)

Country Link
JP (1) JPWO2004004070A1 (en)
WO (1) WO2004004070A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006014007A (en) * 2004-06-28 2006-01-12 Denki Kogyo Co Ltd Antenna unit for multi-plane synthetic antenna
EP1628357A2 (en) 2004-06-25 2006-02-22 Alps Electric Co., Ltd. Antenna device
JP2007288414A (en) * 2006-04-14 2007-11-01 Denki Kogyo Co Ltd Antenna device
EP2161784A1 (en) * 2008-09-05 2010-03-10 Astrium Limited Antenna reflector
US9190716B2 (en) 2008-09-05 2015-11-17 Astrium Limited Reflector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257524A (en) * 2000-03-10 2001-09-21 Nippon Antenna Co Ltd Cross dipole antenna
JP2002217636A (en) * 2001-01-23 2002-08-02 Hitachi Cable Ltd Dipole antenna
JP2002271134A (en) * 2001-03-07 2002-09-20 Mitsubishi Electric Corp Antenna device
JP2003168912A (en) * 2001-11-29 2003-06-13 Mitsubishi Electric Corp Antenna assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257524A (en) * 2000-03-10 2001-09-21 Nippon Antenna Co Ltd Cross dipole antenna
JP2002217636A (en) * 2001-01-23 2002-08-02 Hitachi Cable Ltd Dipole antenna
JP2002271134A (en) * 2001-03-07 2002-09-20 Mitsubishi Electric Corp Antenna device
JP2003168912A (en) * 2001-11-29 2003-06-13 Mitsubishi Electric Corp Antenna assembly

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1628357A2 (en) 2004-06-25 2006-02-22 Alps Electric Co., Ltd. Antenna device
US7199758B2 (en) 2004-06-25 2007-04-03 Alps Electric Co., Ltd. Antenna device
JP2006014007A (en) * 2004-06-28 2006-01-12 Denki Kogyo Co Ltd Antenna unit for multi-plane synthetic antenna
JP2007288414A (en) * 2006-04-14 2007-11-01 Denki Kogyo Co Ltd Antenna device
JP4705876B2 (en) * 2006-04-14 2011-06-22 電気興業株式会社 Antenna device
EP2161784A1 (en) * 2008-09-05 2010-03-10 Astrium Limited Antenna reflector
US9190716B2 (en) 2008-09-05 2015-11-17 Astrium Limited Reflector

Also Published As

Publication number Publication date
JPWO2004004070A1 (en) 2005-11-04

Similar Documents

Publication Publication Date Title
US7030831B2 (en) Multi-polarized feeds for dish antennas
KR100657705B1 (en) Antenna system
JP4223564B2 (en) Microstrip antenna and array antenna
US6037911A (en) Wide bank printed phase array antenna for microwave and mm-wave applications
JP3856835B2 (en) Dual polarization array antenna with central polarization controller
EP1070366B1 (en) Multiple parasitic coupling from inner patch antenna elements to outer patch antenna elements
JP2000244238A (en) Grid array antenna
WO2006030583A1 (en) Antenna assembly and multibeam antenna assembly
CA2721438C (en) Circularly polarized loop reflector antenna and associated methods
WO2008050441A1 (en) Antenna device
EP1033782B1 (en) Monopole antenna
EP0889543A1 (en) Wide band printed dipole antenna for microwave and mm-wave applications
EP0889542A1 (en) Wide band printed phase array antenna for microwave and mm-wave applications
JPH05308223A (en) Two-frequency common use antenna
JP4516246B2 (en) antenna
JP3452971B2 (en) Polarization variable antenna
WO2004004070A1 (en) Antenna device and its directional gain adjusting method
JP4202572B2 (en) Omnidirectional antenna
KR101823365B1 (en) Folded Reflectarray Antenna and Polarizing Grid Substrate
JPS62281501A (en) Microstrip antenna having unexcited element
JP3353218B2 (en) Antenna device
JP4108246B2 (en) Loop antenna
JP2645700B2 (en) Dual frequency corner antenna device
JP2003234617A (en) Composite antenna
CN108539390B (en) Planar bidirectional circularly polarized antenna

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004517254

Country of ref document: JP

122 Ep: pct application non-entry in european phase