WO2004001446A1 - Antenne millimetrique cylindrique pour radar de type sar rotatif - Google Patents

Antenne millimetrique cylindrique pour radar de type sar rotatif Download PDF

Info

Publication number
WO2004001446A1
WO2004001446A1 PCT/EP2003/050248 EP0350248W WO2004001446A1 WO 2004001446 A1 WO2004001446 A1 WO 2004001446A1 EP 0350248 W EP0350248 W EP 0350248W WO 2004001446 A1 WO2004001446 A1 WO 2004001446A1
Authority
WO
WIPO (PCT)
Prior art keywords
illuminator
antenna
cylinder
radar
antenna according
Prior art date
Application number
PCT/EP2003/050248
Other languages
English (en)
Inventor
Claude Chekroun
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to AU2003266406A priority Critical patent/AU2003266406A1/en
Publication of WO2004001446A1 publication Critical patent/WO2004001446A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays
    • H01Q21/0043Slotted waveguides
    • H01Q21/005Slotted waveguides arrays
    • H01Q21/0056Conically or cylindrically arrayed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/91Radar or analogous systems specially adapted for specific applications for traffic control
    • G01S2013/916Airport surface monitoring [ASDE]

Definitions

  • the present invention relates to an antenna, in particular a millimeter antenna.
  • the invention applies in particular to the detection of objects in a given field. As such, it applies for example to the surveillance of airports.
  • the invention also relates to a radar equipped with an antenna, for example a surveillance radar.
  • a first type of monitoring is responsible for the condition of the landing and take-off runways.
  • airport management companies must ensure that there are no objects on the runways that could damage the aircraft.
  • Another type of surveillance involves the presence of unauthorized individuals on the runways and around parked aircraft, especially at night.
  • Radars are well suited to this type of surveillance since they are operational in all weathers as well as at night.
  • An object of the invention is to allow the realization of an antenna at low cost and high reliability, in particular for surveillance radar applications.
  • the subject of the invention is an antenna comprising a metal cylinder with a helical radiating opening and an illuminator placed inside the cylinder and extending along the axis of the latter, the cylinder and the illuminator having a relative rotational movement.
  • the illuminator remains fixed.
  • the illuminator is for example composed of guides with radiating slits.
  • the invention also relates to a radar equipped with such an antenna.
  • the radar advantageously applies SAR type processing by exploiting the displacement of the phase center of the antenna radiation.
  • FIG. 6 a pictorial representation of an antenna according to the invention by a conventional moving antenna
  • FIG. 1 illustrates an exemplary embodiment of an antenna according to the invention.
  • This antenna comprises a metal cylinder 1 having a helical radiating opening 2. That is to say, this opening is delimited by two propellers 3, 4 of the same pitch and offset by a distance d. The two propellers travel, for example, over the entire length of the cylinder.
  • the antenna also includes an illuminator 5 arranged inside the cylinder extending along the axis 10 of the cylinder.
  • the illuminator 5 can be offset relative to the axis 10 of the cylinder due in particular to a distance constraint between the radiating face of the illuminator and the metal part of the cylinder 1.
  • the cylinder 1 and the illuminator 5 have a movement of relative rotation with respect to the axis 10 of the cylinder.
  • the illuminator is fixed and the cylinder rotates about its axis 10.
  • the cylinder with radiant opening 1 can be produced in different ways.
  • this cylinder 1 is for example composed of a cylinder of dielectric material of substantially constant thickness covered with a metallic layer except between the propellers 3, 4 delimiting the radiation opening.
  • a process for producing the radiating opening cylinder 1 may then include a step of producing a cylinder of dielectric material, a step of covering this cylinder with a metal layer and then a step of demetallization between the lines 3, 4 delimiting the radiation opening.
  • FIG. 2 shows by a transverse view, in a plane perpendicular to the axis 10 of the cylinder, how the illuminator 5 is placed with respect to the cylinder 1.
  • the face of the illuminator is for example shaped so that all of its radiating points are substantially at a distance ⁇ / 2 from the metallized wall of the cylinder, ⁇ being the operating wavelength.
  • a convergence lens 21 is for example placed in the radiation field of the antenna, more particularly of the illuminator 5, so as to refocus the radiation in the plane of the view of FIG. 2, which is for example the plane of site.
  • the defocusing of the radiation is notably due to the fact that the radiating opening 2 is angularly offset relative to this plane, due to the helical shape of this opening.
  • the illuminator occupies for example a length less than or equal to the length L of the cylinder and an angular portion ⁇ of this cylinder. At the limit, the angle ⁇ can be equal to 2 ⁇ .
  • the illuminator 5 is for example composed of a network of slotted guides.
  • Each slot guide is for example a guide in progressive mode, closed on a microwave load, the radiation slots being all identical.
  • the guides are powered by a microwave source.
  • the width of the illuminator 5, that is to say for example the number of guides in parallel depends on the width of the desired antenna pattern.
  • the diameter of the cylinder 1 depends on the width of the illuminator.
  • the illuminator is for example extended on each side by metal plates 6 to avoid side effects. These plates, like the illuminator, closely match the shape of the cylinder.
  • the illuminator can operate in cross polarizations. For this purpose, a series of slot guides operate according to a polarization and the other series of slot guides operate according to perpendicular polarization, the guides with direct and perpendicular polarization being for example interposed.
  • the illuminator 5 being fixed, it is then not necessary to provide a rotating joint between the latter and the arrival guides of the microwave waves.
  • the invention thus avoids the use of a microwave rotating joint. This advantageously results in savings and improved operating reliability.
  • the network of slotted guides is for example fixed on an internal cylinder 31, concentric with the metal cylinder with radiating opening 1.
  • the two cylinders 1, 31 have a relative rotational movement.
  • the cylinder 31 which supports the radius of slot guides remains fixed.
  • the outer cylinder 1 is rotated by a motor.
  • the low inertia of this cylinder 1 allows the use of a fast motor which can reach, for example, around 10,000 revolutions per minute.
  • FIG. 4a, 4b and 4c illustrate the operation of an antenna according to the invention.
  • the parts of the illuminator 5, for example the slots, which face the metallized wall of the cylinder 1 do not radiate, due to the distance ⁇ / 2 which creates a microwave short circuit.
  • the parts of the illuminator which are opposite the opening 2 participate in the radiation of the antenna.
  • this opening is presented as several openings or a global opening interspersed with the metallized part of the cylinder 1.
  • Figure 4c illustrates the antenna beam associated with the position of Figure 4a with its phase center 43 located at the level of the illuminator 5.
  • the beam 41 here represents the angular coverage of the antenna.
  • Figure 4b illustrates the same elements as those of Figure 4a, but at a time following to + ⁇ t. In the plane of the figure, the opening is then offset by a distance ⁇ as a result of the rotation of the cylinder 1 and the helical shape of its radiating opening 2.
  • the antenna beam 42 corresponding to the position of cylinder 1 of figure 4b is represented with its center of phase 44 which has shifted by a distance ⁇ .
  • radars with synthetic antennas are radars whose antenna is oriented perpendicular to the carrier's route. It is the carrier of the radar, and more particularly of the antenna, which in its movement generates the observation of space.
  • the displacement of the carrier is simulated by the displacement of the phase center.
  • the two dimensions of the radar image are defined by the direction of propagation and the movement of the carrier. The spatial resolution, which conditions the fineness of the image observed, is therefore obtained:
  • the phase center moves between a position x 0 - ⁇ Ma ⁇ / 2 and xo + ⁇ Ma ⁇ / 2.
  • the amplitude of the displacement ⁇ a ⁇ depends on the pitch of the propellers 3, 4 forming the radiating opening.
  • FIG. 4c therefore shows the displacement of the phase center.
  • this movement is made in a deposit, which is particularly suitable for a monitoring application.
  • FIG. 4c only presents the illuminator 5 and the beam 41, the cylinder with radiating opening 1 being shown in dotted lines for the record.
  • the beam is therefore displaced as a function of the rotation of the radiating opening 2 around the illuminator, which in fact corresponds to the sliding of the radiating opening along this illuminator according to the amplitude ⁇ 3X -
  • the width of the beam 41, 42 is a function of the width d of the radiating opening, this width being in fact the distance between the two helices defining this opening.
  • the width d of the radiating opening 2 is then equal to 0.1 ⁇ . For an operating frequency of 75 GHz for example, ⁇ is then equal to 4 mm, and therefore the width of the radiating opening equal to 4 cm.
  • FIG. 5 illustrates the antenna lobe 51 corresponding to the radiation from the illuminator interspersed with the metallized masking zones.
  • the angle at 3dB of this beam is equal to ⁇ / L, where L is the total length of the illuminator.
  • L is the total length of the illuminator.
  • FIG. 6 pictorially synthesizes Figures 4c and 5 showing that an antenna according to the invention produces radiation similar to that of a conventional antenna 61 which would move along the axis 49 of the illuminator , in both directions, in a maximum amplitude ⁇ a x-
  • This conventional antenna 61 has an antenna lobe 51 similar to that of the antenna according to the invention, this lobe having a rotational movement around the phase center of the conventional antenna.
  • the speed of movement of the phase center as a function of the speed of rotation of the cylinder 1 with radiating opening, can be very high. We have seen previously that due to the low inertia of cylinder 1, this speed of rotation could be very high.
  • FIG. 7 schematically shows a possible example of supply of the illuminator 5, the latter being for example composed of guides with radiating slots.
  • This microwave power supply is produced by a geodesic lens 71.
  • the lens 71 is connected to a waveguide, not shown, which supplies it with the microwave wave to be emitted.
  • This guide is connected via microwave circulators to transmission means.
  • the lens is connected to reception means.
  • the lens remains fixed insofar as it is the cylinder 1 with radiating opening, not shown in FIG. 7, which is driven by a rotational movement.
  • FIG. 8 illustrates an example of application of a radar according to the invention for the surveillance of a given area 90.
  • a radar according to the invention comprises an antenna as described above, in particular for surveillance.
  • FIG. 8 presents, by way of example, the monitoring of a runway 90.
  • the radar 81 is therefore equipped with an antenna according to the invention, symbolized here by its cylinder 1 with radiating opening. Apart from the antenna, the components of radar 81 can be conventional. Its transmission and reception means are connected to the antenna by a microwave link 82 via, for example, a geodesic lens as described above.
  • the track is for example that described above, having a length of the order of 1000 meters and a width of 100 meters.
  • the antenna 1 is for example placed at the end of the runway, substantially centered on the center line. Its lobe 51 sweeps the track.
  • the radar transmission frequency f is for example modulated according to a linear ramp between a frequency fi and a frequency f 2 .
  • ⁇ f is for example defined so that a distance box is equal to 10 meters.
  • the length of the antenna is defined so that the width of the lobe 51 to 3dB corresponds to a resolution width of 10 meters, taking into account the transmission frequency.
  • a resolution area 83 is then substantially a square of 10 meters x 10 meters.
  • each square meter of the resolution area 83 re-emits the transmitted power with an attenuation of -30dB, corresponding to clutter.
  • the cell then returns globally, in the absence of an object, a power of -30dB + 20dB, or -10dB. If we consider an object having a radar equivalent surface of the order of one square meter on the runway, for example a large bolt, we can obtain a contrast of 10dB, which is sufficient for detection.
  • the radar processing means 81 then advantageously apply SAR type processing by exploiting the displacement of the phase center of the antenna radiation along the axis of the illuminator. Each time the antenna is scanned, a radar image of the track is memorized by the processing means.
  • the presence of an unwanted target on the runway, object or individual then results in an anomaly in the image.
  • This anomaly detection is done by analysis of the successive radar images obtained. In particular, if the radar detects an anomaly during a scan, it generates, for example, an alert.
  • the invention has been described by way of example for an airport surveillance application.
  • An antenna or a radar according to the invention can obviously be used in other fields, in particular in fields where it may be advantageous to use radar processing of the SAR type. It can in particular be used for control on motorways.
  • the radar images are not disturbed by atmospheric or climatic conditions. In rainy weather, the circular polarization of the illuminator can then be advantageously used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

La présente invention concerne une antenne, notamment millimétrique, et un radar équipé d'une telle antenne. L'antenne comporte un cylindre métallique (1) à ouverture rayonnante hélicoïdale (2) et un illuminateur (5) placé à I'intérieur du cylindre et s'étendant le long de l'axe (10) de ce dernier. Le cylindre (1) et I'illuminateur (5) ont un mouvement de rotation relatif. L'invention s'applique en particulier pour la détection d'objets dans un domaine donné. A ce titre, elle s'applique par exemple pour la surveillance d'aéroports.

Description

ANTENNE MILLIMETRIQUE CYLINDRIQUE POUR RADAR DE TYPE SAR ROTATIF
La présente invention concerne une antenne, notamment millimétrique. L'invention s'applique en particulier pour la détection d'objets dans un domaine donné. A ce titre, elle s'applique par exemple pour la surveillance d'aéroports. L'invention concerne aussi un radar équipé d'une antenne, par exemple un radar de surveillance.
II existe des besoins en ce qui concerne notamment la surveillance des aéroports. Un premier type de surveillance a en charge l'état des pistes d'atterrissage et de décollage. En particulier, les sociétés gestionnaires d'aéroports doivent s'assurer de l'absence d'objets sur les pistes susceptibles d'endommager les avions. Un autre type de surveillance s'attache à la présence d'individus non autorisés sur les pistes et aux alentours des avions en stationnement, notamment la nuit.
Les radars sont bien adaptés à ce type de surveillance dans la mesure où ils sont opérationnels par tous temps ainsi que la nuit.
Un but de l'invention est de permettre la réalisation d'une antenne à faible coût et grande fiabilité, notamment pour des applications de radars de surveillance. A cet effet, l'invention a pour objet une antenne comportant un cylindre métallique à ouverture rayonnante hélicoïdale et un illuminateur placé à l'intérieur du cylindre et s'étendant le long de l'axe de ce dernier, le cylindre et l'illuminateur ayant un mouvement de rotation relatif.
Dans un mode de réalisation avantageux, l'illuminateur reste fixe.
L'illuminateur est par exemple composé de guides à fentes rayonnantes. L'invention a également pour objet un radar équipé d'une telle antenne. Le radar applique avantageusement un traitement de type SAR en exploitant le déplacement du centre de phase du rayonnement de l'antenne.
L'invention a encore pour principaux avantages qu'elle permet une haute résolution, qu'elle s'applique dans de nombreux domaines et qu'elle est simple à mettre en œuvre. D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit faite en regard de dessins annexés qui représentent : - la figure 1 , un exemple de réalisation d'une antenne selon l'invention par une vue en perspective ;
- la figure 2, par une vue transversale, une disposition d'un illuminateur par rapport à un cylindre, deux éléments composant en partie l'antenne ; - la figure 3, un mode de fixation possible de l'illuminateur ;
- les figures 4a, 4b et 4c une illustration du fonctionnement d'une antenne selon l'invention ;
- la figure 5, une illustration du lobe d'antenne selon l'invention ;
- la figure 6, une représentation imagée d'une antenne selon l'invention par une antenne classique en mouvement ;
- la figure 7, un mode d'alimentation possible de l'illuminateur dans une antenne selon l'invention ;
- la figure 8, un exemple d'application d'un radar selon l'invention.
La figure 1 illustre un exemple de réalisation d'une antenne selon l'invention. Cette antenne comporte un cylindre métallique 1 présentant une ouverture rayonnante 2 hélicoïdale. C'est-à-dire que cette ouverture est délimitée par deux hélices 3, 4 de même pas et décalées d'une distance d. Les deux hélices parcourent par exemple le cylindre sur toute sa longueur.
L'antenne comporte par ailleurs un illuminateur 5 disposé à l'intérieur du cylindre s'étendant le long de l'axe 10 du cylindre. L'illuminateur 5 peut être excentré par rapport à l'axe 10 du cylindre en raison notamment de contrainte de distance entre la face rayonnante de l'illuminateur et la partie métallique du cylindre 1. Le cylindre 1 et l'illuminateur 5 ont un mouvement de rotation relatif par rapport à l'axe 10 du cylindre. Dans un mode de réalisation, l'illuminateur est fixe et le cylindre tourne autour de son axe 10. Le cylindre à ouverture rayonnante 1 peut être réalisé de différentes manières. En particulier, ce cylindre 1 est par exemple composé d'un cylindre en matériau diélectrique d'épaisseur sensiblement constante recouvert d'une couche métallique sauf entre les hélices 3, 4 délimitant l'ouverture de rayonnement. Un processus de réalisation du cylindre à ouverture rayonnante 1 peut alors comporter une étape de réalisation d'un cylindre en matériau diélectrique, une étape de recouvrement de ce cylindre par une couche métallique puis une étape de démétallisation entre les lignes 3, 4 délimitant l'ouverture de rayonnement.
La figure 2 montre par une vue transversale, dans un plan perpendiculaire à l'axe 10 du cylindre, comment est disposé l'illuminateur 5 par rapport au cylindre 1 . La face de l'illuminateur est par exemple conformée de façon à ce que tous ses points rayonnant soient sensiblement à une distance λ/2 de la paroi métallisée du cylindre, λ étant la longueur d'onde de fonctionnement. Une lentille de convergence 21 est par exemple placée dans le champ de rayonnement de l'antenne, plus particulièrement de l'illuminateur 5, de façon à refocaliser le rayonnement dans le plan de la vue de la figure 2, qui est par exemple le plan de site. La défocalisation du rayonnement est notamment due au fait que l'ouverture rayonnante 2 est décalée angulairement par rapport à ce plan, en raison de la forme hélicoïdale de cette ouverture. L'illuminateur occupe par exemple une longueur inférieure ou égale à la longueur L du cylindre et une portion angulaire α de ce cylindre. A la limite, l'angle α peut être égal à 2π.
L'illuminateur 5 est par exemple composé d'un réseau de guides à fentes. Chaque guide à fente est par exemple un guide en mode progressif, refermé sur une charge hyperfréquence, les fentes de rayonnement étant toutes identiques. Les guides sont alimentés par une source hyperfréquence.
La largeur de l'illuminateur 5, c'est-à-dire par exemple le nombre de guides en parallèle dépend de la largeur de diagramme d'antenne souhaité. En particulier, le diamètre du cylindre 1 dépend de la largeur de l'illuminateur.
L'illuminateur est par exemple prolongé sur chaque côté par des plaques métalliques 6 pour éviter les effets de bord. Ces plaques, comme l'illuminateur épousent sensiblement la forme du cylindre. L'illuminateur peut fonctionner en polarisations croisées. A cet effet, une série de guides à fentes fonctionnent selon une polarisation et l'autre série de guides à fentes fonctionnent selon la polarisation perpendiculaire, les guides à polarisation directe et perpendiculaire étant par exemple intercalés.
L'illuminateur 5 étant fixe, il n'est alors pas nécessaire de prévoir un joint tournant entre ce dernier et les guides d'arrivée des ondes hyperfréquence. L'invention évite ainsi l'utilisation d'un joint tournant hyperfréquence. Il en résulte avantageusement une économie et une meilleure fiabilité de fonctionnement.
Comme l'illustre la figure 3, le réseau de guides à fentes est par exemple fixé sur un cylindre intérieur 31 , concentrique avec le cylindre métallique à ouverture rayonnante 1. Les deux cylindres 1 , 31 ont un mouvement de rotation relatif. Dans un mode de réalisation, le cylindre 31 qui supporte le rayon de guides à fente reste fixe. Le cylindre extérieur 1 est entraîné en rotation par un moteur. La faible inertie de ce cylindre 1 permet l'utilisation de moteur rapide pouvant atteindre par exemple de l'ordre de 10 000 tours par minute.
Les figures 4a, 4b et 4c illustrent le fonctionnement d'une antenne selon l'invention. En fonctionnement, les parties de l'illuminateur 5, par exemple les fentes, qui font face à la paroi métallisée du cylindre 1 ne rayonnent pas, du fait de la distance λ/2 qui crée un court-circuit hyperfréquence. Les parties de l'illuminateur qui sont en regard de l'ouverture 2 participent au rayonnement de l'antenne. En fait, du fait de la forme en hélice de l'ouverture 2, au regard de l'illuminateur cette ouverture se présente comme plusieurs ouverture ou encore une ouverture globale entrecoupée de la partie métallisée du cylindre 1. La figure 4a illustre une position de l'ouverture rayonnante 2 au regard de l'illuminateur 5 à un instant donné to. La figure 4c illustre le faisceau d'antenne associé à la position de la figure 4a avec son centre de phase 43 situé au niveau de l'illuminateur 5. Le faisceau 41 représente ici la couverture angulaire de l'antenne. La figure 4b illustre les même éléments que ceux de la figure 4a, mais à un instant suivant to + Δt. Dans le plan de la figure, l'ouverture s'est alors décalée d'une distance Δ par suite de la rotation du cylindre 1 et de la forme en hélice de son ouverture rayonnante 2. Le faisceau d'antenne 42 correspondant à la position de cylindre 1 de la figure 4b est représenté avec son centre de phase 44 qui s'est décalé d'une distance Δ. La rotation du cylindre permet donc le déplacement continu du centre de phase du rayonnement, et permet ainsi d'obtenir un fonctionnement du type radar à antenne synthétique ou SAR, selon l'expression anglo-saxonne « Side Aperture Radar ». Cette propriété d'une antenne selon l'invention peut alors être avantageusement exploitée par des moyens de traitement radar pour obtenir et analyser des images radar à haute résolution. Pour mémoire, les radars à antenne synthétique sont des radars dont l'antenne est orientée perpendiculairement à la route du porteur. C'est le porteur du radar, et plus particulièrement de l'antenne, qui dans son déplacement engendre l'observation de l'espace. Dans la présente invention, le déplacement du porteur est simulé par le déplacement du centre de phase. Les deux dimensions de l'image radar sont définies par la direction de propagation et le déplacement du porteur. La résolution spatiale, qui conditionne la finesse de l'image observée, est donc obtenue :
- dans la direction perpendiculaire au mouvement du porteur par la résolution en distance du radar ; dans la direction du mouvement du porteur par la largeur du lobe d'antenne. Le traitement du type SAR est notamment décrit dans l'ouvrage de
J.Darricau : Physique et Théorie du Radar -Tome 3, 3eme édition - Chapitre 21 , page 483 - Editeur Sodipe, Paris 1994.
Le long de l'axe 49 l'illuminateur 5, parallèle à l'axe 10 du cylindre, le centre de phase se déplace entre une position x0 - ΔMaχ/2 et xo + ΔMaχ/2. L'amplitude du déplacement Δ aχ dépend du pas des hélices 3, 4 formant l'ouverture rayonnante.
La figure 4c montre donc le déplacement du centre de phase. Dans le l'exemple considéré, ce déplacement se fait en gisement, ce qui convient notamment pour une application de surveillance. Pour des facilités de description, la figure 4c ne présente que l'illuminateur 5 et le faisceau 41 , le cylindre à ouverture rayonnante 1 étant représenté en pointillé pour mémoire. Le déplacement du faisceau se fait donc en fonction de la rotation de l'ouverture rayonnante 2 autour de l'illuminateur, ce qui correspond en fait au glissement de l'ouverture rayonnante le long de cet illuminateur selon l'amplitude Δ 3X- La largeur du faisceau 41 , 42 est fonction de la largeur d de l'ouverture rayonnante, cette largeur étant en fait la distance entre les deux hélices définissant cette ouverture. La largeur à 3dB du faisceau 41 est λ/d, où λ est la longueur d'onde émise. En cas d'application de surveillance d'un espace, une piste d'atterrissage ou de décollage par exemple, il est préférable que cette largeur couvre de l'espace à surveiller. A titre d'exemple si le faisceau 41 doit couvrir un espace de 1000 mètres de long sur 100 mètres de large, l'angle à 3dB, noté θ3dB, doit être égal à 100/1000 = 0,1 radians, soit environ 6°. La largeur d de l'ouverture rayonnante 2 est alors égale à 0,1 λ. Pour une fréquence de fonctionnement de 75 GHz par exemple, λ est alors égale à 4 mm, et donc la largeur de l'ouverture rayonnante égale à 4 cm.
La figure 5 illustre le lobe d'antenne 51 correspondant au rayonnement de l'illuminateur entrecoupé des zones de masquage métallisées. Classiquement l'angle à 3dB de ce faisceau, noté θ'3dB, est égal à λ/L, où L est la longueur totale de l'illuminateur. Par exemple, dans l'exemple précédent à 75 GHz, si on souhaite une largeur de lobe de 10 mètres à 1000 mètres, il faut θ'3dB = 0.01 radians. Ce qui fait une longueur L d'illuminateur de 40 cm, cette longueur étant aussi celle du cylindre 1 à ouverture rayonnante. Le lobe 51 de déplace lui-même d'un mouvement de rotation 45 autour du centre de phase 43 à l'intérieur du faisceau 41. Ce cette façon le lobe d'antenne 51 balaie un espace donné. La figure 5, toujours en se référant à l'exemple précédent, représente le lobe 51 en gisement. Pour la couverture en site, l'angle dépend notamment de la largeur de l'illuminateur.
La figure 6 fait de façon imagée la synthèse des figures 4c et 5 en montrant qu'une antenne selon l'invention produit un rayonnement analogue à celui d'une antenne classique 61 qui se déplacerait le long de l'axe 49 de l'illuminateur, dans les deux sens, dans une amplitude maximum Δ ax- Cette antenne classique 61 présente un lobe d'antenne 51 semblable à celui de l'antenne selon l'invention, ce lobe ayant un mouvement de rotation autour de du centre phase de l'antenne classique. La vitesse de déplacement du centre de phase, fonction de la vitesse de rotation du cylindre 1 à ouverture rayonnante, peut être très grande. On a vu en effet précédemment que du fait de la faible inertie du cylindre 1 , cette vitesse de rotation pouvait être très grande.
La figure 7 présente de façon schématique un exemple possible d'alimentation de l'illuminateur 5, celui-ci étant par exemple composé de guides à fentes rayonnantes. Cette alimentation en onde hyperfréquence est réalisée par une lentille géodésique 71. Par ce mode de réalisation, tous les guides peuvent aisément rayonner en phase. La lentille 71 est reliée à un guide d'onde non représenté qui lui fournit l'onde hyperfréquence à émettre. Ce guide est relié via des circulateurs hyperfréquence à des moyens d'émission. De même pour la réception, par ce même guide, la lentille est reliée à des moyens de réception. Avantageusement, la lentille reste fixe dans la mesure où c'est le cylindre 1 à ouverture rayonnante, non représentée sur la figure 7, qui est animé d'un mouvement de rotation.
La figure 8 illustre un exemple d'application d'un radar selon l'invention pour la surveillance d'une zone donnée 90. Un radar selon l'invention, comporte une antenne telle que décrite précédemment, notamment pour la surveillance. La figure 8 présente à titre d'exemple la surveillance d'une piste 90. Le radar 81 est donc équipé d'une antenne selon l'invention, symbolisée ici par son cylindre 1 à ouverture rayonnante. En dehors de l'antenne, les composants du radar 81 peuvent être classiques. Ses moyens d'émission et de réception sont reliés à l'antenne par une liaison hyperfréquence 82 par l'intermédiaire par exemple d'une lentille géodésique telle que décrite précédemment. La piste est par exemple celle décrite précédemment, ayant une longueur de l'ordre de 1000 mètres et une largeur de 100 mètres. L'antenne 1 est par exemple placée en bout de piste, sensiblement centrée sur la ligne médiane. Son lobe 51 balaie la piste.
La fréquence d'émission f du radar est par exemple modulée selon une rampe linéaire entre une fréquence fi et une fréquence f2. Une case distance est alors définie par le rapport c/Δf, où c est la vitesse de propagation de l'onde et Δf = f2 — f 1. Δf est par exemple définie de façon à ce qu'une case distance soit égale à 10 mètres. De même, la longueur de l'antenne est définie de façon à ce que la largeur du lobe 51 à 3dB correspondent à une largeur de résolution de 10 mètres, compte tenu de la fréquence d'émission. Une aire de résolution 83 est alors sensiblement un carré de 10 mètres x 10 mètres.
On suppose que chaque mètre carré de l'aire de résolution 83 réémet la puissance émise avec une atténuation de -30dB, correspondant à du clutter. La cellule renvoie alors globalement, en l'absence d'objet une puissance de -30dB + 20dB, soit -10dB. Si on considère un objet ayant une surface équivalent radar de l'ordre d'un mètre carré sur la piste, par exemple un gros boulon, on peut obtenir un contraste de 10dB, ce qui est suffisant pour une détection. Les moyens de traitement du radar 81 appliquent alors avantageusement un traitement de type SAR en exploitant le déplacement du centre de phase du rayonnement de l'antenne le long de l'axe de l'illuminateur. A chaque balayage d'antenne une image radar de la piste est mémorisée par les moyens de traitement. La présence d'une cible indésirable sur la piste, objet ou individu, se traduit alors par une anomalie sur l'image. Cette détection d'anomalie se fait par analyses des images radars successives obtenues. En particulier, si le radar détecte une anomalie au cours d'un balayage, il génère par exemple une alerte.
L'invention a été décrite à titre d'exemple pour une application de surveillance d'aéroport. Une antenne ou un radar selon l'invention peut évidemment être utilisés dans d'autres domaines, en particulier dans des domaines où il peut être intéressant d'utiliser un traitement radar du type SAR. Elle peut notamment être utilisée pour le contrôle sur autoroutes. En particulier, les images radar ne sont pas perturbées par les conditions atmosphériques ou climatiques. En temps de pluie, la polarisation circulaire de l'illuminateur peut alors être avantageusement utilisée.

Claims

REVENDICATIONS
1. Antenne, caractérisée en ce qu'elle comporte un cylindre métallique (1 ) à ouverture rayonnante hélicoïdale (2) et un illuminateur (5) placé à l'intérieur du cylindre et s'étendant le long de l'axe (10) de ce dernier, le cylindre (1 ) et l'illuminateur (5) ayant un mouvement de rotation relatif.
2. Antenne selon la revendication 1 , caractérisé en ce que l'illuminateur (5) est conformé de façon à ce que ses points rayonnant se situent tous sensiblement à une distance λ/2 de la paroi métallique du cylindre, où λ est la longueur de l'onde émise par l'antenne.
3. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce que l'illuminateur est composé de guides à fentes rayonnantes.
4. Antenne selon la revendication 3, caractérisée en ce que chaque guide fonctionne en mode progressif, refermé sur une charge hyperfréquence.
5. Antenne selon l'une quelconque des revendications 3 ou 4, caractérisée en ce que une série de guides fonctionne dans une polarisation et l'autre série de guides fonctionne dans la polarisation croisée.
6. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce que l'illuminateur est prolongé par des plaques métalliques.
7. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce que le cylindre (1 ) à ouverture rayonnante est par exemple composé au moins d'un cylindre en matériau diélectrique recouvert d'une couche métallique excepté à l'emplacement de l'ouverture.
8. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce que l'illuminateur est en position fixe.
9. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce que l'illuminateur est relié à une lentille géodésique, cette dernière assurant la liaison de l'illuminateur avec des moyens d'émission et de réception d'ondes hyperfréquence.
10. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce que l'illuminateur est disposé sur un cylindre intérieur (31 ) et concentrique au cylindre (1 ) à ouverture rayonnante.
11. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce qu'une lentille de convergence (21 ) est placée dans le champ de rayonnement de l'illuminateur (5) dans un plan perpendiculaire à l'axe (10) du cylindre (1 ).
12. Radar, caractérisé en ce qu'il est équipé d'une antenne selon l'une quelconque des revendications précédentes.
13. Radar selon la revendication 12, caractérisé en ce qu'il applique un traitement de type SAR en exploitant le déplacement du centre de phase (52) du rayonnement de l'antenne le long de l'axe (49) de l'illuminateur, ce déplacement simulant le déplacement d'un porteur.
14. Radar selon l'une quelconque des revendications 12 ou 13, caractérisé en ce que l'antenne est disposée de telle façon que le déplacement du centre de phase s'effectue en gisement.
15. Radar selon l'une quelconque des revendications 13 ou 14, caractérisé en ce qu'étant appliqué à la surveillance d'une zone donnée (90), il détecte les présences de cibles par analyse d'anomalie entre images radar, une image radar étant mémorisée à chaque balayage de la zone (90) par le lobe (51 ) de l'antenne.
16. Radar selon la revendication 15, caractérisé en ce que le zone donnée (90) est située dans un aéroport.
17. Radar selon la revendication 16, caractérisé en ce qu'il est appliqué à la surveillance d'une piste d'atterrissage ou de décollage.
PCT/EP2003/050248 2002-06-25 2003-06-20 Antenne millimetrique cylindrique pour radar de type sar rotatif WO2004001446A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003266406A AU2003266406A1 (en) 2002-06-25 2003-06-20 Cylindrical millimetric rotary antenna for synthetic aperture radar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0207875 2002-06-25
FR0207875A FR2841387B1 (fr) 2002-06-25 2002-06-25 Antenne, notamment millimetrique et radar equipe d'une telle antenne

Publications (1)

Publication Number Publication Date
WO2004001446A1 true WO2004001446A1 (fr) 2003-12-31

Family

ID=29720037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/050248 WO2004001446A1 (fr) 2002-06-25 2003-06-20 Antenne millimetrique cylindrique pour radar de type sar rotatif

Country Status (3)

Country Link
AU (1) AU2003266406A1 (fr)
FR (1) FR2841387B1 (fr)
WO (1) WO2004001446A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006039896A1 (fr) * 2004-10-11 2006-04-20 Adc Automotive Distance Control Systems Gmbh Dispositif antenne de radar
US7842377B2 (en) 2003-08-08 2010-11-30 Boston Scientific Scimed, Inc. Porous polymeric particle comprising polyvinyl alcohol and having interior to surface porosity-gradient

Families Citing this family (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10306922B4 (de) 2003-02-19 2006-04-13 Eads Deutschland Gmbh Vorrichtung zur Überwachung eines Flughafengeländes
FR2923611B1 (fr) * 2007-11-13 2012-02-03 Claude Chekroun Dispositif de detection d'objets,notamment d'objets dangereux
FR2942884B1 (fr) 2009-03-09 2011-04-01 Onera (Off Nat Aerospatiale) Systeme de radar multistatique de surveillance aeroportuaire
FR3003959B1 (fr) * 2013-04-02 2015-04-10 Sas Sws Antenne rotative, scanner utilisant une telle antenne, et dispositif de controle de personnes
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10096883B2 (en) 2016-12-06 2018-10-09 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting a wavelength electromagnetic waves
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10205212B2 (en) 2016-12-06 2019-02-12 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting a phase of electromagnetic waves
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3017630A (en) * 1952-12-19 1962-01-16 Hughes Aircraft Co Radar scanning system
US3916415A (en) * 1950-09-28 1975-10-28 Rca Corp Antenna scanning
US4001835A (en) * 1975-05-12 1977-01-04 Texas Instruments Incorporated Scanning antenna with extended off broadside scanning capability
US4458250A (en) * 1981-06-05 1984-07-03 The United States Of America As Represented By The Secretary Of The Navy 360-Degree scanning antenna with cylindrical array of slotted waveguides
DE4304027A1 (de) * 1993-02-11 1994-08-18 Deutsche Aerospace Radargerät mit synthetischer Apertur auf der Basis rotierender Antennen
DE10035658A1 (de) * 2000-07-20 2002-02-14 Joao R Moreira Vorwärtssicht-Radarsystem (FLR; Forward Looking Radar) zur dreidimensionalen Abbildung eines Geländeausschnitts

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3916415A (en) * 1950-09-28 1975-10-28 Rca Corp Antenna scanning
US3017630A (en) * 1952-12-19 1962-01-16 Hughes Aircraft Co Radar scanning system
US4001835A (en) * 1975-05-12 1977-01-04 Texas Instruments Incorporated Scanning antenna with extended off broadside scanning capability
US4458250A (en) * 1981-06-05 1984-07-03 The United States Of America As Represented By The Secretary Of The Navy 360-Degree scanning antenna with cylindrical array of slotted waveguides
DE4304027A1 (de) * 1993-02-11 1994-08-18 Deutsche Aerospace Radargerät mit synthetischer Apertur auf der Basis rotierender Antennen
DE10035658A1 (de) * 2000-07-20 2002-02-14 Joao R Moreira Vorwärtssicht-Radarsystem (FLR; Forward Looking Radar) zur dreidimensionalen Abbildung eines Geländeausschnitts

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842377B2 (en) 2003-08-08 2010-11-30 Boston Scientific Scimed, Inc. Porous polymeric particle comprising polyvinyl alcohol and having interior to surface porosity-gradient
WO2006039896A1 (fr) * 2004-10-11 2006-04-20 Adc Automotive Distance Control Systems Gmbh Dispositif antenne de radar
US8847835B2 (en) 2004-10-11 2014-09-30 Conti Temic Microelectronic Gmbh Radar antenna arrangement

Also Published As

Publication number Publication date
AU2003266406A1 (en) 2004-01-06
FR2841387B1 (fr) 2006-04-28
FR2841387A1 (fr) 2003-12-26

Similar Documents

Publication Publication Date Title
WO2004001446A1 (fr) Antenne millimetrique cylindrique pour radar de type sar rotatif
EP2734851B1 (fr) Dispositif de calibration et de test pour une antenne active notamment une antenne de pointe avant d'un radar aeroporte
EP2217944B1 (fr) Dispositif de detection d'objets, notamment d'objets dangereux
EP0014650A1 (fr) Filtre spatial adaptatif hyperfréquence et son procédé d'utilisation pour l'atténuation ou l'annulation des lobes secondaires du diagramme de rayonnement d'une antenne
EP0462864B1 (fr) Dispositif d'alimentation des éléments rayonnants d'une antenne réseau, et son application à une antenne d'un système d'aide à l'atterrissage du type MLS
WO1991009435A1 (fr) Antenne iff aeroportee a diagrammes multiples commutables
FR2496347A1 (fr) Antenne de systeme de navigation omnidirectionnelle a tres haute frequence
WO2008135677A1 (fr) Antenne à résonateur équipé d'un revêtement filtrant et système incorporant cette antenne
EP2472215B1 (fr) Procédé et dispositif de neutralisation d'une cible
EP0454582B1 (fr) Système d'antenne de radiogoniométrie à couverture omnidirectionnelle
EP3001882B1 (fr) Antenne rotative, scanner utilisant une telle antenne, et dispositif de controle des personnes
FR2558308A1 (fr) Dispositif d'antenne pour radiogoniometres
EP3948338B1 (fr) Procédé et dispositif d'émission-réception radar par changement dynamique de polarisation notamment pour l'implémentation de modes radar entrelacés
CA2840848C (fr) Dispositif pour detecter des objets tels que des mines
EP3211452B1 (fr) Dispositif de detection d'objets portes par un individu
EP1152258B1 (fr) Radar bas coût, notamment à imagerie à haute résolution
FR3003700A1 (fr) Dispositif de reduction de signature radar d'antenne et systeme antennaire associe
EP3321711A1 (fr) Dispositif de reception pour antenne a balayage electronique apte a fonctionner en mode radar et resm, et radar equipe d'un tel dispositif
EP1139484A1 (fr) Déphaseur hyperfréquence, et antenne à balayage électronique comportant de tels déphaseurs
EP1855125B1 (fr) Procédé de filtrage des signaux de brouillage pour une antenne mobile multivoie
EP0391775A1 (fr) Dispositif de détection du passage d'au moins un mobile en au moins un point déterminé de son déplacement
FR2855642A1 (fr) Antenne notamment pour imagerie radar, et dispositif d'imagerie comportant une telle antenne, en particulier pour la detection d'objets caches
FR3131105A1 (fr) Antenne élémentaire de type micro-ruban et antenne réseau améliorées
WO2023232757A1 (fr) Dispositif radiofréquence à diagramme de rayonnement optimisé, pour une détection de geste pour l'automobile
FR2972270A1 (fr) Dispositif de detection d'objets dans un flux d'individus, les objets etant susceptibles d'etre portes par des individus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP