WO2003102941A1 - Optical recording medium, optical information processor and optical recording/reproducing method - Google Patents

Optical recording medium, optical information processor and optical recording/reproducing method Download PDF

Info

Publication number
WO2003102941A1
WO2003102941A1 PCT/JP2003/006566 JP0306566W WO03102941A1 WO 2003102941 A1 WO2003102941 A1 WO 2003102941A1 JP 0306566 W JP0306566 W JP 0306566W WO 03102941 A1 WO03102941 A1 WO 03102941A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
film
temperature
recording
recording medium
Prior art date
Application number
PCT/JP2003/006566
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroaki Yamamoto
Teruhiro Shiono
Tatsuo Ito
Seiji Nishino
Sadao Mizuno
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to DE60336316T priority Critical patent/DE60336316D1/en
Priority to US10/516,220 priority patent/US7656777B2/en
Priority to EP03733074A priority patent/EP1515322B1/en
Priority to JP2004509941A priority patent/JP4199731B2/en
Priority to AU2003241782A priority patent/AU2003241782A1/en
Publication of WO2003102941A1 publication Critical patent/WO2003102941A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00455Recording involving reflectivity, absorption or colour changes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers

Definitions

  • the present invention relates to an optical recording medium such as an optical disk or an optical card on which information is optically recorded / reproduced, an optical information processing apparatus for recording / reproducing information on / from an optical recording medium, and an optical recording / reproducing method. Things. Background art
  • FIG. 11 shows a cross-sectional configuration of a conventional multilayer optical recording medium.
  • the optical recording medium of FIG. 11 includes a first light transmitting film 10 and a second light transmitting film It has a first recording layer 12 and a second recording layer 16 formed at a position facing the first recording layer 12 with the second light transmitting film 14 interposed therebetween. Further, the first recording layer 12 is provided with a guide groove 12A.
  • the first recording layer 12 is formed of a non-linear reflection material having a reflectivity that increases non-linearly as the light intensity increases.
  • Non-linear reflective materials having such properties include a—Si, InSb, ZnTe, ZnSe, CdSSe, GaAs, and GaSb.
  • the first recording layer 1 2 When forming such a non-linear reflective material in the first recording layer 1 2, the first recording layer 1 2, a i (n- n s) / ( n + n s) I reflectivity varies on 2 Niyotsu Have.
  • ns is the refractive index of the light transmitting film 10 and the light transmitting film 14
  • n is the refractive index of the first recording layer 12 which is a non-linear reflection material.
  • the non-linear reflection material used here is a material that causes a phenomenon in which the refractive index changes depending on the light intensity, that is, a material having a so-called nonlinear optical effect.
  • the first recording layer 12 When the first recording layer 12 is accessed, a light beam applied to the first recording layer 12 becomes relatively strong because a light spot is formed on the first recording layer 12. At this time, it is assumed that the reflectance of the first recording layer 12 is, for example, 40%.
  • the second recording layer 16 when the second recording layer 16 is accessed, the irradiated light spot is formed on the second recording layer 16 so that the light irradiated on the first recording layer 12 is relatively weak. . Assuming that the reflectance of the first recording layer 12 at this time is, for example, 30%, the first recording layer 12 reflects 30% of incident light and transmits 70% to the second recording layer 16 side. become. Therefore, the second recording layer 16 can be accessed efficiently.
  • the change in reflectance is only 10%, from 30% to 40%. This is a limitation due to the use of a material having a nonlinear optical effect for the first recording layer 12 and the second recording layer 16. There is a problem that the amount of light is insufficient for multi-layering. Further, the above-mentioned conventional technology is for a read-only memory (ROM) in which information is recorded in advance. Therefore, it was difficult to secure the energy required for information recording by using this technology and realize a recordable multilayer optical recording medium. Disclosure of the invention
  • the first optical recording medium of the present invention is a multilayer optical recording medium including a plurality of recording layers for recording or reproducing information by irradiating light having a wavelength of ⁇ 0, wherein at least one of the plurality of recording layers is used.
  • One of the recording layers includes a variable absorption film.
  • the variable absorption film has a band structure in which the energy of electrons has a band structure, and the absorption edge of the absorption spectrum becomes longer as the temperature rises in light absorption due to the transition between the bands of electrons.
  • It contains a material that moves to the wavelength side, and has a first absorptance for light having a wavelength ⁇ 0 when the film temperature is the first temperature, and the film temperature is higher than the first temperature At the second temperature, it has a second absorptance higher than the first absorptivity for light having a wavelength ⁇ .
  • the second optical recording medium of the present invention is a multilayer optical recording medium including a plurality of recording layers for recording or reproducing information by irradiating light having a wavelength ⁇ 0, wherein at least one of the plurality of recording layers is used.
  • One recording layer includes: a variable absorption film; and a recording film disposed close to the variable absorption film so that heat of the variable absorption film can be transmitted.
  • the energy of the electrons has a band structure, and includes a material in which the absorption edge of the absorption spectrum moves to the longer wavelength side as the temperature rises in the light absorption due to the inter-band transition of the electrons.
  • the recording film absorbs at least a part of the light having the wavelength ⁇ 0 and generates heat, and the optical characteristic changes at a predetermined temperature.
  • An optical information processing apparatus includes: the first or second optical recording medium according to the present invention; a light source that emits light having a wavelength of ⁇ 0; and the light emitted from the light source.
  • a light-collecting optical system that collects light on a target recording layer included therein; and a photodetector that detects light reflected by the optical recording medium, wherein the variable absorption is performed by irradiating the light emitted from the light source.
  • a light absorption increasing portion is formed on the film, and information is recorded or reproduced by increasing the temperature of the light absorption increasing portion.
  • An optical recording / reproducing method is an optical recording / reproducing method for recording and reproducing information on the first or second optical recording medium according to the present invention, wherein light having a wavelength ⁇ 0 Concentrating light on the layer, forming a light absorption increasing portion in the variable absorption film included in the recording layer, and increasing / decreasing the temperature of the light absorption increasing portion, thereby recording / reproducing information on / from the recording layer.
  • FIG. 1 is an explanatory diagram illustrating a cross-sectional configuration of an optical recording medium and a state in which information is recorded / reproduced in Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating an example of a spectral absorption coefficient curve of the variable absorption film included in the optical recording medium according to the first embodiment of the present invention.
  • Figure 3 is a diagram illustrating a spectral absorption curve of B i 2 0 3.
  • Figure 4 is a diagram showing temperature characteristics of the absorption rate of B i 2 0 3.
  • FIG. 5 is a diagram showing another example of the spectral absorption coefficient curve of the variable absorption film included in the optical recording medium according to Embodiment 1 of the present invention.
  • FIG. 6 is an explanatory diagram showing a cross-sectional configuration of an optical recording medium according to Embodiment 2 of the present invention and a state in which information is recorded and reproduced.
  • FIG. 7 is a diagram showing a spectral absorption curve of As 2 S 3 .
  • FIG. 8 is an explanatory diagram showing a state in which super-resolution reproduction is performed on one recording layer of the optical recording medium according to the first embodiment of the present invention.
  • FIG. 9 is a diagram showing the relationship between the light intensity, the extinction coefficient of the variable absorption film, and the light spot region.
  • FIG. 10 is an explanatory diagram illustrating a schematic configuration of an optical information processing apparatus according to an embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of a conventional multilayer recording medium. BEST MODE FOR CARRYING OUT THE INVENTION
  • the variable absorption film by providing the variable absorption film, it is possible to secure energy required for recording even in a multilayer optical recording medium including a plurality of recording layers. As a result, large capacity can be realized. Further, a sufficient amount of reproduced light can be obtained when reproducing the recorded information.
  • variable absorption film absorbs light having a wavelength ⁇ 0 at the first temperature by light absorption due to an interband transition of electrons in the material.
  • light having a wavelength ⁇ 0 may be absorbed by light absorption by impurities.
  • the recording layer including the variable absorption film further includes a recording film, and the recording film includes the variable absorption film to such an extent that heat of the variable absorption film can be transmitted. It is preferable that the optical characteristics be changed close to the film and be changed at a predetermined temperature. Since the recording material can be selected appropriately, recording stability can be improved, recording efficiency can be further improved, and the amount of reproduced light can be improved. This is because a further increase can be realized.
  • the variable absorption film changes its optical characteristics at a predetermined temperature. This is because the variable absorption film can also function as a recording film, eliminating the need to separately form a recording film.
  • the plurality of recording layers include n layers (n is an integer of 2 or more), and each of the plurality of recording layers includes the variable absorption film.
  • the m-th recording layer is the m-th recording layer (where m is an integer of l ⁇ m ⁇ n)
  • the m-th recording layer is exposed to light having a wavelength ⁇ .
  • absorptance a m of the variable absorption film included in the m-th recording layer and the reflectance R m preferably satisfy the following relationship.
  • the amount of light absorbed by each recording layer can be made substantially the same without changing the intensity of the recording light for each recording layer.
  • the first temperature is a use environment temperature of the optical recording medium.
  • the first or second optical recording of the present invention Information can be recorded on a medium, and a sufficient amount of reproduced light can be obtained when the recorded information is reproduced.
  • the intensity of the light emitted from the light source is adjusted so that the light absorption increasing portion formed on the variable absorption film is smaller than a spot size of the collected light. It is preferable to further include a control unit for controlling the pressure. This is for performing super-resolution reproduction.
  • information can be recorded on the first or second optical recording medium of the present invention, and when reproducing the recorded information, a sufficient reproducing light amount is required. You can also get.
  • the intensity of the light is controlled such that the light absorption increasing portion formed on the variable absorption film is smaller than a spot size of the light to be collected. preferable. This is to perform super-resolution reproduction.
  • FIG. 1 shows a cross-sectional configuration of the optical recording medium according to the first embodiment of the present invention.
  • This optical recording medium has a first recording layer 7 on a substrate 7 0 1 from the light L 0 incident side.
  • the light L 0 is light having a wavelength ⁇ 0, which is irradiated when information is recorded or reproduced on the optical recording medium of the present embodiment.
  • the first recording layer 751 and the second recording layer 752 have the same film configuration, and from the light L0 incident side, the recording film 7 2 1 (7 2 2) and the variable absorption film 7 9 1 ( 7 9
  • the second recording layer 752 is sandwiched between the second recording layer 752 and the separation layer 7332, and a final recording layer 754 including a recording film 723 and a reflection film 72 is arranged.
  • a final recording layer 754 including a recording film 723 and a reflection film 72 is arranged.
  • Each of the recording layers 751, 752, and 754 is provided with a guide groove having an uneven shape, and the guide groove is used to specify a recording position.
  • the separation layers 731 and 732 are made of a neo-material transparent to the light L0, and for example, PMMA (polymethyl methacrylate) can be used.
  • the recording films 72 1 and 722 included in the first recording layer 751 and the second recording layer 752 are substantially transparent to light L 0 having a wavelength ⁇ 0 used as recording light and reproduction light, and have a predetermined temperature. It has the property of changing from an unrecorded state to a recorded state.
  • the recorded state refers to a state in which the optical characteristics have changed from the unrecorded state.
  • the optical characteristics are changed due to a physical change such as a change in refractive index, a change in extinction coefficient, a change in shape, or a chemical change. A state that has changed.
  • the recording films 721, 722 need only be made of a material that is substantially transparent to the light L0 of the wavelength ⁇ 0 and that is formed of a material whose optical properties change at a predetermined temperature.
  • a heat-polymerizable resin, a heat-deformable resin, and a heat-decomposable resin can be used.
  • the organic dye 2 [7— (1,3-dihydro-5-methoxy1,3,3-trimethyl-2H—indole-2 —Ilidene) 1,3,5-Heptatrienyl] — 5-Methoxy-1,3,3-trimethylol 3 H-indolium perchlorate (for example, NK—2882 manufactured by Hayashibara Biochemical Laboratory Co., Ltd.) ) Etc. can be used.
  • ⁇ 0 630 nm
  • 2- [2- [4-1 (dimethylamino) phenyl] ethenyl] naphtho [1,2-d] thiazole for example, Hayashibara Co., Ltd.
  • NK-188 6 a thermally deformable resin such as PMMA or polyester, or a thermally decomposable resin such as benzotriazole, either light having a wavelength of 405 nm or a wavelength of 630 nm is used.
  • variable absorption films 791 and 792 included in the first recording layer 751 and the second recording layer 752 have a band structure in which the energy of the electrons has a band structure, and the light absorption due to the light absorption due to the transition between the bands of the electrons.
  • the absorption edge of the vector is made of a material that moves to the longer wavelength side (lower energy side) as the temperature rises. Note that the absorption edge is the edge on the low energy side of the absorption spectrum.
  • FIG. 2 shows an example of a spectral absorption curve of the variable absorption films 791 and 792 in the present embodiment.
  • the variable absorption films 79 1 and 792 are films in which the spectral characteristics of the absorptance change according to the temperature.
  • the variable absorption films 79 1 and 792 are lower than the light of wavelength ⁇ 0. Indicates the absorptance (first absorptivity).
  • the absorptivity moves to the longer wavelength side, so the absorptivity for light of wavelength ⁇ 0 increases and the absorptivity (second absorptivity) It is made of a material having the properties shown.
  • the variable absorption films 791 and 792 first absorb light with a small absorption rate, and the temperature increases due to the light absorption. As the absorption rate increases, light will be absorbed at a higher absorption rate at temperatures higher than room temperature.
  • the normal temperature refers to a temperature at which the optical recording medium is used, that is, an environment temperature at which the optical recording medium is used.
  • the light absorption of the variable absorption films 791 and 792 at a normal temperature at the wavelength ⁇ 0 is not limited to the electron absorption of the material having the above properties contained in the variable absorption films 791 and 792. In addition to the absorption due to the inter-band transition, the absorption due to impurities may be included.
  • the recording film 723 included in the final recording layer 754 is made of a material that absorbs light L 0 of wavelength ⁇ 0, and has a property of changing from an unrecorded state to a recorded state due to absorption of light L 0 of wavelength ⁇ 0.
  • a material of the recording film 723 for example, tellurium oxide (TeO x ) can be used.
  • TeO x tellurium oxide
  • the reflective film 702 a metal film containing A1 or the like can be used as the reflective film 702.
  • FIG. 10 shows an example of an optical information processing apparatus for recording or reproducing information on or from the optical recording medium of the present embodiment.
  • a method of recording and reproducing information on and from the optical recording medium of the present embodiment using this optical information processing apparatus will be described.
  • the optical information processing apparatus of the present embodiment is provided with a semiconductor laser 101 as a radiation light source, and a collimating lens 102 and a polarizing beam splitter in an optical path from the semiconductor laser 101 to the optical recording medium 105. 107, a 14-wave plate 115, and an objective lens 103 fixed to an actuator 112 are arranged. At the time of recording, the light emitted from the semiconductor laser 101 is converted into parallel light by the collimating lens 102, passes through the polarizing beam splitter 107, is further converted into circularly polarized light by the 1/4 wavelength plate 115, and then is converted into the objective lens. The light is condensed on the optical recording medium 105 by 103 and information is recorded.
  • reflected light of light condensed on the optical recording medium 105 is used.
  • the light reflected by the optical recording medium 105 is converted into parallel light by the objective lens 103, converted into linearly polarized light by the 1Z4 wavelength plate 115, and reflected by the polarization beam splitter 107.
  • Polarized beam The light reflected by the splitter 107 is converted into convergent light by the detection lens 104, and then diffracted and separated by the hologram element 18 1 (L 1, L 2). Is detected.
  • the photodetector 190 has a plurality of light receiving areas of detection areas, and a signal detected in each area is input to the electric circuit 504.
  • the electric circuit 504 extracts a data signal from the input signal.
  • the electric circuit 504 obtains a service signal for controlling the position of the objective lens 103, and drives the actuator 112. Note that the electric circuit 504 controls the output of the semiconductor laser so that the quality of the obtained data signal is the best.
  • FIG. 1 shows a state in which information is recorded (or reproduced) on the second recording layer 752, for example.
  • the light L 0 is a laser beam having a wavelength ⁇ 0 and is focused on the second recording layer 752 of the optical recording medium by the objective lens 103 (see FIG. 10) of the optical information processing device.
  • the position of the objective lens 103 is controlled by the actuator 112 (see FIG. 10).
  • the light L0 passes through the substrate 71, the first recording layer 751, and the separation layer 731, and enters the second recording layer 752.
  • Light 0 is slightly absorbed by the variable absorption film 791 when passing through the first recording layer 751, but since the light 0 is not condensed on the surface of the variable absorption film 791, the energy density of heat generation is Low, the variable absorption membrane 791 is kept at almost room temperature. Therefore, the light L0 can efficiently pass through the first recording layer 751, and further pass through the separation layer 731, and reach the second recording layer 752.
  • variable absorption film 792 Since the variable absorption film 792 has a low absorptance to the light L 0 having the wavelength ⁇ 0, it absorbs a part of the incident light L 0 and generates heat. Since the light L0 is condensed by the variable absorption film 792, the heat High energy density. For this reason, the temperature of the variable absorption film 792 at the light L0 incident portion locally increases. Due to this temperature rise, the absorptivity of the variable absorption film 792 for the light L0 increases, and the light absorption increasing portion 741 is formed in the variable absorption film 792.
  • the light absorption increasing section 741 further rises in temperature as the absorption of the light L0 increases. Eventually, the temperature rise of the light absorption increasing portion 741 stops when the heat generation in the light absorption increasing portion 741 of the variable absorption film 792 and the amount of heat diffusion to the recording film 7222 and the like are balanced. I do.
  • the heat generated in the light absorption increasing portion 741 of the variable absorption film 792 diffuses to the recording film 722.
  • Information is recorded on the recording film 722 by the temperature rise of the recording film 722 due to the diffused heat. That is, due to this thermal diffusion, the temperature of the recording film 722 reaches a predetermined temperature (hereinafter, referred to as a recording temperature) at which the optical characteristics of the recording film 722 change, and the optical characteristics change at a portion where the recording temperature is reached. A part (recording mark) is formed.
  • the principle of reading information recorded on the optical recording medium of the present embodiment is as follows.
  • the reflectance R of light L 0 at the interface between the recording film 722 and the variable absorption film 792 is represented by the following equation.
  • is the refractive index of the recording film 722
  • n is the refractive index of the variable absorption film 792
  • k is the extinction coefficient of the variable absorption film 792.
  • N (n 2 + k 2 ) 1/2 "(4)
  • the absorptivity for light L0 increases, that is, the extinction coefficient increases.
  • the reflectance R increases and the amount of reflected light increases. Since this reflected light is modulated by the recording mark of the recording film 722 and used for detecting information, a signal can be detected with high efficiency by increasing the amount of reflected light.
  • the recording and reproduction of information on the first recording layer 751 is performed by setting the light condensing position of the light L0 to the first recording layer. By setting it to 751, information can be recorded and reproduced in the same manner.
  • Recording and reproduction of information on the final recording layer 754 are performed by setting the focal position of the light L0 to the final recording layer 754.
  • the light 0 enters the first recording layer 751 and the second recording layer 752 before reaching the final recording layer 754, but in the variable absorption films 791 and 792, the light L0 is Since it is not focused, the heat generation area is dispersed and the temperature rise is small. Therefore, the light absorption increasing portion is not formed, and the light L 0 is transmitted.
  • the recording film 723 absorbs the light L0, causing a temperature rise to form a recording mark.
  • it is performed by detecting the reflected light reflected by the reflective film 72.
  • variable absorption film 7 9 1, 7 9 2 is a material which can be used in B i 2 0 3 in the characteristics of the optical recording medium of the present embodiment will be described in more detail.
  • Figure 3 is a diagram representing the 5 0 ° C and 2 5 0 ° B i 2 ⁇ 3 results were measured boss spectral characteristics of the absorption rate of the C.
  • variable absorbing films 791 and 792 when the variable absorbing films 791 and 792 are formed using such materials, the variable absorbing films 791 and 792 have low absorption at room temperature at the start of light spot irradiation. Depending on the rate, a part of the incident light is absorbed, and the temperature rises with the absorption of the light. This rise in temperature increases the absorptance, and further light absorption raises the temperature. As described above, the light absorption increasing portion 741 is formed in the area where the light spots of the variable absorption films 791 and 792 are irradiated, and the heat generated in this area is diffused to the recording film to perform recording. Recording marks can be formed on the film.
  • an optical recording medium having three recording layers stacked is described, but the number of recording layers is not limited to this, and it is sufficient that at least two recording layers are included.
  • the film configuration of the final recording layer 754 is not limited to this, and may have the same film configuration as the first recording layer 751 and the second recording layer 752.
  • the reflectivity of each recording layer and the reflectivity of each recording layer are varied so that the amount of light absorbed by each recording layer is almost the same regardless of the number of layers from the light incident side. It is preferable to set the absorption rate of the absorbing film. It is not necessary to change the recording light intensity for each target recording layer. is there.
  • the final recording layer 754 has a film configuration having variable absorption films 791 and 792, like the first recording layer 751 and the second recording layer 752.
  • the reflectance of each of the recording layers 75 1 and 752 and the absorptance of each of the variable absorption films 79 1 and 79 2 have the following relationship.
  • the first reflectance of the recording layer 7 5 1 and Hache absorptance of the variable absorption film 7 9 1 have R
  • the reflectance of the second recording layer 7 52 R 2 variable absorption the absorptivity of the film 7 92 and a 2
  • the peel morphism of the final recording layer 7 54 scale 3, the absorption rate of the variable absorption film and a 3.
  • a x A 3/3
  • the intensity of the recording light can be made substantially constant regardless of the recording layer.
  • variable absorption films 791 and 792 are formed of a material that slightly absorbs the light L0 having the wavelength ⁇ 0 at room temperature, but has the wavelength ⁇ 0 at room temperature. It may be formed of a material transparent to light L0 (a material having a spectral absorption characteristic as shown in FIG. 5).
  • the recording films 721 and 722 are formed of a material (for example, TeOx or Te—O—Pd) that shows a slight absorption of the light L0 having the wavelength ⁇ 0 at room temperature.
  • variable absorption films 791 and 792 are formed with absorption increasing portions 741.
  • FIG. 8 is a cross-sectional view illustrating a method for performing super-resolution reproduction using the optical recording medium of the present embodiment.
  • FIG. 8 shows a state where light is focused on the first recording layer 751.
  • the absorption increasing portion 741 formed in the variable absorption film 791 smaller than the spot size of the light L0.
  • FIG. 9 shows the relationship between the light intensity, the extinction coefficient of the variable absorption film, and the light spot area.
  • the extinction coefficient of the variable absorption film 791 is a light having a large light intensity. It is larger at the center of the spot and smaller at the periphery. Therefore, by controlling the light intensity so that the light absorption increasing portion 741 formed in the portion where the extinction coefficient becomes large is formed smaller than the spot size of the light L0, as shown in FIG. Such super-resolution reproduction can be realized.
  • FIG. 6 shows a cross-sectional configuration of an optical recording medium according to Embodiment 2 of the present invention.
  • This optical recording medium includes a substrate 711, a variable absorbing film 793 functioning as a first recording layer, a variable absorbing film 794 functioning as a second recording layer, and a final
  • the recording layer 754 is a multilayer optical recording medium provided in this order. Separation layers 731 and 732 are provided between the recording layers.
  • the variable absorption films 793 and 794 are the recording film 72 1 and the variable absorption film 791, the recording film 722 and the variable absorption film of the optical recording medium (see FIG. 1) of the first embodiment. 7 9 2 is realized by one film each. Separation layers 7 3 1, 7 3 Since the second and final recording layers 754 are the same as those of the optical recording medium of the first embodiment, the description is omitted here.
  • variable absorption films 793 and 794 have the same characteristics as the variable absorption films 791 and 792 in the optical recording medium according to the first embodiment, and furthermore, have an optical characteristic when the temperature rises to a predetermined temperature.
  • FIG. 7 is a diagram showing the results of measuring the spectral characteristics of the As 2 S 3 absorptance. A sample in which an As 2 S 3 thin film (thickness 10 ⁇ m) was formed on the quartz glass surface by the vacuum evaporation method was irradiated with light separated by a spectroscope, and the absorptance was measured.
  • variable absorption films 793 and 794 are formed using As 2 S 3 , if the wavelength of the recording light and the reproduction light is, for example, 630 nm, the absorption rate is approximately 5% at 30 ° C. However, at 200 ° C, the absorption increases to about 60%. As a result, similarly to the first embodiment, the light absorption increasing portion 741 is formed in the area of the variable absorption film 793, 794 irradiated with the light spot, and heat is generated in this area.
  • variable absorption films 793 and 794 information is recorded by raising the temperature of the variable absorption films 793 and 794 to a temperature equal to or higher than the melting point of As 2 S 3 (300 ° C.) and rapidly cooling to form an amorphous phase portion. This amorphous phase portion becomes a recording mark.
  • Information is erased by raising the temperature of the variable absorption films 793 and 794 to the crystallization temperature of As 2 S 3 , removing the temperature, and transforming the amorphous phase into a crystalline phase.
  • Reproduction of information recorded on the variable absorption films 793 and 794 is performed in the same manner as in the first embodiment by using light having such a power that a recording mark is not formed on the variable absorption films 793 and 794.
  • the multilayer optical recording medium of the present embodiment Even in this case, the energy required for recording can be secured, and a large capacity can be realized. Further, since the light absorption increasing portion 741 has a large extinction coefficient, the reflectance increases, and a sufficient reproduction light amount can be obtained.
  • the present invention is not limited to this. This can be realized by appropriately selecting the materials of 793 and 794.
  • T e 0 2 - C a O- W_ ⁇ variable absorption film 7 with a mixed glass of 3 9 3, 7 9 4 can be formed.
  • super-resolution reproduction can be performed similarly to the optical recording medium of the first embodiment.
  • the case where the number of recording layers is three has been described, but it is sufficient that at least two recording layers are included, and further multi-layering is possible.
  • the optical recording medium the optical information processing apparatus, and the optical recording / reproducing method of the present invention, even if it is a multilayer optical recording medium including a plurality of recording layers, energy required for recording can be ensured, and Can be realized. Furthermore, when reproducing the recorded information, a sufficient amount of reproduced light can be obtained.

Abstract

An optical recording medium which is a multilayer optical recording medium including a plurality of recording layers and records or reproduces information by the irradiation of light having a wavelength of λ0. At least one recording layer out of a plurality of recording layers includes a variable absorption film. The variable absorption film contains a material in which an electron energy has a band structure, and the absorption end of an absorption spectrum moves toward a longer wavelength side with a rise in temperature when light is absorbed by transition between electron bands, has a first absorptance to light having a wavelength of λ0 when a film temperature is a first temperature (application environment temperature), and has a second absorptance higher than the first absorptance to light having a wavelength of λ0 when a film temperature is a second temperature higher than the first temperature.

Description

明 細 書 光記録媒体、 光情報処理装置および光記録再生方法 技術分野  Description Optical recording medium, optical information processing device and optical recording / reproducing method
本発明は、 光ディスクや光カード等、 情報が光学的に記録 ·再生され る光記録媒体と、 光記録媒体に対して情報を記録 ·再生するための光情 報処理装置および光記録再生方法に関するものである。 背景技術  The present invention relates to an optical recording medium such as an optical disk or an optical card on which information is optically recorded / reproduced, an optical information processing apparatus for recording / reproducing information on / from an optical recording medium, and an optical recording / reproducing method. Things. Background art
近年、 社会の情報化が進むにつれて、 大容量な外部記憶装置が望まれ ている。 光学的な情報の記録においては、 光の波長と対物レンズの開口 数で決まる回折限界が存在するため、 従来、 記録ピットのサイズの縮小 による高密度化には限界があった。 このような問題を解決するために、 複数の記録層を有する多層光記録媒体が提案されている (例えば、 特開 平 5 _ 1 5 1 5 9 1号公報。)。 しかし、 このような多層型の光記録媒体 に使用される記録層には、 光に対して一定の反射率および透過率を有す る半透明な膜が用いられていたため、 目的の記録層以外の記録層での光 反射による光損失が生じていた。 また、 入射する光の進行方向上流側を 上、 下流側を下とした場合、 目的の記録層よりも下層に位置する層にも 透過光が達するため、 さらに光損失が生じることとなっていた。  In recent years, as the information society has advanced, large-capacity external storage devices have been desired. In optical information recording, there is a diffraction limit determined by the wavelength of light and the numerical aperture of the objective lens. Therefore, there has been a limit in increasing the recording density by reducing the size of the recording pit. In order to solve such a problem, a multilayer optical recording medium having a plurality of recording layers has been proposed (for example, Japanese Patent Application Laid-Open No. H5-1151591). However, since the recording layer used in such a multilayer optical recording medium is a translucent film having a constant reflectance and transmittance with respect to light, a recording layer other than the target recording layer is used. There was light loss due to light reflection at the recording layer. In addition, if the upstream side in the traveling direction of the incident light is up and the downstream side is down, the transmitted light reaches the layer located below the target recording layer, which causes further light loss. .
そこで、 このような問題を解決するために、 記録層に非線形光学特徴 を有する非線形物質を用いた多層光記録媒体が提案されている (例えば 、 特開 2 0 0 0— 3 5 2 9号公報。)。  Therefore, in order to solve such a problem, a multilayer optical recording medium using a nonlinear material having a nonlinear optical characteristic in a recording layer has been proposed (for example, Japanese Patent Application Laid-Open No. 2000-35929). .).
図 1 1は、 従来の多層光記録媒体の断面構成を示している。 図 1 1の 光記録媒体は、 第 1光透過膜 1 0と第 2光透過膜 1 4の間に位置した第 1記録層 1 2と、 第 2光透過膜 14をはさみ第 1記録層 1 2と対向する 位置に形成された第 2記録層 1 6とを有する。 さらに、 第 1記録層 1 2 にはガイド溝 12 Aが設けられている。 第 1記録層 1 2は、 光の強さが 強くなるにつれて非線形的に大きくなる反射率を有する非線形反射物質 で形成されている。 このような性質を有する非線形反射物質としては、 a— S i、 I n S b、 Z nT e、 Z n S e、 C d S S e、 G aA s、 G a S bなどがある。 このような非線形反射物質で第 1記録層 1 2を形成 する場合、 第 1記録層 1 2は、 i (n— n s) / (n + n s) I 2によつ て変わる反射率を有する。 ここで、 n sは光透過膜 1 0および光透過膜 14の屈折率であり、 nは非線形反射物質である第 1記録層 1 2の屈折 率である。 ここで用いている非線形反射物質とは、 光強度によって屈折 率が変化する現象が生じる材料、 いわゆる非線型光学効果の大きな材料 である。 FIG. 11 shows a cross-sectional configuration of a conventional multilayer optical recording medium. The optical recording medium of FIG. 11 includes a first light transmitting film 10 and a second light transmitting film It has a first recording layer 12 and a second recording layer 16 formed at a position facing the first recording layer 12 with the second light transmitting film 14 interposed therebetween. Further, the first recording layer 12 is provided with a guide groove 12A. The first recording layer 12 is formed of a non-linear reflection material having a reflectivity that increases non-linearly as the light intensity increases. Non-linear reflective materials having such properties include a—Si, InSb, ZnTe, ZnSe, CdSSe, GaAs, and GaSb. When forming such a non-linear reflective material in the first recording layer 1 2, the first recording layer 1 2, a i (n- n s) / ( n + n s) I reflectivity varies on 2 Niyotsu Have. Here, ns is the refractive index of the light transmitting film 10 and the light transmitting film 14, and n is the refractive index of the first recording layer 12 which is a non-linear reflection material. The non-linear reflection material used here is a material that causes a phenomenon in which the refractive index changes depending on the light intensity, that is, a material having a so-called nonlinear optical effect.
このような光記録媒体の光学的特性を説明する。 第 1記録層 1 2がァ クセスされる場合、 光スポットが第 1記録層 1 2に形成されるために第 1記録層 1 2に照射される光ビームは比較的に強くなる。 このときの第 1記録層 1 2の反射率が、 例えば 40 %であるとする。 一方、 第 2記録 層 1 6がアクセスされる時には、 照射される光スポットが第 2記録層 1 6上に形成されるために第 1記録層 1 2に照射される光は比較的弱くな る。 このときの第 1記録層 1 2の反射率を例えば 30 %とすると、 第 1 記録層 1 2は入射光の 3 0 %を反射させ、 70 %を第2記録層 1 6側に 透過させることになる。 従って、 効率よく第 2記録層 1 6のアクセスが 行える。  The optical characteristics of such an optical recording medium will be described. When the first recording layer 12 is accessed, a light beam applied to the first recording layer 12 becomes relatively strong because a light spot is formed on the first recording layer 12. At this time, it is assumed that the reflectance of the first recording layer 12 is, for example, 40%. On the other hand, when the second recording layer 16 is accessed, the irradiated light spot is formed on the second recording layer 16 so that the light irradiated on the first recording layer 12 is relatively weak. . Assuming that the reflectance of the first recording layer 12 at this time is, for example, 30%, the first recording layer 12 reflects 30% of incident light and transmits 70% to the second recording layer 16 side. become. Therefore, the second recording layer 16 can be accessed efficiently.
しかし、 上記従来の技術では、 その反射率変化は 3 0 %から 40 %と 、 わずか 1 0 %の変化しかない。 これは、 第 1記録層 1 2や第 2記録層 1 6に非線型光学効果を有する材料を用いていることによる限界で、 さ らなる多層化に対しては光量が不足するという課題があった。 また、 上 記従来の技術は、 予め情報が記録された読み出し専用メモリ (R O M) についてのものである。 従って、 この技術を利用して情報の記録に必要 なエネルギーを確保し、 記録可能な多層光記録媒体を実現することは困 難であった。 発明の開示 However, in the above-described conventional technique, the change in reflectance is only 10%, from 30% to 40%. This is a limitation due to the use of a material having a nonlinear optical effect for the first recording layer 12 and the second recording layer 16. There is a problem that the amount of light is insufficient for multi-layering. Further, the above-mentioned conventional technology is for a read-only memory (ROM) in which information is recorded in advance. Therefore, it was difficult to secure the energy required for information recording by using this technology and realize a recordable multilayer optical recording medium. Disclosure of the invention
本発明の第 1の光記録媒体は、 波長 λ 0を有する光の照射により情報 の記録または再生を行う記録層を複数含む多層の光記録媒体であって、 前記複数の記録層のうち少なくとも一つの記録層が可変吸収膜を含んで おり、 前記可変吸収膜は、 電子のエネルギーがバンド構造を有し、 電子 のバンド間遷移による光吸収において吸収スぺクトルの吸収端が温度の 上昇に従い長波長側に移動する材料を含み、 かつ、 膜温度が第 1の温度 の時には波長 λ 0を有する光に対して第 1の吸収率を有し、 膜温度が前 記第 1の温度よりも高い第 2の温度の時には、 波長 λ θを有する光に対 して前記第 1の吸収率よりも高い第 2の吸収率を有することを特徴とし ている。  The first optical recording medium of the present invention is a multilayer optical recording medium including a plurality of recording layers for recording or reproducing information by irradiating light having a wavelength of λ0, wherein at least one of the plurality of recording layers is used. One of the recording layers includes a variable absorption film. The variable absorption film has a band structure in which the energy of electrons has a band structure, and the absorption edge of the absorption spectrum becomes longer as the temperature rises in light absorption due to the transition between the bands of electrons. It contains a material that moves to the wavelength side, and has a first absorptance for light having a wavelength λ0 when the film temperature is the first temperature, and the film temperature is higher than the first temperature At the second temperature, it has a second absorptance higher than the first absorptivity for light having a wavelength λθ.
本発明の第 2の光記録媒体は、 波長 λ 0を有する光の照射により情報 の記録または再生を行う記録層を複数含む多層の光記録媒体であって、 前記複数の記録層のうち少なくとも一つの記録層が、 可変吸収膜と、 前 記可変吸収膜の熱が伝達可能な程度に前記可変吸収膜に近接して配置さ れた記録膜と、 を含んでおり、 前記可変吸収膜は、 電子のエネルギーが バンド構造を有し、 電子のバンド間遷移による光吸収において吸収スぺ クトルの吸収端が温度の上昇に従い長波長側に移動する材料を含み、 か つ、 膜温度が第 1の温度の時には波長 λ 0を有する光に対して透明で、 膜温度が前記第 1の温度よりも高い第 2の温度の時には波長え 0を有す る光を吸収し、 前記記録膜は、 膜温度が前記第 1の温度の時には波長 λ 0を有する光の少なくとも一部を吸収して発熱し、 所定の温度で光学特 性が変化することを特徴としている。 The second optical recording medium of the present invention is a multilayer optical recording medium including a plurality of recording layers for recording or reproducing information by irradiating light having a wavelength λ0, wherein at least one of the plurality of recording layers is used. One recording layer includes: a variable absorption film; and a recording film disposed close to the variable absorption film so that heat of the variable absorption film can be transmitted. The energy of the electrons has a band structure, and includes a material in which the absorption edge of the absorption spectrum moves to the longer wavelength side as the temperature rises in the light absorption due to the inter-band transition of the electrons. It is transparent to light having a wavelength λ0 at a temperature, and has a wavelength of 0 at a second temperature where the film temperature is higher than the first temperature. When the film temperature is the first temperature, the recording film absorbs at least a part of the light having the wavelength λ0 and generates heat, and the optical characteristic changes at a predetermined temperature. Features.
本発明の光情報処理装置は、 本発明の第 1または第 2の光記録媒体と 、 波長 λ 0を有する光を出射する光源と、 前記光源から出射された前記 光を、 前記光記録媒体に含まれる目的の記録層に集光する集光光学系と 、 前記光記録媒体で反射した光を検出する光検出器と、 を含み、 前記光 源から出射された前記光の照射により前記可変吸収膜に光吸収増加部を 形成し、 前記光吸収増加部の温度を上昇させることにより情報の記録ま たは再生を行うことを特徴としている。  An optical information processing apparatus according to the present invention includes: the first or second optical recording medium according to the present invention; a light source that emits light having a wavelength of λ0; and the light emitted from the light source. A light-collecting optical system that collects light on a target recording layer included therein; and a photodetector that detects light reflected by the optical recording medium, wherein the variable absorption is performed by irradiating the light emitted from the light source. A light absorption increasing portion is formed on the film, and information is recorded or reproduced by increasing the temperature of the light absorption increasing portion.
' 本発明の光記録再生方法は、 本発明の第 1または第 2の光記録媒体に 対して情報の記録および再生を行う光記録再生方法であって、 波長 λ 0 を有する光を目的の記録層に集光し、 前記記録層に含まれる可変吸収膜 に光吸収増加部を形成し、 前記光吸収増加部の温度を上昇させることに より、 前記記録層に対して情報の記録再生を行うことを特徴としている  An optical recording / reproducing method according to the present invention is an optical recording / reproducing method for recording and reproducing information on the first or second optical recording medium according to the present invention, wherein light having a wavelength λ 0 Concentrating light on the layer, forming a light absorption increasing portion in the variable absorption film included in the recording layer, and increasing / decreasing the temperature of the light absorption increasing portion, thereby recording / reproducing information on / from the recording layer. Is characterized by
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態 1における光記録媒体の断面構成および 情報を記録ノ再生する様子を示す説明図である。  FIG. 1 is an explanatory diagram illustrating a cross-sectional configuration of an optical recording medium and a state in which information is recorded / reproduced in Embodiment 1 of the present invention.
図 2は、 本発明の実施の形態 1における光記録媒体に含まれる可変吸 収膜の分光吸収率曲線の一例を示す図である。  FIG. 2 is a diagram illustrating an example of a spectral absorption coefficient curve of the variable absorption film included in the optical recording medium according to the first embodiment of the present invention.
図 3は、 B i 2 0 3の分光吸収率曲線を示す図である。 Figure 3 is a diagram illustrating a spectral absorption curve of B i 2 0 3.
図 4は、 B i 2 0 3の吸収率の温度特性を示す図である。 Figure 4 is a diagram showing temperature characteristics of the absorption rate of B i 2 0 3.
図 5は、 本発明の実施の形態 1における光記録媒体に含まれる可変吸 収膜の分光吸収率曲線の別の一例を示す図である。 図 6は、 本発明の実施の形態 2における光記録媒体の断面構成および 情報を記録 Z再生する様子を示す説明図である。 FIG. 5 is a diagram showing another example of the spectral absorption coefficient curve of the variable absorption film included in the optical recording medium according to Embodiment 1 of the present invention. FIG. 6 is an explanatory diagram showing a cross-sectional configuration of an optical recording medium according to Embodiment 2 of the present invention and a state in which information is recorded and reproduced.
図 7は、 A s 2 S 3の分光吸収率曲線を示す図である。 FIG. 7 is a diagram showing a spectral absorption curve of As 2 S 3 .
図 8は、 本発明の実施の形態 1における光記録媒体の一記録層に対し 、 超解像再生を行う様子を示す説明図である。  FIG. 8 is an explanatory diagram showing a state in which super-resolution reproduction is performed on one recording layer of the optical recording medium according to the first embodiment of the present invention.
図 9は、 光強度および可変吸収膜の消衰係数と光スポット領域との関 係を示す図である。  FIG. 9 is a diagram showing the relationship between the light intensity, the extinction coefficient of the variable absorption film, and the light spot region.
図 1 0は、 本発明の一実施形態である光情報処理装置の概略構成を示 す説明図である。  FIG. 10 is an explanatory diagram illustrating a schematic configuration of an optical information processing apparatus according to an embodiment of the present invention.
図 1 1は、 従来の多層記録媒体の断面図である。 発明を実施するための最良の形態  FIG. 11 is a cross-sectional view of a conventional multilayer recording medium. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の第 1および第 2の光記録媒体によれば、 可変吸収膜が設けら れることにより、 記録層が複数含まれる多層光記録媒体であっても記録 に必要なエネルギーを確保することができるので、 大容量化が実現でき る。 さらに、 記録された情報の再生時に、 十分な再生光量を得ることも できる。  According to the first and second optical recording media of the present invention, by providing the variable absorption film, it is possible to secure energy required for recording even in a multilayer optical recording medium including a plurality of recording layers. As a result, large capacity can be realized. Further, a sufficient amount of reproduced light can be obtained when reproducing the recorded information.
本発明の第 1の光記録媒体においては、 前記可変吸収膜は、 前記第 1 の温度において、 前記材料における電子のバンド間遷移による光吸収に より波長 λ 0を有する光を吸収することが好ましいが、 不純物による光 吸収によって波長 λ 0を有する光を吸収しても構わない。  In the first optical recording medium of the present invention, it is preferable that the variable absorption film absorbs light having a wavelength λ 0 at the first temperature by light absorption due to an interband transition of electrons in the material. However, light having a wavelength λ 0 may be absorbed by light absorption by impurities.
本発明の第 1の光記録媒体においては、 前記可変吸収膜を含む記録層 が記録膜をさらに含んでおり、 前記記録膜は、 前記可変吸収膜の熱が伝 達可能な程度に前記可変吸収膜に近接して配置されており、 かつ、 所定 の温度で光学特性が変化することが好ましい。 記録材料を適宜選択でき るので、 記録の安定性向上や、 記録効率のさらなる向上および再生光量 のさらなる増加を実現できるからである。 In the first optical recording medium of the present invention, the recording layer including the variable absorption film further includes a recording film, and the recording film includes the variable absorption film to such an extent that heat of the variable absorption film can be transmitted. It is preferable that the optical characteristics be changed close to the film and be changed at a predetermined temperature. Since the recording material can be selected appropriately, recording stability can be improved, recording efficiency can be further improved, and the amount of reproduced light can be improved. This is because a further increase can be realized.
本発明の第 1の光記録媒体においては、 前記可変吸収膜が、 所定の温 度で光学特性が変化することが好ましい。 可変吸収膜が記録膜としても 機能できるため、 別途記録膜を形成する必要がなくなるからである。 本発明の第 1の光記録媒体においては、 前記複数の記録層が n層 (n は 2以上の整数) 含まれ、 前記複数の記録層それぞれが前記可変吸収膜 を含んでおり、 光照射側から第 m層目 (mは l<m≤nの整数) の記録 層を第 m記録層とする場合、 前記第 1の温度において、 波長 λ θを有す る光に対する前記第 m記録層の反射率 Rmと前記第 m記録層に含まれる 可変吸収膜の吸収率 Amとが、 以下の関係を満たすことが好ましい。 In the first optical recording medium of the present invention, it is preferable that the variable absorption film changes its optical characteristics at a predetermined temperature. This is because the variable absorption film can also function as a recording film, eliminating the need to separately form a recording film. In the first optical recording medium of the present invention, the plurality of recording layers include n layers (n is an integer of 2 or more), and each of the plurality of recording layers includes the variable absorption film. When the m-th recording layer is the m-th recording layer (where m is an integer of l <m≤n), at the first temperature, the m-th recording layer is exposed to light having a wavelength λθ. and absorptance a m of the variable absorption film included in the m-th recording layer and the reflectance R m preferably satisfy the following relationship.
Rm=Rn/ (n - m+ 1 ) … ( 1 ) R m = R n / (n-m + 1)… (1)
Am=Aノ (n -m+ 1) … (2) A m = A no (n -m + 1)… (2)
上記式 ( 1) および式 (2) を満たすことにより、 記録層ごとに記録 光の強度を変化させなくても、 各記録層での吸収光量をほぼ同じにでき るからである。  By satisfying the above expressions (1) and (2), the amount of light absorbed by each recording layer can be made substantially the same without changing the intensity of the recording light for each recording layer.
本発明の第 1および第 2の光記録媒体においては、 前記可変吸収膜が 、 B i 203と、 A s 2S 3と、 T e 02および N a20を含む混合ガラス と、 T e〇2および W〇3を含む混合ガラスと、 T e〇2および F e 23 を含む混合ガラスと、 T e 02および C u〇を含む混合ガラスと、 T e 〇2、 C a O、 および WO 3を含む混合ガラスと、 アルミニウム .ガリウ ム · ヒ素 (A 1 G a A s ) 化合物半導体と、 アルミニウム ·ガリゥム · インジウム · ヒ素 (A 1 G a I n A s ) 化合物半導体とからなる群から 選択される少なくとも一つを含むことが好ましい。 In the first and second optical recording medium of the present invention, the variable absorption film, and B i 2 0 3, and A s 2 S 3, and mixed glass including T e 0 2 and N a 2 0, Mixed glass containing T e〇 2 and W〇 3 , mixed glass containing T e〇 2 and F e 2 2 3 , mixed glass containing T e 0 2 and C u〇, T e 〇 2 , C a Mixed glass containing O and WO 3 , aluminum gallium arsenide (A 1 G a As) compound semiconductor, and aluminum gallium indium arsenide (A 1 G a In A s) compound semiconductor It is preferable to include at least one selected from the group consisting of
本発明の第 1および第 2の光記録媒体においては、 前記第 1の温度が 光記録媒体の使用環境温度であることが好ましい。  In the first and second optical recording media of the present invention, it is preferable that the first temperature is a use environment temperature of the optical recording medium.
本発明の光情報処理装置によれば、 本発明の第 1または第 2の光記録 媒体に対して情報の記録が可能であり、 かつ、 記録された情報の再生時 に、 十分な再生光量を得ることもできる。 According to the optical information processing apparatus of the present invention, the first or second optical recording of the present invention Information can be recorded on a medium, and a sufficient amount of reproduced light can be obtained when the recorded information is reproduced.
本発明の光情報処理装置においては、 前記可変吸収膜に形成される前 記光吸収増加部が集光される前記光のスポットサイズよりも小さくなる ように、 前記光源から出射される光の強度を制御する制御部をさらに含 むことが好ましい。 超解像再生を行うためである。  In the optical information processing apparatus according to the present invention, the intensity of the light emitted from the light source is adjusted so that the light absorption increasing portion formed on the variable absorption film is smaller than a spot size of the collected light. It is preferable to further include a control unit for controlling the pressure. This is for performing super-resolution reproduction.
本発明の光記録再生方法によれば、 本発明の第 1または第 2の光記録 媒体に対して情報の記録が可能であり、 かつ、 記録された情報の再生時 に、 十分な再生光量を得ることもできる。  According to the optical recording / reproducing method of the present invention, information can be recorded on the first or second optical recording medium of the present invention, and when reproducing the recorded information, a sufficient reproducing light amount is required. You can also get.
本発明の光記録再生方法においては、 前記可変吸収膜に形成される前 記光吸収増加部が集光される前記光のスポットサイズよりも小さくなる ように、 前記光の強度を制御することが好ましい。 超解像再生を行うた めである。  In the optical recording / reproducing method of the present invention, the intensity of the light is controlled such that the light absorption increasing portion formed on the variable absorption film is smaller than a spot size of the light to be collected. preferable. This is to perform super-resolution reproduction.
以下、 本発明の実施の形態について、 図面を参照しながら説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(実施の形態 1 )  (Embodiment 1)
図 1に、 本発明の実施の形態 1の光記録媒体の断面構成が示されてい る。 この光記録媒体は、 基板 7 0 1に、 光 L 0入射側から第 1記録層 7 FIG. 1 shows a cross-sectional configuration of the optical recording medium according to the first embodiment of the present invention. This optical recording medium has a first recording layer 7 on a substrate 7 0 1 from the light L 0 incident side.
5 1、 第 2記録層 7 5 2、 および最終記録層 7 5 4がこの順に設けられ た多層光記録媒体である。 各記録層間には、 分離層 7 3 1 , 7 3 2が設 けられている。 光 L 0は波長 λ 0の光であり、 本実施の形態の光記録媒 体に対して情報の記録または再生を行う際に照射される光である。 51, a second recording layer 752, and a final recording layer 754 are multilayer optical recording media provided in this order. Separation layers 731 and 732 are provided between the recording layers. The light L 0 is light having a wavelength λ 0, which is irradiated when information is recorded or reproduced on the optical recording medium of the present embodiment.
第 1記録層 7 5 1と第 2記録層 7 5 2は同様の膜構成になっており、 光 L 0入射側から、 記録膜 7 2 1 ( 7 2 2 ) と可変吸収膜 7 9 1 ( 7 9 The first recording layer 751 and the second recording layer 752 have the same film configuration, and from the light L0 incident side, the recording film 7 2 1 (7 2 2) and the variable absorption film 7 9 1 ( 7 9
2 ) とがこの順に設けられている。 2) are provided in this order.
さらに、 第 2記録層 7 5 2と分離層 7 3 2をはさみ、 記録膜 7 2 3お よび反射膜 7 0 2からなる最終記録層 7 5 4が配置されている。 各記録層 7 5 1 , 7 52, 7 54には、 凹凸形状からなるガイド溝が 設けられており、 このガイド溝は記録の位置を特定するために用いられ る。 Further, the second recording layer 752 is sandwiched between the second recording layer 752 and the separation layer 7332, and a final recording layer 754 including a recording film 723 and a reflection film 72 is arranged. Each of the recording layers 751, 752, and 754 is provided with a guide groove having an uneven shape, and the guide groove is used to specify a recording position.
分離層 7 3 1 , 7 32は光 L 0に対して透明なネオ料からなり、 例えば PMMA (ポリメチルメタクリレート) が使用できる。  The separation layers 731 and 732 are made of a neo-material transparent to the light L0, and for example, PMMA (polymethyl methacrylate) can be used.
第 1記録層 7 5 1および第 2記録層 7 52に含まれる記録膜 72 1 , 722は、 記録光および再生光として用いる波長 λ 0の光 L 0に対して ほぼ透明であり、 所定の温度で未記録状態から記録状態へと変化する性 質を有する。 ここで、 記録状態とは、 未記録状態から光学特性が変化し た状態を示し、 例えば屈折率の変化、 消衰係数の変化、 形状の変化等の 物理的変化または化学的変化により光学特性が変化した状態をいう。 記 録膜 7 2 1, 7 22は、 波長 λ 0の光 L 0に対してほぼ透明であって、 かつ、 所定の温度で光学特性が変化する材料にて形成されていればよく 、 有機色素、 熱重合性樹脂、 熱変形樹脂、 および熱分解性樹脂等を用い ることができる。 具体的には、 例えば波長 λ 0 = 40 5 nmの場合には 、 例えば有機色素である 2— [7— (1, 3—ジハイドロー 5—メトキ シー 1, 3, 3—トリメチルー 2 H—インドールー 2—イリデン) 一 1 , 3, 5—ヘプタトリエニル] — 5—メトキシ一 1, 3, 3—トリメチ ルー 3 H—インドリウム過塩素酸塩(例えば、 (株)林原生物化学研究所 製の NK— 2882) 等を用いることができる。 また、 波長 λ 0 = 6 3 0 nmの場合には、 例えば 2 - [ 2― [4一 (ジメチルァミノ) フエ二 ル] ェテニル] ナフト [1, 2—d] チアゾール (例えば、 (株) 林原生 物化学研究所製の NK— 1 8 8 6 ) 等を用いることができる。 また、 ァ クリル系の熱重合性樹脂、 P MM Aやポリエステル等の熱変形樹脂、 ベ ンゾトリアゾ一ル等の熱分解性樹脂の場合は、 波長 40 5 nmおよび波 長 6 30 nmのどちらの光に対しても使用可能である。 第 1記録層 7 5 1および第 2記録層 7 52に含まれる可変吸収膜 7 9 1, 79 2は、 電子のエネルギーがバンド構造を有し、 電子のパンド間 遷移による光吸収において吸収スぺクトルの吸収端が、 温度の上昇に従 い長波長側 (低エネルギー側) に移動する材料からなる。 なお、 吸収端 とは、 吸収スペクトルの低エネルギー側の端のことである。 The recording films 72 1 and 722 included in the first recording layer 751 and the second recording layer 752 are substantially transparent to light L 0 having a wavelength λ 0 used as recording light and reproduction light, and have a predetermined temperature. It has the property of changing from an unrecorded state to a recorded state. Here, the recorded state refers to a state in which the optical characteristics have changed from the unrecorded state. For example, the optical characteristics are changed due to a physical change such as a change in refractive index, a change in extinction coefficient, a change in shape, or a chemical change. A state that has changed. The recording films 721, 722 need only be made of a material that is substantially transparent to the light L0 of the wavelength λ0 and that is formed of a material whose optical properties change at a predetermined temperature. For example, a heat-polymerizable resin, a heat-deformable resin, and a heat-decomposable resin can be used. Specifically, for example, when the wavelength λ 0 = 405 nm, for example, the organic dye 2— [7— (1,3-dihydro-5-methoxy1,3,3-trimethyl-2H—indole-2 —Ilidene) 1,3,5-Heptatrienyl] — 5-Methoxy-1,3,3-trimethylol 3 H-indolium perchlorate (for example, NK—2882 manufactured by Hayashibara Biochemical Laboratory Co., Ltd.) ) Etc. can be used. When the wavelength is λ 0 = 630 nm, for example, 2- [2- [4-1 (dimethylamino) phenyl] ethenyl] naphtho [1,2-d] thiazole (for example, Hayashibara Co., Ltd.) For example, NK-188 6) manufactured by NIMS can be used. In the case of an acrylic-based thermopolymerizable resin, a thermally deformable resin such as PMMA or polyester, or a thermally decomposable resin such as benzotriazole, either light having a wavelength of 405 nm or a wavelength of 630 nm is used. It can also be used for The variable absorption films 791 and 792 included in the first recording layer 751 and the second recording layer 752 have a band structure in which the energy of the electrons has a band structure, and the light absorption due to the light absorption due to the transition between the bands of the electrons. The absorption edge of the vector is made of a material that moves to the longer wavelength side (lower energy side) as the temperature rises. Note that the absorption edge is the edge on the low energy side of the absorption spectrum.
図 2には、 本実施の形態における可変吸収膜 79 1, 7 92の分光吸 収率曲線の一例が示されている。 図 2に示すように、 可変吸収膜 79 1 , 7 92は、 吸収率の分光特性が温度に応じて変化する膜であり、 膜温 度が常温の場合は波長 λ 0の光に対して低い吸収率 (第 1の吸収率) を 示し、 膜温度が上昇すると、 吸収端が長波長側に移動するため波長 λ 0 の光に対する吸収率が上昇して高い吸収率 (第 2の吸収率) 示す性質を 有する材料にて形成されている。 従って、 可変吸収膜 7 9 1 , 7 92は 、 記録光または再生光として波長 λ 0の光 L 0が照射された場合、 まず 小さな吸収率で光吸収し、 この光吸収による温度上昇に伴って吸収率の 増加が起こるので、 常温よりも高い温度では高い吸収率で光を吸収する ことになる。 なお、 本明細書において、 常温とは、 光記録媒体が使用さ れる温度、 すなわち光記録媒体の使用環境温度のことである。 また、 可 変吸収膜 7 9 1, 7 92における常温時の波長 λ 0の光吸収は、 必ずし も可変吸収膜 7 9 1, 7 9 2に含まれる上記のような性質を有する材料 の電子のバンド間遷移による吸収だけでなく、 不純物による吸収を含ん でいてもよい。  FIG. 2 shows an example of a spectral absorption curve of the variable absorption films 791 and 792 in the present embodiment. As shown in FIG. 2, the variable absorption films 79 1 and 792 are films in which the spectral characteristics of the absorptance change according to the temperature. When the film temperature is normal temperature, the variable absorption films 79 1 and 792 are lower than the light of wavelength λ 0. Indicates the absorptance (first absorptivity). When the film temperature increases, the absorptivity moves to the longer wavelength side, so the absorptivity for light of wavelength λ 0 increases and the absorptivity (second absorptivity) It is made of a material having the properties shown. Therefore, when the light L 0 having the wavelength λ 0 is irradiated as the recording light or the reproduction light, the variable absorption films 791 and 792 first absorb light with a small absorption rate, and the temperature increases due to the light absorption. As the absorption rate increases, light will be absorbed at a higher absorption rate at temperatures higher than room temperature. In this specification, the normal temperature refers to a temperature at which the optical recording medium is used, that is, an environment temperature at which the optical recording medium is used. In addition, the light absorption of the variable absorption films 791 and 792 at a normal temperature at the wavelength λ 0 is not limited to the electron absorption of the material having the above properties contained in the variable absorption films 791 and 792. In addition to the absorption due to the inter-band transition, the absorption due to impurities may be included.
可変吸収膜 7 9 1, 7 92は、 波長 λ 0の光 L 0に対して上記のよう な性質を有する材料を含んでいることが必要であり、 このような材料と しては、 波長 λ 0 = 40 5 nmの場合は、 B i 203、 T e 02と N a 2 Oとの混合ガラス、 T e 02と W〇3との混合ガラス、 丁 6〇2と 6 23との混合ガラス、 T e〇2と CuOとの混合ガラス等が挙げられ、 そ の中でも B i 203が好ましい。 また、 波長 λ 0 = 630 nmの場合は、 As 2S3、 A l GaAs化合物半導体、 A 1 G a I n A s化合物半導体 等が挙げられ、 その中でも As 2S3が好ましい。 The variable absorption films 791 and 792 need to include a material having the above-described properties with respect to the light L0 having the wavelength λ0. 0 = for 40 5 nm, B i 2 0 3, T e 0 2 and mixed glass with N a 2 O, mixed glass with T e 0 2 and W_〇 3, Ding 6_Rei 2 and 6 23 and mixing glass, mixing glass with T E_〇 2 and CuO are exemplified, its B i 2 0 3 Among preferred. Further, when the wavelength λ 0 = 630 nm, As 2 S 3 , AlGaAs compound semiconductor, A1GaInAs compound semiconductor and the like can be mentioned, among which As 2 S 3 is preferable.
最終記録層 754に含まれる記録膜 723は波長 λ 0の光 L 0を吸収 する材料からなり、 波長 λ 0の光 L 0の吸収により未記録状態から記録 状態へと変化する性質を有する。 記録膜 723の材料としては、 例えば 酸化テルル (TeOx) 等が使用可能である。 また、 反射膜 702には 、 A 1等を含む金属膜が使用できる。 The recording film 723 included in the final recording layer 754 is made of a material that absorbs light L 0 of wavelength λ 0, and has a property of changing from an unrecorded state to a recorded state due to absorption of light L 0 of wavelength λ 0. As a material of the recording film 723, for example, tellurium oxide (TeO x ) can be used. Further, as the reflective film 702, a metal film containing A1 or the like can be used.
次に、 本実施の形態の光記録媒体に対する情報の記録再生動作につい て説明する。  Next, an operation of recording and reproducing information on the optical recording medium according to the present embodiment will be described.
図 10に、 本実施の形態の光記録媒体に対して情報の記録または再生 を行うための光情報処理装置の一例が示されている。 以下、 この光情報 処理装置を用いて、 本実施の形態の光記録媒体に対して情報を記録再生 する方法について説明する。  FIG. 10 shows an example of an optical information processing apparatus for recording or reproducing information on or from the optical recording medium of the present embodiment. Hereinafter, a method of recording and reproducing information on and from the optical recording medium of the present embodiment using this optical information processing apparatus will be described.
本実施の形態の光情報処理装置には、 放射光源である半導体レーザ 1 01が設けられ、 半導体レーザ 10 1から光記録媒体 105までの光路 中に、 コリメ一トレンズ 102と、 偏光ビ一ムスプリッ夕 107と、 1 4波長板 115と、 ァクチユエ一夕 1 12に固定された対物レンズ 1 03とが配置されている。 記録時においては、 半導体レーザ 101から の出射光は、 コリメ一トレンズ 102により平行光となり、 偏光ビーム スプリツタ 107を透過し、 さらに 1ノ4波長板 1 15により円偏光に 変換された後、 対物レンズ 103により光記録媒体 105に集光し、 情 報が記録される。 再生時においては、 光記録媒体 105に集光された光 の反射光が利用される。 光記録媒体 105で反射された光は、 対物レン ズ 103により平行光に変換され、 1Z4波長板 1 15により直線偏光 に変換されて、 偏光ビ一ムスプリッ夕 107で反射される。 偏光ビーム スプリッタ 1 0 7で反射された光は、 検出レンズ 1 0 4で収束光に変換 された後、 ホログラム素子 1 8 1により回折 ·分離され (L 1 , L 2 ) 、 光検出器 1 9 0で検出される。 光検出器 1 9 0は複数の検出領域の受 光領域を持ち、 それぞれの領域で検出される信号は電気回路 5 0 4へ入 力する。 電気回路 5 0 4は、 入力された信号よりデータ信号を取り出す 。 これにより、 情報の再生が行われる。 さらに、 電気回路 5 0 4は、 対 物レンズ 1 0 3の位置を制御するためのサーポ信号を得てァクチユエ一 夕 1 1 2を駆動する。 なお、 電気回路 5 0 4は、 得られたデータ信号の 品質が最良になるように、 半導体レーザの出力を制御している。 The optical information processing apparatus of the present embodiment is provided with a semiconductor laser 101 as a radiation light source, and a collimating lens 102 and a polarizing beam splitter in an optical path from the semiconductor laser 101 to the optical recording medium 105. 107, a 14-wave plate 115, and an objective lens 103 fixed to an actuator 112 are arranged. At the time of recording, the light emitted from the semiconductor laser 101 is converted into parallel light by the collimating lens 102, passes through the polarizing beam splitter 107, is further converted into circularly polarized light by the 1/4 wavelength plate 115, and then is converted into the objective lens. The light is condensed on the optical recording medium 105 by 103 and information is recorded. At the time of reproduction, reflected light of light condensed on the optical recording medium 105 is used. The light reflected by the optical recording medium 105 is converted into parallel light by the objective lens 103, converted into linearly polarized light by the 1Z4 wavelength plate 115, and reflected by the polarization beam splitter 107. Polarized beam The light reflected by the splitter 107 is converted into convergent light by the detection lens 104, and then diffracted and separated by the hologram element 18 1 (L 1, L 2). Is detected. The photodetector 190 has a plurality of light receiving areas of detection areas, and a signal detected in each area is input to the electric circuit 504. The electric circuit 504 extracts a data signal from the input signal. As a result, information is reproduced. Further, the electric circuit 504 obtains a service signal for controlling the position of the objective lens 103, and drives the actuator 112. Note that the electric circuit 504 controls the output of the semiconductor laser so that the quality of the obtained data signal is the best.
図 1には、 例えば第 2記録層 7 5 2に情報を記録 (または再生) する 場合の様子が示されている。 光 L 0は波長 λ 0を有するレーザ光であり 、 光情報処理装置の対物レンズ 1 0 3 (図 1 0参照。) により光記録媒体 の第 2記録層 7 5 2に集光される。 対物レンズ 1 0 3の位置はァクチュ エー夕 1 1 2 (図 1 0参照。) により制御される。  FIG. 1 shows a state in which information is recorded (or reproduced) on the second recording layer 752, for example. The light L 0 is a laser beam having a wavelength λ 0 and is focused on the second recording layer 752 of the optical recording medium by the objective lens 103 (see FIG. 10) of the optical information processing device. The position of the objective lens 103 is controlled by the actuator 112 (see FIG. 10).
まず、 情報を記録する場合の動作について、 具体的に説明する。 光 L 0は、 基板 7 0 1、 第 1記録層 7 5 1および分離層 7 3 1を通過 して第 2記録層 7 5 2に入射する。 光 0は第 1記録層 7 5 1を通過す る際に可変吸収膜 7 9 1により少し吸収されるが、 可変吸収膜 7 9 1面 上では集光されていないため発熱のエネルギ一密度は低く、 可変吸収膜 7 9 1はほぼ常温に保たれる。 従って、 光 L 0は第 1記録層 7 5 1を効 率よく透過し、 さらに分離層 7 3 1を透過して、 第 2記録層 7 5 2に到 達できる。  First, the operation for recording information will be specifically described. The light L0 passes through the substrate 71, the first recording layer 751, and the separation layer 731, and enters the second recording layer 752. Light 0 is slightly absorbed by the variable absorption film 791 when passing through the first recording layer 751, but since the light 0 is not condensed on the surface of the variable absorption film 791, the energy density of heat generation is Low, the variable absorption membrane 791 is kept at almost room temperature. Therefore, the light L0 can efficiently pass through the first recording layer 751, and further pass through the separation layer 731, and reach the second recording layer 752.
第 2記録層 7 5 2に入射した光 L 0は、 記録膜 7 2 2を透過して可変 吸収膜 7 9 2に入射する。 可変吸収膜 7 9 2は波長 λ 0を有する光 L 0 に対して低い吸収率を有するため、 入射した光 L 0の一部を吸収し、 発 熱する。 光 L 0は可変吸収膜 7 9 2では集光されているので、 発熱のェ ネルギー密度が高い。 このため、 可変吸収膜 7 9 2の光 L 0入射部分の 温度が局所的に上昇する。 この温度上昇により可変吸収膜 7 92の光 L 0に対する吸収率が増加し、 可変吸収膜 7 9 2に光吸収増加部 741が 形成される。 光吸収増加部 741は、 光 L 0の吸収が増加することによ りさらに温度上昇する。 最終的には、 可変吸収膜 7 92の光吸収増加部 741での発熱と記録膜 7 2 2等への熱の拡散量が平衡になったときに 光吸収増加部 74 1の温度上昇が停止する。 The light L 0 incident on the second recording layer 752 passes through the recording film 72 2 and is incident on the variable absorption film 792. Since the variable absorption film 792 has a low absorptance to the light L 0 having the wavelength λ 0, it absorbs a part of the incident light L 0 and generates heat. Since the light L0 is condensed by the variable absorption film 792, the heat High energy density. For this reason, the temperature of the variable absorption film 792 at the light L0 incident portion locally increases. Due to this temperature rise, the absorptivity of the variable absorption film 792 for the light L0 increases, and the light absorption increasing portion 741 is formed in the variable absorption film 792. The light absorption increasing section 741 further rises in temperature as the absorption of the light L0 increases. Eventually, the temperature rise of the light absorption increasing portion 741 stops when the heat generation in the light absorption increasing portion 741 of the variable absorption film 792 and the amount of heat diffusion to the recording film 7222 and the like are balanced. I do.
可変吸収膜 7 92の光吸収増加部 74 1で生じた熱は、 記録膜 72 2 に拡散する。 この拡散した熱による記録膜 7 22の温度上昇により、 記 録膜 722に情報が記録される。 すなわち、 この熱拡散により記録膜 7 22の温度が記録膜 7 2 2の光学特性を変化させる所定の温度 (以下、 記録温度という。) に達し、記録温度に達した部分に光学特性が変化した 部分 (記録マーク) が形成される。  The heat generated in the light absorption increasing portion 741 of the variable absorption film 792 diffuses to the recording film 722. Information is recorded on the recording film 722 by the temperature rise of the recording film 722 due to the diffused heat. That is, due to this thermal diffusion, the temperature of the recording film 722 reaches a predetermined temperature (hereinafter, referred to as a recording temperature) at which the optical characteristics of the recording film 722 change, and the optical characteristics change at a portion where the recording temperature is reached. A part (recording mark) is formed.
次に、 第 2記録層 7 52の記録膜 72 2に記録された情報を再生する 動作について説明する。  Next, an operation of reproducing information recorded on the recording film 722 of the second recording layer 752 will be described.
入射する光 L 0により可変吸収膜 7 9 2の温度および吸収率を増大さ せることは、 記録時と同じである。 記録時と異なる点は、 可変吸収膜 7 92の発熱による記録膜 7 22の温度上昇を記録温度未満に抑えるよう に、 光 L 0の強度を制御することである。 本実施の形態の光記録媒体に 記録された情報の読み出し原理は以下のとおりである。  Increasing the temperature and the absorptance of the variable absorption film 792 by the incident light L0 is the same as during recording. The difference from the recording is that the intensity of the light L0 is controlled so that the temperature rise of the recording film 722 due to the heat generated by the variable absorption film 792 is suppressed below the recording temperature. The principle of reading information recorded on the optical recording medium of the present embodiment is as follows.
記録膜 722と可変吸収膜 7 92との界面における光 L 0の反射率 R は以下の式で表される。 なお、 以下の式において、 η θは記録膜 722 の屈折率、 nは可変吸収膜 7 92の屈折率、 kは可変吸収膜 792の消 衰係数である。  The reflectance R of light L 0 at the interface between the recording film 722 and the variable absorption film 792 is represented by the following equation. In the following equation, ηθ is the refractive index of the recording film 722, n is the refractive index of the variable absorption film 792, and k is the extinction coefficient of the variable absorption film 792.
R= ((N— η θ) / (N+ n 0 )) 2 ·'· (3) R = ((N— η θ) / (N + n 0)) 2
N= (n2 + k2) 1/2 "· (4) 可変吸収膜 7 9 2は、 常温から温度が上昇すると光 L 0に対する吸収 率が増加する、 すなわち消衰係数が増加する。 その結果、 式 (3 ) およ び式 (4 ) より、 反射率 Rが増加して反射光量が増加する。 この反射光 は記録膜 7 2 2の記録マークにより変調されて情報の検出に用いられる ため、 この反射光量の増加により高効率な信号検出が可能となる。 N = (n 2 + k 2 ) 1/2 "(4) In the variable absorption film 792, as the temperature rises from room temperature, the absorptivity for light L0 increases, that is, the extinction coefficient increases. As a result, according to Equations (3) and (4), the reflectance R increases and the amount of reflected light increases. Since this reflected light is modulated by the recording mark of the recording film 722 and used for detecting information, a signal can be detected with high efficiency by increasing the amount of reflected light.
なお、 上記では第 2記録層 7 5 2への情報の記録再生について説明し たが、 第 1記録層 7 5 1への情報の記録再生は、 光 L 0の集光位置を第 1記録層 7 5 1とすることにより、 同様に情報の記録再生を行うことが できる。  Although the recording and reproduction of information on the second recording layer 752 has been described above, the recording and reproduction of information on the first recording layer 751 is performed by setting the light condensing position of the light L0 to the first recording layer. By setting it to 751, information can be recorded and reproduced in the same manner.
また、 最終記録層 7 5 4への情報の記録再生は、 光 L 0の集光位置を 最終記録層 7 5 4とすることにより行われる。 光し 0は最終記録層 7 5 4に到達する前に第 1記録層 7 5 1および第 2記録層 7 5 2に入射する が、 可変吸収膜 7 9 1, 7 9 2では光 L 0は集光されていないため発熱 領域が分散され温度上昇は小さい。 このため光吸収増加部は形成されず 、 光 L 0が透過する。 情報の記録時は、 記録膜 7 2 3が光 L 0を吸収す ることにより温度上昇が起こり記録マークが形成される。 情報の再生時 は、 反射膜 7 0 2で反射した反射光を検出することにより行われる。 次に、 本実施の形態の光記録媒体の可変吸収膜 7 9 1 , 7 9 2に使用 可能な材料である B i 2 0 3の特性について、 さらに詳しく説明する。 図 3は、 5 0 °Cおよび 2 5 0 °Cにおける B i 23の吸収率の分光特性を測 定した結果を表す図である。 石英ガラス表面に真空蒸着法によって B i 2 0 3の薄膜 (厚み 8 0 O A ) を形成したサンプルに、 分光器により分光 された光を照射して、 その吸収率を測定した。 この測定結果から、 膜温 度が 5 0 °Cから 2 5 0 に上昇すると吸収端が長波長側に移動すること が確認でき、 記録光および再生光の波長 λ 0を例えば 4 0 5 n mに設定 することにより、 情報の記録および再生が可能であることが確認できる さらに、 この測定用の B i 23膜に波長 4 0 5 n mの光を入射させて 吸収率の温度特性を測定した結果を図 4に示す。 この結果より、 温度の 上昇に従い吸収率が増加して、 5 0 0 °Cで約 8 0 %の吸収率を示すこと が確認できた。 Recording and reproduction of information on the final recording layer 754 are performed by setting the focal position of the light L0 to the final recording layer 754. The light 0 enters the first recording layer 751 and the second recording layer 752 before reaching the final recording layer 754, but in the variable absorption films 791 and 792, the light L0 is Since it is not focused, the heat generation area is dispersed and the temperature rise is small. Therefore, the light absorption increasing portion is not formed, and the light L 0 is transmitted. At the time of recording information, the recording film 723 absorbs the light L0, causing a temperature rise to form a recording mark. At the time of reproducing the information, it is performed by detecting the reflected light reflected by the reflective film 72. Next, the variable absorption film 7 9 1, 7 9 2 is a material which can be used in B i 2 0 3 in the characteristics of the optical recording medium of the present embodiment will be described in more detail. Figure 3 is a diagram representing the 5 0 ° C and 2 5 0 ° B i 2 〇 3 results were measured boss spectral characteristics of the absorption rate of the C. By a vacuum deposition method B i 2 0 3 thin film sample (having a thickness of 8 0 OA) in a quartz glass surface is irradiated with light dispersed by the spectroscope, to measure the absorption rate. From this measurement result, it can be confirmed that when the film temperature rises from 50 ° C to 250, the absorption edge moves to the longer wavelength side, and the wavelength λ0 of the recording light and reproduction light is set to, for example, 405 nm. By setting, you can confirm that recording and playback of information is possible Furthermore, the results of measurement of the temperature characteristics of the absorption rate by applying light having a wavelength of 4 0 5 nm to B i 23 film for the measurement in FIG. From these results, it was confirmed that the absorptance increased as the temperature rose and exhibited an absorptivity of about 80% at 500 ° C.
以上の結果から、 このような材料を用いて可変吸収膜 7 9 1, 7 9 2 が形成された場合、 光スポット照射開始時の常温においては可変吸収膜 7 9 1 , 7 9 2が低い吸収率により入射光の一部を吸収し、 その光吸収 に伴い温度上昇が起こる。 この温度上昇により吸収率が増加し、 さらな る光吸収により温度が上昇する。 このように、 可変吸収膜 7 9 1, 7 9 2の光スポットが照射された領域に光吸収増加部 7 4 1が形成されるの で、 この領域での発熱が記録膜に拡散されて記録膜に記録マークを形成 できる。 このような記録方法によれば、 多層光記録媒体であっても記録 に必要なエネルギーを確保することができ、 大容量化が実現できる。 ま た、 可変吸収膜 7 9 1 , 7 9 2に形成される光吸収増加部 7 4 1は消衰 係数が大きくなつているので、 記録膜 7 2 1 , 7 2 2との界面での反射 率も増加し、 十分な再生光量も得ることができる。  From the above results, when the variable absorbing films 791 and 792 are formed using such materials, the variable absorbing films 791 and 792 have low absorption at room temperature at the start of light spot irradiation. Depending on the rate, a part of the incident light is absorbed, and the temperature rises with the absorption of the light. This rise in temperature increases the absorptance, and further light absorption raises the temperature. As described above, the light absorption increasing portion 741 is formed in the area where the light spots of the variable absorption films 791 and 792 are irradiated, and the heat generated in this area is diffused to the recording film to perform recording. Recording marks can be formed on the film. According to such a recording method, energy necessary for recording can be secured even in a multilayer optical recording medium, and a large capacity can be realized. In addition, since the light absorption increasing portion 741 formed in the variable absorption films 791 and 792 has a large extinction coefficient, the reflection at the interface with the recording films 721 and 7222 is large. The rate is also increased, and a sufficient amount of reproduced light can be obtained.
なお、 本実施の形態では、 記録層が 3層積層された光記録媒体につい て説明したが、 記録層の数はこれに限定されず、 少なくとも 2層含まれ ていればよい。 また、 最終記録層 7 5 4の膜構成もこれに限定されず、 第 1記録層 7 5 1および第 2記録層 7 5 2と同様の膜構成であってもよ い。  In the present embodiment, an optical recording medium having three recording layers stacked is described, but the number of recording layers is not limited to this, and it is sufficient that at least two recording layers are included. Further, the film configuration of the final recording layer 754 is not limited to this, and may have the same film configuration as the first recording layer 751 and the second recording layer 752.
また、 本実施の形態の光記録媒体においては、 各記録層の吸収光量が 光入射側からの層数に関係なく全ての記録層でほぼ同じになるように、 各記録層の反射率および可変吸収膜の吸収率を設定することが好ましい 。 目的とする記録層ごとに記録光の強度を変化させなくてもすむからで ある。 例えば、 本実施の形態の光記録媒体において、 最終記録層 7 54 が、 第 1記録層 7 5 1および第 2記録層 7 52と同様に可変吸収膜 7 9 1 , 7 92を有する膜構成である場合、 各記録層 75 1, 7 52の反射 率および各可変吸収膜 7 9 1 , 7 9 2の吸収率は、 以下のような関係を 有することが好ましい。 なお、 以下の関係式において、 第 1記録層 7 5 1の反射率を Rい 可変吸収膜 7 9 1の吸収率を八ェとし、 第 2記録層 7 52の反射率を R2、 可変吸収膜 7 92の吸収率を A2とし、 最終記録層 7 54の皮射率を尺3、 可変吸収膜の吸収率を A3とする。 Ax = A3/ 3 In addition, in the optical recording medium of the present embodiment, the reflectivity of each recording layer and the reflectivity of each recording layer are varied so that the amount of light absorbed by each recording layer is almost the same regardless of the number of layers from the light incident side. It is preferable to set the absorption rate of the absorbing film. It is not necessary to change the recording light intensity for each target recording layer. is there. For example, in the optical recording medium of the present embodiment, the final recording layer 754 has a film configuration having variable absorption films 791 and 792, like the first recording layer 751 and the second recording layer 752. In some cases, it is preferable that the reflectance of each of the recording layers 75 1 and 752 and the absorptance of each of the variable absorption films 79 1 and 79 2 have the following relationship. Incidentally, in the following relationship, the first reflectance of the recording layer 7 5 1 and Hache absorptance of the variable absorption film 7 9 1 have R, the reflectance of the second recording layer 7 52 R 2, variable absorption the absorptivity of the film 7 92 and a 2, the peel morphism of the final recording layer 7 54 scale 3, the absorption rate of the variable absorption film and a 3. A x = A 3/3
R 2 ^ R 3 / ^  R 2 ^ R 3 / ^
A2 = A3/2 A 2 = A 3/2
以上の関係をほぼ満たすように各記録層および可変吸収膜を形成すれ ば、 記録層に関係なく記録光の強度をほぼ一定にできる。  If the recording layer and the variable absorption film are formed so as to substantially satisfy the above relationship, the intensity of the recording light can be made substantially constant regardless of the recording layer.
また、 本実施の形態においては、 可変吸収膜 7 9 1, 7 92が常温時 に波長 λ 0の光 L 0をわずかに吸収する材料にて形成されているが、 常 温時に波長 λ 0の光 L 0に対して透明な材料 (図 5に示すような分光吸 収率特性を有する材料)にて形成してもよい。 この場合、記録膜 7 2 1 , 7 22を、 常温において波長 λ 0の光 L 0に対しわずかな吸収を示す材 料 (例えば T e Oxや T e— O— P d等) にて形成することにより、 光 スポット照射開始時の発熱を記録膜 72 1, 7 22で行い、 この発熱に より可変吸収膜 7 9 1, 7 9 2の温度を上昇させて可変吸収膜 7 9 1, 7 9 の吸収率を増加させ、 可変吸収膜 7 9 1 , 792に吸収増加部 7 4 1を形成する。 可変吸収膜 79 1, 7 92および記録膜 72 1, 72 2をこのように形成すれば、 波長 λ 0の光の吸収率を急激に変化させる ことができるので、 各記録層の選択をより確実に行うことができる。 また、 本実施の形態の光記録媒体によれば、 回折限界以下の記録マー クの再生、 いわゆる超解像再生も可能となる。 以下に、 本実施の形態の 光記録媒体に対する超解像再生について説明する。 Further, in the present embodiment, the variable absorption films 791 and 792 are formed of a material that slightly absorbs the light L0 having the wavelength λ0 at room temperature, but has the wavelength λ0 at room temperature. It may be formed of a material transparent to light L0 (a material having a spectral absorption characteristic as shown in FIG. 5). In this case, the recording films 721 and 722 are formed of a material (for example, TeOx or Te—O—Pd) that shows a slight absorption of the light L0 having the wavelength λ0 at room temperature. As a result, heat is generated at the start of light spot irradiation by the recording films 721 and 722, and the heat is used to raise the temperature of the variable absorption films 791 and 792, thereby causing the variable absorption films 791 and 792 to increase. And the variable absorption films 791 and 792 are formed with absorption increasing portions 741. By forming the variable absorption films 79 1, 792 and the recording films 72 1, 722 in this way, the absorptance of light of wavelength λ 0 can be changed rapidly, so that the selection of each recording layer can be made more reliable. Can be done. Further, according to the optical recording medium of the present embodiment, reproduction of a recording mark below the diffraction limit, that is, so-called super-resolution reproduction becomes possible. Hereinafter, super-resolution reproduction for the optical recording medium of the present embodiment will be described.
図 8は、 本実施の形態の光記録媒体を用いて超解像再生を行う方法を 説明する断面図である。 なお、 図 8には、 第 1記録層 7 5 1に集光する 様子が示されている。 本実施の形態の光記録媒体においては、 可変吸収 膜 7 9 1に形成される吸収増加部 7 4 1を光 L 0のスポットサイズより も小さくすることが可能である。 図 9に、 光強度および可変吸収膜の消 衰係数と光スポット領域との関係が示されている。 本実施の形態の光記 録媒体に光が照射される場合、 通常の集光状態での光強度分布は図 9に 示すようなガウス関数に近い単峰形状になる。 従って、 可変吸収膜 7 9 1において消衰係数が飽和していない状態、 つまり温度上昇により消衰 係数が増加する状態では、 可変吸収膜 7 9 1の消衰係数は、 光強度の大 きい光スポットの中心部ほど大きく, 周辺部で小さくなる。 そこで、 消 衰係数が大きくなる部分に形成される光吸収増加部 7 4 1が光 L 0のス ポットサイズよりも小さく形成されるように光強度を制御することによ り、 図 8に示すような超解像再生が実現できる。  FIG. 8 is a cross-sectional view illustrating a method for performing super-resolution reproduction using the optical recording medium of the present embodiment. FIG. 8 shows a state where light is focused on the first recording layer 751. In the optical recording medium of the present embodiment, it is possible to make the absorption increasing portion 741 formed in the variable absorption film 791 smaller than the spot size of the light L0. FIG. 9 shows the relationship between the light intensity, the extinction coefficient of the variable absorption film, and the light spot area. When light is applied to the optical recording medium of the present embodiment, the light intensity distribution in a normal condensed state has a unimodal shape close to a Gaussian function as shown in FIG. Therefore, in a state where the extinction coefficient is not saturated in the variable absorption film 791, that is, in a state where the extinction coefficient increases due to a temperature rise, the extinction coefficient of the variable absorption film 791 is a light having a large light intensity. It is larger at the center of the spot and smaller at the periphery. Therefore, by controlling the light intensity so that the light absorption increasing portion 741 formed in the portion where the extinction coefficient becomes large is formed smaller than the spot size of the light L0, as shown in FIG. Such super-resolution reproduction can be realized.
(実施の形態 2 )  (Embodiment 2)
図 6に、 本発明の実施の形態 2の光記録媒体の断面構成が示されてい る。 この光記録媒体は、 基板 7 0 1に、 光 L 0入射側から第 1記録層と して機能する可変吸収膜 7 9 3、 第 2記録層として機能する可変吸収膜 7 9 4、 および最終記録層 7 5 4がこの順に設けられた多層光記録媒体 である。 各記録層間には、 分離層 7 3 1 , 7 3 2が設けられている。 可 変吸収膜 7 9 3, 7 9 4は、 実施の形態 1の光記録媒体 (図 1参照。) の 記録膜 7 2 1と可変吸収膜 7 9 1、 記録膜 7 2 2と可変吸収膜 7 9 2を 、 それぞれ一つの膜で実現するものである。 なお、 分離層 7 3 1 , 7 3 2および最終記録層 7 54は実施の形態 1の光記録媒体と同様であるの で、 ここでは説明を省略する。 FIG. 6 shows a cross-sectional configuration of an optical recording medium according to Embodiment 2 of the present invention. This optical recording medium includes a substrate 711, a variable absorbing film 793 functioning as a first recording layer, a variable absorbing film 794 functioning as a second recording layer, and a final The recording layer 754 is a multilayer optical recording medium provided in this order. Separation layers 731 and 732 are provided between the recording layers. The variable absorption films 793 and 794 are the recording film 72 1 and the variable absorption film 791, the recording film 722 and the variable absorption film of the optical recording medium (see FIG. 1) of the first embodiment. 7 9 2 is realized by one film each. Separation layers 7 3 1, 7 3 Since the second and final recording layers 754 are the same as those of the optical recording medium of the first embodiment, the description is omitted here.
本実施の形態における可変吸収膜 7 9 3, 7 94は、 実施の形態 1の 光記録媒体における可変吸収膜 79 1, 7 92の特性に加えて、 さらに 、 所定の温度まで温度上昇すると光学特性が変化する性質を有する材料 にて形成されている。 このような材料の具体例として、 例えば A s 2S 3 が挙げられる。 図 7は、 A s 2 S 3吸収率の分光特性を測定した結果を表 す図である。 石英ガラス表面に真空蒸着法によって A s 2S 3の薄膜 (厚 み 1 0 ^m) を形成したサンプルに、 分光器により分光された光を照射 して、 その吸収率を測定した。 The variable absorption films 793 and 794 according to the present embodiment have the same characteristics as the variable absorption films 791 and 792 in the optical recording medium according to the first embodiment, and furthermore, have an optical characteristic when the temperature rises to a predetermined temperature. Is formed of a material having the property of changing. Specific examples of such a material include, for example, As 2 S 3 . FIG. 7 is a diagram showing the results of measuring the spectral characteristics of the As 2 S 3 absorptance. A sample in which an As 2 S 3 thin film (thickness 10 ^ m) was formed on the quartz glass surface by the vacuum evaporation method was irradiated with light separated by a spectroscope, and the absorptance was measured.
この測定結果から、 膜温度が 30°Cから 20 0°Cに上昇すると、 吸収 端が長波長側に移動することが確認できる。 A s 2S 3を用いて可変吸収 膜 7 93, 7 94を形成する場合、 記録光および再生光の波長を例えば 63 0 nmとすると、 3 0 °Cにおいては吸収率が約 5 %であるが、 2 0 0 °Cでは吸収率が約 6 0 %まで増加する。 これにより、 実施の形態 1の 場合と同様に、 可変吸収膜 7 9 3, 7 94の光スポットが照射された領 域に光吸収増加部 741が形成され、 この領域で発熱が起こる。 また、 情報の記録は、 可変吸収膜 7 93, 7 94の温度を A s 2 S3の融点 (3 00°C) 以上に上昇させて急冷し、 アモルファス相部分を形成すること により行う。 このアモルファス相の部分が記録マークとなる。 情報の消 去は、 可変吸収膜 7 93, 7 94の温度を A s 2S 3結晶化温度まで上昇 させてこれを除冷し、 アモルファス相を結晶相に相転移することにより 行う。 可変吸収膜 7 93, 7 94に記録された情報の再生は、 可変吸収 膜 793 , 794に記録マークが形成されない程度のパワーの光を用い て、 実施の形態 1の場合と同様に行う。 From this measurement result, it can be confirmed that when the film temperature rises from 30 ° C to 200 ° C, the absorption edge moves to the longer wavelength side. When the variable absorption films 793 and 794 are formed using As 2 S 3 , if the wavelength of the recording light and the reproduction light is, for example, 630 nm, the absorption rate is approximately 5% at 30 ° C. However, at 200 ° C, the absorption increases to about 60%. As a result, similarly to the first embodiment, the light absorption increasing portion 741 is formed in the area of the variable absorption film 793, 794 irradiated with the light spot, and heat is generated in this area. In addition, information is recorded by raising the temperature of the variable absorption films 793 and 794 to a temperature equal to or higher than the melting point of As 2 S 3 (300 ° C.) and rapidly cooling to form an amorphous phase portion. This amorphous phase portion becomes a recording mark. Information is erased by raising the temperature of the variable absorption films 793 and 794 to the crystallization temperature of As 2 S 3 , removing the temperature, and transforming the amorphous phase into a crystalline phase. Reproduction of information recorded on the variable absorption films 793 and 794 is performed in the same manner as in the first embodiment by using light having such a power that a recording mark is not formed on the variable absorption films 793 and 794.
以上のように、 本実施の形態の光記録媒体によれば、 多層光記録媒体 であっても記録に必要なエネルギーを確保することができ、 大容量化が 実現できる。 また、 光吸収増加部 7 4 1は消衰係数が大きくなつている ので反射率が増加し、 十分な再生光量も得ることができる。 As described above, according to the optical recording medium of the present embodiment, the multilayer optical recording medium Even in this case, the energy required for recording can be secured, and a large capacity can be realized. Further, since the light absorption increasing portion 741 has a large extinction coefficient, the reflectance increases, and a sufficient reproduction light amount can be obtained.
なお、 本実施の形態においては、 記録光おょぴ再生光の波長 λ 0の例 として 6 3 0 n mを用いる場合について説明したが、 この限りでなく、 他の波長であっても可変吸収膜 7 9 3, 7 9 4の材料を適宜選択するこ とにより実現可能である。 例えば波長 λ 0を 4 0 5 n mとする場合は、 T e 0 2 - C a O— W〇 3の混合ガラス等を用いて可変吸収膜 7 9 3 , 7 9 4を形成できる。 In the present embodiment, the case where 630 nm is used as an example of the wavelength λ 0 of the recording light and the reproduction light has been described. However, the present invention is not limited to this. This can be realized by appropriately selecting the materials of 793 and 794. For example, when the wavelength lambda 0 and 4 0 5 nm is, T e 0 2 - C a O- W_〇 variable absorption film 7 with a mixed glass of 3 9 3, 7 9 4 can be formed.
また、 本実施の形態の光記録媒体においても、 実施の形態 1の光記録 媒体と同様に超解像再生が可能である。  Also, in the optical recording medium of the present embodiment, super-resolution reproduction can be performed similarly to the optical recording medium of the first embodiment.
また、 本実施の形態においては記録層が 3層の場合について説明した が、 少なくとも 2層含まれていればよく、 さらなる多層化も可能である  Further, in the present embodiment, the case where the number of recording layers is three has been described, but it is sufficient that at least two recording layers are included, and further multi-layering is possible.
産業上の利用の可能性 Industrial applicability
本発明の光記録媒体、 光情報処理装置および光記録再生方法によれば 、 記録層が複数含まれる多層光記録媒体であっても記録に必要なェネル ギーを確保することができるので、 大容量化が実現できる。 さらに、 記 録された情報の再生時に、 十分な再生光量を得ることもできる。  ADVANTAGE OF THE INVENTION According to the optical recording medium, the optical information processing apparatus, and the optical recording / reproducing method of the present invention, even if it is a multilayer optical recording medium including a plurality of recording layers, energy required for recording can be ensured, and Can be realized. Furthermore, when reproducing the recorded information, a sufficient amount of reproduced light can be obtained.

Claims

請 求 の 範 囲 The scope of the claims
1 . 波長 λ 0を有する光の照射により情報の記録または再生を行う記 録層を複数含む多層の光記録媒体であって、 1. A multilayer optical recording medium including a plurality of recording layers for recording or reproducing information by irradiation with light having a wavelength λ 0,
前記複数の記録層のうち少なくとも一つの記録層が可変吸収膜を含ん でおり、  At least one of the plurality of recording layers includes a variable absorption film,
前記可変吸収膜は、 電子のエネルギーがバンド構造を有し、 電子のバ ンド間遷移による光吸収において吸収スぺクトルの吸収端が温度の上昇 に従い長波長側に移動する材料を含み、 かつ、 膜温度が第 1の温度の時 には波長 λ 0を有する光に対して第 1の吸収率を有し、 膜温度が前記第 1の温度よりも高い第 2の温度の時には、 波長 λ 0を有する光に対して 前記第 1の吸収率よりも高い第 2の吸収率を有することを特徴とする光 記録媒体。  The variable absorption film includes a material in which the energy of electrons has a band structure, and the absorption edge of the absorption spectrum moves to the longer wavelength side as the temperature rises in light absorption due to transition between bands of electrons; and When the film temperature is the first temperature, the film has the first absorptance for light having the wavelength λ 0, and when the film temperature is the second temperature higher than the first temperature, the wavelength λ 0 An optical recording medium having a second absorptance higher than the first absorptance for light having the following.
2 . 前記可変吸収膜は、 前記第 1の温度において、 前記材料における 電子のバンド間遷移による光吸収により波長 λ 0を有する光を吸収する 請求の範囲 1に記載の光記録媒体。  2. The optical recording medium according to claim 1, wherein the variable absorption film absorbs, at the first temperature, light having a wavelength of λ 0 by light absorption due to an interband transition of electrons in the material.
3 . 前記可変吸収膜を含む記録層は、 記録膜をさらに含んでおり、 前記記録膜は、 前記可変吸収膜の熱が伝達可能な程度に前記可変吸収 膜に近接して配置されており、 かつ、 所定の温度で光学特性が変化する 請求の範囲 1に記載の光記録媒体。  3. The recording layer including the variable absorption film further includes a recording film, and the recording film is disposed close to the variable absorption film to the extent that heat of the variable absorption film can be transmitted, 2. The optical recording medium according to claim 1, wherein the optical characteristics change at a predetermined temperature.
4 . 前記可変吸収膜が、 所定の温度で光学特性が変化する請求の範囲 1に記載の光記録媒体。  4. The optical recording medium according to claim 1, wherein the variable absorption film changes optical characteristics at a predetermined temperature.
5 . 前記第 1の温度が光記録媒体の使用環境温度である請求の範囲 1 に記載の光記録媒体。  5. The optical recording medium according to claim 1, wherein the first temperature is a use environment temperature of the optical recording medium.
6 . 前記複数の記録層が η層 (ηは 2以上の整数) 含まれ、 前記複数 の記録層それぞれが前記可変吸収膜を含んでおり、 光照射側から第 m層 目 (mは l <m≤nの整数) の記録層を第 m記録層とする場合、 前記第 1の温度において、 波長 λ 0を有する光に対する前記第 m記録層の反射 率 Rmと前記第 m記録層に含まれる可変吸収膜の吸収率 Amとが、
Figure imgf000022_0001
6. The plurality of recording layers include an η layer (η is an integer of 2 or more), each of the plurality of recording layers includes the variable absorption film, and an m-th layer from the light irradiation side. When the recording layer of an eye (m is an integer of l <m≤n) is the m-th recording layer, at the first temperature, the reflectance R m of the m-th recording layer with respect to light having a wavelength λ0 and the The absorption rate A m of the variable absorption film included in the m-th recording layer is
Figure imgf000022_0001
Am = An/ (n一 m+ 1 ) A m = A n / (n-m + 1)
の関係を満たす請求の範囲 1に記載の光記録媒体。 2. The optical recording medium according to claim 1, satisfying the following relationship.
7. 前記可変吸収膜が、 B i 203と、 A s 2S 3と、 Te 02および N a 20を含む混合ガラスと、 T e 02および WO 3を含む混合ガラスと、 T e〇2および F e 23を含む混合ガラスと、 T e O 2および C u 0を含 む混合ガラスと、 T e〇2、 C a〇、 および WO 3を含む混合ガラスと、 A 1 G aA s化合物半導体と、 A 1 G a I n A s化合物半導体とからな る群から選択される少なくとも一つを含む請求の範囲 1に記載の光記録 媒体。 7. The variable absorption film, and B i 2 0 3, and A s 2 S 3, and mixed glass containing Te 0 2 and N a 2 0, and mixed glass including T e 0 2 and WO 3, T E_〇 a mixed glass including 2 and F e 23, a mixed glass including a T e O 2 and C u 0 and including mixing glass, T E_〇 2, C A_〇, and WO 3, a 1 2. The optical recording medium according to claim 1, comprising at least one selected from the group consisting of a GaAs compound semiconductor and an A1GaInAs compound semiconductor.
8. 波長 λ 0を有する光の照射により情報の記録または再生を行う記 録層を複数含む多層の光記録媒体であって、  8. A multilayer optical recording medium including a plurality of recording layers for recording or reproducing information by irradiation with light having a wavelength λ 0,
前記複数の記録層のうち少なくとも一つの記録層が、 可変吸収膜と、 前記可変吸収膜の熱が伝達可能な程度に前記可変吸収膜に近接して配置 された記録膜と、 を含んでおり、  At least one recording layer of the plurality of recording layers includes: a variable absorption film; and a recording film disposed close to the variable absorption film so that heat of the variable absorption film can be transmitted. ,
前記可変吸収膜は、 電子のエネルギーがバンド構造を有し、 電子のバ ンド間遷移による光吸収において吸収スぺクトルの吸収端が温度の上昇 に従い長波長側に移動する材料を含み、 かつ、 膜温度が第 1の温度の時 には波長 λ 0を有する光に対して透明で、 膜温度が前記第 1の温度より も高い第 2の温度の時には波長 λ 0を有する光を吸収し、  The variable absorption film includes a material in which the energy of electrons has a band structure, and the absorption edge of the absorption spectrum moves to the longer wavelength side as the temperature rises in light absorption due to transition between bands of electrons; and When the film temperature is the first temperature, the film is transparent to light having the wavelength λ0, and when the film temperature is the second temperature higher than the first temperature, the light having the wavelength λ0 is absorbed,
前記記録膜は、 膜温度が前記第 1の温度の時には波長 λ 0を有する光 の少なくとも一部を吸収して発熱し、 所定の温度で光学特性が変化する ことを特徵とする光記録媒体。 An optical recording medium characterized in that when the film temperature is the first temperature, the recording film absorbs at least a part of the light having the wavelength λ 0 and generates heat, and the optical characteristics change at a predetermined temperature.
9. 前記第 1の温度が光記録媒体の使用環境温度である請求の範囲 8 に記載の光記録媒体。 9. The optical recording medium according to claim 8, wherein the first temperature is a use environment temperature of the optical recording medium.
1 0. 前記可変吸収膜が、 B i 23と、 A s 2S3と、 T e 02および N a 2〇を含む混合ガラスと、 T e 02および WO 3を含む混合ガラスと 、 T e〇2および F e 23を含む混合ガラスと、 T e〇2および C uOを 含む混合ガラスと、 T e 02、 C a O, および WO 3を含む混合ガラスと 、 A 1 G a A s化合物半導体と、 A 1 G a I n A s化合物半導体とから なる群から選択される少なくとも一つを含む請求の範囲 8に記載の光記 録媒体。 1 0. The variable absorption film, and B i 23, and A s 2 S 3, and mixed glass including T e 0 2 and N a 2 〇, a mixed glass including T e 0 2 and WO 3 , a mixed glass including T E_〇 2 and F e 23, a mixed glass including T E_〇 2 and C uO, a mixed glass including T e 0 2, C a O, and WO 3, a 1 9. The optical recording medium according to claim 8, comprising at least one selected from the group consisting of a GaAs compound semiconductor and an A1GaInAs compound semiconductor.
1 1. 請求の範囲 1または 8に記載の光記録媒体と、  1 1. The optical recording medium according to claim 1 or 8,
波長 λ 0を有する光を出射する光源と、  A light source that emits light having a wavelength λ 0,
前記光源から出射された前記光を、 前記光記録媒体に含まれる目的の 記録層に集光する集光光学系と、  A condensing optical system that condenses the light emitted from the light source on a target recording layer included in the optical recording medium;
前記光記録媒体で反射した光を検出する光検出器と、 を含み、 前記光源から出射された前記光の照射により前記可変吸収膜に光吸収 増加部を形成し、 前記光吸収増加部の温度を上昇させることにより情報 の記録または再生を行うことを特徴とする光情報処理装置。  A light detector for detecting light reflected by the optical recording medium; and forming a light absorption increasing portion in the variable absorption film by irradiating the light emitted from the light source; and a temperature of the light absorption increasing portion. An optical information processing apparatus, which records or reproduces information by raising the optical information.
1 2. 前記可変吸収膜に形成される前記光吸収増加部が集光される前 記光のスポットサイズよりも小さくなるように、 前記光源から出射され る光の強度を制御する制御部をさらに含む請求の範囲 1 1に記載の光情 報処理装置。  1 2. A control unit for controlling the intensity of light emitted from the light source so that the light absorption increasing portion formed on the variable absorption film is smaller than the spot size of the light to be collected. The optical information processing device according to claim 11, which includes the optical information processing device.
1 3. 請求の範囲 1または 8に記載の光記録媒体に対して情報の記録 および再生を行う光記録再生方法であって、  1 3. An optical recording and reproducing method for recording and reproducing information on and from the optical recording medium according to claim 1 or 8,
波長 λ 0を有する光を目的の記録層に集光し、 前記記録層に含まれる 可変吸収膜に光吸収増加部を形成し、 前記光吸収増加部の温度を上昇さ せることにより、 前記記録層に対して情報の記録再生を行うことを特徴 とする光記録再生方法。 By condensing light having a wavelength λ0 on a target recording layer, forming a light absorption increasing portion on a variable absorption film included in the recording layer, and increasing the temperature of the light absorption increasing portion, the recording is performed. Features recording and reproducing information on layers Optical recording / reproducing method.
1 4 . 前記可変吸収膜に形成される前記光吸収増加部が集光される前 記光のスポットサイズよりも小さくなるように、 前記光の強度を制御す る請求の範囲 1 3に記載の光記録再生方法。  14. The method according to claim 13, wherein the intensity of the light is controlled such that the light absorption increasing portion formed on the variable absorption film is smaller than a spot size of the light to be condensed. Optical recording and reproduction method.
PCT/JP2003/006566 2002-05-31 2003-05-26 Optical recording medium, optical information processor and optical recording/reproducing method WO2003102941A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE60336316T DE60336316D1 (en) 2002-05-31 2003-05-26 Optical recording medium, optical information processor and optical recording / reproducing method
US10/516,220 US7656777B2 (en) 2002-05-31 2003-05-26 Optical recording medium, optical information processor, and optical recording/reproducing method
EP03733074A EP1515322B1 (en) 2002-05-31 2003-05-26 Optical recording medium, optical information processor and optical recording/reproducing method
JP2004509941A JP4199731B2 (en) 2002-05-31 2003-05-26 Optical recording medium, optical information processing apparatus, and optical recording / reproducing method
AU2003241782A AU2003241782A1 (en) 2002-05-31 2003-05-26 Optical recording medium, optical information processor and optical recording/reproducing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-159082 2002-05-31
JP2002159082 2002-05-31

Publications (1)

Publication Number Publication Date
WO2003102941A1 true WO2003102941A1 (en) 2003-12-11

Family

ID=29706509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006566 WO2003102941A1 (en) 2002-05-31 2003-05-26 Optical recording medium, optical information processor and optical recording/reproducing method

Country Status (7)

Country Link
US (1) US7656777B2 (en)
EP (1) EP1515322B1 (en)
JP (1) JP4199731B2 (en)
CN (1) CN100358030C (en)
AU (1) AU2003241782A1 (en)
DE (1) DE60336316D1 (en)
WO (1) WO2003102941A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037070A1 (en) * 2005-09-29 2007-04-05 Sharp Kabushiki Kaisha Optical information recording medium and optical information recording medium reproducing device
WO2009072297A1 (en) * 2007-12-06 2009-06-11 Panasonic Corporation Recording/reproduction device, recording/reproduction method, and information recording medium
US7663983B2 (en) 2005-02-28 2010-02-16 Sharp Kabushiki Kaisha Optical information storage medium and optical information storage medium reproducing apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060246376A1 (en) * 2003-05-26 2006-11-02 Matsushita Electric Industrial Co., Ltd. Information recording medium, recording/reproducing method for the same, and information recording/reproducing apparatus
JP4298667B2 (en) * 2004-08-04 2009-07-22 シャープ株式会社 Optical information recording medium, reproducing method using the same, and optical information processing apparatus
US20080170485A1 (en) * 2007-01-15 2008-07-17 Tdk Corporation Optical recording medium
US20080170484A1 (en) * 2007-01-15 2008-07-17 Tdk Corporation Optical recording medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320301A (en) * 1994-05-26 1995-12-08 Sanyo Electric Co Ltd Optical recording medium and reproduction method therefor
JP2000003529A (en) * 1998-04-28 2000-01-07 Lg Electron Inc Optical recording medium having many recording layers and its production
WO2001046950A1 (en) * 1999-12-21 2001-06-28 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, method of recording and reproducing, and optical recording and reproducing system
JP2002042378A (en) * 2000-07-25 2002-02-08 Ricoh Co Ltd Optical recording medium and optical information recording/reproducing device
JP2002230838A (en) * 2001-02-06 2002-08-16 Ricoh Co Ltd Phase transition type information recording medium
JP2002312977A (en) * 2001-04-18 2002-10-25 Sony Corp Optical recording medium and recording and reproducing method therefor
JP2003045084A (en) * 2001-06-29 2003-02-14 Korea Inst Of Science & Technology Recording medium of high-density optical information

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357616A (en) * 1979-03-26 1982-11-02 Hitachi, Ltd. Recording medium
JPS59193452A (en) * 1983-04-19 1984-11-02 Oki Electric Ind Co Ltd Optical recording medium
JPS6342045A (en) * 1986-08-05 1988-02-23 Fuji Photo Film Co Ltd Information recording medium
JPH0617248B2 (en) 1988-07-07 1994-03-09 シャープ株式会社 Reversible temperature indicator
US5420728A (en) * 1990-03-24 1995-05-30 Seiko Epson Corporation Magneto-optical recording medium including a plurality of recording layers having different curie temperatures and method of recording and reading
US5202875A (en) 1991-06-04 1993-04-13 International Business Machines Corporation Multiple data surface optical data storage system
US5475210A (en) * 1991-09-09 1995-12-12 Kabushiki Kaisha Toshiba Noise reduction system for optical record and reproduction apparatus using auto-power controlled semiconductor laser device
JPH05303826A (en) * 1992-04-24 1993-11-16 Matsushita Electric Ind Co Ltd Information recording and reproducing method
JP2924935B2 (en) * 1992-08-26 1999-07-26 戸田工業株式会社 Perpendicular magnetization film, multilayer film for perpendicular magnetization film, and method of manufacturing perpendicular magnetization film
SG52438A1 (en) * 1993-02-18 1998-09-28 Philips Electronics Nv Optical information carrier
JPH07141693A (en) * 1993-09-22 1995-06-02 Toshiba Corp Information recording medium
TW372314B (en) 1996-11-25 1999-10-21 Hitachi Maxell Data recording medium and data regeneration apparatus thereof
JP3231685B2 (en) 1996-11-25 2001-11-26 株式会社日立製作所 Information recording medium and information recording method
EP0849727B1 (en) * 1996-12-18 2006-03-15 Mitsubishi Chemical Corporation Optical recording disk
EP2264707A3 (en) * 2000-05-12 2012-03-07 Konica Minolta Opto, Inc. Optical pick-up apparatus
JP2002092934A (en) * 2000-07-08 2002-03-29 Samsung Electronics Co Ltd Compatible type optical pickup device using single light source
CN1199166C (en) * 2000-10-11 2005-04-27 松下电器产业株式会社 Optical record medium, optical information processing apparatus, and optical recording/reproducing method
HUP0303190A2 (en) * 2000-10-16 2003-12-29 Konica Corporation Objective lens, coupling lens, light converging optical system, and optical pick-up apparatus
JP2002342980A (en) 2001-05-14 2002-11-29 Sharp Corp Optical information recording medium
CN1244096C (en) * 2001-10-10 2006-03-01 索尼公司 Optical lens, focusing lens, optical pickup and optical recording and reproducing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320301A (en) * 1994-05-26 1995-12-08 Sanyo Electric Co Ltd Optical recording medium and reproduction method therefor
JP2000003529A (en) * 1998-04-28 2000-01-07 Lg Electron Inc Optical recording medium having many recording layers and its production
WO2001046950A1 (en) * 1999-12-21 2001-06-28 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, method of recording and reproducing, and optical recording and reproducing system
JP2002042378A (en) * 2000-07-25 2002-02-08 Ricoh Co Ltd Optical recording medium and optical information recording/reproducing device
JP2002230838A (en) * 2001-02-06 2002-08-16 Ricoh Co Ltd Phase transition type information recording medium
JP2002312977A (en) * 2001-04-18 2002-10-25 Sony Corp Optical recording medium and recording and reproducing method therefor
JP2003045084A (en) * 2001-06-29 2003-02-14 Korea Inst Of Science & Technology Recording medium of high-density optical information

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1515322A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663983B2 (en) 2005-02-28 2010-02-16 Sharp Kabushiki Kaisha Optical information storage medium and optical information storage medium reproducing apparatus
US8107343B2 (en) 2005-02-28 2012-01-31 Sharp Kabushiki Kaisha Optical information storage medium and optical information storage medium reproducing apparatus
WO2007037070A1 (en) * 2005-09-29 2007-04-05 Sharp Kabushiki Kaisha Optical information recording medium and optical information recording medium reproducing device
WO2009072297A1 (en) * 2007-12-06 2009-06-11 Panasonic Corporation Recording/reproduction device, recording/reproduction method, and information recording medium
US8264940B2 (en) 2007-12-06 2012-09-11 Panasonic Corporation Recording/reproduction device, recording/reproduction method, and information recording medium
JP5342454B2 (en) * 2007-12-06 2013-11-13 パナソニック株式会社 Recording / reproducing apparatus, recording / reproducing method, and information recording medium

Also Published As

Publication number Publication date
EP1515322A1 (en) 2005-03-16
CN100358030C (en) 2007-12-26
EP1515322A4 (en) 2007-11-07
US7656777B2 (en) 2010-02-02
CN1659641A (en) 2005-08-24
JP4199731B2 (en) 2008-12-17
JPWO2003102941A1 (en) 2005-10-06
AU2003241782A1 (en) 2003-12-19
EP1515322B1 (en) 2011-03-09
US20050207328A1 (en) 2005-09-22
DE60336316D1 (en) 2011-04-21

Similar Documents

Publication Publication Date Title
EP1912102B1 (en) Hologram recording medium and method for manufacturing same
GB2079031A (en) Optical information record and a method of reversibly recording and erasing information thereon
JP4084660B2 (en) Optical recording medium and optical recording / reproducing method
EP1624454B1 (en) Optical information recording medium with thermosensitive mask layer, reproduction method and optical information processing device using the same
TW582030B (en) Optical data storage media with enhanced contrast
WO2003102941A1 (en) Optical recording medium, optical information processor and optical recording/reproducing method
US6783832B2 (en) Information recording medium
EP1553577A1 (en) Information recording medium, process for producing the same and optical information recording and reproducing device
JPH0528538A (en) Optical information recording medium and optical information recording/reproducing method
US7813258B2 (en) Optical information recording medium and optical information reproducing method
EP1455351B1 (en) Optical information reproducing method and optical information processing apparatus
JP5342454B2 (en) Recording / reproducing apparatus, recording / reproducing method, and information recording medium
EP1515391A1 (en) Antenna device
JP4525647B2 (en) Multilayer optical recording medium
WO2004034390A1 (en) Optical information recording medium and manufacturing method thereof
KR20050059098A (en) Rewritable optical data storage medium and use of such a medium
EP1573722B1 (en) Rewritable optical record carrier
KR100617203B1 (en) optical recording medium
US20070003872A1 (en) Super resolution recording medium
RU2127915C1 (en) Information medium for optical storage device
JPH06231487A (en) Optical information recording medium and optical information recording and reproducing method
JPH0679386B2 (en) Optical information recording medium
JPH08156423A (en) Optical data recording medium
JP2002092954A (en) Optical recording medium
JPH09312037A (en) Phase transition type optical recording medium

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004509941

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10516220

Country of ref document: US

Ref document number: 20038126044

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003733074

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003733074

Country of ref document: EP