JPH06231487A - Optical information recording medium and optical information recording and reproducing method - Google Patents

Optical information recording medium and optical information recording and reproducing method

Info

Publication number
JPH06231487A
JPH06231487A JP5015199A JP1519993A JPH06231487A JP H06231487 A JPH06231487 A JP H06231487A JP 5015199 A JP5015199 A JP 5015199A JP 1519993 A JP1519993 A JP 1519993A JP H06231487 A JPH06231487 A JP H06231487A
Authority
JP
Japan
Prior art keywords
recording
wavelength
reflectance
optical information
information recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5015199A
Other languages
Japanese (ja)
Other versions
JP3156418B2 (en
Inventor
Kenichi Osada
憲一 長田
Eiji Ono
鋭二 大野
Nobuo Akahira
信夫 赤平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP01519993A priority Critical patent/JP3156418B2/en
Publication of JPH06231487A publication Critical patent/JPH06231487A/en
Application granted granted Critical
Publication of JP3156418B2 publication Critical patent/JP3156418B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the unbalance of absorbance by specifying the reflectivity of unrecorded parts to two wavelengths lambda1, lambda2 and the reflectivity of the recording marks formed by irradiation with a laser beam. CONSTITUTION:The structure to satisfy the following optical characteristics (lambda1<lambda2) for the two wavelengths lambda1, lambda2, is determined: The structure has the reflectivity 20%<= R10 <=50%, 15%<=(R10-R11)<=30%, 58% R2o, 40%<=(R20-R21), where R10 is the reflectivity of the unrecorded part to the wavelength lambda10; R11 is the reflectivity to the wavelength lambda1 of the recording marks formed by the irradiation with the laser beam. Protective layers 2, 9, a recording layer 3, a protective layer 4 and a reflection layer 5 are successively formed on a substrate and further, the same PC disk is stuck as the protective substrate 7 by an adhesive 6 thereto. The optical constants of the respective layers are measured. The reflectivity over the entire part of the recording medium is calculated when the film thicknesses are changed from such data, by which the optimum film thickness constitution is determined. The absorbance of light is determined from the energy balance of light at the respective boundaries, by which the variations are eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザ光を用いて高密
度に情報を記録・再生する光学情報記録媒体、とりわけ
書換え可能な光ディスクに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical information recording medium for recording / reproducing information with high density using a laser beam, and more particularly to a rewritable optical disc.

【0002】[0002]

【従来の技術】レーザ光の照射により、情報を記録・消
去・再生可能な光ディスクとして、記録薄膜材料にカル
コゲン化物を用いた相変化型の光ディスクが知られてい
る。一般には、記録薄膜材料が結晶状態の場合を未記録
状態とし、レーザ光照射で記録薄膜を溶融・急冷して非
晶質状態にすることで信号を記録する。一方、信号を消
去する場合は、記録時よりも低パワーのレーザ光を照射
して、記録薄膜を昇温して結晶状態とする。記録薄膜材
料としては、例えばTe,In,Sb,Se等を主成分とす
る非晶質−結晶間で相変化する材料、或は異なる2種類
の結晶構造の間で可逆的に相変化をおこす物質を用いる
ことが一般的である。情報信号の記録密度を向上させる
場合には、記録・再生に用いるレーザ光の波長を短くす
る、或は対物レンズの開口数(N.A.)を大きくする等
の手段がある。
2. Description of the Related Art As an optical disk capable of recording / erasing / reproducing information by irradiating a laser beam, a phase change type optical disk using a chalcogenide as a recording thin film material is known. In general, when the recording thin film material is in a crystalline state, it is set as an unrecorded state, and the recording thin film is melted and rapidly cooled by laser light irradiation to be in an amorphous state to record a signal. On the other hand, in the case of erasing the signal, the recording thin film is heated to a crystalline state by irradiating a laser beam having lower power than that at the time of recording. As the recording thin film material, for example, a material containing Te, In, Sb, Se or the like as a main component, which undergoes a phase change between amorphous and crystal, or a phase change which reversibly occurs between two different crystal structures. It is common to use substances. In order to improve the recording density of information signals, there are means such as shortening the wavelength of laser light used for recording / reproducing or increasing the numerical aperture (NA) of the objective lens.

【0003】相変化記録のメリットの1つは、記録手段
として単一のレーザビームのみを用い、情報信号をオー
バライトできる点にある。すなわち、レーザー出力を記
録レベルと消去レベルの2レベル間で情報信号に応じて
変調し記録済みの情報トラック上に照射すると、既存の
情報信号を消去しつつ新しい信号を記録することが可能
である(特開昭56−145530号公報)。
One of the merits of phase change recording is that an information signal can be overwritten by using only a single laser beam as a recording means. That is, when the laser output is modulated between the recording level and the erasing level according to the information signal and applied to the recorded information track, a new signal can be recorded while erasing the existing information signal. (JP-A-56-145530).

【0004】一方、予め情報が記録され、その後のデー
タの書き込みや消去ができない、いわゆるROM型光学
情報記録媒体が情報処理や音楽分野で既に実用化されて
いる。この種の光学情報記録媒体は、前記のような記録
層を有さず、記録データを再生するためのピットを予め
プレス等の手段で基板の上に形成し、この上にAu,A
g,Cu,Al等の金属膜からなる反射層を形成し、さら
に反射層を保護層で覆ったものである。このROM型光
学情報記録媒体の代表的なものにCD(コンハ゜クトテ゛ィス
ク),CD−I(対話型コンハ゜クトテ゛ィスク),LD(レーサ゛テ゛ィス
ク)等があり、いずれも記録・再生の仕様等が細部にわ
たって規格化されている。
On the other hand, a so-called ROM type optical information recording medium in which information is recorded in advance and data cannot be written or erased thereafter has already been put to practical use in the information processing and music fields. This kind of optical information recording medium does not have the recording layer as described above, and pits for reproducing recorded data are formed in advance on the substrate by means of a press or the like, and Au, A
A reflective layer made of a metal film of g, Cu, Al or the like is formed, and the reflective layer is covered with a protective layer. Typical examples of this ROM type optical information recording medium are a CD (compact disk), a CD-I (interactive compact disk), an LD (laser disk) and the like. Has been converted.

【0005】又、CD再生装置で再生可能な、追記型光
学情報記録媒体(WORM)が提案されている(例えば特開
平2ー42652号公報)。これは、有機薄膜からなる
記録層を有する記録媒体で、レーザ光照射により情報の
随時書き込み、及び再生が可能である。
A write-once type optical information recording medium (WORM) which can be reproduced by a CD reproducing device has been proposed (for example, Japanese Patent Laid-Open No. 42652/1990). This is a recording medium having a recording layer made of an organic thin film, and information can be written and reproduced at any time by laser light irradiation.

【0006】[0006]

【発明が解決しようとする課題】既に広く普及している
ROM型の光学情報記録媒体−例えばCD,LD等−の
再生装置で再生が可能で、かつ、繰り返し書換え可能な
光学情報記録媒体、及び、これに用いる記録・再生装置
が実現できることは非常に好ましい。このような光学情
報記録媒体を相変化型光ディスクで実現することを考え
てみる。通常の書換え可能な相変化型光学情報記録媒体
では、消去状態の反射率が30%前後と低く、又、再生
信号の変調度も小さいので、そのままでは、これまでに
普及しているROM型の再生装置で再生することはでき
ない。この点を解決するには、再生波長780nmに対し
て、消去領域の反射率を70%前後と高く設定し、記録
マークに相当する記録薄膜中の非晶質領域の反射率を1
0%前後と低く設定し、信号変調度を大きくすればよ
い。
DISCLOSURE OF THE INVENTION An optical information recording medium which can be reproduced by a reproducing apparatus such as a ROM type optical information recording medium, which is already widely used, for example, a CD, an LD, etc., and which can be repeatedly rewritten, and It is very preferable that the recording / reproducing apparatus used for this can be realized. Consider realizing such an optical information recording medium with a phase change type optical disc. In a typical rewritable phase-change type optical information recording medium, the reflectance in the erased state is as low as about 30%, and the modulation degree of the reproduction signal is small. It cannot be played back on the playback device. In order to solve this point, the reflectance of the erased area is set to a high value of around 70% at the reproduction wavelength of 780 nm, and the reflectance of the amorphous area in the recording thin film corresponding to the recording mark is set to 1%.
It may be set as low as around 0% and the signal modulation degree may be increased.

【0007】しかしこの場合、波長780nmのレーザ光
を記録・消去ビームとして用いれば、消去部における記
録薄膜の光吸収率は30%前後と、従来の70%前後か
ら半減してしまい、低記録感度な記録媒体しか実現でき
ない。このことは記録・消去光用の半導体レーザの性能
を著しく高める必要があることを意味する。
In this case, however, if a laser beam having a wavelength of 780 nm is used as a recording / erasing beam, the light absorption rate of the recording thin film in the erasing portion is about 30%, which is half that of the conventional 70%, and low recording sensitivity. Recording media can only be realized. This means that it is necessary to remarkably improve the performance of the semiconductor laser for recording / erasing light.

【0008】更に重要な課題は、消去領域と記録マーク
のかかれた領域における光吸収率のアンバランスであ
る。消去領域と記録マークのかかれた領域で大きく反射
率が異なるような光学的構造は、とりもなおさず、両領
域での光吸収率が大きく異なることを意味する。即ち、
オーバライト記録を行なった場合、前回、記録マークが
存在した領域と存在しなかった領域で光吸収率が異なる
ので、その上にかかれた新しい記録マークは、前の記録
マークの有無によって形が大きく歪む。すなわち消去特
性が好ましくなく、繰り返し特性にも悪影響を与える。
このように、これまで、記録・消去特性の繰り返し特性
が良好で、かつ、従来のROM再生装置で再生が可能な
光学情報記録媒体、及びそれに用いる記録・再生装置の
アイデアはこれまで提案されていない。
An even more important problem is imbalance of the light absorption rate in the erased area and the area where the recording mark is formed. The optical structure in which the erasure area and the area where the recording mark is formed largely differ in reflectivity means that the light absorptances in both areas are largely different. That is,
When overwrite recording is performed, the light absorptance differs between the area where the recording mark existed and the area where it did not exist the previous time, so the new recording mark placed on it has a large shape depending on the presence or absence of the previous recording mark. Distorted. That is, the erasing property is not preferable and the repetitive property is adversely affected.
As described above, an idea of an optical information recording medium which has good repetitive recording / erasing characteristics and which can be reproduced by a conventional ROM reproducing apparatus, and an idea of a recording / reproducing apparatus used for the optical information recording medium have been proposed so far. Absent.

【0009】[0009]

【課題を解決するための手段】CD,LD等で用いられ
ている780nm近傍の波長よりも短い波長λ1 のレーザ
光を搭載した記録・再生装置と、この装置で用いる相変
化型の光学情報記録媒体との組合せからなるシステムを
用いる。具体的には、この記録・再生装置で信号を記録
・消去・再生できる光学情報記録媒体であり、記録・再
生装置で書き込まれた記録マークを波長780nmで再生
した場合には、従来のROM再生装置で再生可能な70
%前後の高反射率で、CD規格等に準拠する高変調度の
出力信号が得られるような光学的構造とする。同時に、
この光学情報記録媒体は、消去領域と記録マーク部での
光吸収率差が、波長λ1 に対する場合の方が780nmに
対する場合よりも小さく、かつ、消去部における光吸収
率が、波長λ1 に対する場合の方が780nmに対する場
合よりも大きくなるような光学的構造、すなわち2波長
対応構造とする。記録フォーマットは、所望とするRO
M型光学情報記録媒体と同一の信号フォーマットとす
る。
[Means for Solving the Problems] A recording / reproducing apparatus equipped with a laser beam having a wavelength λ 1 shorter than a wavelength near 780 nm used in CDs, LDs and the like, and a phase change type optical information used in this apparatus. A system consisting of a combination with a recording medium is used. Specifically, this recording / reproducing apparatus is an optical information recording medium capable of recording / erasing / reproducing signals, and when a recording mark written by the recording / reproducing apparatus is reproduced at a wavelength of 780 nm, conventional ROM reproduction is performed. 70 playable on device
The optical structure is such that an output signal with a high degree of modulation, which conforms to the CD standard, etc., can be obtained with a high reflectance of around%. at the same time,
In this optical information recording medium, the difference in light absorption rate between the erased area and the recording mark portion is smaller for wavelength λ 1 than for 780 nm, and the light absorption rate for the erased portion is longer than wavelength λ 1 . The optical structure in which the case is larger than that for 780 nm, that is, the structure corresponding to two wavelengths. The recording format is RO
The signal format is the same as that of the M-type optical information recording medium.

【0010】[0010]

【作用】2波長対応構造の光学情報記録媒体に記録した
信号は波長780nmで再生すると反射率、変調度が高い
ので、従来から用いられているROM再生装置で信号再
生が可能である。又、本発明の記録・再生システムで用
いる記録・再生装置に搭載された記録・消去・再生用の
レーザ光の波長λ1 に対しては、波長780nmに対する
場合と比べて、光吸収率が大きく、かつ、消去領域と記
録マーク領域間の光吸収差が小さいので、良好な記録・
消去の繰り返し特性が得られる。
A signal recorded on an optical information recording medium having a dual wavelength structure has high reflectance and modulation when reproduced at a wavelength of 780 nm, so that the signal can be reproduced by a conventional ROM reproducing device. In addition, the optical absorption coefficient is large for the wavelength λ 1 of the recording / erasing / reproducing laser light mounted in the recording / reproducing apparatus used in the recording / reproducing system of the present invention, as compared with the case of the wavelength 780 nm. Moreover, since the difference in light absorption between the erased area and the recording mark area is small, good recording and
Repetitive erase characteristics can be obtained.

【0011】[0011]

【実施例】以下、本発明の一実施例を、図面を参照しな
がら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0012】本発明の記録媒体の代表的な構造例を図1
に示す。記録,再生、及び消去を行うレーザ光は基板1
の側から入射させる。
A typical structure example of the recording medium of the present invention is shown in FIG.
Shown in. The laser light for recording, reproducing, and erasing is the substrate 1
Incident from the side.

【0013】基板1としては、PMMA,ポリカーボネ
ート等の樹脂或はガラス等、表面の平滑なものを用い
る。光ディスクの場合、通常基板平面8はレーザ光を導
くためにスパイラル又は同心円状の連続溝(トラッ
ク)、或はピット列等の凹凸で覆われている。
As the substrate 1, a resin having a smooth surface such as resin such as PMMA or polycarbonate, or glass is used. In the case of an optical disk, the substrate plane 8 is usually covered with spiral or concentric continuous grooves (tracks) for guiding laser light, or with irregularities such as pit rows.

【0014】保護層2,4,9の材料は、物理的・化学
的に安定、すなわち記録材料の融点よりも、融点及び軟
化温度が高く、かつ記録材料と相固溶しないことが望ま
しい。例えば、Al2O3,SiOx,Ta2O5,MoO3,W
O3,ZrO2,ZnS,AlNx,BN,SiNx,TiN,
ZrN,PbF2,MgF2等の誘電体或はこれらの適当な
組み合わせからなる。保護層は誘電体や透明である必要
はない。例えば可視光線及び赤外線に対して光吸収性を
もつZnTeで形成してもよい。又、保護層2,4を異な
る材料で形成すると、熱的及び光学的なディスク設計の
自由度が大きくなる利点がある。もちろん同一材料で形
成してもよい。
It is desirable that the materials of the protective layers 2, 4 and 9 are physically and chemically stable, that is, have a melting point and a softening temperature higher than the melting point of the recording material and do not form a solid solution with the recording material. For example, Al2O3, SiOx, Ta2O5, MoO3, W
O3, ZrO2, ZnS, AlNx, BN, SiNx, TiN,
It is made of a dielectric material such as ZrN, PbF2, MgF2 or a suitable combination thereof. The protective layer need not be dielectric or transparent. For example, it may be formed of ZnTe having a light absorbing property for visible light and infrared light. Further, when the protective layers 2 and 4 are made of different materials, there is an advantage that the degree of freedom of thermal and optical disk design is increased. Of course, the same material may be used.

【0015】記録薄膜3は、結晶状態と非晶質状態との
間で可逆的に構造変化をおこす物質、例えばTe又はI
n,Se等を主成分とする相変化材料からなる。よく知ら
れた相変化材料の主成分としては、Te-Sb-Ge,Te-
Ge,Te-Ge-Sn,Te-Ge-Sn-Au,Sb-Se,Sb-T
e,Sb-Se-Te,In-Te,In-Se,In-Se-Tl,In
-Sb,In-Sb-Se,In-Se-Te等が挙げられる。これ
らの薄膜は通常、非晶質状態で成膜されるが、レーザ光
等のエネルギーを吸収して結晶化し、光学定数(屈折率
n、消衰係数k)が変化する。
The recording thin film 3 is a substance that reversibly changes its structure between a crystalline state and an amorphous state, such as Te or I.
It is made of a phase change material containing n, Se, etc. as main components. The well-known main components of phase change materials are Te-Sb-Ge and Te-
Ge, Te-Ge-Sn, Te-Ge-Sn-Au, Sb-Se, Sb-T
e, Sb-Se-Te, In-Te, In-Se, In-Se-Tl, In
-Sb, In-Sb-Se, In-Se-Te and the like can be mentioned. These thin films are usually formed in an amorphous state, but they absorb energy of laser light or the like to be crystallized and the optical constants (refractive index n, extinction coefficient k) change.

【0016】反射層5は、Au,Al,Cu,Ni,Fe,
Cr等の金属元素、或はこれらの合金からなり、記録薄
膜への光吸収効率を高める働きをする。しかし、例えば
記録薄膜3の膜厚を厚くして光吸収効率を高める工夫を
することによって、反射層6を設けない構成とすること
も可能である。或は、記録薄膜と保護層を交互に複数回
積み重ねた構成とすることにより、記録薄膜1層あたり
の膜厚が薄くても、全体として光吸収効率を高めること
もできる。
The reflective layer 5 includes Au, Al, Cu, Ni, Fe,
It is made of a metal element such as Cr or an alloy thereof, and functions to enhance the light absorption efficiency of the recording thin film. However, the reflection layer 6 may not be provided by increasing the thickness of the recording thin film 3 to improve the light absorption efficiency. Alternatively, by alternately stacking the recording thin film and the protective layer a plurality of times, it is possible to improve the light absorption efficiency as a whole even if the thickness of one recording thin film is small.

【0017】保護基板7は、樹脂をスピンコートした
り、基板と同様の樹脂板、ガラス板、或は金属板等を接
着剤6を用いて貼り合わせることによって形成する。さ
らには、2組の記録媒体を中間基板或は反射層を内側に
して接着剤を用いて貼り合わせることにより、両面から
記録,再生、消去可能な構造としてもよい。
The protective substrate 7 is formed by spin-coating a resin or laminating a resin plate, a glass plate, a metal plate or the like similar to the substrate using an adhesive 6. Further, a structure capable of recording, reproducing and erasing from both sides may be realized by bonding two sets of recording media with the intermediate substrate or the reflection layer inside by using an adhesive.

【0018】記録薄膜,保護層,結晶化制御層は、通
常、電子ビーム蒸着法,スパタリング法,イオンプレー
ティング法,CVD法,レーザスパタリング法等によっ
て形成される。
The recording thin film, the protective layer and the crystallization control layer are usually formed by an electron beam evaporation method, a sputtering method, an ion plating method, a CVD method, a laser sputtering method and the like.

【0019】記録薄膜3の厚さは、記録薄膜3が結晶状
態にある時でも入射光線の一部が記録薄膜3を透過可能
な厚さに選ぶ。反射層5で反射されて記録薄膜3中に再
入射する成分が無くなると光の干渉効果が小さくなり、
第2の誘電体薄膜層4ならびに反射層5の膜厚を多少変
化させても媒体全体の光学行路長、反射率、記録薄膜で
の吸収等の制御が困難になる。
The thickness of the recording thin film 3 is selected so that a part of the incident light can pass through the recording thin film 3 even when the recording thin film 3 is in a crystalline state. When the components reflected by the reflective layer 5 and re-incident in the recording thin film 3 are eliminated, the light interference effect is reduced,
Even if the film thicknesses of the second dielectric thin film layer 4 and the reflective layer 5 are slightly changed, it becomes difficult to control the optical path length, reflectance, absorption in the recording thin film, etc. of the entire medium.

【0020】第1,第2、及び第3の保護層2,9,4
の膜厚は以下のように決定される。まず、各層を構成す
る物質の複素屈折率を通常の方法(例えばガラス板上に
薄膜を形成し、その膜厚と反射率、透過率の測定値を元
に計算する方法、あるいはエリプソメーターを使う方
法)で求める。次に、記録薄膜3および反射層5の厚さ
を固定した上でマトリクス法(例えば久保田広著「波動
光学」岩波書店、1971年、第3章を参照)によって
第1,第2、及び第3の保護層の膜厚を計算により求め
る。具体的には、各層の膜厚を仮定して表面を含む全て
の界面に対してエネルギー保存則に基づき光エネルギー
の収支を計算する。即ち、多層媒体での各界面について
このエネルギー収支の方程式をたて、得られた連立方程
式を解くことで、任意の波長の入射光(実際には、情報
を再生するのに用いる波長λ)に対する光学行路長、透
過光の強度、反射光の強度ならびに各層での吸収量を求
めることができる。記録薄膜が結晶状態にある時とアモ
ルファス状態にある時のいずれの場合についても上記計
算を行うことにより、波長λの再生光に対して、未記録
領域(通常結晶状態をあてる)と記録マーク領域(通常
非晶質状態をあてる)の反射光の位相差、両領域間の反
射率変化ΔR、記録層における両領域の吸収差等を知る
ことができる。本発明では、2つの波長λ1,λ2(λ2
は780nm)、但しλ1<λ2 に対して、以下の光学特
性をいずれも満足するような構造を選ぶ。 1)波長λ1 に対して未記録部の反射率は20%以上,
50%以下。 2)波長λ1 に対して未記録部と記録マーク部の反射率
差は10%以上、30%以下。 3)波長λ2 に対して未記録部の反射率は55%以上。 4)波長λ2 に対して未記録部と記録マーク部の反射率
差は40%以上。
First, second and third protective layers 2, 9, 4
The film thickness of is determined as follows. First, the complex index of refraction of the substances that make up each layer is calculated by the usual method (for example, a method of forming a thin film on a glass plate and calculating based on the measured values of the film thickness, reflectance, and transmittance, or using an ellipsometer). Method). Next, after fixing the thicknesses of the recording thin film 3 and the reflective layer 5, the first, second, and the third methods are performed by the matrix method (see, for example, "Wave Optics" by Hiro Kubota, Iwanami Shoten, 1971, Chapter 3). The thickness of the protective layer of No. 3 is calculated. Specifically, assuming the film thickness of each layer, the balance of light energy is calculated for all interfaces including the surface based on the energy conservation law. That is, by formulating this energy balance equation for each interface in the multilayer medium and solving the obtained simultaneous equations, the incident light of an arbitrary wavelength (actually, the wavelength λ used for reproducing information) can be obtained. The optical path length, the intensity of transmitted light, the intensity of reflected light, and the amount of absorption in each layer can be obtained. By performing the above calculation both when the recording thin film is in the crystalline state and when it is in the amorphous state, the unrecorded area (usually in the crystalline state) and the recorded mark area for the reproduction light of the wavelength λ. It is possible to know the phase difference of the reflected light (which usually applies an amorphous state), the reflectance change ΔR between both regions, the absorption difference between both regions in the recording layer, and the like. In the present invention, two wavelengths λ 1 and λ 22
Is 780 nm), but for λ 12 , a structure that satisfies all the following optical characteristics is selected. 1) The reflectance of the unrecorded area is 20% or more for the wavelength λ 1 .
50% or less. 2) The difference in reflectance between the unrecorded portion and the recorded mark portion with respect to the wavelength λ 1 is 10% or more and 30% or less. 3) The reflectance of the unrecorded portion is 55% or more for the wavelength λ 2 . 4) The difference in reflectance between the unrecorded portion and the recorded mark portion is 40% or more with respect to the wavelength λ 2 .

【0021】一実施例として、記録薄膜3が、オーバラ
イト記録が可能なGe43Sb8Te493元系材料薄膜を用い
た場合について本実施例を説明する。形成法としては、
Ge、Sb、Teの3つの蒸発源を用いた電子ビーム共蒸
着法を用いた。記録薄膜は非晶質状態で成膜される。石
英ガラス基板上に上記組成の記録薄膜を蒸着し、各波長
での光学定数(複素屈折率)を測定し、さらにこれを不
活性雰囲気中で300℃で10分間熱処理して結晶状態
にして各波長で光学定数を測定した。熱処理によって得
られる結晶状態の光学定数は、レーザ光の照射によって
得られる結晶状態の光学定数とほぼ等しいことを確認し
ている。各波長における光学定数の測定結果を(表1)
に示す。
As an example, a case where the recording thin film 3 is a thin film of Ge 43 Sb 8 Te 49 ternary material capable of overwriting recording will be described. As a forming method,
An electron beam co-evaporation method using three evaporation sources of Ge, Sb, and Te was used. The recording thin film is formed in an amorphous state. A recording thin film having the above composition was vapor-deposited on a quartz glass substrate, an optical constant (complex refractive index) at each wavelength was measured, and this was heat-treated at 300 ° C. for 10 minutes in an inert atmosphere to obtain a crystalline state. Optical constants were measured at wavelength. It has been confirmed that the optical constant of the crystalline state obtained by the heat treatment is almost equal to the optical constant of the crystalline state obtained by the irradiation of the laser beam. The measurement results of the optical constants at each wavelength (Table 1)
Shown in.

【0022】[0022]

【表1】 [Table 1]

【0023】基材として予め幅1.5μm・深さ62nmの
溝トラックを形成した暑さ1.2mm・直径120mmのP
C(ポリカーボネート樹脂、屈折率1.58)板上を用
いた。この基板上に保護層2,保護層9,記録層3,保
護層4,反射層5を順次、電子ビーム蒸着法でそれぞれ
成膜し、さらに保護基板7として同じPC円盤を接着剤
6ではりあわせた(図1)構造をもつ光記録媒体を形成
する。保護層2、及び保護層4はともに、ZnS-20mol%
SiO2、保護層9はSiO2、反射層5はAuでそれぞれ
形成した。各層を形成する薄膜の光学定数を測定したと
ころ(表2)の結果が得られた。
As a base material, a groove track having a width of 1.5 μm and a depth of 62 nm was previously formed, and the heat was 1.2 mm and the diameter was 120 mm.
A C (polycarbonate resin, refractive index 1.58) plate was used. A protective layer 2, a protective layer 9, a recording layer 3, a protective layer 4, and a reflective layer 5 are sequentially formed on this substrate by an electron beam vapor deposition method, and the same PC disk as a protective substrate 7 is glued. An optical recording medium having the combined structure (FIG. 1) is formed. Both protective layer 2 and protective layer 4 are ZnS-20 mol%
SiO 2, protective layer 9 is SiO 2, the reflective layer 5 were formed by Au. When the optical constants of the thin films forming each layer were measured, the results shown in Table 2 were obtained.

【0024】[0024]

【表2】 [Table 2]

【0025】(表1)、(表2)のデータから各層の膜
厚を変化させた時に、記録媒体全体の反射率、光吸収率
を計算することにより、最適な膜厚構成を求めることが
できる。計算には各層の複素屈折率を膜厚からマトリク
ス法を用いた。又、基板1と保護基板7は無限大の膜厚
をもつものとして(基板−空気界面、及び保護基板−空
気界面の効果を無視)、反射率Rは基板側から入射した
光の強度と反射して基板中に出射してくる光の強度との
比率として求めた。又、光吸収率は各界面での光のエネ
ルギー収支より求めることができる。
When the film thickness of each layer is changed from the data of (Table 1) and (Table 2), the optimum film thickness constitution can be obtained by calculating the reflectance and light absorptance of the entire recording medium. it can. The matrix method was used for the calculation of the complex refractive index of each layer from the film thickness. Further, assuming that the substrate 1 and the protective substrate 7 have infinite film thickness (ignoring the effects of the substrate-air interface and the protective substrate-air interface), the reflectance R is the intensity of light incident from the substrate side and the reflection. Then, it was determined as a ratio with the intensity of light emitted into the substrate. The light absorption rate can be obtained from the energy balance of light at each interface.

【0026】ここで、2つの波長λ1,λ2(λ2は78
0nm)、但しλ1<λ2 に対して、以下の光学特性をい
ずれも満足するような構造を探した。 1)波長λ1 に対して未記録部の反射率は20%以上,
50%以下。 2)波長λ1 に対して未記録部と記録マーク部の反射率
差は10%以上、30%以下。 3)波長λ2 に対して未記録部の反射率は55%以上。 4)波長λ2 に対して未記録部と記録マーク部の反射率
差は40%以上。
Here, two wavelengths λ 1 and λ 22 is 78
0 nm), where λ 12 was searched for a structure that satisfies all the following optical characteristics. 1) The reflectance of the unrecorded area is 20% or more for the wavelength λ 1 .
50% or less. 2) The difference in reflectance between the unrecorded portion and the recorded mark portion with respect to the wavelength λ 1 is 10% or more and 30% or less. 3) The reflectance of the unrecorded portion is 55% or more for the wavelength λ 2 . 4) The difference in reflectance between the unrecorded portion and the recorded mark portion is 40% or more with respect to the wavelength λ 2 .

【0027】波長λ1 として680nmを想定し、又、波
長λ2 に780nmをあてて最適構造を探索の結果、解の
1つとして、保護層2,保護層9,記録層3,保護層
4,反射層5の膜厚がそれぞれ93nm,120nm,1
7.5nm,12nm,50nmとなる場合が得られた(構造
1)。上記構造の記録媒体において、保護層2の膜厚の
みを変化させた場合の、保護層2の膜厚と非晶質、及び
結晶状態における光反射率の関係を図2に示す。図2よ
り、保護層2の膜厚がおよそ90nmの時に先に示した4
条件をすべて満たすことがわかる。この計算に基づいて
サンプルを作製し、分光光度計を用いて各波長における
光学特性を実測した。その測定結果を(表3)に示す。
但し、結晶状態は不活性雰囲気中で300℃で10分間
熱処理して得た。又、基板界面での反射率分は差し引い
ている。(表3)から、ほぼ設計どおりの記録媒体がで
きていることがわかる。
Assuming that the wavelength λ 1 is 680 nm and the wavelength λ 2 is 780 nm, the optimum structure is searched. As a result, one of the solutions is the protective layer 2, the protective layer 9, the recording layer 3, the protective layer 4 , The thickness of the reflective layer 5 is 93 nm, 120 nm, 1 respectively
The cases of 7.5 nm, 12 nm, and 50 nm were obtained (Structure 1). FIG. 2 shows the relationship between the film thickness of the protective layer 2 and the light reflectance in the amorphous and crystalline states when only the film thickness of the protective layer 2 is changed in the recording medium having the above structure. As shown in FIG. 2, when the thickness of the protective layer 2 is about 90 nm,
It turns out that all the conditions are met. A sample was prepared based on this calculation, and the optical characteristics at each wavelength were measured using a spectrophotometer. The measurement results are shown in (Table 3).
However, the crystalline state was obtained by heat treatment at 300 ° C. for 10 minutes in an inert atmosphere. Also, the reflectance at the substrate interface is subtracted. From Table 3, it can be seen that the recording medium is almost as designed.

【0028】[0028]

【表3】 [Table 3]

【0029】この記録媒体を線速度6m/sで回転さ
せ、波長680nmの半導体レーザ光を開口数0.45の
レンズ系で絞って、溝トラックにトラッキング制御をか
けながら照射した。焦点は、記録薄膜から故意に1μm
ずらした。まず、記録薄膜面上で6.5mWの連続出力
でレーザ光を照射し、トラック上の記録薄膜を一様に結
晶化させた。このトラック上にレーザ光出力を11mW
と5mWの間で3.3MHzで変調させながら照射して
記記録薄膜を部分的に非晶質化させてマークを形成し記
録を行なった。さらに1mWの連続出力(再生パワー)
を照射してその反射光をフォトディテクターで検出し、
得られた再生信号をスペクトラムアナライザーで測定し
たところCN比53dB(周波数分解能30kHz、以下同
様)が得られた。このトラックにさらに同じパワーで
0.92MHzに変調した信号を記録し、新たな信号を
オーバライトした。この状態で再生信号を測定したとこ
ろ、3.3MHzにおけるCN比22dBが得られた。記録
状態の再生信号のCN比と消去状態の消し残り再生信号
の差を消去率と定義するとこの場合の消去率は−25dB
となる。両周波数を交互に繰返して記録した場合のCN
比、及び消去率を測定したが1000回の繰り返し記録
での変化は、それぞれ2dB以下にとどまった。次に線速
6m/s、波長680nm、記録周波数3.3MHzで記録
したトラックを線速度1.3m/sにおとして、波長7
80nm、開口数0.45の光ピックアップを用いて、ジ
ャストフォーカスで再生した。線速度1.3m/sはC
Dの規格内の線速度で、この時、先に記録した記録マー
クの間隔は1.8μm、周波数にすると0.72MHz
(CD規格における3T信号の周波数と同等)となる。
周波数0.72MHzでのCN比は52dBであった。
This recording medium was rotated at a linear velocity of 6 m / s, a semiconductor laser beam having a wavelength of 680 nm was focused by a lens system having a numerical aperture of 0.45, and the groove track was irradiated with tracking control. Focus is intentionally 1 μm from recording thin film
I shifted it. First, the recording thin film surface was irradiated with laser light with a continuous output of 6.5 mW to uniformly crystallize the recording thin film on the track. Laser light output of 11mW on this track
The recording thin film was partially amorphized by irradiating while being modulated at 3.3 MHz between 5 mW and 5 mW to form marks for recording. 1mW continuous output (playback power)
And the reflected light is detected by a photo detector,
When the obtained reproduced signal was measured with a spectrum analyzer, a CN ratio of 53 dB (frequency resolution of 30 kHz, the same applies hereinafter) was obtained. A signal modulated to 0.92 MHz with the same power was recorded on this track, and a new signal was overwritten. When the reproduced signal was measured in this state, a CN ratio of 22 dB at 3.3 MHz was obtained. If the difference between the CN ratio of the reproduced signal in the recorded state and the unerased reproduced signal in the erased state is defined as the erase rate, the erase rate in this case is -25 dB.
Becomes CN when recording both frequencies alternately and repeatedly
The ratio and the erasing rate were measured, but the change after 1000 times of repeated recording remained at 2 dB or less. Next, a track recorded at a linear velocity of 6 m / s, a wavelength of 680 nm and a recording frequency of 3.3 MHz was set at a linear velocity of 1.3 m / s, and a wavelength of 7
Playback was performed with just focus using an optical pickup with 80 nm and a numerical aperture of 0.45. Linear velocity 1.3m / s is C
At a linear velocity within the standard of D, at this time, the interval between the previously recorded recording marks is 1.8 μm, and the frequency is 0.72 MHz.
(Equal to the frequency of the 3T signal in the CD standard).
The CN ratio at the frequency of 0.72 MHz was 52 dB.

【0030】次に、未記録のトラックに波長780nmの
レーザを用いて、線速度、記録パワー等を変えて1.8
μm周期の信号を記録して、その記録・消去・繰り返し
特性を調べた。その結果、最高の記録・消去特性を示し
た場合でも、最初の1回目の記録マークのCN比は53
dBを越えたが、1回目の消去率は18dBしかなかった。
又、100回の繰り返し記録で、1.8μm周期の信号
のCN比の低下を3dB以下の減少にとどめおくような記
録条件(線速度、パワー、レーザ光の焦点位置等)は存
在しなかった。これでは繰り返し記録可能な記録媒体と
しては用をなさない。 このことは、 1)波長680nmでは、非晶質−結晶間の反射率差が小
さい(実測で26%)、すなわち記録薄膜での光吸収率
差が小さい(実測、及び計算結果から類推すると26
%)ので、良好な消去・繰り返し特性が得られる、 2)波長780nmでは、非晶質−結晶間の反射率差が大
きい(実測で49%)、すなわち記録薄膜での光吸収率
差が大きい(実測、及び計算結果から類推すると49
%)ので、良好な消去・繰り返し特性が得られない、と
して説明ができる。実際には、このように、記録薄膜が
非晶質と結晶の場合の光吸収率の差を議論すべきである
が、記録薄膜での光吸収率を実測するのは困難である。
但し、記録媒体の透過率が小さく、反射層における光吸
収率が小さい場合には、各状態の記録薄膜における光吸
収率は、およそ (100−反射率)% で表現できるので、光吸収率の差を、反射率の差と置き
換えることは妥当である。
Next, a laser having a wavelength of 780 nm is used for an unrecorded track to change the linear velocity, the recording power, etc. to 1.8.
A signal with a period of μm was recorded, and its recording / erasing / repeating characteristics were examined. As a result, even when the best recording / erasing characteristics are shown, the CN ratio of the first recording mark is 53.
Although it exceeded dB, the first erasure rate was only 18 dB.
Also, there was no recording condition (linear velocity, power, focal position of laser light, etc.) that kept the decrease of the CN ratio of the signal of 1.8 μm period to less than 3 dB after 100 times of repeated recording. . This is useless as a rewritable recording medium. This means that 1) At a wavelength of 680 nm, the difference in reflectance between amorphous and crystalline is small (26% by actual measurement), that is, the difference in light absorption rate in the recording thin film is small (26 by analogy from actual measurement and calculation results).
%), Good erasure / repetition characteristics can be obtained. 2) At a wavelength of 780 nm, the difference in reflectance between amorphous and crystalline is large (49% in actual measurement), that is, the difference in light absorptivity in the recording thin film is large. (By analogy with actual measurement and calculation results, 49
%), It can be explained that good erasing / repeating characteristics cannot be obtained. In practice, it is necessary to discuss the difference in light absorption rate between the amorphous and crystalline recording thin films, but it is difficult to measure the light absorption rate of the recording thin film.
However, when the transmittance of the recording medium is small and the light absorptance of the reflective layer is small, the light absorptance of the recording thin film in each state can be expressed by about (100−reflectance)%, and therefore the light absorptivity of It is reasonable to replace the difference with a difference in reflectance.

【0031】ここで、波長680nmで記録・消去する場
合にレーザ光の焦点を記録薄膜上に合わせずに若干故意
にずらす理由について説明する。波長680nmでジャス
トフォーカスで記録すると記録マーク幅が狭くなり、波
長780nmで再生した場合に十分な振幅変調度がとれず
に、信号再生のエラーが著しく増加するからである。波
長λ1 (ここでは680nm)で記録しても幅広の記録マ
ークを形成することを検討した結果、レーザ光の焦点を
電気的に手段を用いてずらす、或は、開口率の小さい
(4.5より小)対物レンズを用いる、或は、対物レン
ズの開口制限を行なって実質的な開口数を低下させる方
法、或はこれらの組合せが効果的であった。このとき、
780nm、開口数4.5でジャストフォーカスで記録さ
せた場合と同等、あるいはそれ以上の幅で記録マークが
形成できれば望ましい。
The reason why the laser beam is slightly focused on the recording thin film when recording / erasing at a wavelength of 680 nm will be described below. This is because when recording with just focus at a wavelength of 680 nm, the recording mark width becomes narrow, and when reproducing at a wavelength of 780 nm, a sufficient amplitude modulation degree cannot be obtained, and a signal reproduction error remarkably increases. As a result of studying formation of a wide recording mark even when recording at a wavelength λ 1 (here, 680 nm), the focus of laser light is electrically shifted by means, or the aperture ratio is small (4. It was effective to use an objective lens (smaller than 5) or to restrict the aperture of the objective lens to reduce the substantial numerical aperture, or a combination thereof. At this time,
It is desirable that the recording mark can be formed with a width equal to or wider than the case of recording with just focus at 780 nm and a numerical aperture of 4.5.

【0032】次に音楽情報をCDエンコーダーを用い
て、CDフォーマットとなるように波長680nmで上記
記録媒体に記録した。これを種々の市販のCD再生装置
で再生することを試みた。その結果、約6割のCD再生
装置では音楽情報を再生できたが、残りの装置では再生
が困難であった。これは、CD規格で定められた反射率
70%〜90%に達していないからと考えられる。しか
し、とりあえずは、市販のCD再生装置で再生が可能
な、しかも別の波長を用いれば繰り返し記録も可能な光
学情報記録媒体ができることは確認できた。
Next, music information was recorded on the above recording medium at a wavelength of 680 nm so as to be in the CD format by using a CD encoder. Attempts were made to play this on various commercially available CD players. As a result, about 60% of the CD reproducing devices could reproduce the music information, but the remaining devices were difficult to reproduce. It is considered that this is because the reflectance defined by the CD standard does not reach 70% to 90%. However, for the time being, it was confirmed that an optical information recording medium which can be reproduced by a commercially available CD reproducing apparatus and which can be repeatedly recorded by using another wavelength can be obtained.

【0033】そこで、更に反射率の高い相変化型光学情
報記録媒体の設計を行なった。波長λ1 として630nm
を想定し、又、波長λ2 に780nmをあてて最適構造を
探索の結果、解の1つとして、保護層2,保護層9,記
録層3,保護層4,反射層5の膜厚がそれぞれ100n
m,120nm,25nm,12nm,50nmとなる場合が得
られた(構造2)。上記構造の記録媒体において、保護
層2の膜厚のみを変化させた場合、保護層2の膜厚と非
晶質、及び結晶状態における光反射率の関係を図3に示
す。図3より、保護層2の膜厚がおよそ100nmの時に
先に示した4条件をすべて満たすことがわかる。この計
算に基づいてサンプルを作製し、分光光度計を用いて各
波長における光学特性を実測した。その測定結果を(表
4)に示す。但し、結晶状態は不活性雰囲気中で300
℃で10分間熱処理して得た。又、基板界面での反射率
分は差し引いている。(表4)から、ほぼ設計どおりの
記録媒体ができていることがわかる。
Therefore, a phase change type optical information recording medium having a higher reflectance was designed. 630nm as the wavelength λ 1
As a result of searching for an optimum structure by applying 780 nm to the wavelength λ 2 , one of the solutions is that the thickness of the protective layer 2, the protective layer 9, the recording layer 3, the protective layer 4, and the reflective layer 5 is 100n each
The cases of m, 120 nm, 25 nm, 12 nm and 50 nm were obtained (structure 2). FIG. 3 shows the relationship between the film thickness of the protective layer 2 and the light reflectance in the amorphous and crystalline states when only the film thickness of the protective layer 2 is changed in the recording medium having the above structure. From FIG. 3, it can be seen that when the thickness of the protective layer 2 is about 100 nm, all of the above four conditions are satisfied. A sample was prepared based on this calculation, and the optical characteristics at each wavelength were measured using a spectrophotometer. The measurement results are shown in (Table 4). However, the crystal state is 300 in an inert atmosphere.
It was obtained by heat treatment at 10 ° C. for 10 minutes. Also, the reflectance at the substrate interface is subtracted. From Table 4, it can be seen that the recording medium is almost as designed.

【0034】[0034]

【表4】 [Table 4]

【0035】この(構造2)の記録媒体は、前述の(構
造1)に比べて、波長780nmに対する未記録部(記録
薄膜が結晶状態の領域)の反射率がさらに大きく、ほと
んど70%に近い値となっているので、(構造1)に比
べて、さらにCDの再生装置等、市販のROM再生装置
での再生互換のとれる割合が増加するであろうことが予
想される。この場合、波長680nmでは、未記録部にお
ける記録薄膜の光吸収率が50%以下となっているの
で、媒体の感度不足のため、現有の評価装置では、十分
な記録・消去特性の測定ができなかった。しかし、半導
体レーザの出力向上は日進月歩であるので、近い将来、
克服できる問題であり、原理的な障害となるものではな
い。或は波長λ1 に630nmを選べばより光吸収率が高
いので、680nmの半導体レーザを用いるよりも小さい
出力で記録が可能であることが予想される。ここでは、
(構造2)の記録媒体に直接波長780nm、開口率4.
5のピックアップを用いて、ジャストフォーカスで、線
速度6.0m/sで、CDフォーマット信号を記録して
みた。最適記録パワーで記録した信号は、ほとんどの市
販のCD再生装置で再生が可能であった。ただし、この
場合は、消去特性は好ましくない。これは、波長780
nmでは、非晶質−結晶間の反射率差が大きい(実測で4
5%)、すなわち記録薄膜での光吸収率差が大きい(実
測、及び計算結果から類推すると45%)ので、良好な
消去・繰り返し特性が得られない、として説明ができ
る。波長680nm、この場合、より好ましくは波長63
0nmで記録・消去した場合には、より良好な記録・消去
の繰り返し特性が得られることが容易に予想される。
In the recording medium of (Structure 2), the reflectance of the unrecorded portion (the region where the recording thin film is in the crystalline state) at a wavelength of 780 nm is higher than that of (Structure 1), and is almost 70%. Since the value is a value, it is expected that the ratio compatible with reproduction in a commercially available ROM reproducing device such as a CD reproducing device will further increase compared to (Structure 1). In this case, at the wavelength of 680 nm, the light absorptance of the recording thin film in the unrecorded portion is 50% or less, and therefore the sensitivity of the medium is insufficient, so that the existing evaluation device can sufficiently measure the recording / erasing characteristics. There wasn't. However, since the output of semiconductor lasers is improving day by day, in the near future,
It is a problem that can be overcome, not a principle obstacle. Alternatively, if the wavelength λ 1 is 630 nm, the light absorptivity is higher, and it is expected that recording can be performed with a smaller output than that using a 680 nm semiconductor laser. here,
Directly on the recording medium of (Structure 2) with a wavelength of 780 nm and an aperture ratio of 4.
Using the pickup of No. 5, the CD format signal was recorded with a just focus and a linear velocity of 6.0 m / s. The signal recorded with the optimum recording power could be reproduced by most commercially available CD reproducing devices. However, in this case, the erase characteristic is not preferable. This is the wavelength 780
In nm, the difference in reflectivity between amorphous and crystalline is large (measured at 4
5%), that is, the light absorption difference in the recording thin film is large (45% by analogy with actual measurement and calculation results), and it can be explained that good erasing / repeating characteristics cannot be obtained. Wavelength 680 nm, in this case, more preferably wavelength 63
When recording / erasing at 0 nm, it is easily expected that better recording / erasing repeating characteristics can be obtained.

【0036】このように、基本的に波長780nmで再生
できる程度の密度で、より波長の短かい信号を記録・再
生するのだから、波長λ1 のレーザの収差、ノイズ等へ
の要求はさほど大きくなく、又、対物レンズの開口率も
小さくてよいので、安価に光学系を組み立てることがで
きるという利点がある。
As described above, basically, since a signal having a shorter wavelength is recorded / reproduced at a density that can be reproduced at a wavelength of 780 nm, the demand for aberration, noise, etc. of a laser of wavelength λ 1 is very large. In addition, since the objective lens does not have to have a small aperture ratio, there is an advantage that the optical system can be assembled at low cost.

【0037】これまで、説明してきた光学情報記録媒体
の構造、各層の材料組成、記録・消去のための波長λ
1 、記録方法等は、あくまでも一実施例にすぎない。光
学特性さえ所望の値が得られるならば、記録薄膜と基板
の間の保護層を1層ですましてもよいし、或は3層以上
の複数層で構成しても何等問題はない。記録薄膜と反射
層の間の保護層についても同じことが言える。記録薄膜
の材料組成に要求されるのは、良好な記録・消去の繰り
返し特性等である。波長λ1 は適当に選んでよいし、
又、記録線速度も、光学情報記録媒体に最も適した値を
選択すればよい。ROM再生装置との互換性を高めるに
は、波長λ2 における未記録部の反射率をできるだけ高
く、又、反射率差ができるだけ大きくなるような構造に
すれはよい。種々検討した結果、波長λ2 における未記
録部の反射率が58%以上、反射率差が40%以上あれ
ば、概ね現在市販されているCD再生装置の半数以上で
再生が可能であったし、70%以上の反射率、50%以
上の反射率差であればほとんどのCD再生装置で再生が
可能であった。又、波長λ1 における未記録部の反射率
が20%以上、反射率差が15%以上あれば、十分な再
生信号が得られた。しかし、未記録部の反射率が大きす
ぎると記録感度が落ちるので、少なくとも50%以下の
反射率(50%以上の吸収率)、望むらくは40%以下
の反射率であればよい。又、反射率差も大きすぎる(す
なわち、記録薄膜での光吸収差が大きすぎる)と消去特
性が劣化するので、反射率差は30%以下であることが
望ましいこともわかった。
The structure of the optical information recording medium described so far, the material composition of each layer, the wavelength λ for recording / erasing
1. The recording method and the like are just examples. As long as desired values can be obtained even for optical characteristics, the protective layer between the recording thin film and the substrate may be a single layer, or may be composed of a plurality of layers of three or more layers without any problem. The same applies to the protective layer between the recording thin film and the reflective layer. The material composition of the recording thin film is required to have good recording / erasing repeatability. The wavelength λ 1 may be selected appropriately,
Also, as the recording linear velocity, a value most suitable for the optical information recording medium may be selected. In order to improve the compatibility with the ROM reproducing device, it is preferable to have a structure in which the reflectance of the unrecorded portion at the wavelength λ 2 is as high as possible and the reflectance difference is as large as possible. As a result of various studies, if the reflectance of the unrecorded portion at the wavelength λ 2 is 58% or more and the reflectance difference is 40% or more, it was possible to reproduce with almost half of the CD reproducing apparatuses currently on the market. When the reflectance was 70% or more and the reflectance difference was 50% or more, reproduction was possible with most CD reproducing devices. Further, if the reflectance of the unrecorded portion at the wavelength λ1 is 20% or more and the reflectance difference is 15% or more, a sufficient reproduced signal can be obtained. However, if the reflectance of the unrecorded portion is too high, the recording sensitivity is lowered. Therefore, the reflectance may be at least 50% or less (absorption rate of 50% or more), and desirably 40% or less. It was also found that the difference in reflectance is preferably 30% or less, because the erasing property is deteriorated if the difference in reflectance is too large (that is, the difference in light absorption in the recording thin film is too large).

【0038】又、記録フォーマットは、CDフォーマッ
トに限らず、LDフォーマット等、各種ROMの記録情
報媒体に合わせることが可能である。これは、すでに市
販、或は実用化されているROMの記録情報媒体に限定
することはなく、将来実用化されるROMの光学情報記
録媒体のフォーマットでもかまわない。当然、その場
合、波長λ2 は780nmに限定されるとは限らない。
Further, the recording format is not limited to the CD format, and it is possible to adapt it to various ROM recording information media such as an LD format. This is not limited to the ROM recording information medium that has already been commercially available or has been put into practical use, and may be the format of the optical information recording medium of ROM that will be put to practical use in the future. Of course, in that case, the wavelength λ 2 is not limited to 780 nm.

【0039】さらに、本発明の光学情報記録媒体と、そ
の記録・消去・再生装置の組合せにおいて、高密度記録
モード、低密度記録モードを併せ持った構成にすること
も可能である。これは、低密度記録モードで記録する場
合は、所望のROM記録情報媒体再生装置で再生可能な
フォーマットで記録し、高密度記録モードでは、λ1
λ2 を利用して、より高密度に記録を行なうという方法
である。この場合、高密度記録・消去・再生用の記録媒
体と、従来のROM規格に準拠した記録の低密度記録・
消去・再生専用の記録媒体の2種類を用意するのではな
く、同一の媒体で、2つのモードの記録・消去・再生に
対応することができる。相対的に低密度で記録するモー
ドの場合には、レーザ光の焦点を電気的に手段を用いて
ずらす、或は、より開口率の小さい(4.5より小)対
物レンズに切り替える、或は、対物レンズの開口制限を
行なって実質的な開口数を低下させる方法、或はこれら
の組合せが効果的である。低密度記録モードの場合、7
80nm、開口数4.5でジャストフォーカスで記録させ
た場合と同等、あるいはそれ以上の幅で記録マークが形
成できるように記録するとよい。
Furthermore, the combination of the optical information recording medium of the present invention and the recording / erasing / reproducing apparatus thereof may be configured to have both a high density recording mode and a low density recording mode. This is because when recording in the low density recording mode, recording is performed in a format that can be reproduced by a desired ROM recording information medium reproducing device, and in the high density recording mode, λ 1 <
This is a method of recording at a higher density by utilizing λ 2 . In this case, a recording medium for high-density recording / erasing / reproduction and low-density recording / recording conforming to the conventional ROM standard
Rather than preparing two types of recording media dedicated to erasing / reproducing, the same medium can be used for recording / erasing / reproducing in two modes. In the mode of recording at a relatively low density, the focus of the laser beam is electrically shifted by means, or the objective lens having a smaller aperture ratio (less than 4.5) is switched, or A method of limiting the aperture of the objective lens to reduce the substantial numerical aperture, or a combination thereof is effective. 7 for low-density recording mode
It is preferable to record so that a recording mark can be formed with a width equal to or wider than that when recording with just focus at 80 nm and a numerical aperture of 4.5.

【0040】[0040]

【発明の効果】2波長対応構造の光学情報記録媒体に記
録した信号は波長780nmで再生すると反射率、変調度
が高いので、従来から用いられているROM再生装置で
信号再生が可能である。又、本発明の記録・再生システ
ムで用いる記録・再生装置に搭載された記録・消去・再
生用のレーザ光の波長λ1 に対しては、波長780nmに
対する場合と比べて、光吸収率が大きく、かつ、消去領
域と記録マーク領域間の光吸収差が小さいので、良好な
記録・消去の繰り返し特性が得られる。
EFFECTS OF THE INVENTION A signal recorded on an optical information recording medium having a dual wavelength structure has high reflectance and modulation when reproduced at a wavelength of 780 nm, and therefore can be reproduced by a ROM reproducing device which has been conventionally used. In addition, the optical absorption coefficient is large for the wavelength λ 1 of the recording / erasing / reproducing laser light mounted in the recording / reproducing apparatus used in the recording / reproducing system of the present invention, as compared with the case of the wavelength 780 nm. In addition, since the difference in light absorption between the erased area and the recording mark area is small, good recording / erasing repetition characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の記録媒体の構造を示す断面図FIG. 1 is a sectional view showing a structure of a recording medium according to an embodiment of the present invention.

【図2】本発明の実施例の(構造1)の記録媒体におい
て、記録媒体を構成する第1の保護層の膜厚と記録媒体
の反射率の関係を示す特性図
FIG. 2 is a characteristic diagram showing the relationship between the film thickness of the first protective layer constituting the recording medium and the reflectance of the recording medium in the recording medium of (Structure 1) of the example of the invention.

【図3】本発明の実施例の(構造2)の記録媒体におい
て、記録媒体を構成する第1の保護層の膜厚と記録媒体
の反射率の関係を示す特性図
FIG. 3 is a characteristic diagram showing the relationship between the film thickness of the first protective layer constituting the recording medium and the reflectance of the recording medium in the recording medium of (Structure 2) of the example of the invention.

【符号の説明】[Explanation of symbols]

1 基板 2 第1の保護層 3 記録薄膜 4 第3の保護層 5 反射層 6 接着層 7 保護基板 8 基板平面 9 第2の保護層 1 Substrate 2 First Protective Layer 3 Recording Thin Film 4 Third Protective Layer 5 Reflective Layer 6 Adhesive Layer 7 Protective Substrate 8 Substrate Plane 9 Second Protective Layer

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】所定の波長λ1 のレーザ光の照射によって
情報を記録・再生する装置に用いる光学情報記録媒体で
あって、 前記光学情報記録媒体は、基板と、基板上に少なくとも
保護層と、レーザ光の照射によって相変化を生じて光学
定数(複素屈折率)の異なる状態へと移り得る記録薄膜
とを設えてなり、 前記光学情報記録媒体の、波長λ1 に対する未記録部の
反射率R10と、レーザ光の照射によって形成された記録
マークの波長λ1 に対する反射率R11が、それぞれ、 20%≦R10≦50%、 15%≦(R10−R11)≦3
0%、 であり、かつ波長λ1 よりも長い波長λ2 に対する未記
録部の反射率R20と、レーザ光の照射によって形成され
た記録マークの波長λ2 に対する反射率R21が、それぞ
れ、 58%≦R20、 40%≦(R20−R21) であることを特徴とする光学情報記録媒体。
1. An optical information recording medium used in an apparatus for recording / reproducing information by irradiating a laser beam having a predetermined wavelength λ 1 , wherein the optical information recording medium comprises a substrate and at least a protective layer on the substrate. , A recording thin film capable of causing a phase change by irradiation with laser light and shifting to a state having different optical constants (complex refractive index), and the reflectance of the unrecorded portion of the optical information recording medium with respect to the wavelength λ 1 . R 10 and the reflectance R 11 of the recording mark formed by the laser light irradiation with respect to the wavelength λ 1 are 20% ≦ R 10 ≦ 50% and 15% ≦ (R 10 −R 11 ) ≦ 3, respectively.
0%, and the reflectance R 20 of the unrecorded portion for the wavelength λ 2 longer than the wavelength λ 1 and the reflectance R 21 of the recording mark formed by the laser light irradiation for the wavelength λ 2 are respectively An optical information recording medium, wherein 58% ≦ R 20 and 40% ≦ (R 20 −R 21 ).
【請求項2】波長λ2 が780nmであることを特徴とす
る請求項1記載の光学情報記録媒体。
2. The optical information recording medium according to claim 1, wherein the wavelength λ 2 is 780 nm.
【請求項3】70%≦R20、 50%≦(R20−R21
であることを特徴とする請求項1記載の光学情報記録媒
体。
3. 70% ≦ R 20 , 50% ≦ (R 20 −R 21 ).
The optical information recording medium according to claim 1, wherein
【請求項4】基板と、基板上に少なくとも保護層と、レ
ーザ光の照射によって相変化を生じて光学定数(複素屈
折率)の異なる状態へと移り得る記録薄膜とを設えてな
る光学情報記録媒体に、波長λ1 のレーザ光を対物レン
ズを通して照射することによって記録薄膜を部分的に変
化させて情報の記録を行い、変化量を光学的に検知して
情報の再生を行なう光学情報記録再生方法において、 前記光学情報記録媒体が、波長λ1 に対する未記録部の
反射率R10と、レーザ光の照射によって形成された記録
マークの波長λ1 に対する反射率R11が、それぞれ、 20%≦R10≦50%、 15%≦(R10−R11)≦3
0%、 であり、かつ波長λ1 よりも長い波長λ2 に対する未記
録部の反射率R20と、レーザ光の照射によって形成され
た記録マークの波長λ2 に対する反射率R21が、それぞ
れ、 58%≦R20、 40%≦(R20−R21) であり、 情報の記録時に、記録薄膜上のレーザ光の有効ビーム径
が、レーザ波長λ1 と前記対物レンズの開口数から一義
的に決まる最小ビーム径よりも大きくなるようにレーザ
光を照射することを特徴とする光学情報記録再生方法。
4. An optical information recording comprising a substrate, at least a protective layer on the substrate, and a recording thin film capable of undergoing a phase change upon irradiation with a laser beam and having a different optical constant (complex refractive index). By irradiating the medium with laser light of wavelength λ 1 through the objective lens, the recording thin film is partially changed to record information, and the amount of change is optically detected to reproduce information. in the method, the optical information recording medium, the reflectance R 10 of the unrecorded portion with respect to the wavelength lambda 1, the reflectance R 11 for the wavelength lambda 1 of the recording mark formed by irradiation of laser light, respectively, 20% ≦ R 10 ≦ 50%, 15% ≦ (R 10 −R 11 ) ≦ 3
0%, and the reflectance R 20 of the unrecorded portion for the wavelength λ 2 longer than the wavelength λ 1 and the reflectance R 21 of the recording mark formed by the laser light irradiation for the wavelength λ 2 are respectively 58% ≦ R 20 and 40% ≦ (R 20 −R 21 ), and the effective beam diameter of the laser beam on the recording thin film during recording of information is unique from the laser wavelength λ 1 and the numerical aperture of the objective lens. An optical information recording / reproducing method characterized by irradiating a laser beam so as to be larger than a minimum beam diameter determined by.
【請求項5】基板と、基板上に少なくとも保護層と、レ
ーザ光の照射によって相変化を生じて光学定数(複素屈
折率)の異なる状態へと移り得る記録薄膜とを設えてな
る光学情報記録媒体に、波長λ1 のレーザ光を対物レン
ズを通して照射することによって記録薄膜を部分的に変
化させて情報の記録を行い、変化量を光学的に検知して
情報の再生を行なう光学情報記録再生方法において、 前記光学情報記録媒体が、波長λ1 に対する未記録部の
反射率R10と、レーザ光の照射によって形成された記録
マークの波長λ1 に対する反射率R11が、それぞれ、 20%≦R10≦50%、 15%≦(R10−R11)≦3
0%、 であり、かつ波長λ1 よりも長い波長λ2 に対する未記
録部の反射率R20と、レーザ光の照射によって形成され
た記録マークの波長λ2 に対する反射率R21が、それぞ
れ、 58%≦R20、 40%≦(R20−R21) であって、 上記、対物レンズの開口数が4.5よりも小さいことを
特徴とする光学情報記録再生方法。
5. An optical information recording comprising a substrate, at least a protective layer on the substrate, and a recording thin film capable of undergoing a phase change upon irradiation with a laser beam and having a different optical constant (complex refractive index). By irradiating the medium with laser light of wavelength λ 1 through the objective lens, the recording thin film is partially changed to record information, and the amount of change is optically detected to reproduce information. in the method, the optical information recording medium, the reflectance R 10 of the unrecorded portion with respect to the wavelength lambda 1, the reflectance R 11 for the wavelength lambda 1 of the recording mark formed by irradiation of laser light, respectively, 20% ≦ R 10 ≦ 50%, 15% ≦ (R 10 −R 11 ) ≦ 3
0%, and the reflectance R 20 of the unrecorded portion for the wavelength λ 2 longer than the wavelength λ 1 and the reflectance R 21 of the recording mark formed by the laser light irradiation for the wavelength λ 2 are respectively 58% ≦ R 20 , 40% ≦ (R 20 −R 21 ), wherein the numerical aperture of the objective lens is smaller than 4.5.
【請求項6】波長λ2 が780nmであることを特徴とす
る請求項4または5記載の光学情報記録再生方法。
6. The optical information recording / reproducing method according to claim 4, wherein the wavelength λ 2 is 780 nm.
【請求項7】コンパクトディスクと同等の記録フォーマ
ットで情報を記録することを特徴とする請求項4または
5記載の光学情報記録再生方法。
7. An optical information recording / reproducing method according to claim 4, wherein the information is recorded in a recording format equivalent to that of a compact disc.
【請求項8】基板と、基板上に少なくとも保護層と、レ
ーザ光の照射によって相変化を生じて光学定数(複素屈
折率)の異なる状態へと移り得る記録薄膜とを設えてな
る光学情報記録媒体に、波長λ1 のレーザ光を対物レン
ズを通して照射することによって記録薄膜を部分的に変
化させて情報の記録を行い、変化量を光学的に検知して
情報の再生を行なう光学情報記録再生方法において、 前記光学情報記録媒体が、波長λ1 に対する未記録部の
反射率R10と、レーザ光の照射によって形成された記録
マークの波長λ1 に対する反射率R11が、それぞれ、 20%≦R10≦50%、 15%≦(R10−R11)≦3
0%、 であり、かつ波長λ1 よりも長い波長λ2 に対する未記
録部の反射率R20と、レーザ光の照射によって形成され
た記録マークの波長λ2 に対する反射率R21が、それぞ
れ、 58%≦R20、 40%≦(R20−R21) であって、 上記、対物レンズの開口数を実質的に大小2段階に切り
替える手段をもち、実質開口数を大きくした場合には相
対的に高密度で信号を記録し、開口数を小さくした場合
には相対的に低密度で信号を記録することを特徴とする
光学情報記録再生方法。
8. An optical information recording comprising a substrate, at least a protective layer on the substrate, and a recording thin film capable of undergoing a phase change upon irradiation with laser light and having a different optical constant (complex refractive index). By irradiating the medium with laser light of wavelength λ 1 through the objective lens, the recording thin film is partially changed to record information, and the amount of change is optically detected to reproduce information. in the method, the optical information recording medium, the reflectance R 10 of the unrecorded portion with respect to the wavelength lambda 1, the reflectance R 11 for the wavelength lambda 1 of the recording mark formed by irradiation of laser light, respectively, 20% ≦ R 10 ≦ 50%, 15% ≦ (R 10 −R 11 ) ≦ 3
0%, and the reflectance R 20 of the unrecorded portion for the wavelength λ 2 longer than the wavelength λ 1 and the reflectance R 21 of the recording mark formed by the laser light irradiation for the wavelength λ 2 are respectively 58% ≦ R 20 and 40% ≦ (R 20 −R 21 ), and the above-mentioned means for switching the numerical aperture of the objective lens into substantially two steps, large and small, is used. The optical information recording / reproducing method is characterized in that the signal is recorded at a relatively high density, and the signal is recorded at a relatively low density when the numerical aperture is reduced.
【請求項9】波長λ2 が780nmで、相対的に低密度記
録する場合にはコンパクトディスクと同等の記録フォー
マットで情報を記録することを特徴とする請求項8記載
の光学情報記録再生方法。
9. The optical information recording / reproducing method according to claim 8, wherein when recording at a relatively low density at a wavelength λ 2 of 780 nm, information is recorded in a recording format equivalent to that of a compact disc.
JP01519993A 1993-02-02 1993-02-02 Optical information recording medium and optical information recording / reproducing method Expired - Fee Related JP3156418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01519993A JP3156418B2 (en) 1993-02-02 1993-02-02 Optical information recording medium and optical information recording / reproducing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01519993A JP3156418B2 (en) 1993-02-02 1993-02-02 Optical information recording medium and optical information recording / reproducing method

Publications (2)

Publication Number Publication Date
JPH06231487A true JPH06231487A (en) 1994-08-19
JP3156418B2 JP3156418B2 (en) 2001-04-16

Family

ID=11882203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01519993A Expired - Fee Related JP3156418B2 (en) 1993-02-02 1993-02-02 Optical information recording medium and optical information recording / reproducing method

Country Status (1)

Country Link
JP (1) JP3156418B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5812182A (en) * 1995-06-07 1998-09-22 Nippondenso Co., Ltd. Optical information recording medium for recording erasing and play back of compact disc signals
US5962100A (en) * 1996-07-29 1999-10-05 Denso Corporation Optical information recording medium
US6117511A (en) * 1997-06-03 2000-09-12 Nec Corporation Optical recording media

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5812182A (en) * 1995-06-07 1998-09-22 Nippondenso Co., Ltd. Optical information recording medium for recording erasing and play back of compact disc signals
US5962100A (en) * 1996-07-29 1999-10-05 Denso Corporation Optical information recording medium
US6117511A (en) * 1997-06-03 2000-09-12 Nec Corporation Optical recording media

Also Published As

Publication number Publication date
JP3156418B2 (en) 2001-04-16

Similar Documents

Publication Publication Date Title
US6890613B2 (en) Information recording medium and method for producing the same, and method for recording/reproducing information thereon
US6469977B2 (en) Optical information recording medium, method for producing the same, and method and apparatus for recording/reproducing information thereon
US7276274B2 (en) Optical recording medium and method for recording and reproducing data
US5410534A (en) Optical information recording medium
JP4339999B2 (en) Optical information recording medium, manufacturing method thereof, recording / reproducing method, and recording / reproducing apparatus
US6660356B1 (en) Optical information recording medium, method for producing the same, and method and apparatus for recording/reproducing information thereon
US7781146B2 (en) Optical recording medium
US5811217A (en) Optical information recording medium and optical information recording/reproducing method
US7304930B2 (en) Optical information recording medium and recording method using the same
JP3156418B2 (en) Optical information recording medium and optical information recording / reproducing method
JP2001023236A (en) Optical information recording medium and its initialization method
JP2962052B2 (en) Optical information recording medium
JP3087454B2 (en) Optical information recording medium and structure design method thereof
JPH02113451A (en) Optical information recording medium
JP2001028148A (en) Optical information recording medium, its manufacture, recording/reproducing method and recording/ reproducing device
JP2000339748A (en) Optical recording medium
JPH0792931B2 (en) Optical recording / reproducing method
JPH07130006A (en) Optical information recording medium
JP2003099980A (en) Optical information recording medium
KR20050040440A (en) Optical recording medium
JPH04263134A (en) Optical recording medium and recording/playback method
JP2001076380A (en) Optical recording medium
JPH08221801A (en) Optical information recording medium
JP2003059098A (en) Optical information recording medium
JP2006155896A (en) Optical information recording medium, its production method, recording and reproducing method for the same, and optical recording and reproducing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees