JP3452971B2 - Polarization variable antenna - Google Patents

Polarization variable antenna

Info

Publication number
JP3452971B2
JP3452971B2 JP06449394A JP6449394A JP3452971B2 JP 3452971 B2 JP3452971 B2 JP 3452971B2 JP 06449394 A JP06449394 A JP 06449394A JP 6449394 A JP6449394 A JP 6449394A JP 3452971 B2 JP3452971 B2 JP 3452971B2
Authority
JP
Japan
Prior art keywords
loop
excitation element
antenna
shaped
parasitic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06449394A
Other languages
Japanese (ja)
Other versions
JPH07249921A (en
Inventor
久松 中野
宏彬 三牧
徹 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dengyo Kosaku Co Ltd
Original Assignee
Nihon Dengyo Kosaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dengyo Kosaku Co Ltd filed Critical Nihon Dengyo Kosaku Co Ltd
Priority to JP06449394A priority Critical patent/JP3452971B2/en
Publication of JPH07249921A publication Critical patent/JPH07249921A/en
Application granted granted Critical
Publication of JP3452971B2 publication Critical patent/JP3452971B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば円偏波による衛
星放送の受信用平面アンテナ又は移動通信における移動
局用平面アンテナ或はレ−ダ用平面アンテナ等に好適な
アンテナに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antenna suitable for a plane antenna for receiving satellite broadcasting by circular polarization, a plane antenna for mobile stations or a plane antenna for radars in mobile communications.

【0002】[0002]

【従来の技術】12GHz 帯でサ−ビスされている衛星放送
においては、チャンネル間の干渉を防ぎ、又は軽減する
ために右旋円偏波と左旋円偏波の使用割当が国際的に定
められている。したがって、例えば右旋円偏波の使用地
域から左旋円偏波の使用地域へ移動したような場合に
は、偏波を右旋円偏波から左旋円偏波に変えるために、
受信偏波の制御が可能なアンテナを必要とし、又、例え
ば右旋円偏波使用地域と左旋円偏波使用地域との境界近
くで受信するような場合には、チャンネル間の干渉が生
じ易いので、干渉を低減するために受信偏波の制御が可
能なアンテナを用いる必要がある。又、レ−ダ用アンテ
ナは、降雨時に性能劣化を来す場合があり、このような
性能劣化を低減するために、アンテナの偏波制御が要求
される場合がある。図12は、従来用いられている偏波
変換器を示す斜視図で、121 ないし1211は適宜間隔を隔
てて平行に配設された帯状導体で、各帯状導体の側縁に
よって形成される包絡面がアンテナ(図示していない)
の放射中心軸(一点鎖線で示してある)と直角となるよ
うにアンテナの前面に設けられる。
2. Description of the Related Art In satellite broadcasting serviced in the 12 GHz band, the use allocation of right-handed circular polarization and left-handed circular polarization is internationally determined in order to prevent or reduce interference between channels. ing. Therefore, for example, when moving from the right circular polarization area to the left circular polarization area, in order to change the polarization from the right circular polarization to the left circular polarization,
Interference between channels is likely to occur when an antenna that can control the reception polarization is required, and when receiving near the boundary between the right-hand circular polarization area and the left-hand circular polarization area, for example. Therefore, it is necessary to use an antenna capable of controlling the reception polarization in order to reduce interference. Further, the radar antenna sometimes deteriorates in performance when it rains, and polarization control of the antenna may be required in order to reduce such performance deterioration. FIG. 12 is a perspective view showing a conventional polarization converter. Reference numerals 12 1 to 12 11 denote strip conductors arranged in parallel at appropriate intervals and formed by side edges of the strip conductors. Envelope is antenna (not shown)
Is provided on the front surface of the antenna so as to be perpendicular to the radiation center axis (shown by a chain line).

【0003】アンテナからの放射波の電界成分Eが帯状
導体121 ないし1211の各面と直交する場合には、放射波
の電界成分は帯状導体121 ないし1211による影響をほと
んど受けることなく、偏波が変化することはない。然し
ながら、帯状導体121 ないし1211がアンテナの放射中心
軸の周りに或る角度だけ回転すると、アンテナからの放
射波の電界成分と帯状導体121 ないし1211の各面とが斜
めに交差し、放射波の電界成分は、帯状導体121 ないし
1211の各面に直角な成分と帯状導体121 ないし1211の各
面に平行な成分とに分解され、両分解成分の伝播モ−ド
が互いに異なり、偏波変換器を通過した後の二つの成分
は互いに位相が異なることとなる。アンテナからの放射
波の電界成分と帯状導体121 ないし1211の各面との交角
が45°の場合には、帯状導体121 ないし1211の各面に直
角な成分と帯状導体121 ないし1211の各面に平行な成分
の大きさが互いに等しくなるから、帯状導体121 ないし
1211の各幅L及び各間隔Sを適当に選定して、両分解成
分が偏波変換器を通過した後における両分解成分の位相
差が90°となるように形成することによって、アンテナ
からの直線偏波を円偏波に変換することができる。直線
偏波を円偏波に変換するための各部の具体数値例を示す
と、帯状導体121ないし1211の各間隔Sが 0.671λO
(λO は設計周波数の自由空間波長)、帯状導体121
いし1211の各幅Lが 3λo/4 である。
When the electric field component E of the radiated wave from the antenna is orthogonal to each surface of the strip conductors 12 1 to 12 11 , the electric field component of the radiated wave is hardly affected by the strip conductors 12 1 to 12 11. , The polarization never changes. However, when the strip conductors 12 1 to 12 11 rotate about the radiation center axis of the antenna by a certain angle, the electric field component of the radiated wave from the antenna intersects the respective faces of the strip conductors 12 1 to 12 11 at an angle. , the electric field component of the radiation field is to strip conductor 12 1
12 to 11 components and strip conductors 12 1 perpendicular to each side of the decomposed into components parallel to each side of 12 11, the propagation mode of the two separations - unlike de each other, after passing through the polarization converter The two components have different phases from each other. If the intersection angle between the radiation wave of the surfaces of the electric field component and strip conductor 12 1 to 12 11 of the antenna is 45 °, the to 12 1 perpendicular component and strip conductor on each side of the strip conductor 12 1 to 12 11 Since the magnitudes of the components parallel to the respective surfaces of 12 11 are equal to each other, the strip conductors 12 1 to
By appropriately selecting each width L and each interval S of 12 11 and forming so that the phase difference between both decomposition components after passing through the polarization converter is 90 °, The linearly polarized wave of can be converted into the circularly polarized wave. A specific numerical example of each part for converting the linearly polarized wave into the circularly polarized wave is shown. The interval S between the strip conductors 12 1 to 12 11 is 0.671λ O
O is a free space wavelength of the design frequency), and each width L of the strip conductors 12 1 to 12 11 is 3λ o / 4.

【0004】[0004]

【発明が解決しようとする課題】図12に示した従来の
偏波変換器は、帯状導体121 ないし1211の各側縁が形成
する包絡面の面積が比較的大で、変換器の厚さ、即ち、
帯状導体121 ないし1211の幅Lも比較的大であるから偏
波変換器自体が大型で重量も大となり、このような偏波
変換器を含むアンテナ全体も大型となり、特にその姿勢
が高くなるのを避けることができないから、アンテナ全
体として平面形状が要求される場合には、このような偏
波変換器を設けたアンテナを用いることができない。
又、上記従来の偏波変換器をアンテナの放射素子に近接
して設けると、放射素子の放射特性に悪影響を与えるお
それがあるので、放射素子から適当な間隔を隔てて設け
る必要があるため、この点からもアンテナ全体の姿勢が
高くなるのを避けることができない。上記従来の偏波変
換器は、その変換作動から明らかなように、入射波が平
面波であることが必要であるから、例えば放射素子が1
個より成る場合、又は少数の放射素子より成るアレ−ア
ンテナの場合のように、放射波面が球面をなす場合に
は、放射素子から比較的大なる間隔を隔てた箇所、即
ち、放射球面波の一部が近似的に平面波と見なすことが
できる箇所に偏波変換器を設ける必要があるため、アン
テナ全体の姿勢は極めて高いものとなるのを免れること
ができない。更に、上記従来の偏波変換器を通過した放
射波が、例えば右旋円偏波の場合、これを左旋円偏波に
変えるためには、偏波変換器をアンテナの放射中心軸の
周りに90°回転させる必要があるが、前記のように、大
型で重量も大なる偏波変換器を回転させることは容易で
はない。
In the conventional polarization converter shown in FIG. 12, the area of the envelope surface formed by each side edge of the strip conductors 12 1 to 12 11 is relatively large, and the thickness of the converter is large. That is,
Since the width L of the strip conductors 12 1 to 12 11 is also relatively large, the polarization converter itself is large and heavy, and the entire antenna including such a polarization converter is also large, and its attitude is particularly high. Since it is unavoidable, when a planar shape is required for the entire antenna, an antenna provided with such a polarization converter cannot be used.
Further, if the conventional polarization converter is provided in the vicinity of the radiating element of the antenna, it may adversely affect the radiation characteristics of the radiating element.Therefore, it is necessary to provide it with a proper distance from the radiating element. From this point as well, it is inevitable that the posture of the entire antenna becomes high. As is apparent from the conversion operation, the conventional polarization converter requires that the incident wave be a plane wave.
If the radiating wavefront is spherical, as in the case of an array antenna consisting of a single radiating element or a small number of radiating elements, then a location at a relatively large distance from the radiating element, that is, a radiating spherical wave Since it is necessary to provide a polarization converter at a position where a part of the antenna can be approximately regarded as a plane wave, the posture of the entire antenna cannot avoid being extremely high. Furthermore, if the radiation wave that has passed through the conventional polarization converter is, for example, right-handed circular polarization, in order to change this to left-handed circular polarization, the polarization converter should be placed around the radiation center axis of the antenna. It is necessary to rotate 90 °, but as described above, it is not easy to rotate a polarization converter that is large and heavy.

【0005】[0005]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば、
下記の通りである。 即ち、本発明は、偏波可変アンテナ
であって、平面状反射体の前面に設けたループ状励振素
子と、前記ループ状励振素子の一部に接続された給電線
と、前記ループ状励振素子の前面に、放射波長に比し十
分狭い間隔を隔てて設けられ、一部に放射波長に比し十
分狭い間隙を1個有する無給電素子とを備えたことを特
徴とする。 また、本発明は、偏波可変アンテナであっ
て、平面状反射体の前面に設けたループ状励振素子と、
前記ループ状励振素子の一部に接続された給電線と、前
記ループ状励振素子の前面に、放射波長に比し十分狭い
間隔を隔てて設けられ、中心に対して対称の2箇所に放
射波長に比し十分狭い間隙を有する無給電素子とを備え
たことを特徴とする。 本発明の好ましい実施の形態で
は、ループ状励振素子の輪郭形状が、円形又は円形に類
似の形状であることを特徴とする。 本発明の好ましい実
施の形態では、無給電素子の輪郭形状が、円形又は円形
に類似の形状であることを特徴とする。 本発明の好まし
い実施の形態では、ループ状励振素子の輪郭形状が、正
方形又は正方形に類似の形状であることを特徴とする。
本発明の好ましい実施の形態では、無給電素子の輪郭形
状が、正方形又は正方形に類似の形状であることを特徴
とする。
DISCLOSURE OF THE INVENTION Disclosed herein
Of the inventions, a brief description of typical ones will be made as follows.
It is as follows. That is, the present invention is directed to a variable polarization antenna.
A is a loop-shaped parasitic element that is provided on the front surface of the planar reflector, a feeding line connected to a portion of said loop-shaped parasitic element, the front surface of the loop-shaped radiation element, enough compared to the emission wavelength It is provided with a parasitic element which is provided at a narrow interval and has a gap that is sufficiently narrow compared to the emission wavelength.
To collect. Further, the present invention is a variable polarization antenna.
And a loop-shaped excitation element provided on the front surface of the planar reflector,
A feed line connected to a part of the loop-shaped excitation element;
The front of the loop-shaped excitation element is sufficiently narrow compared to the emission wavelength.
It is installed at two intervals and is released at two points symmetrical about the center.
Equipped with a parasitic element that has a sufficiently narrow gap compared to the wavelength of radiation
It is characterized by that. In a preferred embodiment of the invention
Indicates that the contour shape of the loop-shaped excitation element is circular or circular.
It is characterized by similar shapes. Preferred fruits of the invention
In the embodiment, the outline shape of the parasitic element is circular or circular.
It is characterized by a shape similar to. Preferred of the present invention
In another embodiment, the contour shape of the loop-shaped excitation element is
It is characterized by a shape similar to a square or a square.
In a preferred embodiment of the present invention, the contour shape of the parasitic element is
Characterized in that the shape is a square or a shape similar to a square
And

【0006】[0006]

【作用】給電線を介して高周波電力を励振素子に加える
と、励振素子に高周波電流が分布し、この電流によって
無給電素子に高周波電流が誘導される。励振素子の給電
点と励振素子及び無給電素子の共通の中心点とを結ぶ線
と、無給電素子の間隙の中心と励振素子及び無給電素子
の共通の中心点とを結ぶ線とのなす角度を適当に調整す
ると、間隙を有する無給電素子が摂動素子として作用
し、励振素子に進行波電流が流れて円偏波放射が行われ
る。
When a high frequency power is applied to the exciting element via the feeder line, a high frequency current is distributed in the exciting element, and this current induces a high frequency current in the parasitic element. The angle between the line connecting the feeding point of the excitation element and the common center point of the excitation element and the parasitic element, and the line connecting the center of the gap of the parasitic element and the common center point of the excitation element and the parasitic element When is adjusted appropriately, a parasitic element having a gap acts as a perturbation element, a traveling wave current flows through the excitation element, and circularly polarized radiation is performed.

【0007】[0007]

【実施例】図1(a)は、本発明の一実施例の要部を示
す平面図、図1(b)は、図1(a)におけるX軸を含
み、紙面に垂直な面から紙面に向かって上側を見た断面
図である。尚、図1(a)において後述する励振素子1
の中心を原点とし、水平方向にX軸を、X軸に直角方向
にY軸を、紙面に垂直方向にZ軸を、それぞれとるもの
とする。図1において、1は線又は条等の導体より成る
円形のル−プ状励振素子、2は導体板より成る反射体、
3は入出力端子で、例えば同軸接栓より成り、その外部
導体を反射体2に接続してある。4は給電線で、一端を
同軸接栓3の内部導体に接続し、他端を励振素子1の任
意箇所における給電点に接続してある。図には、給電線
4が、同軸接栓3の内部導体の延長方向に沿って垂直に
上昇し、励振素子1の形成する面内において直角に屈曲
してX軸方向に延びるように形成した場合、即ち、同軸
接栓3の内部導体の内端と励振素子1の給電点間を逆L
字型の給電線で接続した場合を例示したが、同軸接栓3
の内部導体の内端と励振素子1の給電点間を直線状に結
ぶ斜めの給電線で接続してもよく、同軸接栓3を図示の
ように励振素子1の中心点(座標軸の原点)の直下に設
ける代りに、励振素子1の下方任意の箇所、例えば励振
素子1を形成する線又は条の任意箇所の直下に同軸接栓
3を設け、同軸接栓3の内部導体の内端と励振素子1を
形成する線又は条の任意箇所における給電点とを垂直に
延びる直線状の給電線で接続するように形成してもよ
い。次に、5は線又は条等の導体を彎曲させて、一部に
間隙6を有する円形状に形成した無給電素子で、励振素
子1と中心を共有すると共に、励振素子1の前面(放射
波の放射方向)に放射波長に比し十分狭い間隔を隔てて
励振素子1と平行に設け、間隙6の長さΔP が放射波長
に比し十分小なるように形成してある。励振素子1、反
射体2、給電線4及び無給電素子5等を所要箇所に位置
させ、機械的所要関係を保持させるために、例えば励振
素子1と反射体2の間に固体誘電体を介在させると共
に、励振素子1と無給電素子5との間に固体誘電体を介
在させ、これらの固体誘電体、励振素子1、反射体2及
び無給電素子5等を一体に結合する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1A is a plan view showing an essential part of one embodiment of the present invention, and FIG. 1B is a plane from a plane including the X axis in FIG. It is sectional drawing which looked at the upper side toward. In addition, the excitation element 1 described later in FIG.
The origin is the center of X, the X axis is horizontal, the Y axis is perpendicular to the X axis, and the Z axis is perpendicular to the plane of the drawing. In FIG. 1, 1 is a circular loop-shaped excitation element made of a conductor such as a wire or strip, 2 is a reflector made of a conductor plate,
Reference numeral 3 denotes an input / output terminal, which is formed of, for example, a coaxial plug, and its outer conductor is connected to the reflector 2. Reference numeral 4 denotes a power supply line, one end of which is connected to the inner conductor of the coaxial connector 3 and the other end of which is connected to a power supply point at an arbitrary position of the excitation element 1. In the figure, the feed line 4 is formed so as to rise vertically along the extension direction of the inner conductor of the coaxial connector 3, bend at a right angle in the plane formed by the excitation element 1, and extend in the X-axis direction. In other words, that is, between the inner end of the inner conductor of the coaxial connector 3 and the feeding point of the excitation element 1, a reverse L
The case of connecting with a character-shaped power supply line is illustrated, but the coaxial plug 3
The inner end of the inner conductor of the above and the feed point of the excitation element 1 may be connected by an oblique feed line that linearly connects, and the coaxial plug 3 may be connected to the center point of the excitation element 1 (origin of the coordinate axis) as shown in the figure. Instead of being provided immediately below, the coaxial connector 3 is provided at an arbitrary position below the excitation element 1, for example, immediately below an arbitrary position of a line or a line forming the excitation element 1, and the inner end of the inner conductor of the coaxial connector 3 is provided. It may be formed such that a line or a line forming the excitation element 1 is connected to a feeding point at an arbitrary point by a linear feeding line extending vertically. Next, 5 is a parasitic element formed by bending a conductor such as a wire or a stripe and having a gap 6 in a part thereof. The parasitic element 5 shares the center with the excitation element 1 and the front surface of the excitation element 1 (radiation wave radiation direction) at a sufficiently small distance relative to the emission wavelength provided in parallel with the driven element 1, the length delta P of the gap 6 is formed to be sufficiently small compared to the emission wavelength. In order to position the excitation element 1, the reflector 2, the feed line 4, the parasitic element 5 and the like at required positions and maintain a mechanical required relationship, for example, a solid dielectric is interposed between the excitation element 1 and the reflector 2. At the same time, a solid dielectric is interposed between the excitation element 1 and the parasitic element 5, and the solid dielectric, the excitation element 1, the reflector 2 and the parasitic element 5 are integrally coupled.

【0008】以上は、励振素子1、給電線4及び無給電
素子5を線又は条等の導体で形成し、反射体2を導体板
で形成した場合を例示したが、例えばガラス布基材フッ
素樹脂銅張積層板を用い、プリント配線の場合と同様の
エッチング手法によって不要の金属皮膜を除き、基板の
表面に残した金属皮膜によって励振素子1及び給電線4
の一部を形成した第1の誘電体基板と、同様の手法によ
って表面に金属皮膜より成る反射体2を設け、裏面に同
軸接栓3を取り付けた第2の誘電体基板と、同様の手法
によって表面に金属皮膜より成る無給電素子5を設けた
第3の誘電体基板とを準備し、下から第2の誘電体基
板、第1の誘電体基板、第3の誘電体基板の順序で重
ね、第1の誘電体基板に設けた給電線4の一部の一端と
第2の誘電体基板の裏面に取り付けた同軸接栓3の内部
導体とをスル−ホ−ルを介して接続し、第1ないし第3
の誘電体基板を一体に結合するようにしてもよい。第1
ないし第3の誘電体基板の各表面に本発明アンテナの構
成素子を設ける代りに、例えば第1の誘電体基板の裏面
に励振素子1及び給電線4の一部を設けた場合には、こ
れらの励振素子1及び給電線4の一部と第2の誘電体基
板の表面に設けた反射体2が短絡するのを防ぐために、
第1及び第2の各誘電体基板の間に絶縁板を介在させる
等の手段を講じ、又、第1ないし第3の誘電体基板の各
間に適当な間隔を持たせる必要のある場合にも適当な厚
さを有する絶縁板を介在させて本発明アンテナを形成す
ることができる。ガラス布基材フッ素樹脂銅張積層板の
代りに通常の誘電体板を用い、その表面又は裏面に蒸着
等の手法によって所要箇所に所要形状の金属皮膜を付着
させて本発明アンテナを形成することも可能である。図
2(a)は、本発明の他の実施例の要部を示す平面図、
図2(b)は、図2(a)におけるX軸を含み、紙面に
垂直な面から紙面に向かって上側を見た断面図である。
尚、図2における直角座標軸のとり方は、図1と同様で
ある。図2において、51及び52は無給電素子、61及び62
は間隙で、これらの無給電素子51、52及び間隙61、6
2は、励振素子1の中心を中心とする円周上に配設さ
れ、間隙61及び62は前記中心に対して対称の2点に設け
られ、放射波長に比し十分に狭い間隙に形成してある。
他の符号及び構成は、図1に示したものと全く同様であ
る。
In the above, the case where the exciting element 1, the feeding line 4 and the parasitic element 5 are formed of conductors such as lines or stripes and the reflector 2 is formed of a conductor plate has been exemplified. A resin copper clad laminate is used to remove the unnecessary metal film by the same etching method as in the case of printed wiring, and the metal film left on the surface of the substrate is used for the excitation element 1 and the power supply line 4.
Of the first dielectric substrate on which a part of the first dielectric substrate is formed, and a second dielectric substrate on which a reflector 2 made of a metal film is provided on the front surface by the same method and a coaxial connector 3 is attached on the back surface, and the same method. And a third dielectric substrate having a parasitic element 5 formed of a metal film on the surface thereof are prepared, and the second dielectric substrate, the first dielectric substrate, and the third dielectric substrate are arranged in this order from the bottom. Overlapping, one end of a part of the power supply line 4 provided on the first dielectric substrate and the internal conductor of the coaxial connector 3 attached to the back surface of the second dielectric substrate are connected via a through hole. , 1st to 3rd
The dielectric substrates may be integrally bonded. First
Or, instead of providing the constituent elements of the antenna of the present invention on each surface of the third dielectric substrate, for example, when the excitation element 1 and a part of the feeder line 4 are provided on the back surface of the first dielectric substrate, In order to prevent a short circuit between the excitation element 1 and a part of the feed line 4 and the reflector 2 provided on the surface of the second dielectric substrate,
When it is necessary to take measures such as interposing an insulating plate between each of the first and second dielectric substrates and to provide an appropriate space between each of the first to third dielectric substrates. Also, the antenna of the present invention can be formed by interposing an insulating plate having an appropriate thickness. A normal dielectric plate is used instead of the glass cloth base material fluororesin copper-clad laminate, and a metal film having a required shape is attached to a required position on the front surface or the back surface by a method such as vapor deposition to form the antenna of the present invention. Is also possible. FIG. 2A is a plan view showing a main part of another embodiment of the present invention,
2B is a cross-sectional view including the X axis in FIG. 2A and seen from the plane perpendicular to the paper surface toward the paper surface.
The way of taking the rectangular coordinate axis in FIG. 2 is the same as that in FIG. In FIG. 2, 5 1 and 5 2 are parasitic elements, and 6 1 and 6 2 are
Is a gap, and these parasitic elements 5 1 , 5 2 and gaps 6 1 , 6
2 is disposed on a circle centered on the center of the driven element 1, the gap 6 1 and 6 2 are provided at two points symmetrical with respect to the center, a sufficiently narrow gap than the emission wavelength Has been formed.
Other reference numerals and configurations are exactly the same as those shown in FIG.

【0009】図1及び図2に示した何れの実施例におい
ても、同軸接栓3に加えられた高周波電力は、給電線4
を介して励振素子1に入力され、励振素子1に高周波電
流が分布し、この分布電流によって無給電素子5(図1
の場合)又は51及び52(図2の場合)に誘導電流が生ず
る。図3は、図1及び図2に示した各実施例における励
振素子1の円周長を放射波の1波長に、励振素子1を含
む面と反射体2との間隔を0.0667波長に、間隙6の長さ
を含む無給電素子5の円周長(図1の場合)又は間隙61
及び62の各長さを含む無給電素子51及び52の円周長(図
2の場合)を1.25波長に、励振素子1及び無給電素子5
又は51、52を形成する線の外径を0.025 波長に、それぞ
れ選定し、X軸から反時計方向に測った無給電素子5の
間隙6の中心までの角度(図1の場合)又は無給電素子
51及び52の間隙62の中心までの角度(図2の場合)φP
を変化させながら、Z軸方向の測定点における偏波特性
の実測値を軸比で示したもので、横軸はX軸から反時計
方向に測った無給電素子5(又は51及び52)の間隙6
(又は62)の中心までの角度φP (deg) 、縦軸は軸比(d
B)、白丸は図1に示した実施例の実測値、黒丸は図2に
示した実施例の実測値である。図から明らかなように、
図1及び図2に示した何れの実施例においても、X軸と
無給電素子5(又は51及び52)における間隙6(又は
62)の中心との角度φPを変化させた場合、良好な軸比
が現れる角度φP が存在し、直線偏波が円偏波に変換さ
れる。
In any of the embodiments shown in FIGS. 1 and 2, the high frequency power applied to the coaxial plug 3 is supplied to the feeder line 4.
The high-frequency current is distributed to the excitation element 1 via the parasitic element 1, and the distributed current causes the parasitic element 5 (see FIG.
2 ) or 5 1 and 5 2 (in the case of FIG. 2), an induced current occurs. FIG. 3 shows that the circumferential length of the excitation element 1 in each of the embodiments shown in FIGS. 1 and 2 is one wavelength of the radiated wave, the distance between the surface including the excitation element 1 and the reflector 2 is 0.0667 wavelength, and the gap is Circumferential length (in the case of FIG. 1) of the parasitic element 5 including the length of 6 or the gap 6 1
And the circumference of parasitic elements 5 1 and 5 2 (in the case of FIG. 2) including each length of 6 2 is set to 1.25 wavelength, the excitation element 1 and the parasitic element 5
Or, the outer diameter of the wire forming 5 1 , 5 2 is selected to be 0.025 wavelength, and the angle from the X axis to the center of the gap 6 of the parasitic element 5 measured counterclockwise (in the case of FIG. 1) or Parasitic element
Angle to the center of gap 6 2 between 5 1 and 5 2 (in case of Fig. 2) φ P
While changing the, shows the measured values of polarization characteristics at the measurement point in the Z-axis direction in the axial ratio, the parasitic element horizontal axis measured from X-axis in a counterclockwise direction 5 (or 5 1 and 5 2 ) Gap 6
(Or 6 2 ) angle φ P (deg) to the center, the vertical axis is the axial ratio (d
B), white circles are actual measurement values of the embodiment shown in FIG. 1, and black circles are actual measurement values of the embodiment shown in FIG. As is clear from the figure,
In any of the embodiments shown in FIGS. 1 and 2, the gap 6 (or 5) between the X-axis and the parasitic element 5 (or 5 1 and 5 2 )
6 2) when changing the angle phi P and the center of the angle phi P good axial ratio appears there, linearly polarized waves are converted into circular polarized waves.

【0010】図4は、励振素子1の円周長、励振素子1
を含む面と反射体2との間隔、間隙6(又は61及び62
を含む無給電素子5(又は51及び52)の円周長、励振素
子1及び無給電素子5又は51、52を形成する線の外径の
各寸法を、図3について説明した偏波測定の場合と同様
に選定すると共に、励振素子1の給電点と無給電素子の
間隙6又は62の中心との角度φP を、軸比が最適となる
ように調整した際における利得及び軸比の周波数特性の
実測値を示すもので、横軸は設計周波数fOに対する比周
波数、fOは設計波長λO に対応する周波数、縦軸は軸比
(dB)及び利得(dB)、白丸は図1に示した実施例の実測
値、黒丸は図2に示した実施例の実測値、ほぼV字型の
曲線は軸比の周波数特性を示し、ほぼ直線に近い曲線は
利得の周波数特性を示す。図5は、図1に示した実施例
における励振素子1の円周長、励振素子1を含む面と反
射体2との間隔、間隙6を含む無給電素子5の円周長、
励振素子1及び無給電素子5を形成する線の外径の各寸
法を、図3について説明した偏波測定の場合と同様に選
定すると共に、軸比が最適となるように、励振素子1の
給電点と無給電素子の間隙6の中心との角度φP を調整
した際における励振素子1上における電流の位相推移を
観測した結果を示すもので、横軸は図1における励振素
子1のa点、即ち、給電点を始点として反時計方向に測
った励振素子1の導体長で、a、b、c及びd点は、図
1におけるa、b、c及びd点に対応する。又、縦軸は
位相(deg) で、図中における実線は励振素子1上におけ
る位相推移を、破線は自由空間における位相推移を、そ
れぞれ示す。図1に示したアンテナにおいて無給電素子
5を配設していないと仮定した場合における励振素子1
上における電流の位相推移は、導体長の変化に対して、
ほとんど変化しない領域と比較的大きく変化する領域と
からなり、全体として、階段状の形態となる。この形態
は励振素子1上の電流分布が定在波分布である場合に現
われる特性で、直線偏波が放射されること周知のとおり
である。然しながら、図1に示した本発明アンテナのよ
うに、間隙6を有する無給電素子5を配設し、励振素子
1の給電点aと無給電素子5の間隙6の中心との角度φ
P を適当に調整すると、無給電素子5は摂動素子として
動作するため、励振素子1に進行波電流が流れて導体長
の変化に対する位相推移が傾斜を有する特性となる。
特に、図5に示すように、励振素子1における電流の位
相推移の傾斜と自由空間における位相推移の傾斜とが、
ほぼ一致するような場合には良好な円偏波放射が行われ
る。
FIG. 4 shows the circumferential length of the excitation element 1, the excitation element 1
Between the surface containing the and the reflector 2, the gap 6 (or 6 1 and 6 2 )
The dimensions of the circumference of the parasitic element 5 (or 5 1 and 5 2 ) including, and the outer diameter of the wire forming the excitation element 1 and the parasitic elements 5 or 5 1 and 5 2 are described with reference to FIG. with selected as in the case of the polarization measurement, the gain at the time of the angle phi P and the center of the gap 6 or 6 a second feed point and the parasitic element driven element 1, the axial ratio was adjusted to be optimal And the actual value of the axial ratio frequency characteristic, where the horizontal axis is the specific frequency with respect to the design frequency f O , f O is the frequency corresponding to the design wavelength λ O , and the vertical axis is the axial ratio.
(dB) and gain (dB), white circles are the measured values of the embodiment shown in FIG. 1, black circles are the measured values of the embodiment shown in FIG. 2, and a substantially V-shaped curve shows the frequency characteristics of the axial ratio. A curve that is almost linear shows the frequency characteristic of gain. FIG. 5 is a circumferential length of the excitation element 1 in the embodiment shown in FIG. 1, a distance between a surface including the excitation element 1 and the reflector 2, a circumferential length of the parasitic element 5 including a gap 6,
The outer diameters of the wires forming the excitation element 1 and the parasitic element 5 are selected in the same manner as in the case of the polarization measurement described with reference to FIG. 3, and the excitation element 1 is adjusted so that the axial ratio is optimum. The horizontal axis represents the result of observing the phase transition of the current on the excitation element 1 when the angle φ P between the feeding point and the center of the gap 6 of the parasitic element was adjusted. In the conductor length of the excitation element 1 measured counterclockwise from the point, that is, the feeding point, points a, b, c and d correspond to points a, b, c and d in FIG. The vertical axis represents the phase (deg), the solid line in the figure represents the phase transition on the excitation element 1, and the broken line represents the phase transition in free space. Excitation element 1 in the case where the parasitic element 5 is not provided in the antenna shown in FIG.
The phase transition of the current above is as follows for the change of the conductor length.
It consists of a region that hardly changes and a region that changes significantly, and has a stair-like form as a whole. This form is a characteristic that appears when the current distribution on the excitation element 1 is a standing wave distribution, and it is well known that linearly polarized waves are radiated. However, like the antenna of the present invention shown in FIG. 1, the parasitic element 5 having the gap 6 is arranged, and the angle φ between the feeding point a of the exciting element 1 and the center of the gap 6 of the parasitic element 5 is φ.
When P is adjusted appropriately, the parasitic element 5 operates as a perturbation element, so that a traveling wave current flows through the excitation element 1 and the phase transition with respect to the change in conductor length has a characteristic of having a slope.
In particular, as shown in FIG. 5, the slope of the phase transition of the current in the excitation element 1 and the slope of the phase transition in the free space are
Good circularly polarized radiation is obtained when the two coincide substantially.

【0011】図6は、図2に示した実施例における励振
素子1の円周長、励振素子1を含む面と反射体2との間
隔、間隙61及び62を含む無給電素子51及び52の円周長、
励振素子1及び無給電素子51、52を形成する線の外径の
各寸法を、図3について説明した偏波測定の場合と同様
に選定すると共に、軸比が最適となるように、励振素子
1の給電点と無給電素子の間隙62の中心との角度φP
調整した際における励振素子1上における電流の位相推
移を観測した結果を示すもので、横軸は図2における励
振素子1のa点、即ち、給電点を始点として反時計方向
に測った励振素子1の導体長で、a、b、c及びd点
は、図2におけるa、b、c及びd点に対応する。又、
縦軸は位相(deg) で、図中における実線は励振素子1上
における位相推移を、破線は自由空間における位相推移
を、それぞれ示す。図1に示したアンテナの場合と同様
に、図2に示したアンテナにおいても無給電素子51及び
52を配設していないと仮定した場合における励振素子1
上における電流の位相推移は、導体長の変化に対して、
ほとんど変化しない領域と比較的大きく変化する領域と
からなり、全体として、階段状の形態となり、この形態
は励振素子1上の電流分布が定在波分布である場合に現
われる特性で、直線偏波が放射されること前述のとおり
である。図2に示した本発明アンテナの場合にも図示の
ように、間隙61及び62を有する無給電素子51及び52を配
設し、励振素子1の給電点aと無給電素子51及び52の間
隙62の中心との角度φP を適当に調整すると、無給電素
子51及び52は摂動素子として動作し、励振素子1に進行
波電流が流れて導体長の変化に対する位相推移が傾斜を
有する特性となり、特に、図6に示すように、励振素子
1における電流の位相推移の傾斜と自由空間における位
相推移の傾斜とが、ほぼ一致するような場合には良好な
円偏波放射が行われる。尚、図1における励振素子1の
給電点aと無給電素子5における間隙6の中心との間の
角度φP が、ほぼ+45°(又はほぼ− 135°)の場合、
励振素子1上における電流の位相が図5に示すように、
励振素子1上のd点、c点、b点及びa点の順に遅れて
左旋円偏波が放射される。角度φP が、ほぼ−45°(又
はほぼ+ 135°)の場合には、図1におけるd点をb点
に、b点をd点に置き換え、励振素子1の長さを給電点
aを始点として時計方向に計るものとすると、励振素子
1上における電流の位相は、置き換えたd点(図1にお
けるb点)、c点、置き換えたb点(図1におけるd
点)及びa点の順に遅れて右旋円偏波が放射される。図
2に示した実施例においても上記の関係、即ち、角度φ
P と放射円偏波の旋回方向の関係は、図1に示した実施
例の場合とほぼ同様である。
FIG. 6 shows the circumference length of the excitation element 1 in the embodiment shown in FIG. 2, the distance between the surface including the excitation element 1 and the reflector 2, and the parasitic element 5 1 including the gaps 6 1 and 6 2. and 5 2 of the circumferential length,
The outer diameters of the wires forming the excitation element 1 and the parasitic elements 5 1 and 5 2 are selected in the same manner as in the polarization measurement described with reference to FIG. 3, and the axial ratio is optimized. shows the results of observing the phase shift of the current in the excitation element 1 at the time of adjusting the angle phi P and the center of the gap 6 2 feed point and the parasitic element driven element 1, the horizontal axis in FIG. 2 The point a of the excitation element 1, that is, the conductor length of the excitation element 1 measured counterclockwise starting from the feeding point, points a, b, c and d are points a, b, c and d in FIG. Correspond. or,
The vertical axis represents the phase (deg), the solid line in the figure indicates the phase transition on the excitation element 1, and the broken line indicates the phase transition in free space. As with the antenna shown in FIG. 1, also parasitic element 5 1 and the antenna shown in FIG. 2
Excitation element 1 assuming that 5 2 is not installed
The phase transition of the current above is as follows for the change of the conductor length.
It consists of a region that hardly changes and a region that changes relatively greatly, and has a staircase-like form as a whole. This form is a characteristic that appears when the current distribution on the excitation element 1 is a standing wave distribution. Is emitted as described above. As the illustrated case of the present invention antenna shown in FIG. 2, disposed parasitic elements 5 1 and 5 2 with a gap 6 1 and 6 2, the feed point a and the parasitic elements of the driven element 1 5 When properly adjusted the angle phi P between 1 and 5 2 in the center of the gap 6 2, parasitic element 5 1 and 5 2 operates as a perturbation element, the change in conductor length traveling wave current flows through the excitation element 1 Has a characteristic that the phase transition has a slope, and in particular, as shown in FIG. 6, it is preferable when the slope of the phase shift of the current in the excitation element 1 and the slope of the phase transition in the free space substantially match. Circularly polarized radiation is produced. When the angle φ P between the feeding point a of the excitation element 1 and the center of the gap 6 in the parasitic element 5 in FIG. 1 is approximately + 45 ° (or approximately −135 °),
As shown in FIG. 5, the phase of the current on the excitation element 1 is
Left-handed circularly polarized waves are radiated with a delay in the order of points d, c, b and a on the excitation element 1. When the angle φ P is approximately −45 ° (or approximately + 135 °), the d point in FIG. 1 is replaced with the b point, and the b point is replaced with the d point, and the length of the excitation element 1 is replaced with the feeding point a. Assuming that the starting point is measured clockwise, the phases of the currents on the excitation element 1 are the d point (b point in FIG. 1) replaced, the c point, and the b point replaced (d point in FIG. 1).
The right-handed circularly polarized wave is radiated with a delay in the order of point) and point a. Also in the embodiment shown in FIG. 2, the above relationship, that is, the angle φ
The relationship between P and the rotation direction of the radial circularly polarized wave is almost the same as in the case of the embodiment shown in FIG.

【0012】図7は、図1に示した実施例における励振
素子1の円周長、励振素子1を含む面と反射体2との間
隔、間隙6を含む無給電素子5の円周長、励振素子1及
び無給電素子5を形成する線の外径の各寸法を、図3に
ついて説明した偏波測定の場合と同様に選定すると共
に、軸比が最適となるように、励振素子1の給電点aと
無給電素子5の間隙6の中心との角度φP を調整して、
励振素子1上における位相推移を図5に示した状態にし
た場合における指向性を示すもので、図7(a)は、X
−Z面の指向性を、図7(b)は、Y−Z面の指向性
を、それぞれ示すもので、θはZ軸からの傾斜角であ
る。図8は、図2に示した実施例における励振素子1の
円周長、励振素子1を含む面と反射体2との間隔、間隙
61及び62を含む無給電素子51及び52の円周長、励振素子
1及び無給電素子51、52を形成する線の外径の各寸法
を、図3について説明した偏波測定の場合と同様に選定
すると共に、軸比が最適となるように、励振素子1の給
電点aと無給電素子51及び52の間隙62の中心との角度φ
P を調整して、励振素子1上における位相推移を図6に
示した状態にした場合における指向性を示すもので、図
8(a)は、X−Z面の指向性を、図8(b)は、Y−
Z面の指向性を、それぞれ示すもので、θはZ軸からの
傾斜角である。図7及び図8に示した何れの指向性にお
いても、Z軸方向に最大放射を有し、図7(a)と図7
(b)における各ビ−ム幅がほぼ等しく、図8(a)と
図8(b)における各ビ−ム幅もまたほぼ等しいから、
図1及び図2に示した何れのアンテナも単独で使用して
優れたものであり、平面アレ−アンテナの構成素子とし
ても優れたアンテナということができる。本発明アンテ
ナは、無給電素子5又は51及び52を省いた状態において
も図7又は図8に示した指向性と同様の指向性を呈する
ので、指向性に影響を与えることなく、偏波のみを制御
しようとする場合等に好適である。例えば、レ−ダにお
いては、降雨に際して、大気中の雨滴からの反射妨害波
と、物標からの反射波とを識別するための最も効果的な
方法として円偏波を放射する方法が用いられている。こ
の方法における識別原理は、雨滴のような球体からの反
射円偏波の旋回方向は、放射円偏波の旋回方向と逆向き
となるに対して、複雑な形状を有し、種々の材質から成
る物標からの反射波は、楕円偏波となることを利用して
反射妨害波と物標からの反射波とを識別するものであ
る。本発明アンテナにおける励振素子1でレ−ダアンテ
ナを形成して、常時は直線偏波を放射し、降雨時には無
給電素子5又は51、52を取り付けて円偏波を放射するよ
うにすると、直線偏波による利点、即ち、物標からの反
射波のレベルが高く、遠距離の探索が可能なことと、円
偏波による利点、即ち、降雨時における反射妨害波と物
標からの反射波との識別が可能となることの両利点を備
えさせることができる。
FIG. 7 shows the circumferential length of the excitation element 1 in the embodiment shown in FIG. 1, the distance between the surface containing the excitation element 1 and the reflector 2, the circumferential length of the parasitic element 5 including the gap 6, The outer diameters of the wires forming the excitation element 1 and the parasitic element 5 are selected in the same manner as in the case of the polarization measurement described with reference to FIG. 3, and the excitation element 1 is adjusted so that the axial ratio is optimum. Adjusting the angle φ P between the feeding point a and the center of the gap 6 of the parasitic element 5,
FIG. 7A shows the directivity when the phase transition on the excitation element 1 is in the state shown in FIG.
7B shows the directivity of the −Z plane, and FIG. 7B shows the directivity of the YZ plane, where θ is the inclination angle from the Z axis. FIG. 8 shows the circumferential length of the excitation element 1 in the embodiment shown in FIG. 2, the distance between the surface including the excitation element 1 and the reflector 2, and the gap.
The circumference lengths of the parasitic elements 5 1 and 5 2 including 6 1 and 6 2 and the outer diameters of the wires forming the exciting element 1 and the parasitic elements 5 1 and 5 2 are the same as those described with reference to FIG. The angle φ between the feeding point a of the excitation element 1 and the center of the gap 6 2 between the parasitic elements 5 1 and 5 2 should be selected in the same manner as in the case of wave measurement, and the axial ratio should be optimized.
FIG. 8A shows the directivity when P is adjusted to bring the phase transition on the excitation element 1 into the state shown in FIG. 6. FIG. 8A shows the directivity of the XZ plane as shown in FIG. b) is Y-
The directivity of the Z plane is shown, and θ is the inclination angle from the Z axis. In each of the directivities shown in FIGS. 7 and 8, the maximum radiation in the Z-axis direction is obtained, and
Since the beam widths in FIG. 8B are substantially equal, and the beam widths in FIGS. 8A and 8B are also approximately equal,
Each of the antennas shown in FIGS. 1 and 2 is excellent when used alone, and can be said to be an excellent antenna as a constituent element of a planar array antenna. The present invention antenna, so exhibits the same directional and directional shown in FIG. 7 or 8 even when omitting the parasitic element 5 or 5 1 and 5 2, without affecting the directivity, polarization It is suitable when controlling only waves. For example, in a radar, a method of radiating a circularly polarized wave is used as the most effective method for distinguishing a reflected interference wave from a raindrop in the atmosphere and a reflected wave from a target at the time of rainfall. ing. The principle of identification in this method is that the circular polarization direction reflected from a spherical body such as a raindrop is opposite to the radial polarization polarization direction, but it has a complicated shape and is made of various materials. The reflected wave from the target object is an elliptically polarized wave and is used to distinguish the reflected interference wave from the reflected wave from the target object. When a radar antenna is formed by the excitation element 1 in the antenna of the present invention, linear polarized waves are always radiated, and parasitic elements 5 or 5 1 , 5 2 are attached to radiate circular polarized waves when it rains. Advantages of linearly polarized waves, that is, the level of reflected waves from the target is high and it is possible to search for a long distance, and advantages of circularly polarized waves, that is, reflected interference waves at the time of rain and reflected waves from the target It is possible to provide both advantages of being able to identify

【0013】図9(a)は、本発明の他の実施例の要部
を示す平面図、図9(b)は、図9(a)におけるX軸
を含み、紙面に垂直な面から紙面に向かって上側を見た
断面図である。尚、図9における直角座標軸のとり方
は、図1と同様である。本実施例は、励振素子1及び無
給電素子5の輪郭形状を正方形に形成した点が図1に示
した実施例と異なるのみで、他の符号、構成及び作用は
図1に示した実施例とほぼ同様である。図10(a)も
また本発明の他の実施例の要部を示す平面図、図10
(b)は、図10(a)におけるX軸を含み、紙面に垂
直な面から紙面に向かって上側を見た断面図である。
尚、図10における直角座標軸のとり方は、図1と同様
である。本実施例は、励振素子1及び無給電素子51及び
52の輪郭形状を正方形に形成した点が図2に示した実施
例と異なるのみで、他の符号、構成及び作用は図1に示
した実施例とほぼ同様である。尚、図1、図2、図9及
び図10に示した各実施例において、無給電素子5又は
51及び52を誘電体板に設けているような場合には、軸比
を調整するために、励振素子1の給電点と無給電素子5
又は51及び52における間隙6又は62の中心との間の角度
φP を変化させるに当たって、無給電素子5又は51及び
52を設けた誘電体板を、無給電素子5又は51及び52の中
心の周りに回転させ得るように構成することによって、
容易に目的を達することができる。
FIG. 9 (a) is a plan view showing the main part of another embodiment of the present invention, and FIG. 9 (b) is a plane including the X axis in FIG. 9 (a) and perpendicular to the plane of the paper. It is sectional drawing which looked at the upper side toward. Note that the method of setting the rectangular coordinate axes in FIG. 9 is the same as in FIG. This example is different from the example shown in FIG. 1 in that the contour shapes of the excitation element 1 and the parasitic element 5 are formed in a square shape, and other reference numerals, configurations and operations are the same as those of the example shown in FIG. Is almost the same as. 10A is also a plan view showing the main part of another embodiment of the present invention.
FIG. 10B is a cross-sectional view including the X axis in FIG. 10A and looking upward from a plane perpendicular to the paper surface toward the paper surface.
The way of taking the rectangular coordinate axis in FIG. 10 is the same as that in FIG. In this embodiment, the excitation element 1 and the parasitic element 5 1
In the 5 second contour point that is formed in a square only differs from the embodiment shown in FIG. 2, other symbols, the configuration and operation is substantially similar to the embodiment shown in FIG. In each of the embodiments shown in FIGS. 1, 2, 9 and 10, the parasitic element 5 or
In the case where 5 1 and 5 2 are provided on the dielectric plate, in order to adjust the axial ratio, the feeding point of the excitation element 1 and the parasitic element 5
Or when changing the angle phi P between the center of the gap 6 or 6 2 in 5 1 and 5 2, parasitic element 5 or 5 1 and
5 2 provided the dielectric plate, with the structure described may be rotated around the passive element 5 or 5 1 and 5 2 center,
You can easily reach the goal.

【0014】図11(a)及び図11(b)は、図1に
示した本発明アンテナを素子アンテナとして矩形平面ア
レ−アンテナを構成した一例を示す正面図で、複数個の
素子アンテナにおける各励振素子を同一平面上に配設
し、各無給電素子を、励振素子の配設平面の前面におけ
る同一平面に配設し、各素子アンテナにおける励振素子
及び無給電素子の共通中心の位置間隔を縦横方向に等し
く保つと共に、各素子アンテナの給電点の位置、無給電
素子における間隙の位置等がすべて同じ位置にあるよう
に形成してある。図11(a)に示したアレ−アンテナ
は、紙面から手前に右旋円偏波を放射し、図11(b)
に示したアレ−アンテナは、紙面から手前に左旋円偏波
を放射する。図11には、図1に示した本発明アンテナ
を素子アンテナとしてアレ−アンテナを形成した場合を
例示したが、図2、図9及び図10に各示した本発明ア
ンテナの何れかを素子アンテナとし、素子アンテナの相
互関係及び励振素子と無給電素子の配設関係等を図11
について説明した関係と同様にすることによって、矩形
平面アレ−アンテナを形成することができる。図1、図
2、図9及び図10に各示した本発明アンテナを素子ア
ンテナとし、各素子アンテナの配設関係、各素子アンテ
ナにおける励振素子及び無給電素子の配設関係を前記の
ように定めると共に、各励振素子を配設した誘電体板の
中心軸と、各無給電素子を配設した誘電体板の中心軸と
を一致させ、各励振素子を配設した誘電体板の中心軸の
周りに、各無給電素子を配設した誘電体板を回転自在及
び取り外し自在に取り付けると、各無給電素子を配設し
た誘電体板を90°回転させることによって、各励振素子
の給電点と各無給電素子の間隙の相互関係を、図11
(a)の状態から図11(b)の状態に、逆に図11
(b)の状態から図11(a)の状態に変化させて、右
旋円偏波と左旋円偏波の変換を容易迅速に行うことがで
き、又、各無給電素子を配設した誘電体板を取り除くこ
とによって、各素子アンテナの偏波を直線偏波に変更す
ることができる。各無給電素子をアンテナのレド−ムの
内表面に設けるようにすれば、アンテナの姿勢を高める
ことなくレド−ムの取り付けが可能である。
FIGS. 11A and 11B are front views showing an example in which a rectangular planar array antenna is formed by using the antenna of the present invention shown in FIG. 1 as an element antenna. The exciting elements are arranged on the same plane, and each parasitic element is arranged on the same plane in front of the arrangement plane of the exciting element, and the position spacing of the common center of the exciting element and the parasitic element in each element antenna is set. It is formed so as to be equal in the vertical and horizontal directions, and the positions of the feeding points of the element antennas and the positions of the gaps in the parasitic elements are all at the same position. The array antenna shown in FIG. 11A radiates a right-handed circularly polarized wave from the plane of the drawing to the front, and FIG.
The array antenna shown in (1) radiates a left-handed circularly polarized wave toward the front from the paper surface. FIG. 11 exemplifies a case where an array antenna is formed by using the antenna of the present invention shown in FIG. 1 as an element antenna. However, any one of the antennas of the present invention shown in FIGS. 2, 9 and 10 is an element antenna. FIG. 11 shows the mutual relationship between the element antennas and the arrangement relationship between the excitation element and the parasitic element.
A rectangular planar array antenna can be formed in the same manner as the relationship described for. The antenna of the present invention shown in each of FIGS. 1, 2, 9 and 10 is used as an element antenna, and the arrangement relationship of each element antenna and the arrangement relationship of the excitation element and the parasitic element in each element antenna are as described above. The center axis of the dielectric plate on which each excitation element is arranged is aligned with the center axis of the dielectric plate on which each parasitic element is arranged, and the center axis of the dielectric plate on which each excitation element is arranged When the dielectric plate with each parasitic element is rotatably and removably attached around, the dielectric plate with each parasitic element is rotated by 90 °, and the feeding point of each exciting element is rotated. Figure 11 shows the interrelationship between the gap between
From the state of FIG. 11A to the state of FIG.
By changing the state of (b) to the state of FIG. 11 (a), conversion of right-handed circularly polarized wave and left-handed circularly polarized wave can be easily and quickly performed, and a dielectric having each parasitic element disposed. By removing the body plate, the polarization of each element antenna can be changed to linear polarization. If each parasitic element is provided on the inner surface of the reddom of the antenna, the redom can be attached without raising the posture of the antenna.

【0015】以上は、励振素子及び無給電素子を円形又
は正方形に形成した場合について説明したが、両素子を
円形又は正方形に類似の形状、例えば楕円形又は長方形
或は折れ線で円形又は楕円形に類似させた形状、即ち、
任意の多角形等に形成して本発明を実施することができ
る。又、以上は、本発明アンテナの作動説明の便宜上、
励振素子及び無給電素子の各輪郭形状が相似形で、両素
子の中心が一致し、励振素子が含まれる平面と無給電素
子が含まれる平面とが平行である場合について説明した
が、励振素子と無給電素子の各輪郭形状が相似形ではな
い場合、両素子の中心が一致しない場合、又は、励振素
子が含まれる平面と無給電素子が含まれる平面とが平行
でない場合等の何れの場合にも本発明を実施することが
できる。
In the above description, the case where the exciting element and the parasitic element are formed in a circular shape or a square shape has been described. A similar shape, i.e.
The present invention can be implemented by forming it into any polygonal shape or the like. Further, for convenience of explanation of the operation of the antenna of the present invention,
It has been explained that the contour shapes of the excitation element and the parasitic element are similar, the centers of both elements are the same, and the plane including the excitation element and the plane including the parasitic element are parallel to each other. When the contour shapes of the parasitic element and the parasitic element are not similar, the centers of both elements do not match, or the plane containing the excitation element and the plane containing the parasitic element are not parallel, etc. The present invention can also be implemented.

【0016】[0016]

【発明の効果】本発明アンテナは、構成が極めて簡潔
で、重量が極めて軽く、姿勢も低く構成し得るから、移
動通信における移動局アンテナのように姿勢の高さが制
限されるアンテナとして好適なばかりでなく、従来のよ
うに大型で重量の大なる偏波変換器を回転させて円偏波
の制御を行うものに較べて、本発明アンテナにおいても
回転操作によって円偏波の制御を行うことは従来と同様
であるが、回転対象である無給電素子は比較的小型で重
量も軽いから円偏波の制御は極めて容易で、又、構成部
品の共通化によるコストの大幅な低減が可能であるか
ら、地域によって右旋円偏波と左旋円偏波のように偏波
の異なる衛星放送の受信用アンテナとして使用可能であ
り、更にレ−ダ用アンテナとしても好適なものである。
The antenna of the present invention has a very simple structure, is extremely light in weight, and can be constructed in a low attitude, and is therefore suitable as an antenna whose attitude height is limited like a mobile station antenna in mobile communications. In addition to controlling the circularly polarized wave by rotating a large and heavy polarization converter as in the conventional case, the circularly polarized wave can also be controlled by rotating the antenna of the present invention. Is the same as the conventional one, but the parasitic element that is the object of rotation is relatively small and light in weight, so it is extremely easy to control circular polarization, and the cost can be significantly reduced by using common components. Therefore, it can be used as a receiving antenna for satellite broadcasting having different polarizations such as right-hand circular polarization and left-hand circular polarization depending on the region, and is also suitable as a radar antenna.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】本発明の他の実施例を示す図である。FIG. 2 is a diagram showing another embodiment of the present invention.

【図3】本発明アンテナの作動説明のための図である。FIG. 3 is a diagram for explaining the operation of the antenna of the present invention.

【図4】本発明アンテナの作動説明のための図である。FIG. 4 is a diagram for explaining the operation of the antenna of the present invention.

【図5】本発明アンテナの作動説明のための図である。FIG. 5 is a diagram for explaining the operation of the antenna of the present invention.

【図6】本発明アンテナの作動説明のための図である。FIG. 6 is a diagram for explaining the operation of the antenna of the present invention.

【図7】本発明アンテナの指向性を示す図である。FIG. 7 is a diagram showing the directivity of the antenna of the present invention.

【図8】本発明アンテナの指向性を示す図である。FIG. 8 is a diagram showing the directivity of the antenna of the present invention.

【図9】本発明の他の実施例を示す図である。FIG. 9 is a diagram showing another embodiment of the present invention.

【図10】本発明の他の実施例を示す図である。FIG. 10 is a diagram showing another embodiment of the present invention.

【図11】本発明アンテナを用いて構成したアレ−アン
テナを示す図である。
FIG. 11 is a diagram showing an array antenna configured by using the antenna of the present invention.

【図12】従来の偏波変換器を示す斜視図である。FIG. 12 is a perspective view showing a conventional polarization converter.

【符号の説明】[Explanation of symbols]

1 励振素子 2 反射体 3 入出力端子 4 給電線 5 無給電素子 6 間隙 51、52 無給電素子 61、62 間隙 121 〜1211 帯状導体1 Excitation element 2 Reflector 3 Input / output terminal 4 Feed line 5 Parasitic element 6 Gap 5 1 , 5 2 Parasitic element 6 1 , 6 2 Gap 12 1 to 12 11 Band conductor

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−268432(JP,A) 特開 昭63−240104(JP,A) 実開 平4−91408(JP,U) 特公 昭35−10268(JP,B1) 特表 昭62−581501(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01Q 7/00 G01S 7/03 H01Q 15/24 H01Q 19/10 H01Q 21/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-268432 (JP, A) JP-A-63-240104 (JP, A) Actual Kaihei 4-91408 (JP, U) JP-B-35- 10268 (JP, B1) Special table Sho 62-581501 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01Q 7/00 G01S 7/03 H01Q 15/24 H01Q 19/10 H01Q 21/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 平面状反射体の前面に設けたループ状励
振素子と、 前記ループ状励振素子の一部に接続された給電線と、 前記ループ状励振素子の前面に、放射波長に比し十分狭
い間隔を隔てて設けられ、一部に放射波長に比し十分狭
い間隙を1個有するループ状無給電素子とを備え、 前記ループ状励振素子の中心と前記ループ状励振素子の
給電点とを通る直線と、前記ループ状無給電素子の中心
と前記ループ状無給電素子の間隙の中心とを通る直線と
は、所定の交差角をもって交差する偏波可変アンテナで
あって、 前記所定の交差角は、偏波可変アンテナから放射される
円偏波の放射波の軸比が3dB以下となる角度であるこ
とを特徴とする偏波可変アンテナ。
1. A loop-shaped excitation element provided on the front surface of a planar reflector, a power supply line connected to a part of the loop-shaped excitation element, and a front surface of the loop-shaped excitation element with respect to a radiation wavelength. A loop-shaped parasitic element which is provided with a sufficiently narrow interval and has one gap that is sufficiently narrow compared to the radiation wavelength, and the center of the loop-shaped excitation element and the feeding point of the loop-shaped excitation element A straight line passing through and a straight line passing through the center of the loop-shaped parasitic element and the center of the gap of the loop-shaped parasitic element are polarization variable antennas that intersect at a predetermined crossing angle, and the predetermined crossing The angle is an angle at which an axial ratio of a circularly polarized radiation wave radiated from the polarization variable antenna is 3 dB or less.
【請求項2】 平面状反射体の前面に設けたループ状励
振素子と、 前記ループ状励振素子の一部に接続された給電線と、 前記ループ状励振素子の前面に、放射波長に比し十分狭
い間隔を隔てて設けられるループ状無給電素子であっ
て、ループ状無給電素子の中心に対して対称の2箇所に
放射波長に比し十分狭い間隙を有する無給電素子とを備
え、 前記ループ状励振素子と前記ループ状励振素子の給電点
とを通る直線と、前記ループ状無給電素子の2つの間隙
の中心を通る直線とは、所定の交差角をもって交差する
偏波可変アンテナであって、 前記所定の交差角は、偏波可変アンテナから放射される
円偏波の放射波の軸比が3dB以下となる角度であるこ
とを特徴とする偏波可変アンテナ。
2. A loop-shaped excitation element provided on the front surface of a planar reflector, a power supply line connected to a part of the loop-shaped excitation element, and a front surface of the loop-shaped excitation element in comparison with a radiation wavelength. A loop-shaped parasitic element provided with a sufficiently narrow interval, the parasitic element having two spaces symmetrical with respect to the center of the loop-shaped parasitic element and having a sufficiently narrow gap as compared with a radiation wavelength, A straight line passing through the loop-shaped excitation element and the feeding point of the loop-shaped excitation element and a straight line passing through the center of the two gaps of the loop-shaped parasitic element cross at a predetermined crossing angle. The variable antenna according to claim 1, wherein the predetermined crossing angle is an angle at which an axial ratio of a circularly polarized radiation wave radiated from the polarization variable antenna is 3 dB or less.
JP06449394A 1994-03-08 1994-03-08 Polarization variable antenna Expired - Lifetime JP3452971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06449394A JP3452971B2 (en) 1994-03-08 1994-03-08 Polarization variable antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06449394A JP3452971B2 (en) 1994-03-08 1994-03-08 Polarization variable antenna

Publications (2)

Publication Number Publication Date
JPH07249921A JPH07249921A (en) 1995-09-26
JP3452971B2 true JP3452971B2 (en) 2003-10-06

Family

ID=13259793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06449394A Expired - Lifetime JP3452971B2 (en) 1994-03-08 1994-03-08 Polarization variable antenna

Country Status (1)

Country Link
JP (1) JP3452971B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006033408A1 (en) * 2004-09-22 2006-03-30 Matsushita Electric Industrial Co., Ltd. Loop antenna unit and wireless communication media processing apparatus

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3431045B2 (en) * 1995-01-18 2003-07-28 久松 中野 Circularly polarized loop antenna
NO313975B1 (en) * 2000-02-08 2003-01-06 Q Free Asa Antenna for transponder
KR100597208B1 (en) * 2004-04-20 2006-07-06 주식회사 액티패스 Satellite broadcasting antenna having a Annular ring and Shorted circular patch loaded monopole antenna
EP1804335A4 (en) 2004-09-30 2010-04-28 Toto Ltd Microstrip antenna and high frequency sensor using microstrip antenna
JP4478634B2 (en) * 2005-08-29 2010-06-09 富士通株式会社 Planar antenna
JP6018853B2 (en) * 2012-03-05 2016-11-02 日本アンテナ株式会社 Circularly polarized antenna
JP5774642B2 (en) * 2013-07-18 2015-09-09 株式会社フジクラ Loop antenna
JP5774641B2 (en) * 2013-07-18 2015-09-09 株式会社フジクラ Loop antenna
CN105633570A (en) * 2016-01-04 2016-06-01 张家港保税区灿勤科技有限公司 Four-frequency radio frequency antenna
JP6145785B1 (en) * 2017-01-25 2017-06-14 パナソニックIpマネジメント株式会社 Antenna device
JP7508078B2 (en) * 2019-10-31 2024-07-01 国立大学法人電気通信大学 Antenna system and antenna

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006033408A1 (en) * 2004-09-22 2006-03-30 Matsushita Electric Industrial Co., Ltd. Loop antenna unit and wireless communication media processing apparatus
GB2431053A (en) * 2004-09-22 2007-04-11 Matsushita Electric Ind Co Ltd Loop antenna unit and wireless communication media processing apparatus
US7446729B2 (en) 2004-09-22 2008-11-04 Matsushita Electric Industrial Co., Ltd. Loop antenna unit and radio communication medium processor
GB2431053B (en) * 2004-09-22 2009-01-28 Matsushita Electric Ind Co Ltd Loop antenna unit and radio communication medium processor

Also Published As

Publication number Publication date
JPH07249921A (en) 1995-09-26

Similar Documents

Publication Publication Date Title
US7161537B2 (en) Low profile hybrid phased array antenna system configuration and element
US9929472B2 (en) Phased array antenna
US4700197A (en) Adaptive array antenna
KR100485354B1 (en) Microstrip Patch Antenna and Array Antenna Using Superstrate
US6211840B1 (en) Crossed-drooping bent dipole antenna
US6057802A (en) Trimmed foursquare antenna radiating element
US6037911A (en) Wide bank printed phase array antenna for microwave and mm-wave applications
KR101307113B1 (en) Circularly polarized loop reflector antenna and associated methods
WO2006030583A1 (en) Antenna assembly and multibeam antenna assembly
JP2008503904A (en) Multi-beam antenna
WO1999033143A1 (en) Multiple parasitic coupling from inner patch antenna elements to outer patch antenna elements
JP2009089212A (en) Antenna for radar device
JP2003078336A (en) Laminated spiral antenna
JP3452971B2 (en) Polarization variable antenna
US6018327A (en) Single-wire spiral antenna
US11502414B2 (en) Microstrip patch antenna system having adjustable radiation pattern shapes and related method
US5633646A (en) Mini-cap radiating element
JPH0270104A (en) Wide directional microstrip antenna
EP0889543A1 (en) Wide band printed dipole antenna for microwave and mm-wave applications
EP0889542A1 (en) Wide band printed phase array antenna for microwave and mm-wave applications
KR100449846B1 (en) Circular Polarized Microstrip Patch Antenna and Array Antenna arraying it for Sequential Rotation Feeding
EP0824766A1 (en) Antenna unit
WO2021197400A1 (en) A patch antenna
CN112886226B (en) Broadband low-profile back-reflection circularly polarized antenna and back-reflection method thereof
EP2309596B1 (en) Dual-polarization antenna's radiating element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030708

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 10

EXPY Cancellation because of completion of term