WO2003093482A2 - Verfahren zur herstellung mehrfach ungesättigter fettsäuren in pflanzen - Google Patents

Verfahren zur herstellung mehrfach ungesättigter fettsäuren in pflanzen Download PDF

Info

Publication number
WO2003093482A2
WO2003093482A2 PCT/EP2003/004297 EP0304297W WO03093482A2 WO 2003093482 A2 WO2003093482 A2 WO 2003093482A2 EP 0304297 W EP0304297 W EP 0304297W WO 03093482 A2 WO03093482 A2 WO 03093482A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
nucleic acid
fatty acids
plant
plants
Prior art date
Application number
PCT/EP2003/004297
Other languages
English (en)
French (fr)
Other versions
WO2003093482A3 (de
Inventor
Petra Cirpus
Andreas Renz
Jens Lerchl
Anne-Marie Kuijpers
Original Assignee
Basf Plant Science Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Plant Science Gmbh filed Critical Basf Plant Science Gmbh
Priority to EP03747357A priority Critical patent/EP1501932A2/de
Priority to AU2003232512A priority patent/AU2003232512B2/en
Priority to US10/511,621 priority patent/US7893320B2/en
Priority to CA002485060A priority patent/CA2485060A1/en
Publication of WO2003093482A2 publication Critical patent/WO2003093482A2/de
Publication of WO2003093482A3 publication Critical patent/WO2003093482A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • C12P7/6432Eicosapentaenoic acids [EPA]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0083Miscellaneous (1.14.99)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6472Glycerides containing polyunsaturated fatty acid [PUFA] residues, i.e. having two or more double bonds in their backbone
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6481Phosphoglycerides

Definitions

  • the present invention relates to a process for the production of fatty acid esters which contain unsaturated fatty acids with at least three double bonds and free unsaturated fatty acids with a content of at least 1% by weight, based on the total fatty acids contained in the plants, by expression of at least one nucleic acid sequence which codes for a polypeptide with ⁇ -6-desaturase activity, and at least one nucleic acid sequence which codes for a polypeptide with ⁇ -6-elongase activity. These nucleic acid sequences can optionally be expressed in the transgenic plant together with a third nucleic acid sequence which codes for a polypeptide with ⁇ -5 desaturase activity.
  • the invention further relates to the use of defined nucleic acid sequences which code for polypeptides with a ⁇ -6-desaturase activity, ⁇ -6-elongase activity or ⁇ -5-desaturase activity selected from a group of nucleic acid sequences or the use of nucleic acid constructs containing the aforementioned nucleic acid sequences.
  • Fine chemicals also include lipids and fatty acids, among which an exemplary class is the polyunsaturated fatty acids.
  • polyunsaturated fatty acids PUFAs
  • PUFAs polyunsaturated fatty acids
  • PUFAs have a positive influence on the cholesterol level in the blood of humans and are therefore suitable for protection against heart diseases.
  • Fine chemicals such as polyunsaturated fatty acids
  • polyunsaturated fatty acids can be isolated from animal sources, such as fish, or with microorganisms by cultivating microorganisms which have been developed in such a way that they produce and accumulate or secrete large amounts of one or more desired molecules produce large scale.
  • Fatty acids and triglycerides have a multitude of applications in the food industry, animal nutrition, cosmetics and pharmaceuticals. Depending on whether it is free saturated or unsaturated fatty acids or triglycerides with an increased content of saturated or unsaturated fatty acids, they are suitable for a wide variety of applications.
  • Polyunsaturated ⁇ -3 fatty acids and ⁇ -6 fatty acids are an important part of animal and human food.
  • polyunsaturated ⁇ -3 fatty acids which are preferred in fish oils , particularly important to food.
  • DHA docosahexaenoic acid
  • C22 ß ⁇ 4 ' 7 - 10 ' 13 ' 16 ' 19
  • the free fatty acids are advantageously produced by saponification.
  • Common natural sources of these fatty acids are fish such as herring, salmon, sardine, goldfish, eel, carp, trout, halibut, mackerel, pikeperch or tuna or algae.
  • oils with saturated or unsaturated fatty acids are preferred, for example lipids with unsaturated fatty acids, especially polyunsaturated fatty acids, are preferred in human nutrition.
  • the polyunsaturated ⁇ -3 fatty acids are said to have a positive effect on the cholesterol level in the blood and thus on the possibility of preventing heart disease.
  • Adding these ⁇ -3 fatty acids to food can significantly reduce the risk of heart disease, stroke or high blood pressure.
  • Inflammatory, especially chronic, inflammatory processes in the context of immunological diseases such as rheumatoid arthritis can also be positively influenced by ⁇ -3 fatty acids. They are therefore added to foods, especially dietary foods, or are used in medicines.
  • ⁇ -6 fatty acids such as arachidonic acid tend to have a negative effect on these diseases due to our usual food composition.
  • ⁇ -3 and ⁇ -6 fatty acids are precursors of tissue hormones, the so-called eicosanoids such as prostaglandins, which are derived from dihomo- ⁇ -linolenic acid, arachidonic acid and eicosapentaenoic acid, the thromoxanes and leukotrienes, which are derived from the Derive arachidonic acid and eicosapentaenoic acid.
  • Eicosanoids (so-called PG series) which are formed from ⁇ -6 fatty acids generally promote inflammatory reactions, while eicosanoids (so-called PG 3 series) from ⁇ -3 fatty acids have little or no inflammation-promoting effect ,
  • ⁇ -6-desaturases are described in WO 93/06712, US 5,614,393, US5614393, WO 96/21022, WO00 / 21557 and WO 99/27111 and also the use for production in transgenic organisms as described in W098 / 46763 W098 / 46764, W09846765.
  • microorganisms for the production of PUFAs are microorganisms such as Thraustochytria or Schizochytria strains, algae such as Phaeodactylum tricornutum or Crypthecodinium species, ciliates such as Stylonychia or Colpidium, fungi such as Mortierella, Entomophthora or Mucor.
  • strain selection a number of mutant strains of the corresponding microorganisms have been developed which produce a number of desirable compounds, including PUFAs.
  • mutating and selecting strains with improved production of a particular molecule, such as the polyunsaturated fatty acids is a time-consuming and difficult process.
  • the production of fine chemicals can suitably be carried out on a large scale through production in plants designed to produce the above-mentioned PUFAs.
  • Plants that are particularly suitable for this purpose are oil-fruit plants which contain large amounts of lipid compounds, such as rapeseed, canola, flax, soybeans, sunflowers, borage and evening primrose.
  • lipid compounds such as rapeseed, canola, flax, soybeans, sunflowers, borage and evening primrose.
  • other crop plants containing oils or lipids and fatty acids are also well suited, as mentioned in the detailed description of this invention.
  • Using conventional breeding a number of mutant plants have been developed that produce a spectrum of desirable lipids and fatty acids, cofactors and enzymes.
  • the object was therefore to develop a process for the preparation of polyunsaturated fatty acid esters and / or free polyunsaturated fatty acids with at least three double bonds in the fatty acid molecule.
  • This object was achieved by the process according to the invention for the preparation of compounds of the general formula I:
  • transgenic plants with a content of at least 1% by weight, based on the total fatty acids, characterized in that the method comprises the following steps:
  • R 1 -OH, coenzyme A- (thioester), phosphatidylcholine, phosphatidylyl ethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylserine, phosphatidylinositol, sphingolipid, glycoshingolipid or a radical of the following general formula II
  • R 2 H, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylserine, phosphatidylinositol, shingolipid, glycoshingolipid, glycoshingolipid or saturated or unsaturated C 2 -C 4 -alkyl
  • R 3 H, saturated or unsaturated C 2 -C 24 alkylcarbonyl, or
  • R 2 and R 3 independently of one another are a radical of the general formula Ia
  • R i denotes in the compounds of the formula I -OH (hydroxyl), acetyl-coenzyme A, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylserine, phosphatidylinositol, sphingolipid, glycoshingolipid, or a residue of glycoshingol general formula II
  • R 2 in the compounds of formula II denotes hydrogen, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylserine, phosphatidylinositol, shingolipid, glycoshingolipid, glycoshingolipid or saturated or unsaturated C 2 -C 24 carbonyl.
  • C 2 -C 2 alkylcarbonyl radicals such as ethylcarbonyl, n-propylcarbonyl, n-butylcarbonyl, n-pentylcarbonyl, n-hexylcarbonyl, n-heptylcarbonyl, n-octylcarbonyl, n-nonylcarbonyl-, n-decylcarbonyl-, n-undecylcarbonyl-, n-dodecylcarbonyl-, n-tridecylcarbonyl-, n-tetradecylcarbon- yl-, n-pentadecylcarbonyl-, n-hexadecylcarbonyl-, n-heptadecyl- carbonyl- , n-octadecylcarbonyl-, n-nonadecylcarbonyl-,
  • C 1 -C 2 -alkylcarbonyl radicals such as n-decylcarbonyl, n-undecylcarbonyl, n-dodecylcarbonyl, n-tridecylcarbonyl, n-tetradecylcarbonyl, n-pentadecylcarbonyl, n-hexadecylcarbonyl, n-heptadyl are preferred -, n-Octadecylcarbon- yl-, n-nonadecylcarbonyl-, n-eicosylcarbonyl-, n-docosanylcarbon- yl- or n-tetracosanylcarbonyl-, which contain one or more double bonds.
  • C 1 -C 2 -alkylcarbonyl radicals such as Cio-alkylcarbonyl, Cn ⁇ alkylcarbonyl, C ⁇ 2 alkylcarbonyl, C ⁇ 3 alkylcarbonyl, Ci 4 alkylcarbonyl, C ⁇ 6 alkylcarbonyl, C ⁇ s are particularly preferred -Alkylcarbonyl-, C 2 o-Alkylcarbon- yl-, C 2 -Alkylcarbonyl- or C 24 -Alkylcarbonyl residues, which contain one or more double bonds.
  • Saturated or unsaturated Ci are very particularly preferably 6 -C 22 -alkylcarbonyl radicals such as C ß alkylcarbonyl, cis-alkylcarbonyl, C 20 alkylcarbonyl or C22-alkylcarbonyl radicals which hold one or more double bonds corresponds.
  • the radicals mentioned preferably contain two, three, four or five double bonds.
  • R 3 in the compounds of the formula II denotes hydrogen, saturated or unsaturated CC 4 alkylcarbonyl.
  • C 2 -C 22 alkylcarbonyl radicals such as ethylcarbonyl, n-propylcarbonyl, n-butylcarbonyl, n-pentylcarbonyl, n-hexylcarbonyl, n-heptylcarbonyl, n-octylcarbonyl, n-nonylcarbonyl, n-decylcarbonyl, n-undecylcarbonyl, n-dodecylcarbonyl, n-tridecylcarbonyl, n-tetradecylcarbonyl, n-pentadecylcarbonyl, n-hexadecylcarbonyl, n-heptadecylcarbonyl, n-octadecylyl -, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-
  • C 1 -C 2 -alkylcarbonyl radicals such as n-decylcarbonyl, n-undecylcarbonyl, n-dodecylcarbonyl, n-tridecylcarbonyl, n-tetradecylcarbonyl, n-pentadecylcarbonyl, n-Hexadecylcarbonyl-, n-heptadecylcarbonyl-, n-octadecylcarbonyl-, n-nonadecylcarbonyl-, n-eicosylcarbonyl-, n-docosanylcarbonyl- or n-tetracosanylcarbonyl-, which contain one or more double bonds.
  • C-o-C 22 alkylcarbonyl radicals such as Cio-alkylcarbonyl, C ⁇ ⁇ alkylcarbonyl, C ⁇ 2 alkylcarbonyl, C ⁇ 3 alkylcarbonyl, C ⁇ 4 ⁇ alkylcarbonyl, C ⁇ 6 alkylcarbonyl are particularly preferred , C ⁇ s-Alkylcarbonyl-, C 2 o-Alkylcarbon- yl- C 22 -alkylcarbonyl- or C 24 -alkylcarbonyl radicals containing one or more double bonds.
  • C ⁇ 6 -C 22 alkylcarbonyl radicals such as C ⁇ 6 ⁇ alkylcarbonyl, C ⁇ s alkylcarbonyl, C 2 o-alkylcarbonyl or C 22 alkylcarbonyl radicals which contain one or more double bonds are very particularly preferred.
  • the radicals mentioned preferably contain two, three, four or five double bonds.
  • C ⁇ -Alkylcarbonylreste which contain one, two, three or four double bonds
  • C 2 o-Alkylcarbonylreste which contain three, four or five double bonds are very particularly preferred. All of the residues mentioned are derived from the corresponding fatty acids.
  • R 2 and R 3 furthermore independently denote a radical of the general formula Ia in the compounds of the formula II
  • radicals R 1 , R 2 and R 3 can also carry substituents such as hydroxyl or epoxy groups or can also contain triple bonds.
  • nucleic acid sequences used in the method according to the invention are isolated nucleic acid sequences which code for polypeptides with ⁇ -5, ⁇ -6 desaturase or ⁇ -6 elongase activity.
  • the compounds of formula I prepared in the process advantageously contain a mixture of different radicals R 1 , R 2 or R 3 , which can be derived from different glycerides. Furthermore, the abovementioned residues of various fatty acids such as short-chain fatty acids with 4 to 6 carbon atoms, medium-chain fatty acids with 8 to 12 carbon atoms or derive long-chain fatty acids with 14 to 24 carbon atoms, long-chain fatty acids are preferred.
  • GLA GLA
  • C18 3 ⁇ 6 ' ° ' 12
  • the fatty acid esters with polyunsaturated C 8 ⁇ , C 2 o and / or C 22 fatty acid molecules can be obtained from the organisms used for the production of the fatty acid esters in the form of an oil or lipid, for example in the form of compounds such as sphingolipids, Phosphoglycerides, lipids, glycolipids such as glycoshingolipid, phospholipids such as phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, phosphatidylinositol or diphosphatidylglycerol, monoacylglycerides, diacylglycerides or triacylacid fatty acids such as triacylacid fatty acids such as triacylacid fatty acids such as triacylacid fatty acids Contain double bonds can be isolated.
  • compounds such as sphingolipids, Phosphoglycerides, lipids, glycolipids such as glyco
  • the polyunsaturated fatty acids are also present in the plants as free fatty acids or bound in other compounds.
  • the various aforementioned compounds (fatty acid esters and free fatty acids) in the plant have an approximate distribution of 80 to 90% by weight of triglycerides, 2 to 5% by weight of diglycerides, 5 to 10% by weight of monoglycerides , 1 to 5% by weight of free fatty acids, 2 to 8% by weight of phospholipids, the sum of the various compounds adding up to 100% by weight.
  • the compounds of the general formula I with a content of at least 1% by weight, advantageously at least 2% by weight, preferably at least 3% by weight, particularly preferably at least 5% by weight, are whole particularly preferably produced from at least 10% by weight, based on the total fatty acids, in the transgenic plant.
  • the starting compounds linoleic acid (C18: 2) or linolenic acid (C18: 3) go through several reaction steps, the end products of the process, such as arachidonic acid (ERA) or eicosapentaenoic acid (EPA), do not occur as pure products, it there are always slight traces of the precursors in the end product.
  • ERA and EPA are available as mixtures.
  • the precursors should advantageously not more than 20% by weight, preferably not more than 15% by weight, particularly preferably not more than 10% by weight, very particularly preferably not more than 5% by weight, based on the amount of the particular Final product.
  • ERA or only EPA are bound as end products in a transgenic plant in the process according to the invention or prepared as free acids (see compounds of general formula I). If both compounds (ERA + EPA) are produced simultaneously, they are advantageously produced in a ratio of at least 1: 2 (EPA: ERA), advantageously at least 1: 3, preferably 1: 4, particularly preferably 1: 5.
  • Organisms belonging to the oil-producing organisms that is to say those which are used for the production of oils, such as algae such as Crypthecodinium, Phaeodactylum or plants, in particular plants, preferably oil-fruit plants which contain large amounts of lipid compounds, are advantageously used in the process according to the invention , such as peanut, rapeseed, canola, sunflower, safflower (safflower), poppy, mustard, hemp, castor oil, olive, sesame, calendula, punica, evening primrose, mullein, thistle, wild rose, hazelnut, almond, macadamia, avocado, laurel, pumpkin , Flax, soy, pistachio, borage, trees (oil palm, coconut or walnut) or field crops, such as corn, wheat, rye, oat
  • Preferred plants according to the invention are oil fruit plants, such as peanut, rapeseed, canola, sunflower, safflower (safflower), poppy, mustard, hemp, castor oil, calendula, punica, evening primrose, pumpkin, flax, soybean, borage, trees (oil palm, coconut) , Plants rich in C18: 2 and / or C18: 3 fatty acids such as sunflower, safflower, tobacco, mullein, sesame, cotton, pumpkin, poppy, evening primrose, walnut, flax, hemp, thistle or safflower are particularly preferred. Plants such as safflower, sunflower, poppy, evening primrose, walnut, flax or hemp are particularly preferred.
  • Different compounds of the formula I can be prepared by the enzymatic activity of the nucleic acids used in the process according to the invention, which code for polypeptides with ⁇ -5, ⁇ -6 desaturase or ⁇ -6 elongase activity.
  • mixtures of the various compounds of the general formula I or individual compounds such as EPA or ERA can be prepared in free or bound form.
  • compounds of the general formula I are derived which are derived from C18: 2 fatty acids, such as compounds of the formula containing GLA, DGLA or ERA I or which are derived from C18: 3-fatty acids are derived, such as SDA, ETA or EPA compounds of the formula I.
  • GLA, DGLA and ERA can be created as products of the process, which can be present as free fatty acids or bound.
  • SDA, ETA and EPA can be produced as products of the process which are as described above can be present as free fatty acids or bound.
  • ⁇ -5, ⁇ -6-desaturase and ⁇ -6-elongase or by introducing only the first two genes ( ⁇ -6-desaturase and ⁇ -6-elongase) of the synthesis chain, only individual products can be produced specifically in the aforementioned plants (see FIG. I).
  • the activity of the ⁇ -6-desaturase and ⁇ -6-elongase creates GLA and DGLA or SDA and ETA, depending on the starting plant and unsaturated fatty acid.
  • DGLA or ETA or mixtures thereof are preferably formed.
  • additional ERA or EPA arise. Only ERA or EPA or their mixtures are advantageously synthesized, depending on the fatty acid present in the plant, which serves as the starting substance for the synthesis. Since these are biosynthetic chains, the respective end products are not present as pure substances in the plants. There are always small amounts of the precursor compounds in the end product.
  • transgenic plants also include plant cells, tissues, organs or whole plants which are grown for the preparation of compounds of the general formula I.
  • Culturing includes, for example, the cultivation of the transgenic plant cells, tissues or organs on a nutrient medium or the whole plant to be understood on or in a substrate, for example in hydroponics or on a field soil.
  • nucleic acids which code for polypeptides with ⁇ -5, ⁇ -6 desaturase or ⁇ -6 elongase activity can be used in the method according to the invention.
  • These nucleic acids are advantageously derived from plants such as algae such as isochrysis or Crypthecodinium, diatoms such as Phaeodactylum, mosses such as Physco itrella, Ceratodon or higher plants such as the Primulaceae such as Aleuritia, Calendula stellata, Osteospermu spinescens or Osteospermum hyoseroids such as microorganisms such as microorganisms such as microorganisms such as microorganisms , Phytophore, entomophthora, Mucor or Mortierella, yeasts or animals such as nematodes such as Caenorhabditis, insects or humans.
  • a nucleic acid sequence is advantageously selected from the group of those in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 31 or their derivative or homologs which code for polypeptides which still have the enzymatic activity. These sequences are cloned individually or in combination into expression constructs; these expression constructs are reproduced in the sequences SEQ ID NO: 33-37. These expression constructs enable optimal synthesis of the compounds of the general formula I produced in the process according to the invention.
  • the method further comprises the step of obtaining a cell which contains the nucleic acid sequences used in the method which code for a ⁇ -5 or ⁇ -6 desaturase and a ⁇ -6 elongase, a cell with the nucleic acid sequence, a gene construct or a vector which induce the expression of the ⁇ -5, ⁇ -6-desaturase or ⁇ -6-elongase nucleic acid, alone or in combination, is transformed.
  • this method further comprises the step of extracting the fine chemical from the culture.
  • the cell produced in this way is advantageously a cell of an oil fruit plant such as, for example, peanut, rapeseed, canola, flax, soybean, safflower, hemp, sunflower or borage.
  • a transgenic plant in the sense of the invention means that the nucleic acids used in the method are not in their natural place in the genome of an organism, and the nucleic acids can be expressed homologously or heterologously.
  • Tansgen also means that the nucleic acids according to the invention are in their natural place in the genome of an organism, but that the sequence has been changed compared to the natural sequence and / or that the regulatory sequences of the naturally occurring sequences have been changed.
  • Transgenic is preferably to be understood as meaning the expression of the nucleic acids according to the invention at a non-natural location in the genome, that is to say that the nucleic acids are homologous or preferably heterologous.
  • Preferred transgenic plants are the oil fruit plants.
  • Transgenic plants which contain the compounds of the formula I synthesized in the process according to the invention can be marketed directly without isolating the synthesized compounds.
  • Plants in the process according to the invention are to be understood as all parts of plants, plant organs such as leaves, stems, roots, tubers or seeds or the entire plant.
  • the semen comprises all parts of the semen such as the seminal casing, epidermal and sperm cells, endosperm or embyro tissue.
  • the compounds produced in the process according to the invention can also be isolated from the plants in the form of their oils, fats, lipids and / or free fatty acids.
  • Compounds of formula I prepared by this method can be harvested by harvesting the organisms either from the culture in which they grow or from the field.
  • the oils, fats, lipids and / or free fatty acids can be obtained by cold pressing or cold pressing without the addition of heat by pressing.
  • the seeds pretreated in this way can then be pressed or extracted with solvents such as warm hexane. The solvent is then removed again. In this way, more than 96% of the compounds produced in the process can be isolated.
  • the products thus obtained are then processed further, that is to say refined. First, the plant mucilages and turbidities.
  • degumming can be carried out enzymatically or, for example, chemically / physically by adding acid such as phosphoric acid.
  • the free fatty acids are then removed by treatment with a base, for example sodium hydroxide solution.
  • the product obtained is washed thoroughly with water to remove the lye remaining in the product and dried.
  • the products are subjected to bleaching with, for example, bleaching earth or activated carbon. Finally the product is still deodorized, for example with steam.
  • the PUFAs produced by this process are preferably C ⁇ e ⁇ or C 2 o- 22 fatty acid molecules with at least two double bonds in the fatty acid molecule, preferably three, four, or five or six double bonds when combined with a further elongase and a ⁇ -4 desaturase.
  • These C_ ⁇ or C 20 - 22 fatty acid molecules can be isolated from the organism in the form of an oil, lipid or a free fatty acid. Suitable organisms are, for example, those mentioned above. Preferred organisms are transgenic plants.
  • An embodiment according to the invention are oils, lipids or fatty acids or fractions thereof which have been produced by the process described above, particularly preferably oil, lipid or a fatty acid composition which comprise PUFAs and originate from transgenic plants.
  • a further embodiment according to the invention is the use of the oil, lipid or the fatty acid composition in feed, food, cosmetics or pharmaceuticals.
  • oil or fat is understood to mean a fatty acid mixture which contains unsaturated, saturated, preferably esterified fatty acid (s). It is preferred that the oil or fat has a high proportion of unsaturated, non-conjugated esterified fatty acid (s), in particular linoleic acid, ⁇ -linolenic acid, dihomo- ⁇ -linolenic acid, arachidonic acid, ⁇ -linolenic acid, stearidonic acid, eicotetraenoic acid or eicosapentaenoic acid , Preferably the proportion of unsaturated esterified fatty acids is about 30%, more preferred is 50%, more preferred is 60%, 70%, 80% or more.
  • the proportion of fatty acid after conversion of the fatty acids into the methyl esters can be determined by gas chromatography by transesterification.
  • the oil or fat can be various other saturated or unsaturated fatty acids, e.g. Calendulic acid, palmitic, stearic, oleic acid etc. contain.
  • the proportion of the various fatty acids in the oil or fat can fluctuate depending on the starting plant.
  • the compounds of the formula I prepared in the process and containing polyunsaturated fatty acids with at least two double bonds are sphingolipids, phosphoglycerides, lipids, glycolipids, phospholipids, monoacylglycerol, diacylglycerol, triacylglycerol or other fatty acid esters.
  • the polyunsaturated fatty acids containing can be liberated, for example via an alkali treatment, for example aqueous KOH or NaOH or acid hydrolysis, advantageously in the presence of an alcohol such as methanol or ethanol, or via enzymatic cleavage and isolated via, for example Phase separation and subsequent acidification using, for example, H 2 S0 4 .
  • the fatty acids can also be released directly without the workup described above.
  • the nucleic acids used in the method can either lie on a separate plasmid or be integrated into the genome of the host cell.
  • the integration can be random or by recombination such that the native gene is replaced by the inserted copy, thereby modulating the production of the desired compound by the cell, or by using a gene in trans so that the The gene is functionally linked to a functional expression unit which contains at least one sequence ensuring expression of a gene and at least one sequence ensuring polyadenylation of a functionally transcribed gene.
  • the nucleic acids are advantageously introduced into the plants via multi-expression cassettes or constructs for the multiparallel seed-specific expression of genes.
  • Mosses and algae are the only known plant systems that produce significant amounts of polyunsaturated fatty acids such as arachidonic acid (ERA) and / or eicosapentaenoic acid (EPA) and / or docosahexaenoic acid (DHA).
  • ERA arachidonic acid
  • EPA eicosapentaenoic acid
  • DHA docosahexaenoic acid
  • Mosses contain PUFAs in membrane lipids while algae, algae-related organisms and some fungi also accumulate significant amounts of PUFAs in the triacylglycerol fraction.
  • nucleic acid molecules which are isolated from those strains which also accumulate PUFAs in the triacylglycerol fraction are particularly advantageous for the process according to the invention and thus for modifying the lipid and PUFA production system in a host, in particular plants such as oil crop plants, for example Rapeseed, canola, flax, hemp, soy, sunflowers, borage. They can therefore be used advantageously in the process according to the invention.
  • the polyunsaturated C ⁇ s fatty acids must first be desaturated by the enzymatic activity of a desaturase and then extended by at least two carbon atoms using an elongase. After one round of elongation, this enzyme activity leads to C 2 o fatty acids, and after two or three rounds of elongation to C 22 or C 24 fatty acids.
  • the activity of the desaturases and elongases used according to the invention preferably leads to C 8 ⁇ , Co ⁇ and / or C 22 fatty acids with at least two double bonds in the fatty acid molecule, preferably with three, four or five double bonds, particularly preferably to C ⁇ 8 ⁇ and / or C 2 o-fatty acids with at least two double bonds in the fatty acid molecule, preferably with three, four or five double bonds in the molecule.
  • further desaturation steps such as one in the ⁇ -5 position can take place.
  • Arachidonic acid and eicosapentaenoic acid are particularly preferred as products of the process according to the invention.
  • the C ⁇ s fatty acids with at least two double bonds in the fatty acid can be extended by the enzymatic activity according to the invention in the form of the free fatty acid or in the form of the esters, such as phospholipids, glycolipids, sphingolipids, phosphoglycerides, monoacylglycerol, diacylglycerol or triacylglycerol.
  • esters such as phospholipids, glycolipids, sphingolipids, phosphoglycerides, monoacylglycerol, diacylglycerol or triacylglycerol.
  • the nucleic acids can be used for the genetic modification of a broad spectrum of plants, so that they become a better or more efficient producer of one or more lipid-derived products, such as PUFAs.
  • This improved production or efficiency in the production of a product derived from lipids, such as PUFAs can be brought about by the direct effect of the manipulation or an indirect effect of this manipulation.
  • the number or activity of the desaturase protein or gene and of gene combinations of desaturases and elongases can be increased, so that larger amounts of these compounds are produced de novo because the organisms lacked this activity and ability to biosynthesize before the introduction of the corresponding gene.
  • the use of different divergent, ie different sequences at the DNA sequence level, can also be advantageous, or the use of promoters for gene expression, which enables a different temporal gene expression, for example depending on the maturity level of a seed or oil-storing tissue.
  • Fatty acids and lipids are desirable even as fine chemicals; by optimizing the activity or increasing the number of one or more desaturases and / or elongases that are involved in the biosynthesis of these compounds, or by destroying the activity of one or more desaturases that are involved in the degradation of these compounds, it may be possible to use the To increase the yield, production and / or efficiency of the production of fatty acid and lipid molecules from plants.
  • the isolated nucleic acid molecules used in the method according to the invention code for proteins or parts thereof, the proteins or the individual protein or parts thereof containing an amino acid sequence which is sufficiently homologous to an amino acid sequence of the sequence SEQ ID NO: 2, 4, 6, 8, 10 , 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 or 32, so that the protein or part thereof maintains desaturase or elongase activity.
  • the protein or the part thereof which is encoded by the nucleic acid molecule has its essential enzymatic activity and the ability to participate in the metabolism of compounds necessary for the construction of cell membranes of plants or in the transport of molecules across these membranes.
  • the protein encoded by the nucleic acid molecules is at least about 50%, preferably at least about 60% and more preferably at least about 70%, 80% or
  • the protein is preferably a full-length protein which is essentially homologous in parts to an entire
  • the essential enzymatic activity of the desaturases and the elongase used is to be understood as compared to the sequences by SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15,
  • 25 17, 19, 21, 23, 25, 27, 29 or 31 encoded proteins / enzymes in comparison still have at least one enzymatic activity of at least 10%, preferably 20%, particularly preferably 30% and very particularly 40% and thus on the metabolism necessary to build up fatty acids in a plant cell
  • Nucleic acids which can advantageously be used in the process originate from fungi or plants such as algae or mosses such as the genera Physcomitrella, Thraustochytrium, Phytophtora, Ceratodon, Isochysis, Aleurita, Muscarioides, Mortierella, Borago, Phaeodactylum, Crypthecodinium or from nematitis, such as Ceanorhabod
  • Phytophtora infestans Ceratodon purpureus, Isochrysis galbana, Aleurita farinosa, Muscarioides viallii, Mortierella alpina, Borago officinalis, Phaeodactylum tricormutum or Ceanorhabditis elegans.
  • the isolated nucleotide sequences used can code for desaturases or elongases which bind to a nucleotide sequence of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27 , 29 or 31 hybridize, eg hybridize under stringent conditions.
  • the nucleic acid sequences used in the method are advantageously introduced in an expression cassette which enables the expression of the nucleic acids in plants.
  • Advantageous expression cassettes are reproduced in SEQ ID NO: 33 to 37.
  • the nucleic acid sequences coding for the desaturases and / or the elongases are advantageously functionally linked with one or more regulation signals to increase gene expression.
  • These regulatory sequences are intended to enable targeted expression of the genes and protein expression. Depending on the host organism, this can mean, for example, that the gene is only expressed and / or overexpressed after induction, or that it is expressed and / or overexpressed immediately.
  • these regulatory sequences are sequences to which inducers or repressors bind and thus regulate the expression of the nucleic acid.
  • the natural regulation of these sequences may still be present in front of the actual structural genes and may have been genetically modified so that the natural regulation has been switched off and the expression of the genes has been increased.
  • the gene construct can also advantageously contain one or more so-called "enhancer sequences" functionally linked to the promoter, which enable increased expression of the nucleic acid sequence. Additional advantageous sequences, such as further regulatory elements or terminators, can also be inserted at the 3 'end of the DNA sequences.
  • This gene construct or the gene constructs can be expressed together in the host organism.
  • the gene construct or the gene constructs can be inserted in one or more vectors and freely present in the cell or else inserted in the genome. It is advantageous for the insertion of further genes in the host genome if the genes to be expressed are present together in one gene construct.
  • the regulatory sequences or factors can preferably have a positive influence on the gene expression of the introduced genes and thereby increase it.
  • the regulatory elements can advantageously be strengthened at the transcription level by using strong transcription signals such as promoters and / or "enhancers".
  • an increase in translation is also possible, for example, by improving the stability of the mRNA.
  • Another embodiment of the invention are one or more gene constructs which contain one or more sequences which are represented by Seq ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 31 are defined and acc.
  • SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 or 32 encode polypeptides.
  • the desaturases mentioned introduce a double bond in the ⁇ -5 or ⁇ -6 position, the substrate having one, two, three or four double bonds.
  • the elongase ( ⁇ -6 elongase) has an enzyme activity that extends a fatty acid by at least two carbon atoms. The same applies to their homologs, derivatives or analogs which are functionally linked to one or more regulation signals, advantageously to increase gene expression.
  • Advantageous regulatory sequences for the new method are present, for example, in promoters, such as the cos, tac, trp, tet, trp-tet, lpp, lac, lpp-lac, lacis, T7 and T5. , T3-, gal-, trc-, ara-, SP6-, -P R - or ⁇ -Pi, -promotor and are advantageously used in Gram-negative bacteria.
  • promoters such as the cos, tac, trp, tet, trp-tet, lpp, lac, lpp-lac, lacis, T7 and T5.
  • promoters such as the cos, tac, trp, tet, trp-tet, lpp, lac, lpp-lac, lacis, T7 and T5.
  • promoters such as the cos, tac, trp, tet, trp-tet,
  • Further advantageous regulatory sequences are, for example, in the Gram-positive promoters amy and SP02, in the yeast or fungal promoters ADC1, MF ⁇ , AC, P-60, CYCl, GAPDH, TEF, rp28, ADH or in the plant promoters CaJ_V / 35S [ Franck et al., 1980, Cell 21: 285-294], PRP1 [Ward et al., Plant. Mol. Biol. 22 (1993)], SSU, OCS, lib4, usp, STLS1, B33, nos or in the ubiquitin or phaseolin promoter.
  • inducible promoters are also advantageous, such as those in EP-A-0 388 186 (benzylsulfonamide inducible), Plant J. 2, 1992: 397-404 (Gatz et al., Tetracycline inducible), EP-A-0 335 528 (induction of abzisic acid) or WO 93/21334 (ethanol or cyclohexenol inducible) described promoters.
  • Further suitable plant promoters are the cytosolic FBPase promoter or the potato ST-LSI promoter (Stockhaus et al., EMBO J.
  • promoters which enable expression in tissues which are involved in fatty acid biosynthesis.
  • seed-specific promoters such as the USP promoter according to the embodiment, but also other promoters such as the LeB4, DC3, phaseolin or napin promoter are very particularly advantageous.
  • promoters are seed-specific promoters that can be used for monocotyledonous or dicotyledonous plants and in US 5,608,152 (napin promoter from rapeseed), WO 98/45461 (oleosin promoter from Arobidopsis), US 5,504,200 (phaseolin promoter from Phaseolus vulgaris) ), WO 91/13980 (Bce4 promoter from Brassica), by Baeumlein et al., Plant J., 2, 2, 1992: 233-239 (LeB4 promoter from a legume), these promoters being suitable for dicotyledons suitable.
  • the following are seed-specific promoters that can be used for monocotyledonous or dicotyledonous plants and in US 5,608,152 (napin promoter from rapeseed), WO 98/45461 (oleosin promoter from Arobidopsis), US 5,504,200 (phaseolin promoter from Phaseolus vulgaris) ), WO 91/13980
  • Promoters are suitable, for example, for monocotyledons lpt-2 or lpt-1 promoter from barley (WO 95/15389 and WO 95/23230), hordein promoter from barley and other suitable promoters described in WO 99/16890.
  • the PUFA biosynthesis genes should advantageously be expressed seed-specifically in oil seeds.
  • seed-specific promoters can be used, or those promoters that are active in the embryo and / or in the endosperm.
  • seed-specific promoters can be isolated from both dicotolydonous and monocotolydonous plants.
  • Legumes B4 (LegB4 promoter) [Bäumlein et al., Plant J., 2,2, 1992], Lpt2 and Ipt1 (barley) [WO 95/15389 u. WO95 / 23230], seed specific promoters from rice, maize u.
  • Plant gene expression can also be facilitated via a chemically inducible promoter (see an overview in Gatz
  • Chemically inducible promoters are particularly suitable if it is desired that the gene expression be carried out in a time-specific manner. Examples of such promoters are a salicylic acid-inducible promoter (WO 95/19443), a tetracycline-inducible
  • ⁇ -6-desaturase which encode ⁇ -5-desaturase or the ⁇ -6-elongase, are expressed under the control of one's own, preferably a different promoter, since repeating sequence motifs for instability of the T-DNA or for recombination
  • the expression cassette is advantageously constructed in such a way that a promoter is followed by a suitable interface for inserting the nucleic acid to be expressed, advantageously in a polylinker, and optionally a terminator behind the polylinker. This sequence again
  • nucleic acid sequences are inserted for expression via the suitable interface, for example in the polylinker behind the promoter.
  • Each nucleic acid sequence advantageously has its own promoter and possibly its own terminator. However, it is also possible to insert several nucleic acid sequences behind a promoter and possibly 0 in front of a terminator.
  • the insertion point or the sequence of the inserted nucleic acids in the expression cassette is not of crucial importance, that is, a nucleic acid sequence can be inserted in the first or last position in the cassette without the expression 5 being significantly influenced thereby.
  • Different promoters such as the USP, LegB4 or DC3 promoter and different terminators can advantageously be used in the expression cassette be used.
  • the transcription of the introduced genes should advantageously be terminated by suitable terminators at the 3 'end of the introduced biosynthetic genes (behind the stop codon).
  • suitable terminators at the 3 'end of the introduced biosynthetic genes (behind the stop codon).
  • different terminator sequences should be used for each gene.
  • the gene construct can also comprise further genes which are to be introduced into the organisms. It is possible and advantageous to introduce and express regulatory genes, such as genes for inducers, repressors or enzymes, which intervene in the regulation of one or more genes of a biosynthetic pathway due to their enzyme activity. These genes can be of heterologous or homologous origin. Furthermore, further biosynthesis genes of the fatty acid or lipid metabolism can advantageously be contained in the nucleic acid construct or gene construct or these genes can be located on a further or more further nucleic acid constructs.
  • regulatory genes such as genes for inducers, repressors or enzymes, which intervene in the regulation of one or more genes of a biosynthetic pathway due to their enzyme activity. These genes can be of heterologous or homologous origin.
  • further biosynthesis genes of the fatty acid or lipid metabolism can advantageously be contained in the nucleic acid construct or gene construct or these genes can be located on a further or more further nucleic acid constructs.
  • the regulatory sequences or factors can preferably have a positive influence on the gene expression of the introduced genes and thereby increase it.
  • the regulatory elements can advantageously be strengthened at the transcription level by using strong transcription signals such as promoters and / or "enhancers".
  • an increase in translation is also possible, for example, by improving the stability of the mRNA.
  • the expression cassettes can be inserted directly can be used in the plant or introduced into a vector.
  • vectors contain the nucleic acid used in the process, which code for ⁇ -5 or ⁇ -6 desatures or ⁇ -6 elonagases, or a nucleic acid construct which, alone or in combination with other biosynthetic genes, of the nucleic acid used Fatty acid or lipid metabolism.
  • vector refers to a nucleic acid molecule that can transport another nucleic acid to which it is attached.
  • plasmid which stands for a circular double-stranded DNA loop into which additional DNA segments can be ligated.
  • viral vector is another type of vector, whereby additional DNA segments can be ligated into the viral genome.
  • vectors can replicate autonomously in a host cell into which they have been introduced (e.g. bacterial vectors with a bacterial origin of replication). Other vectors are advantageously integrated into the genome of a host cell when they are introduced into the host cell and thereby replicated together with the host genome. In addition, certain vectors can control the expression of genes to which they are operably linked. These vectors are referred to here as "expression vectors". Expression vectors that are suitable for recombinant DNA techniques are usually in the form of plasmids. In the present description, "plasmid” and “vector” can be used interchangeably because the plasmid is the most commonly used vector form. However, the invention is intended to encompass these other expression vector forms, such as viral vectors, which perform similar functions.
  • vector is also intended to include other vectors which are known to the person skilled in the art, such as phages, viruses such as SV40, CMV, TMV, transposons, IS elements, phasmids, phagemids, cosmids, linear or circular DNA.
  • the recombinant expression vectors advantageously used in the method comprise the nucleic acids described below or the gene construct described above in a form which is suitable for expression of the nucleic acids used in a host cell, which means that the recombinant expression vectors selected one or more regulatory sequences, based on of the host cells to be used for expression, which is operably linked to the nucleic acid sequence to be expressed.
  • operably linked means that the nucleotide sequence of interest is bound to the regulatory sequence (s) in such a way that the expression of the nucleotide sequence is possible and they are linked to one another so that both sequences fulfill the predicted function ascribed to the sequence (for example in an in vitro transcription / translation system or in a host cell when the vector is introduced into the host cell) ,
  • regulatory sequence is intended to encompass promoters, enhancers and other expression control elements (for example polyadenylation signals).
  • Regulatory sequences include those that control the constitutive expression of a nucleotide sequence in many host cell types and those that control the direct expression of the nucleotide sequence only in certain host cells under certain conditions.
  • the person skilled in the art knows that the design of the expression vector can depend on factors such as the selection of the host cell to be transformed, the extent of expression of the desired protein, etc.
  • the recombinant expression vectors used can be designed to express desaturases and elongases in prokaryotic or eukaryotic cells. This is advantageous since intermediate steps of vector construction are often carried out in microorganisms for the sake of simplicity.
  • desaturase and / or elongase genes in bacterial cells, insect cells (using baculovirus expression vectors), yeast and other fungal cells see Romanos, MA, et al. (1992) "Foreign gene expression in yeast: a review ", Yeast 8: 423-488; van den Hondel, CAMJJ, et al.
  • Suitable host cells are also discussed in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego , CA (1990).
  • the recombinant expression vector may alternatively be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.
  • fusion expression vectors include pGEX (Pharmacia Biotech Ine; Smith, DB, and Johnson, KS (1988) Gene 67: 31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) in which glutathione-S Transferase (GST), maltose E-binding protein or protein A is fused to the recombinant target protein.
  • GST glutathione-S Transferase
  • Suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al. (1988) Gene 69: 301-315) and pET llD (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 60-89).
  • Target gene expression from the pTrc vector is based on transcription by host RNA polymerase from a hybrid trp-lac fusion promoter.
  • the target gene expression from the pETIld vector is based on the transcription from a T7-gnl0-lac fusion promoter, which is mediated by a coexpressed viral RNA polymerase (T7 gnl). This viral polymerase is provided by BL21 (DE3) or HMS174 (DE3) host strains from a resident ⁇ prophage harboring a T7 gnl gene under the transcriptional control of the lacUV 5 promoter.
  • vectors suitable in prokaryotic organisms are known to the person skilled in the art, these vectors are, for example, in E. coli PLG338, pACYC184, the pBR series, such as pBR322, the pUC series, such as PUC18 or pUC19, the Mll3mp series, pKC30, pRep4, pHSl, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-III 113 -Bl, ⁇ gtll or pBdCI, in Streptomyces pIJlOl, pIJ364, pIJ702 or pIJ361, in Bacillus pUBllO, pC194 or pBDneba14, in PBDneba14.
  • the expression vector is a yeast expression vector.
  • yeast expression vectors for expression in the yeast S. cerevisiae include pYeDesaturasecl (Baldari et al. (1987) Embo J. 6: 229-234), pMFa (Kurjan and Herskowitz (1982) Cell 30: 933-943), pJRY88 (Schultz et al. (1987) Gene 54: 113-123) and pYES2 (Invitrogen Corporation, San Diego, CA).
  • Vectors and methods of constructing vectors suitable for use in other fungi include those described in detail in: van den Hondel, CAMJJ, & Punt, PJ (1991) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of fungi, JF Peberdy et al., eds., pp. 1-28, Cambridge University Press: Cambridge, or in: More Gene Manipulations in Fungi [JW Bennet & LL Lasure , Eds., Pp. 396-428: Academic Press: San Diego]
  • yeast vectors are, for example, pAG-1, YEp6, YEpl3 or pEMBLYe23.
  • the desaturases and / or elongases can be expressed in insect cells using baculovirus expression vectors.
  • Baculovirus vectors available for expression of proteins in cultured insect cells include the pAc series (Smith et al. (1983) Mol. Cell Biol .. 3: 2156-2165) and the pVL- Series (Lucklow and Summers (1989) Virology 170: 31-39).
  • the desaturases and / or elongases can be used in single-cell plant cells (such as algae), see Falciatore et al., 1999, Marine Biotechnology 1 (3): 239-251 and literature references cited therein, and plant cells from higher plants (eg spermatophytes, such as crops) are expressed.
  • plant expression vectors include those described in detail in: Becker, D., Kemper, E., Schell, J., and Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border ", Plant Mol. Biol. 20: 1195-1197; and Bevan, MW (1984) "Binary Agrobacterium vectors for plant transformation ", Nucl. Acids Res. 12: 8711-8721; Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Vol. 1, Engineering and Utilization, ed .: Kung and R. Wu, Academic Press, 1993, p 15-38.
  • a plant expression cassette preferably contains regulatory sequences which can control gene expression in plant cells and are operably linked so that each sequence can fulfill its function, such as termination of transcription, for example polyadenylation signals.
  • Preferred polyadenylation signals are those derived from Agrobacterium tumefaciens-t-DNA, such as gene 3 of the Ti plasmid pTiACH5 known as octopine synthase (Gielen et al., EMBO J. 3 (1984) 835ff.) Or functional equivalents thereof, but all other terminators which are functionally active in plants are also suitable.
  • a plant expression cassette preferably contains other functionally linked sequences, such as translation enhancers, for example the overdrive sequence, which is the 5 'untranslated leader sequence from tobacco mosaic virus, which contains the protein / RNA ratio increased (Gallie et al., 1987, Nucl. Acids Research 15: 8693-8711).
  • translation enhancers for example the overdrive sequence, which is the 5 'untranslated leader sequence from tobacco mosaic virus, which contains the protein / RNA ratio increased (Gallie et al., 1987, Nucl. Acids Research 15: 8693-8711).
  • Plant gene expression must be operably linked to a suitable promoter that performs gene expression in a timely, cell or tissue-specific manner.
  • useful promoters are constitutive promoters (Benfey et al., EMBO J. 8 (1989) 2195-2202), such as those derived from plant viruses, such as 35S CAMV (Franck et al., Cell 21 (1980) 285-294), 19S CaMV (see also US 5352605 and WO 84/02913) or plant promoters, such as that of the small subunit of the Rubisco described in US 4,962,028.
  • Chemically inducible promoters are particularly suitable if it is desired that the gene expression be carried out in a time-specific manner.
  • Examples of such promoters are a salicylic acid-inducible promoter (WO 95/19443), a tetracycline-inducible promoter (Gatz et al. (1992) Plant J. 2, 397-404) and an ethanol-inducible promoter.
  • Promoters that react to biotic or abiotic stress conditions are also suitable promoters, for example the pathogen-induced PRPl gene promoter (Ward et al., Plant. Mol. Biol. 22 (1993) 361-366), the heat-inducible hsp80 promoter Tomato (US 5,187,267), the cold-inducible alpha amylase promoter from potato (WO 96/12814) or the wound-inducible pin III promoter (EP-A-0 375 091).
  • Suitable promoters are the Napingen promoter from rapeseed (US 5,608,152), the USP promoter from Vicia faba (Baeumlein et al., Mol Gen Genet, 1991, 225 (3): 459-67), the oleosin
  • Arabidopsis promoter (WO 98/45461), the Phaseolin promoter from Phaseolus vulgaris (US 5,504,200), the Bce4 promoter from Brassica (WO 91/13980) or the legumin B4 promoter (LeB4; Baeumlein et al., 1992 , Plant Journal, 2 (2): 233-9) and promoters which bring about the seed-specific expression in monocot plants, such as maize, barley, wheat, rye, rice etc.
  • Suitable noteworthy promoters are the lpt2 or lptl gene promoter from barley (WO 95/15389 and WO 95/23230) or those described in WO 99/16890 (promoters from the barley hordein gene, the rice glutelin gene , the rice oryzin gene, the rice prolamin gene, the wheat gliadin gene, wheat glutelin gene, the maize zein gene, the oat glutelin gene, the sorghum kasirin gene, the Rye secalin gene).
  • the multiparallel expression of the desaturases and / elongases used in the method may be desired alone or in combination with other desaturases or elongases.
  • Such expression cassettes can be introduced via a simultaneous transformation of a plurality of individual expression constructs or preferably by combining a plurality of expression cassettes on one construct. You can also use multiple vectors with each several expression cassettes are transformed and transferred to the host cell.
  • Promoters which bring about plastid-specific expression are also particularly suitable, since plastids are the compartment in which the precursors and some end products of lipid biosynthesis are synthesized.
  • Suitable promoters such as the viral RNA polymerase promoter, are described in WO 95/16783 and WO 97/06250, and the clpP promoter from Arabidopsis, described in WO 99/46394.
  • Vector DNA can be introduced into prokaryotic or eukaryotic cells using conventional transformation or transfection techniques.
  • transformation and “transfection”, conjugation and transduction, as used here, are intended to mean a large number of methods known in the prior art for introducing foreign nucleic acid (eg DNA) into a host cell, including calcium phosphate or calcium chloride coprecipitation , DEAE-dextran-mediated transfection, lipofection, natural competence, chemically mediated transfer, electroporation or particle bombardment.
  • Suitable methods for transforming or transfecting host cells, including plant cells, can be found in Sambrook et al.
  • Host cells which are suitable in principle for taking up the nucleic acid according to the invention, the gene product according to the invention or the vector according to the invention are all prokaryotic or eukaryotic organisms.
  • the host organisms which are advantageously used are organisms, such as bacteria, fungi, yeasts or plant cells, preferably plants or parts thereof.
  • Mushrooms, yeasts or plants are preferably used, particularly preferably plants, very particularly preferably plants, such as oil fruit plants, which contain large amounts of lipid compounds, such as rapeseed, evening primrose, hemp, diesel, peanut, canola, flax, soy, safflower, sunflower, borage , or plants, such as corn, wheat, rye, oats, triticale, rice, barley, cotton, manioc, pepper, tagetes, Solanaceae plants, such as potato, tobacco, eggplant and tomato, Vicia species, pea, alfalfa, bush plants (coffee, cocoa, tea), salix species, trees (oil plant, coconut) as well as perennial grasses and forage crops.
  • Particularly preferred plants according to the invention are oil fruit plants such as soybean, peanut, rapeseed, canola, flax, hemp, evening primrose, sunflower, safflower, trees (oil palm, coconut).
  • nucleic acid sequences are advantageously used which code for the polypeptides with a ⁇ -6-desaturase activity, ⁇ -6-elongase activity or ⁇ -5-desaturase activity, selected from the group:
  • SEQ ID NO: 2 SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26,
  • SEQ ID NO: 15 SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29 or SEQ ID NO: 31 shown nucleic acid sequence, which for polypeptides with the in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12,
  • SEQ ID NO: 14 encodes the amino acid sequences shown and have at least 50% homology at the amino acid level without the enzymatic action of the polypeptides being significantly reduced.
  • the above-mentioned nucleic acid according to the invention comes from organisms such as animals, ciliates, fungi, plants such as algae or dinoflagellates, which can synthesize PUFAs.
  • nucleic acid (molecule) also encompasses the untranslated sequence located at the 3 'and 5' ends of the coding gene region: at least 500, preferably 200, particularly preferably 100 nucleotides of the sequence upstream of the 5 ' End of the coding region and at least 100, preferably 50, particularly preferably 20 nucleotides of the sequence downstream the 3 'end of the coding gene region.
  • An "isolated" nucleic acid molecule is separated from other nucleic acid molecules that are present in the natural source of the nucleic acid.
  • an "isolated" nucleic acid preferably has no sequences 5 which naturally flank the nucleic acid in the genomic DNA of the organism from which the nucleic acid originates (eg sequences which are located at the 5 'and 3' ends of the nucleic acid).
  • the isolated desaturase or elongase nucleic acid molecule may, for example, contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences that are natural flank the nucleic acid molecule in the genomic DNA of the cell from which the nucleic acid originates.
  • nucleic acid molecules used in the process e.g. a nucleic acid molecule with a nucleotide sequence of SEQ ID N0: 1 or a part thereof can be isolated using standard molecular biological techniques and the sequence information provided here. Also with the help of
  • nucleic acid molecule comprising a complete sequence of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13,
  • mRNA can be isolated from cells (e.g. by the guanidinium thiocyanate extraction method of Chirgwin et al. (1979) Biochemistry 18: 5294-5299)
  • Reverse transcriptase available from Gibco / BRL, Bethesda, MD, or AMV reverse transcriptase available from Seikagaku America, Inc., St.Petersburg, FL). Leave synthetic oligonucleotide primers for the amplification by means of the polymerase chain reaction
  • a nucleic acid according to the invention can be amplified using cDNA or alternatively genomic DNA as a template and suitable oligonucleotide primers according to 5 standard PCR amplification techniques.
  • the nucleic acid amplified in this way can be cloned into a suitable vector and characterized by means of DNA sequence analysis.
  • Oligonucleotides which correspond to a desaturase nucleotide sequence can be produced by standard synthesis methods, for example using an automatic DNA synthesizer.
  • 15 15, 17, 19, 21, 23, 25, 27, 29 or 31 means, for example, allelic variants with at least about 50 to 60%, preferably at least about 60 to 70%, more preferably at least about 70 to 80%, 80 to 90 % or 90 to 95% and more preferably at least about 95%, 96%, 97%, 98%, 99% or
  • isolated nucleic acid molecules of a nucleotide sequence which are attached to one of the sequences shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15,
  • allelic variants include, in particular, functional variants which are deletion, insertion or substitution of nucleotides from / in the
  • enzymatic activity of desaturase or elongase means proteins with at least 10%, preferably 20%, particularly preferably 30%, very particularly preferably 40% of the original enzyme activity, compared with that by
  • Homologues of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 31 also mean, for example, bacterial, 45 fungal and plant homologues, shortened sequences , single-stranded DNA or RNA of the coding and non-coding DNA sequence.
  • Homologs of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 31 also means derivatives, such as promoter variants.
  • the promoters upstream of the specified nucleotide sequences can be modified by one or more nucleotide exchanges, by insertion (s) and / or deletion (s), without however impairing the functionality or activity of the promoters. It is also possible that the activity of the promoters is increased by modifying their sequence or that they are completely replaced by more active promoters, even from heterologous organisms.
  • nucleic acids and protein molecules with desaturase or elongase activity which are involved in the metabolism of lipids and fatty acids, PUFA cofactors and enzymes or in the transport of lipophilic compounds across membranes, are described in Process for modulating the production of compounds of the general formula I in transgenic plants, such as maize, wheat, rye, oats, triticale, rice, barley, soybean, peanut, cotton, linu species such as oil or fiber flax, Brassica species such as rape , Canola and turnip, pepper, sunflower, borage, evening primrose and tagetes, Solanacaen plants such as potato, tobacco, eggplant and tomato, Vicia species, pea, cassava, alfalfa, bush plants (coffee, cocoa, tea), Salix species , Trees (oil palm, coconut) and perennial grasses and forage crops, either directly (eg if the overexpression or optimization of a fatty acid biosynthesis protein has a direct influence
  • PUFAs polyunsaturated fatty acids
  • PUFAs polyunsaturated fatty acids
  • PUFAs polyunsaturated fatty acids
  • Lipid synthesis can be divided into two sections: the synthesis of fatty acids and their binding to sn-glycerol-3-phosphate and the addition or modification of a polar head group.
  • Common lipids used in membranes include phospholipids, glycolipids, sphingolipids and phosphoglycerides.
  • Fatty acid synthesis begins with the conversion of acetyl-CoA into malonyl-CoA by the acetyl-CoA carboxylase or in acetyl-ACP by the acetyl transacylase. After a condensation reaction, these two product molecules together form acetoacetyl-ACP, which is converted via a series of condensation, reduction and dehydration reactions, so that a saturated fatty acid molecule with the desired chain length is obtained.
  • the production of the unsaturated fatty acids from these molecules is catalysed by specific desaturases, either aerobically using molecular oxygen or anaerobically (for fatty acid synthesis in microorganisms see FC Neidhardt et al. (1996) E. coli and Salmonella.
  • Precursors for PUFA biosynthesis are, for example, oleic acid, linoleic and linolenic acid. These C ⁇ s-carbon fatty acids must be extended to C 20 and C 22 in order to obtain fatty acids of the Eicosa and Docosa chain type.
  • desaturases used in the process such as the ⁇ -5 and ⁇ -6 desaturase and the ⁇ -6 elongase, arachidonic acid and eicosapentaenoic acid as well as various other long-chain PUFAs can be obtained, extracted and used for various purposes in food, feed, cosmetics or pharmaceuticals Applications are used.
  • C ⁇ 8 + C o fatty acids with at least two, three, four or five double bonds in the fatty acid molecule preferably to C 2 o ⁇ fatty acids with advantageously three, four or five double bonds in the fatty acid molecule, can be produced.
  • Desaturation can take place before or after elongation of the corresponding fatty acid.
  • Substrates in the process according to the invention are, for example, linoleic acid, ⁇ -linolenic acid, ⁇ -linolenic acid, dihomo- ⁇ -linolenic acid, eicosatetraenoic acid or stearidonic acid.
  • preferred Substrates are linoleic acid, ⁇ -linolenic acid and / or ⁇ -linolenic acid, dihomo- ⁇ -linolenic acid or arachidonic acid, eicosatetraenoic acid or eicosapentaenoic acid.
  • the C ⁇ s or C 20 ⁇ fatty acids with at least two double bonds in the fatty acid are obtained in the process according to the invention in the form of the free fatty acid or in the form of its esters (see formula I), for example in the form of their glycerides.
  • glycolide means a glycerol esterified with one, two or three carboxylic acid residues (mono-,
  • Di- or triglyceride Di- or triglyceride.
  • Glyceride is also understood to mean a mixture of different glycerides.
  • the glyceride or the glyceride mixture can contain further additives, e.g. contain free fatty acids, antioxidants, proteins, carbohydrates, vitamins and / or other substances.
  • a “glyceride” in the sense of the method according to the invention is further understood to mean derivatives derived from glycerol.
  • this also includes glycerophospholipids and glyceroglycolipids.
  • Glycerophospholipids such as lecithin (phosphatidylcholine), cardiolipin, phosphatidylglycerol, phosphatidylserine and alkyl acylglycerophospholipids may be mentioned by way of example.
  • fatty acids then have to be transported to different modification sites and incorporated into the triacylglycerol storage lipid.
  • Another important step in lipid synthesis is the transfer of fatty acids to the polar head groups, for example by glycerol fatty acid acyl transferase (see Frentzen, 1998, Lipid, 100 (4-5): 161-166).
  • the PUFAs produced in the process comprise a group of molecules which higher animals can no longer synthesize and therefore have to absorb or which higher animals are no longer able to produce themselves sufficiently and therefore have to absorb, although they are easily synthesized by other organisms, such as bacteria For example, cats can no longer synthesize arachidonic acid.
  • desaturase or elongase or “desaturase or elongase polypeptide” in the sense of the invention encompasses proteins which participate in the desaturation and elongation of fatty acids, as well as their homologs, derivatives or analogs.
  • desaturase or elongase nucleic acid sequence encompass nucleic acid sequences which encode a desaturase or elongase and in which a part can be a coding region and also corresponding 5 'and 3' untranslated sequence regions.
  • production or productivity are known in the art and include the concentration of the fermentation product (compounds of the formula I) which is formed in a certain time period and a certain fermentation volume (for example kg product per hour per liter).
  • efficiency of production encompasses the time it takes to achieve a certain production volume (e.g. how long it takes the cell to set up a certain throughput rate of a fine chemical).
  • yield or product / carbon yield is known in the art and encompasses the efficiency of converting the carbon source into the product (ie the fine chemical). This is usually expressed, for example, as kg of product per kg of carbon source.
  • Increasing the yield or production of the compound increases the amount of molecules or suitable molecules of this compound obtained in a given amount of culture over a predetermined period of time.
  • biosynthesis or biosynthetic pathway are known in the art and encompass the synthesis of a compound, preferably an organic compound, by a cell from intermediate compounds, for example in a multi-step and highly regulated process.
  • degradation or degradation pathway are known in the art and include the cleavage of a compound, preferably an organic compound, by a cell into degradation products (more generally, smaller or less complex molecules), for example in a multi-step and highly regulated process.
  • metabolism is known in the specialist field and encompasses all of the biochemical reactions that take place in an organism. The metabolism of a particular compound (eg the metabolism of a fatty acid) then encompasses all of the biosynthetic, modification and degradation pathways of this compound in the cell that relate to this compound. 5
  • derivatives of the nucleic acid molecule according to the invention encode proteins with at least 50%, advantageously about 50 to 60%, preferably at least about 60 to 70% and more preferably at least about 70 to 80%,
  • the invention also encompasses nucleic acid molecules which differ from one of the nucleotide sequences shown in SEQ ID NO: 1, 3, 5 or 11 (and parts thereof) because of the degenerate genetic code and thus the same desaturase
  • 25 encode as that encoded by the nucleotide sequences shown in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 31.
  • DNA sequence polymorphisms that lead to changes in the amino acid sequences of the desaturases or elongases can exist within a population.
  • These genetic polymorphisms in the desaturase or elongase gene 35 can exist between individuals within a population due to natural variation. These natural variants usually cause a variance of 1 to 5% in the nucleotide sequence of the desaturase or elongase gene.
  • Nucleic acid molecules which are advantageous for the method according to the invention can be used on the basis of their homology to the desaturase or elongase nucleic acids disclosed here the sequences or a part thereof are isolated as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions.
  • isolated nucleic acid molecules can be used that are at least 15 nucleotides long and under stringent conditions with the nucleic acid molecules that have a nucleotide sequence of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 31, hybridize.
  • Nucleic acids of at least 25, 50, 100, 250 or more nucleotides can also be used.
  • hybridizes under stringent conditions is intended to describe hybridization and washing conditions under which nucleotide sequences which are at least 60% homologous to one another usually remain hybridized to one another.
  • the conditions are preferably such that sequences which are at least about 65%, more preferably at least about 70% and even more preferably at least about 75% or more homologous to one another usually remain hybridized to one another.
  • the temperature is about 42 ° C under standard conditions.
  • the hybridization conditions for DNA: DNA hybrids are preferably, for example, 0.1 ⁇ SSC and 20 ° C. to 45 ° C., preferably between 30 ° C. and 45 ° C.
  • the hybridization conditions for DNA: RNA hybrids are preferably, for example, 0.1 ⁇ SSC and 30 ° C. to 55 ° C., preferably between 45 ° C. and 55 ° C.
  • the sequences are written for the purpose of optimal comparison with one another (for example, gaps can be inserted in the sequence of a protein or a nucleic acid in order to produce an optimal alignment with the other protein or the other nucleic acid).
  • the amino acid residues or nucleotides at the corresponding amino acid positions or nucleotide positions are then compared.
  • amino acid or nucleic acid “identity”).
  • the terms homology and identity can thus be regarded as synonymous.
  • An isolated nucleic acid molecule that encodes a desaturase or elongase that results in a protein sequence of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 or 32 is homologous, by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 31 are generated so that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be made into one of the sequences of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 31 by standard techniques such as site-specific mutagenesis and PCR mediated mutagenesis.
  • conservative amino acid substitutions are made on one or more of the predicted non-essential amino acid residues.
  • conservative amino acid substitution the amino acid residue is exchanged for an amino acid residue with a similar side chain. Families of amino acid residues with similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g.
  • lysine, arginine, Histidine acidic side chains (eg aspartic acid, glutamic acid), uncharged polar side chains (eg glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), non-polar side chains, (eg alanine, valine, leucine, isoleucine, proline, phenylalanine , Methionine, tryptophan), beta-branched side chains (e.g. threonine, valine, isoleucine) and aromatic side chains (e.g. tyrosine, phenylalanine, tryptophan, histidine).
  • acidic side chains eg aspartic acid, glutamic acid
  • uncharged polar side chains eg glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine
  • non-polar side chains eg alanine, va
  • a predicted non-essential amino acid residue in a desaturase or elongase is thus preferably replaced by another amino acid residue from the same side chain family.
  • the mutations can be randomly introduced over all or part of the desaturase coding sequence, for example by saturation mutagenesis, and the resulting mutants can be screened for the desaturase activity described herein to identify mutants that desaturase or maintain elongase activity. After mutagenesis of one of the sequences of SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 or 31, the encoded protein can be expressed recombinantly, and the activity of the protein can be determined, for example, using the tests described here.
  • Cloning methods such as restriction cleavage, agarose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids to nitrocellulose and nylon membranes, connection of DNA fragments, transformation of Escherichia coli and yeast cells, cultivation of bacteria and sequence analysis of recombinant DNA were carried out as described in Sairibrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) or Kaiser, Michaelis and Mitchell (1994) "Methods in Yeast Genetics” (Cold Spring Harbor Laboratory Press: ISBN 0-87969-451-3) , b) chemicals
  • RNA Protonema tissue can be obtained from moss by the GTC method (Reski et al., 1994, Mol. Gen. Genet., 244: 352-359).
  • Agrobacterium -mediated plant transformation can be performed, for example, using GV3101- (pMP90-) (Koncz and Schell, Mol. Gen. Genet. 204 (1986) 383-396) or LBA4404- (Clontech) or C58C1 pGV2260 (Deblaere et al 1984 , Nucl. Acids Res. 13, 35 4777-4788) Agrobacterium tumefaeiens strain.
  • the transformation can be carried out using standard transformation techniques (also Deblaere et al. 1984).
  • the Agrobacterium-mediated plant transformation can be carried out using standard transformation and regeneration techniques (Gelvin, Stanton B., Schilperoort, Robert A., Plant Molecular Biology Manual, 2nd ed., Dordrecht: 45 Kluwer Academic Publ., 1995, in Sect., Ringbuc Central signature: BT11-P ISBN 0-7923-2731-4; Glick, Bernard R., Thompson, John E., Methods in Plant Molecular Biology and Biotechnology, Boea Raton: CRC Press, 1993, 360 pages, ISBN 0-8493-5164-2).
  • rapeseed can be transformed using cotyledon or hypocotyl transformation (Moloney et al., Plant
  • Agrobacterium -mediated gene transfer in linseed can be carried out using, for example, one of Mlynarova et al. (1994) Plant Cell Report 13: 282-285 perform the technique described.
  • soybeans can be carried out using, for example, a technique described in EP-A-0 0424 047 (Pioneer Hi-Bred International) or in EP-A-0 0397 687, US 5,376,543, US 5,169,770 (University Toledo).
  • Binary vectors such as pBinAR (Höfgen and Willmitzer, Plant Science 66 (1990) 221-230) or pGPTV (Becker et al 1992, Plant Mol. Biol. 20: 1195-1197) can be used for plant transformation.
  • the binary vectors can be constructed by ligating the cDNA in sense or antisense orientation in T-DNA. 5 'of the cDNA, a plant promoter activates the transcription of the cDNA. A polyadenylation sequence is located 3 'from the cDNA.
  • the binary vectors can carry different marker genes.
  • nptll marker gene coding for kanamycin resistance mediated by neomycin phosphotransferase can be exchanged for the herbicide-resistant form of an acetolactate synthase gene (AHAS or ALS).
  • the ALS gene is described in Ott et al., J. Mol. Biol. 1996, 263: 359-360.
  • the v-ATPase-cl promoter can be cloned into the plasmid pBin19 or pGPTV and used for the marker gene expression by cloning in front of the ALS coding region.
  • the promoter mentioned corresponds to a 1153 base pair question ent from beta-Vulgaris (Plant Mol Biol, 1999, 39: 463-475). You can Both sulphonylureas and imidazolinones such as imazethapyr or sulphonylureas can be used as antimetabolites for selection.
  • Tissue-specific expression can be achieved using a tissue-specific promoter.
  • seed-specific expression can be achieved by cloning the DC3 or the LeB4 or the USP promoter or the phaseolin promoter 5 'of the cDNA. Any other seed-specific promoter element such as the Napin or Arcelin promoter
  • the CaMV-35S promoter or a v-ATPase Cl promoter can be used for constitutive expression in the whole plant.
  • genes coding for desaturases and elongases can be cloned in succession into a binary vector by constructing several expression cassettes in order to simulate the metabolic pathway in plants.
  • the protein to be expressed can be directed into a cellular compartment using a signal peptide, for example for plastids, mitochondria or the endoplasmic reticulum (Kermode, Crit. Rev. Plant Sei. 15, 4 (1996) 285-423).
  • the signal peptide is cloned 5 'in frame with the cDNA in order to achieve the subcellular localization of the fusion protein.
  • Expression cassettes consist of at least two functional units such as a promoter and a terminator. Further desired gene sequences such as targeting sequences, coding regions of genes or parts thereof, etc. can be inserted between the promoter and terminator.
  • promoters and terminators are used (USP promoter: Baeumlein et al., Mol Gen Genet, 1991, 225 (3): 459-67); OCS terminator: Gielen et al. EMBO J. 3 (1984) 835ff.) Isolated using the polymerase chain reaction and tailored with flanking sequences of your choice based on synthetic oligonucleotides.
  • the following oligonucleotides can be used, for example:
  • USP3 rear TCCCCCGGGATCGATGCCGGCAGATCTGCTGGCTATGAAGAAATT OCS1 front: AAAACTGCAGTCTAGAAGGCCTCCTGCTTTAATGAGATAT 0CS2 front: CGCGGATCCGATATCGGGCCCATCTAGCGTTAACCCCCTGCTTGATGAGAGCGTTAACCCCCTGCTTGATGAGAGAGGGTCCAT
  • OCS1 rear CCCAAGCTTGGCGCGCCGAGCTCGAATTCGTCGACGGACAATCAGTAAATTGA
  • OCS2 rear CCCAAGCTTGGCGCGCCGAGCTCGAATTCGTCGACGGACAATCAGTAAATTGA
  • OCS3 rear CCCAAGCTTGGCTCGGGGGAGCGCGTCGAGA
  • a promoter and a terminator are amplified via PCR. Then the terminator is cloned into a recipient plasmid and in a second step the promoter is inserted in front of the terminator. An expression cassette on a carrier plasmid is thus obtained.
  • the plasmids pUT1, 2 and 3 are created on the basis of the plasmid pUC19.
  • the constructs are defined in SEQ ID NO: 33, 34 to 42. They contain the USP promoter and the OCS terminator.
  • the construct pUT12 is created on the basis of these plasmids by cutting pUTl using Sall / Scal and cutting pUT2 using Xhol / Scal.
  • the fragments containing the expression cassettes are ligated and transformed into E. coli XLI blue MRF. After isolating ampicillin-resistant colonies, DNA is prepared and those clones which contain two expression cassettes are identified by restriction analysis.
  • the Xhol / Sall ligation of compatible ends has eliminated the two interfaces Xhol and Sall between the expression cassettes.
  • plasmid pUT12 which is defined in SEQ ID NO: 36.
  • pUTl2 is cut again using Sal / Scal and pUT3 is cut using Xhol / Scal.
  • the fragments containing the expression cassettes are ligated and transformed into E. coli XLI blue MRF.
  • DNA is prepared and those clones which contain three expression cassettes are identified by restriction analysis. In this way, a set of multi-expression cassettes is created that for insertion desired DNA can be used and is described in Table 1 and can also accommodate other expression cassettes.
  • the DC3 promoter is described in Thomas, Plant Cell 1996, 263: 359-368 and consists only of the region -117 to +26, B which is why it is one of the smallest known seed-specific promoters.
  • the expression cassettes can contain the same promoter several times or can be constructed using three different promoters.
  • Vectors used for plant transformation as well as the sequences of the inserted genes / proteins.
  • Polylinker or polylinker terminator 45 polylinkers which are advantageously used can be found in the sequences SEQ ID NO: 50 to 52.
  • Table 2 Multiple expression cassettes
  • seed-specific multi-expression cassettes such as e.g. to use the Napin promoter or the Arcelin-5 promoter.
  • the ⁇ -6 elongase Pp_PSEl is first inserted into the first cassette via BstXI and Xbal. Then the ⁇ -6-desaturase from moss (Pp_des6) is inserted into the 5 second cassette via BamHI / Nael and finally the ⁇ -5-desaturase from Phaeodactylum (Pt_des5) is inserted into the third cassette via BglII / Ncol.
  • the triple construct is given the name pARAl. Taking into account sequence-specific restriction interfaces, further expression cassettes according to Table 3 with the names pARA2, pARA3 and pARA4 can be created.
  • Pp Physcomitrella patens
  • Pt Phaeodactylum tricornutum 15
  • Pp_PSEl corresponds to the sequence from SEQ ID NO: 9.
  • PSE PUFA-specific ⁇ -6-elongase
  • Ce_des5 ⁇ -5 desaturase from Caenorhabditis elegans (Genbank Acc. No. AF078796)
  • Ce_des6 ⁇ -6 desaturase from Caenorhabditis elegans elegans
  • Ce_PSEl ⁇ -6-elongase from Caenorhabditis elegans (Genbank Acc. No. AF244356, bases 1-867)
  • the polylinker is newly synthesized as two double-stranded oligonucleotides, with an additional Ascl DNA sequence being inserted.
  • the oligonucleotide is inserted into the vector pGPTV using EcoRI and HindIII.
  • the cloning techniques required - 0 are known in the art and can just as described in Example 1 to be read.
  • Example 6 Examination of the expression of a recombinant gene product in a transformed organism
  • the activity of a recombinant gene product in the transformed host organism can be measured at the transcription and / or translation level.
  • a suitable method for determining the amount of transcription of the gene is to carry out a Northern blot as outlined below (for reference see Ausubel et al. (1988 ) Current Protocols in Molecular Biology, Wiley, New York, or the sample portion mentioned above), wherein a primer that is designed to bind to the gene of interest with a detectable
  • RNA label usually radioactive or chemiluminescent
  • RNA of a culture of the organism is extracted, separated on a gel, transferred to a stable matrix and incubated with this probe, the binding and extent of binding of the probe indicates the presence and also the amount of mRNA for this gene. This information indicates the level of transcription of the transformed gene.
  • Total cellular RNA can be derived from cells, tissues, or organs by several methods, all of which are known in the art, such as that of Bormann, E.R., et al. (1992) Mol. Microbiol. 6: 317-326.
  • RNA hybridization 20 ⁇ g of total RNA or 1 ⁇ g of poly (A) + RNA were analyzed by gel electrophoresis in agarose gels with a strength of 1.25% using formaldehyde, as described in Amasino (1986, Anal. Biochem. 152 , 304) separated by capillary attraction using 10 x SSC on positively charged nylon membranes (Hybond N +, Amersham, Braunschweig), immobilized by UV light and 3 hours at 68 ° C using hybridization buffer (10% dextran sulfate wt. / Vol., 1 M NaCl, 1% SDS, 100 mg herring sperm DNA) prehybridized.
  • hybridization buffer 10% dextran sulfate wt. / Vol., 1 M NaCl, 1% SDS, 100 mg herring sperm DNA
  • the DNA probe was labeled with the Highprime DNA labeling kit (Röche, Mannheim, Germany) during the prehybridization using alpha- 32 P-dCTP (Amersham, Braunschweig, Germany).
  • the hybridization was carried out after adding the labeled DNA probe in the same buffer at 68 ° C. overnight.
  • the washing steps were carried out twice for 15 min using 2 X SSC and twice for 30 min using 1 X SSC, 1% SDS at 68 ° C. guided.
  • the exposure of the closed filter was carried out at -70 ° C for a period of 1 to 14 T.
  • Standard techniques such as a Western blot can be used to examine the presence or relative amount of protein translated from this mRNA (see, e.g., Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York).
  • the total cellular proteins are extracted, separated by gel electrophoresis, transferred to a matrix, such as nitrocellulose, and incubated with a probe, such as an antibody, which specifically binds to the desired protein.
  • This probe is usually provided with a chemiluminescent or colorimetric label that is easy to detect. The presence and amount of the label observed indicates the presence and amount of the desired mutant protein present in the cell.
  • Example 7 Analysis of the effect of the recombinant proteins on the production of the desired product
  • the effect of genetic modification in plants, fungi, algae, ciliates or on the production of a desired compound can be determined by growing the modified microorganisms or the modified plant under suitable conditions (such as those described above) and that Medium and / or the cellular components for the increased production of the desired product (ie lipids or a fatty acid) is examined.
  • suitable conditions such as those described above
  • These analysis techniques are known to the person skilled in the art and include spectroscopy, thin-layer chromatography, staining methods of various types, enzymatic and microbiological methods and analytical chromatography, such as high-performance liquid chromatography (see for example Ullman, Encyclopedia of Industrial Chemistry, Vol. A2, pp. 89-90 and p.
  • the analytical methods include measurements of the amount of nutrients in the medium (e.g. sugar, hydrocarbons, nitrogen sources, phosphate and others
  • fatty acids abbreviations: FAME, fatty acid methyl ester; GC-MS, gas-liquid chromatography-mass spectrometry; TAG, triacylglycerol; TLC, thin-layer chromatography.
  • the unambiguous detection of the presence of fatty acid products can be obtained by analysis of recombinant organisms according to standard analysis methods: GC, GC-MS or TLC, as described variously by Christie and the references therein (1997, in: Advances on Lipid Methodology, Fourth Ed. : Christie, Oily Press, Dundee, 119-169; 1998, gas chromatography-mass spectrometry method, lipids 33: 343-353).
  • the material to be analyzed can be broken up by ultrasound treatment, glass mill grinding, liquid nitrogen and grinding, or other applicable methods.
  • the material must be centrifuged after breaking up.
  • the sediment is in aqua dest. resuspended, 10 min at 100 ° C heated, cooled on ice, and centrifuged again, followed by extraction in 0.5 M sulfuric acid in methanol with 2% dirthhoxypropane for 1 hour at 90 ° C, resulting in hydrolyzed oil and lipid compounds that give transmethylated lipids.
  • fatty acid methyl esters are extracted into petroleum ether and finally subjected to GC analysis using a capillary column (chrome pack, WCOT fused silica, CP-Wax-52 CB, 25 microm, 0.32 mm) at a temperature gradient between 170 ° C and 240 ° C for Subjected for 20 min and 5 min at 240 ° C.
  • the identity of the fatty acid methyl esters obtained must be defined using standards available from commercial sources (ie Sigma).
  • the Escherichia coli strain XLI Blue MRF 'kan (Stratagene) was used for subcloning the new desaturase pPDesaturasel from Physcomitrella patens.
  • the Saccharomyces cerevisiae strain INVSc 1 (Invitrogen Co.) for the functional expression of this gene.
  • E. coli was cultivated in Luria Bertini broth (LB, Duchefa, Haarlem, the Netherlands) at 37 ° C. If necessary, ampicillin (100 mg / liter) was added and 1.5% agar (w / v) was added for LB solid media. S.
  • cDNA clones from SeQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 were modified so that only the coding region can be amplified by means of a polymerase chain reaction with the aid of two oligonucleotides. Care was taken to ensure that a consensus sequence was adhered to before the start codon for efficient translation. Either the base sequence ATA or AAA was chosen and inserted into the sequence before the ATG (Kozak, M. (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes, Cell 44, 283-292). Before this consensus triplet, a restriction interface was also introduced, which must be compatible with the interface of the target vector into which the fragment is to be cloned and with the aid of which gene expression in microorganisms or plants is to take place.
  • the PCR reaction was carried out using plasmid DNA as a template in a thermal cycler (Biometra) with the Pfu-DNA (Stratagene) polymerase and the following temperature program: 3 min at 96 ° C, followed by 30 cycles at 30 ° at 96 ° C C, 30 s at 55 ° C and 2 min at 72 ° C, 1 cycle with 10 min at 72 ° C and stop at 4 ° C.
  • the annealing temperature was varied depending on the oligonucleotides chosen. A synthesis time of about one minute can be assumed for each kilobase pair of DNA.
  • Other parameters that influence the PCR e.g. Mg ions, salt, DNA polymerase etc. are known to the person skilled in the art and can be varied as required.
  • the correct size of the amplified DNA fragment was confirmed by agarose TBE gel electrophoresis.
  • the amplified DNA was extracted from the gel with the QIAquick gel extraction kit (QIAGEN) and ligated into the Smal restriction site of the dephosphorylated vector pUC18 using the Sure Clone Ligation Kit (Pharmacia), whereby the pUC derivatives were obtained.
  • QIAquick gel extraction kit QIAGEN
  • ligated into the Smal restriction site of the dephosphorylated vector pUC18 using the Sure Clone Ligation Kit (Pharmacia), whereby the pUC derivatives were obtained.
  • a DNA mini-preparation Ros, MG, & McLachlan, A. (1986) A simplified screening procedure for large numbers of plasmid mini-preparation.
  • BioTechniques 4, 310-313) performed on ampicillin-resistant transformants, and positive clones identified by means of BamHI restriction analysis.
  • the sequence of the cloned PCR product was determined by resequencing using the ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin-Elmer, Rothstadt) confirmed.
  • the total fatty acids were extracted from plant seeds and analyzed by gas chromatography.
  • the seeds were taken up with 1% sodium methoxide in methanol and incubated at RT for 20 min. Then with NaCl
  • Figure 2 Fatty acid profile of transgenic tobacco seeds.
  • the plants were transformed with a triple expression cassette, which expresses the delta-6, the delta-5 and the Physcomitrella patens PpPSEl (pARA2) under the control of the USP promoter.
  • 100 transgenic tobacco and linseed plants were produced, of which approximately 20% synthesized arachidonic acid in the seed.
  • the desired product can be obtained from plant material or fungi, algae, ciliates, animal cells or from the supernatant of the cultures described above by various methods known in the art. If the desired product is not secreted from the cells, the cells can start
  • Cells can be lysed using standard techniques such as mechanical force or ultrasound. Organs of plants can mechanically separated from other tissues or other organs. After homogenization, the cell debris is removed by centrifugation and the supernatant fraction containing the soluble proteins is saved for further purification of the desired compound. If the product is secreted from desired cells, the cells are removed from the culture by slow centrifugation and the supernatant fraction is saved for further purification.
  • the supernatant fraction from each purification process is subjected to chromatography with an appropriate resin, either with the desired molecule retained on the chromatography resin but not many contaminants in the sample, or the contaminants remaining on the resin but not leaving the sample. These chromatography steps can be repeated if necessary using the same or different chromatography resins.
  • the person skilled in the art is skilled in the selection of suitable chromatography resins and their most effective application for a particular molecule to be purified.
  • the purified product can be concentrated by filtration or ultrafiltration and kept at a temperature at which the stability of the product is maximum.
  • the identity and purity of the isolated compounds can be determined by standard techniques in the art. These include high-performance liquid chromatography (HPLC), spectroscopic methods, staining methods, thin-layer chromatography, in particular thin-layer chromatography and flame ionization detection (IATROSCAN, Iatron, Tokyo, Japan), NIRS, enzyme test or microbiological.
  • HPLC high-performance liquid chromatography
  • spectroscopic methods staining methods
  • thin-layer chromatography in particular thin-layer chromatography and flame ionization detection
  • IATROSCAN Iatron, Tokyo, Japan
  • NIRS enzyme test or microbiological.
  • An overview of these analysis methods can be found in: Patek et al. (1994) Appl. Environ. Microbiol. 60: 133-140; Malakhova et al. (1996) Biotekhnologiya 11: 27-32; and Schmidt et al. (1998) Bioprocess Engineer. 19: 67-70. Ulmann's Encyclopedia of Industrial Chemistry (

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Fettsäureester, die ungesättigte Fettsäuren mit mindestens drei Doppelbindungen enthalten, sowie freien ungesättigten Fettsäuren mit einem Gehalt von mindestens 1 Gew.-% bezogen auf die gesamten in der Pflanzen enthaltenden Fettsäuren durch Expression mindestens einer Nukleinsäuresequenz, die für ein Polypeptid mit D-6-Desaturaseaktivität codiert, und mindestens einer Nukleinsäuresequenz, die für ein Polypeptid mit D-6-Elongaseaktivität codiert. Vorteilhaft können diese Nukleinsäuresequenzen gegebenenfalls zusammen mit einer dritten Nukleinsäuresequenz, die für ein Polypeptid mit D-5-Desaturaseaktivität codiert, in der transgenen Pflanze exprimiert werden.Die Erfindung betrifft weiterhin die Verwendung definierter Nukleinsäuresequenzen, die für Polypeptide mit einer D-6-Desaturaseaktivität, D-6-Elongaseaktivität oder D-5-Desaturaseaktivität codieren ausgewählt aus einer Gruppe von Nukleinsäuresequenzen bzw. die Verwendung von Nukleinsäurekonstrukten enthalten die vorgenannten Nukleinsäuresequenzen.

Description

Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in Pflanzen
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Fettsäureester, die ungesättigte Fettsäuren mit mindestens drei Doppelbindungen enthalten, sowie freien ungesättigten Fett- säuren mit einem Gehalt von mindestens 1 Gew.-% bezogen auf die gesamten in der Pflanzen enthaltenden Fettsäuren durch Expression mindestens einer Nukleinsauresequenz, die für ein Polypeptid mit Δ-6-Desaturaseaktivität codiert, und mindestens einer Nukleinsauresequenz, die für ein Polypeptid mit Δ-6-Elongase- aktivität codiert. Vorteilhaft können diese Nukleinsauresequenzen gegebenenfalls zusammen mit einer dritten Nukleinsauresequenz, die für ein Polypeptid mit Δ-5-Desaturaseaktivität codiert, in der transgenen Pflanze exprimiert werden.
Die Erfindung betrifft weiterhin die Verwendung definierter Nukleins uresequenzen, die für Polypeptide mit einer Δ-6-Desaturaseaktivität, Δ-6-Elongaseaktivität oder Δ-5-Desaturaseaktivität codieren ausgewählt aus einer Gruppe von Nukleinsauresequenzen bzw. die Verwendung von Nukleinsäure- konstrukten enthalten die vorgenannten Nukleinsauresequenzen.
Bestimmte Produkte und Nebenprodukte natürlich vorkommender Stoffwechselprozesse in mikrobiellen Zellen oder in den Zellen von Tieren und vorteilhaft Pflanzen sind für ein breites Spektrum an Industrien, einschließlich der Futtermittel-, Nahrungsmittel-, Kosmetik- und pharmazeutischen Industrie, nützlich. Zu diesen gemeinsam als "Feinchemikalien" bezeichneten Molekülen gehören auch Lipide und Fettsäuren, unter denen eine beispielhafte Klasse die mehrfach ungesättigten Fettsäuren sind. Mehrfach ungesättigte Fettsäuren (polyunsaturated fatty acids, PUFAs) werden beispielsweise Nahrungsmittel für Kinder zugegeben, um einen höheren Nährwert dieser Nahrungsmittel zu erzeugen. PUFAs haben zum Beispiel einen positiven Einfluss auf den Cholesterinspiegel im Blut von Menschen und eignen sich daher zum Schutz gegen Herzkrank- heiten. Feinchemikalien wie mehrfach ungesättigte Fettsäuren
(polyunsaturated fatty acids, PUFAs) lassen sich aus tierischen Quellen, wie beispielsweise Fisch, isolieren oder mit Mikroorganismen durch Züchtung von Mikroorganismen, die so entwickelt worden sind, dass sie große Mengen eines oder mehrerer gewünschter Moleküle produzieren und akkumulieren oder sezer- nieren, im großen Maßstab herstellen. Fettsäuren und Triglyceride haben eine Vielzahl von Anwendungen in der Lebensmittelindustrie, der Tierernährung, der Kosmetik und im Pharmabereich. Je nachdem ob es sich um freie gesättigte oder ungesättigte Fettsäuren oder um Triglyceride mit einem erhöhten Gehalt an gesättigten oder ungesättigten Fettsäuren handelt, sind sie für die unterschiedlichsten Anwendungen geeignet. Mehrfach ungesättigte Ω-3-Fettsäuren und Ω-6-Fettsäuren stellen dabei einen wichtigen Bestandteil der tierischen und menschlichen Nahrung dar. Aufgrund der heute üblichen Zusammensetzung der menschlichen Nahrung ist ein Zusatz von mehrfach ungesättigten Ω-3-Fettsäuren, die bevorzugt in Fischölen vorkommen, zur Nahrung besonders wichtig. So werden beispielsweise mehrfach ungesättigte Fettsäuren wie Docosahexaensäure (=DHA, C22 : ß^4 ' 7-10 ' 13 ' 16 ' 19) oder Eisosapentaensäure (= EPA, C20 : 5Δ5'8,11'14'17) Babynahrung zur Erhöhung des Nährwertes zugesetzt. Der DHA wird dabei ein positiver Effekt auf die Entwicklung des Gehirns zugeschrieben.
Hauptsächlich werden die verschiedenen Fettsäuren und Triglyceride aus Mikroorganismen wie Mortierella oder aus Öl- produzierenden Pflanzen wie Soja, Raps, Sonnenblume, Algen wie Cryptocodinium oder Phaeodactylum und weiteren gewonnen, wobei sie in der Regel in Form ihrer Triacylglyceride (= Triglyceride = Triglycerole) anfallen. Sie können aber auch aus Tieren wie z.B. Fischen gewonnen werden. Die freien Fettsäuren werden vorteilhaft durch Verseifung hergestellt. Höhere mehrfach ungesättigte Fettsäuren wie DHA, EPA, Arachidonsäure (= ÄRA, C20:4Δ5'8'11,14) , Dihomo-γ-linolensäure (C20:3Δβ'i1«14) oder Docosapen- taensäure (DPA, C22 :5Δ7<10 ' 13 ' 16 ' 19) lassen sich nicht aus Ölfruchtpflanzen wie Raps, Soja, Sonnenblume, Färberdistel oder anderen isolieren. Übliche natürliche Quellen für diese Fettsäuren sind Fische wie Hering, Lachs, Sardine, Goldbarsch, Aal, Karpfen, Forelle, Heilbutt, Makrele, Zander oder Thunfisch oder Algen.
Je nach Anwendungszweck sind Öle mit gesättigten oder unge- sättigten Fettsäuren bevorzugt, so sind z.B. in der humanen Ernährung Lipide mit ungesättigten Fettsäuren speziell mehrfach ungesättigten Fettsäuren bevorzugt . Den mehrfach ungesättigten Ω-3-Fettsäuren wir dabei ein positiver Effekt auf den Cholesterinspiegel im Blut und damit auf die Möglichkeit der Prä- vention einer Herzerkrankung zugeschrieben. Durch Zugabe dieser Ω-3-Fettsäuren zu Nahrung kann das Risiko einer Herzerkrankung, eines Schlaganfalls oder von Bluthochdruck deutlich verringert werden. Auch entzündliche speziell chronisch entzündliche Prozesse im Rahmen immunologischer Erkrankungen wie rheumatroider Arthritis lassen sich durch Ω-3-Fettsäuren positiv beeinflussen. Sie werden deshalb Lebensmitteln speziell diätischen Lebensmitteln zugegeben oder finden in Medikamenten Anwendung. Ω-6-Fettsäuren wie Arachidonsäure haben bei diesen rheumatischen Erkrankungen aufgrund unserer üblichen Nahrungsmittelzusammensetzung eher einen negativen Effekt auf diese Krankheiten.
Ω-3- und Ω-6-Fettsäuren sind Vorläufer von Gewebshormone , den sogenannten Eicosanoiden wie den Prostaglandinen, die sich von der Dihomo-γ-linolensäure, der Arachidonsäure und der Eicosapenta- ensäure ableiten, den Thromoxanen und Leukotrienen, die sich von der Arachidonsäure und der Eicosapentaensäure ableiten. Eicosa- noide (sog. PG-Serie) , die aus Ω-6-Fettsäuren gebildet werden fördern in der Regel Entzündungsreaktionen, während Eicosanoide (sog. PG3-Serie) aus Ω-3-Fettsäuren geringe oder keine ent- zündungsfördernde Wirkung haben.
Aufgrund ihrer positiven Eigenschaften hat es in der Vergangenheit nicht an Ansätzen gefehlt, Gene, die an der Synthese von Fettsäuren bzw. Triglyceriden beteiligt sind, für die Herstellung von Ölen in verschiedenen Organismen mit geändertem Gehalt an ungesättigten Fettsäuren verfügbar zu machen. So wird in WO 91/13972 und seinem US-Äquivalent eine Δ-9-Desaturase beschrieben. In WO 93/11245 wird eine Δ-15-Desaturase in WO 94/11516 wird eine Δ-12-Desaturase beansprucht. Weitere Desaturasen werden beispielsweise in EP-A-0 550 162, WO 94/18337, WO 97/30582, WO 97/21340, WO 95/18222, EP-A-0 794 250, Stukey et al., J. Biol. Chem. , 265, 1990: 20144-20149, Wada et al., Nature 347, 1990: 200-203 oder Huang et al., Lipids 34, 1999: 649-659 beschrieben. Die biochemische Charakterisierung der verschiedenen Desaturasen ist jedoch bisher nur unzureichend erfolgt, da die Enzyme als membrangebundene Proteine nur sehr schwer zu isolieren und zu charakterisieren sind (McKeon et al., Methods in Enzymol . 71, 1981: 12141-12147, Wang et al . , Plant Physiol. Biochem. , 26, 1988: 777-792). In der Regel erfolgt die Charakterisierung membrangebundener Desaturasen durch Einbringung in einen geeigneten Organismus, der anschließend auf Enzym- aktivität mittels Edukt- und Produktanalyse untersucht wird. Δ-6-Desaturasen werden in WO 93/06712, US 5,614,393, US5614393, WO 96/21022, WO00/21557 und WO 99/27111 beschrieben und auch die Anwendung zur Produktion in transgenen Organismen beschrieben wie in W098/46763 W098/46764, W09846765. Dabei wird auch die Expression verschiedener Desaturasen wie in W099/64616 oder
W098/46776 und Bildung polyungesättigter Fettsäuren beschrieben und beansprucht. Bzgl. der Effektivität der Expression von Desaturasen und ihren Einfluss auf die Bildung polyungesättigter Fettsäuren ist anzumerken, dass durch Expression einer einzelnen Desaturase wie bisher beschrieben lediglich geringe Gehalte an Δ-6-ungesättigten Fettsäuren/Lipiden wie z.B. gamma-Linolensäure und Stearidonsäure erreicht wurden. Weiterhin wurde in der Regel ein Gemisch aus ω 3 und ω 6 Fettsäuren erhalten, da alle bisher beschriebenen Δ-6-Desaturasen zum Beispiel Linolsäure (Cö-6-Fett- säure) als auch α-Linolensäure (ω-3-Fettsäure) umsetzten.
Besonders geeignete Mikroorganismen zur Herstellung von PUFAs sind Mikroorganismen wie Thraustochytrien oder Schizochytrien- Stämme, Algen wie Phaeodactylum tricornutum oder Crypthecodinium- Arten, Ciliaten, wie Stylonychia oder Colpidium, Pilze, wie Mortierella, Entomophthora oder Mucor. Durch Stammselektion ist eine Anzahl von Mutantenstämmen der entsprechenden Mikroorganismen entwickelt worden, die eine Reihe wünschenswerter Verbindungen, einschließlich PUFAs, produzieren. Die Mutation und Selektion von Stämmen mit verbesserter Produktion eines bestimmten Moleküls wie den mehrfach ungesättigten Fettsäuren ist jedoch ein zeitraubendes und schwieriges Verfahren. Deshalb werden, wenn immer möglich wie oben beschrieben gentechnologische Verfahren bevorzugt. Mit Hilfe der vorgenannten Mikroorganismen lassen sich jedoch nur begrenzte Mengen der gewünschten mehrfach ungesättigten Fettsäuren wie DPA, EPA oder ÄRA herstellen. Wobei diese in der Regel je nach verwendeten Mikroorganismus als Fettsäuregemische aus beispielsweise EPA, DPA und DHA anfallen.
Alternativ kann die Produktion von Feinchemikalien geeigneterweise über die Produktion in Pflanzen, die so entwickelt sind, dass sie die vorstehend genannten PUFAs herstellen, im großen Maßstab durchgeführt werden. Besonders gut für diesen Zweck geeignete Pflanzen sind Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten wie Raps, Canola, Lein, Soja, Sonnenblumen, Borretsch und Nachtkerze. Aber auch andere Nutzpflanzen, die Öle oder Lipide und Fettsäuren enthalten, sind gut geeignet, wie in der eingehenden Beschreibung dieser Erfindung erwähnt. Mittels herkömmlicher Züchtung ist eine Reihe von Mutantenpflanzen entwickelt worden, die ein Spektrum an wünschenswerten Lipiden und Fettsäuren, Cofaktoren und Enzymen produzieren. Die Selektion neuer Pflanzensorten mit verbesserter Produktion eines bestimmten Moleküls ist jedoch ein zeitauf ändiges und schwieriges Verfahren oder sogar unmöglich, wenn die Verbindung in der entsprechenden Pflanze nicht natürlich vorkommt, wie im Fall von mehrfach ungesättigten Ci8~, Co~Fettsäuren und C22-Fett- säuren und solchen mit längeren Kohlenstoffketten.
Aufgrund der. positiven Eigenschaften ungesättigter Fettsäuren hat es in der Vergangenheit nicht an Ansätzen gefehlt, diese Gene, die an der Synthese von Fettsäuren bzw. Triglyceriden beteiligt sind, für die Herstellung von Ölen in verschiedenen Pflanzen mit einem geändertem Gehalt an mehrfach ungesättigten Fettsäuren verfügbar zu machen. Bisher konnten jedoch länger- kettige mehrfach ungesättigte C2o~ und/oder C2 -Fettsäuren wie EPA oder ÄRA nicht in Pflanzen hergestellt werden.
Es bestand daher die Aufgabe ein Verfahren zur Herstellung von mehrfach ungesättigten Fettsäureestern und/oder freien mehrfach ungesättigten Fettsäuren mit mindestens drei Doppelbindungen im Fettsäuremolekül zu entwickeln. Diese Aufgabe wurde durch das erfindungsgemäße Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I :
Figure imgf000007_0001
in transgenen Pflanzen mit einem Gehalt von mindestens 1 Gew.-% bezogen auf die gesamten Fettsäuren dadurch gekennzeichnet, dass das Verfahren folgende Schritte umfasst:
a) Einbringen mindestens einer Nukleinsauresequenz in eine Pflanze, die für ein Polypeptid mit einer Δ-6-Desaturase- aktivität codiert; sowie
b) Einbringen mindestens einer zweiten Nukleinsauresequenz, die für ein Polypeptid mit einer Δ-6-Elongaseaktivität codiert; und
c) gegebenenfalls Einbringen einer dritten Nukleinsauresequenz, die für ein Polypeptid mit einer Δ-5-Desaturaseaktivität codiert;
d) anschließend kultivieren und ernten der Pflanzen; und
wobei die Variablen und Substituenten in der Formeln I folgende Bedeutung haben:
R1 = -OH, Coenzym A-(Thioester) , Phosphatidylcholin- , Phosphatid- ylethanolamin-, Phoshatidylglycerol-, Diphosphatidyl- glycerol-, Phosphatidylserin-, Phosphatidylinositol-, Sphingolipid-, Glycoshingolipid- oder einen Rest der folgenden allgemeinen Formel II
Figure imgf000008_0001
R2 = H, Phosphatidylcholin-, Phosphatidylethanolamin-, Phoshatid- ylglycerol-, Diphosphatidylglycerol-, Phosphatidylserin-, Phosphatidylinositol-, Shingolipid-, Glycoshingolipid-, Glycoshingolipid- oder gesättigtes oder ungesättigtes C2-C 4-Alkylcarbonyl-,
R3 = H, gesättigtes oder ungesättigtes C2-C24-Alkylcarbonyl-, oder
R2 und R3 unabhängig voneinander einen Rest der allgemeinen Formel Ia
Figure imgf000008_0002
n = 3 , 4 oder 6 , m = 3 , 4 oder 5 und p = 0 oder 3 , bevorzugt bedeutet n = 3 , m = 4 oder 5 und p = 0 oder 3.
Ri bezeichnet in den Verbindungen der Formel I -OH (Hydroxyl-) , AcetylCoenzym A-, Phosphatidylcholin-, Phosphatidylethanolamin-, Phoshatidylglycerol-, Diphosphatidylglycerol-, Phosphatidyl- serin-, Phosphatidylinositol-, Sphingolipid-, Glycoshingolipid- oder einen Rest der folgenden allgemeinen Formel II
Figure imgf000008_0003
Die vorgenannten Reste für R1 sind jeweils als Ester bzw. Thio- ester an die Verbindungen der allgemeinen Formel I gebunden.
R2 bezeichnet in den Verbindungen der Formel II Wasserstoff, Phosphatidylcholin-, Phosphatidylethanolamin-, Phoshatidylglycerol-, Diphosphatidylglycerol-, Phosphatidylserin-, Phosphatidylinositol-, Shingolipid-, Glycoshingolipid-, Glycoshingolipid- oder gesättigtes oder ungesättigtes C2-C24-Alkylcarbonyl- . Als ungesättigtes oder gesättigtes C2-C2-Alkylcarbonyl- seien Reste wie Ethylcarbonyl-, n-Propylcarbonyl-, n-Butylcarbonyl-, n-Pentylcarbonyl-, n-Hexylcarbonyl-,n-Heptylcarbonyl-, n-Octyl- carbonyl-, n-Nonylcarbonyl-, n-Decylcarbonyl-, n-Undecylcarbon- yl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbon- yl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecyl- carbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosyl- carbonyl-, n-Docosanylcarbonyl- oder n-Tetracosanylcarbonyl-, die ein oder mehrere Doppelbindungen enthalten können. Bevorzugt sind gesättigte oder ungesättigte Cιo~C2-Alkylcarbonylreste wie n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbon- yl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbon- yl- oder n-Tetracosanylcarbonyl-, die ein oder mehrere Doppelbindungen enthalten. Besonders bevorzugt sind gesättigte oder ungesättigte Cιo~C2-Alkylcarbonylreste wie Cio-Alkylcarbonyl-, Cn~ Alkylcarbonyl-, Cι2-Alkylcarbonyl-, Cι3-Alkylcarbonyl-, Ci4-Alkyl- carbonyl-, Cχ6-Alkylcarbonyl-, Cχs-Alkylcarbonyl-, C2o-Alkylcarbon- yl-, C2-Alkylcarbonyl- oder C24-Alkylcarbonyl-Reste, die ein oder mehrere Doppelbindungen enthalten. Ganz besonders bevorzugt sind gesättigte oder ungesättigte Ci6-C22-Alkylcarbonylreste wie Ciß-Alkylcarbonyl-, Cis-Alkylcarbonyl-, C20-Alkylcarbonyl- oder C22-Alkylcarbonyl-Reste, die ein oder mehrere Doppelbindungen ent- halten. Bevorzugt enthalten die genannten Reste zwei, drei, vier oder fünf Doppelbindungen. Besonders bevorzugt enthalten die Reste drei, vier oder fünf Doppelbindungen. Ganz besonders bevorzugt sind Cis-Alkylcarbonylreste, die eine, zwei, drei oder vier Doppelbindungen enthalten, und C2o-Alkylcarbonylreste, die drei, vier oder fünf Doppelbindungen enthalten. Alle genannten Reste leiten sich von den entsprechenden Fettsäuren ab.
R3 bezeichnet in den Verbindungen der Formel II Wasserstoff, gesättigtes oder ungesättigtes C-C4-Alkylcarbonyl.
Als ungesättigtes oder gesättigtes C2-C22-Alkylcarbonyl- seien Reste wie Ethylcarbonyl-, n-Propylcarbonyl-, n-Butylcarbonyl-, n-Pentylcarbonyl-, n-Hexylcarbonyl-,n-Heptylcarbonyl-, n-Octyl- carbonyl-, n-Nonylcarbonyl-, n-Decylcarbonyl-, n-Undecylcarbon- yl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- oder n-Tetracosanylcarbonyl-, die ein oder mehrere Doppelbindungen enthalten können. Bevorzugt sind gesättigte oder ungesättigte Cιo-C2-Alkylcarbonylreste wie n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- oder n-Tetracosanylcarbonyl-, die ein oder mehrere Doppelbindungen enthalten. Besonders bevorzugt sind gesättigte oder un- gesättigte Cχo-C22-Alkylcarbonylreste wie Cio-Alkylcarbonyl-, Cχχ~ Alkylcarbonyl-, Cι2-Alkylcarbonyl-, Cχ3-Alkylcarbonyl-, Cχ4~Alkyl- carbonyl-, Cχ6-Alkylcarbonyl-, Cχs-Alkylcarbonyl-, C2o-Alkylcarbon- yl- C22-Alkylcarbonyl- oder C24-Alkylcarbonyl-Reste, die ein oder mehrere Doppelbindungen enthalten. Ganz besonders bevorzugt sind gesättigte oder ungesättigte Cχ6-C22-Alkylcarbonylreste wie Cχ6~Alkylcarbonyl-, Cχs-Alkylcarbonyl-, C2o-Alkylcarbonyl- oder C22-Alkylcarbonyl-Reste, die ein oder mehrere Doppelbindungen enthalten. Bevorzugt enthalten die genannten Reste zwei, drei, vier oder fünf Doppelbindungen. Besonders bevorzugt enthalten die Reste drei, vier oder fünf Doppelbindungen. Ganz besonders bevorzugt sind Cχβ-Alkylcarbonylreste, die eine, zwei, drei oder vier Doppelbindungen enthalten, und C2o-Alkylcarbonylreste, die drei, vier oder fünf Doppelbindungen enthalten. Alle genannten Reste leiten sich von den entsprechenden Fettsäuren ab.
R2 und R3 bezeichnen weiterhin in den Verbindungen der Formel II unabhängig voneinander einen Rest der allgemeinen Formel Ia
Figure imgf000010_0001
wobei n = 3,4 oder 6, m = 3, 4 oder 5 und p = 0 oder 3 bedeutet, bevorzugt bedeutet n = 3 , m = 4 oder 5 und p = 0 oder 3.
Die vorgenannten Reste R1, R2 und R3 können auch Substituenten wie Hydoxyl- oder Epoxigruppen tragen oder auch Dreifachbindungen enthalten.
Bei den im erfindungsgemäßen Verfahren verwendeten Nukleinsauresequenzen handelt es sich um isolierte Nukleinsauresequenzen, die für Polypeptide mit Δ-5-, Δ-6-Desaturase- oder Δ-6-Elongase- aktivität codieren.
Die im Verfahren hergestellten Verbindungen der Formel I enthalten vorteilhaft eine Mischung aus unterschiedlichen Resten R1, R2 oder R3, die sich von unterschiedlichen Glyceriden ableiten lassen. Weiterhin lassen sich die vorgenannten Reste von verschieden Fettsäuren wie kurzkettigen Fettsäuren mit 4 bis 6 C- Atomen, mittelkettigen Fettsäuren mit 8 bis 12 C-Atomen oder langkettigen Fettsäuren mit 14 bis 24 C-Atomen ableiten, bevorzugt sind die langkettigen Fettsäuren.
Im erfindungsgemäßen Verfahren werden vorteilhaft Fettsäureester (= Verbindungen der Formel I) mit mehrfach ungesättigten Cχs~, C2o~ und/oder C22-Fettsäuremolekülen mit mindestens zwei Doppelbindungen im Fettsäureester hergestellt. Bevorzugt enthalten diese Fettsäuremoleküle drei, vier oder fünf Doppelbindungen und führen vorteilhaft zur Synthese von γ-Linolensäure (= GLA, C18:3Δ6 '°' 12) , Stearidonsäure (= SDA, C18:4Δ6- Q-i -i5) , Dihomo- γ-Linolensäure (= DGLA, 20:3Δ8<11 ' 14) , Eicosatetraensäure (= ETA, C20:4Δ5 ' 8 ' 11 ' 14) , Arachidonsäure (ÄRA), Eicosapentaensäure (EPA) oder deren Mischungen, bevorzugt EPA und/oder ÄRA.
Die Fettsäureester mit mehrfach ungestättigten C 8~, C2o- und/oder C22-Fettsäuremolekülen können aus den Organismen, die für die Herstellung der Fettsäureester verwendet wurden, in Form eines Öls oder Lipids beispielsweise in Form von Verbindungen wie Sphingo- lipide, Phosphoglyceride, Lipide, Glycolipide wie Glycoshingo- lipid, Phospholipide wie Phosphatidylethanolamin, Phosphatidylcholin, Phoshatidylserin, Phosphatidylglycerol , Phosphatidylinositol oder Diphosphatidylglycerol, Monoacylglyceride, Diacyl- glyceride, Triacylglyceride oder sonstige Fettsäureester wie die AcetylCoenzymA-Ester, die die mehrfach ungesättigten Fettsäuren mit mindestens zwei bevorzugt drei Doppelbindungen enthalten, isoliert werden. Neben diesen Estern sind die mehrfach ungesättigten Fettsäuren auch als freie Fettsäuren oder gebunden in anderen Verbindungen in den Pflanzen enthalten. In der Regel liegen die verschiedenen vorgenannten Verbindungen (Fettsäure- ester und frei Fettsäuren) in der Pflanze in einer ungefähren Verteilung von 80 bis 90 Gew.-% Triglyceride, 2 bis 5 Gew.-% Diglyceride, 5 bis 10 Gew.-% Monoglyceride, 1 bis 5 Gew.-% freie Fettsäuren, 2 bis 8 Gew.-% Phospholipide vor, wobei sich die Summe der verschiedenen Verbindungen zu 100 Gew.-% ergänzt.
Im erfindungsgemäßen Verfahren werden die Verbindungen der allgemeinen Formel I mit einem Gehalt von mindestens 1 Gew.-%, vorteilhaft von mindestens 2 Gew.-%, bevorzugt von mindestens 3 Gew.-%, besonders bevorzugt von mindestens 5 Gew.-%, ganz besonders bevorzugt von mindestens 10 Gew.-% bezogen auf die gesamten Fettsäuren in der transgenen Pflanze hergestellt. Da im erfindungsgemäßen Verfahren von den Ausgangsverbindungen Linol- säure (C18:2) bzw. Linolensäure (C18:3) mehrere Reaktionsschritte durchlaufen werden, fallen die Endprodukte des Verfahrens wie beispielsweise Arachidonsäure (ÄRA) oder Eicosapentaensäure (EPA) nicht als Reinprodukte an, es sind immer auch geringe Spuren der Vorstufen im Endprodukt enthalten. Sind in der Ausgangspflanze sowohl Linolsäure als auch Linolensäure vorhanden, so liegen die Endprodukte wie ÄRA und EPA als Mischungen vor. Die Vorstufen sollten vorteilhaft nicht mehr als 20 Gew.-%, bevorzugt nicht mehr als 15 Gew.-%, besonders bevorzugt nicht als 10 Gew.-%, ganz besonders bevorzugt nicht mehr als 5 Gew.-% bezogen auf die Menge des jeweilige Endprodukts betragen. Vorteilhaft werden in einer transgenen Pflanze als Endprodukte nur ÄRA oder nur EPA im erfindungsgemäßen Verfahren gebunden oder als freie Säuren (siehe Verbindungen der allgemeinen Formel I) hergestellt. Werden beide Verbindungen (ÄRA + EPA) gleichzeitig hergestellt, werden sie vorteilhaft in einem Verhältnis von mindesten 1:2 (EPA:ÄRA) , vorteilhaft von mindestens 1:3, bevorzugt von 1:4, besonders bevorzugt von 1:5 hergestellt.
Als Organismus für die Herstellung im erfindungsgemäßen Verfahren kommen prinzipiell alle Pflanzen wie Moose, Algen, zweikeim- blättrige oder einkeimblättrige Pflanzen in Frage. Vorteilhaft werden Organismen im erfindungsgemäßen Verfahren verwendet, die zu den Öl-produzierenden Organismen gehören, das heißt die für die Herstellung von Ölen verwendet werden, wie Algen wie Crypthe- codinium, Phaeodactylum oder Pflanzen, insbesondere Pflanzen bevorzugt Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten, wie Erdnuss, Raps, Canola, Sonnenblume, Safflor (Färberdistel) , Mohn, Senf, Hanf, Rhizinus, Olive, Sesam, Calendula, Punica, Nachtkerze, Königskerze, Distel, Wildrosen, Haselnuss, Mandel, Macadamia, Avocado, Lorbeer, Kürbis, Lein, Soja, Pistazien, Borretsch, Bäume (Ölpalme, Kokosnuss oder Walnuss) oder Feldfrüchte, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Baumwolle, Maniok, Pfeffer, Tagetes, Solanaceen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Alfalfa oder Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten sowie ausdauernde Gräser und Futterfeldfrüchte. Bevorzugte erfindungsgemäße Pflanzen sind Ölfruchtpflanzen, wie Erdnuss, Raps, Canola, Sonnenblume, Safflor (Färberdistel), Mohn, Senf, Hanf, Rhizinus, Olive, Calendula, Punica, Nachtkerze, Kürbis, Lein, Soja, Borretsch, Bäume (Ölpalme, Kokosnuss) . Besonders bevorzugt sind C18:2- und/oder C18:3-Fettsäure reiche Pflanzen wie Sonnenblume, Färberdistel, Tabak, Königskerze, Sesam, Baumwolle, Kürbis, Mohn, Nachtkerze, Walnuss, Lein, Hanf, Distel oder Färberdistel. Ganz besonders bevorzugt sind Pflanzen wie Färberdistel, Sonnenblume, Mohn, Nachtkerze, Walnuss, Lein oder Hanf .
Durch die enzymatische Aktivität der im erfindungsgemäßen Ver- fahren verwendeten Nukleinsäuren, die für Polypeptide mit Δ-5-, Δ-6-Desaturase- oder Δ-6-Elongaseaktivität codieren, können unterschiedliche Verbindungen der Formel I hergestellt werden. Je nach Auswahl der für das erfindungsgemäße Verfahren verwendeten Pflanze lassen sich Mischungen der verschiedenen Verbindungen der allgemeinen Formel I oder einzelne Verbindungen wie EPA oder ÄRA in freier oder gebundener Form herstellen. Je nach- dem welche Fettsäurezusammensetzung in der Ausgangspflanze vorherrscht (C18:2- oder C18 :3-Fettsäuren) entstehen so Verbindungen der allgemeinen Formel I, die sich von C18:2-Fettsäuren ableiten, wie GLA, DGLA oder ÄRA enthaltende Verbindungen der Formel I oder, die sich von C18 : 3-Fettsäuren ableiten, wie SDA, ETA oder EPA enthaltende Verbindungen der Formel I. Liegt in der für das Verfahren verwendeten Pflanze als ungesättigte Fettsäure nur Linolsäure (= LA, C18:2Δ9 ' 12) vor, so können als Produkte des Verfahrens nur GLA, DGLA und ÄRA entstehen, die als freie Fettsäuren oder gebunden vorliegen können. Ist in der im Verfahren verwendeten Pflanze als ungesättigte Fettsäure nur α-Linolensäure (= ALA, C18:3Δ9 ' 12 ' 15) beispielsweise wie in Lein, so können als Produkte des Verfahrens nur SDA, ETA und EPA entstehen, die wie oben beschrieben als freie Fettsäuren oder gebunden vorliegen können. Durch Modifikation der Aktivität der an der Synthese beteiligten Enzyme (Δ-5-, Δ-6-Desaturase und Δ-6-Elongase) bzw. durch Einbringen nur der ersten beiden Gene (Δ-6-Desaturase und Δ-6-Elongase) der Synthesekette lassen sich gezielt in den vorgenannten Pflanzen nur einzelne Produkte herstellten (siehe Figur I) . Durch die Aktivität der Δ-6-Desaturase und Δ-6-Elongase entstehen GLA und DGLA bzw. SDA und ETA, je nach Ausgangspflanze und ungesättigter Fettsäure. Bevorzugt entstehen DGLA bzw. ETA oder deren Mischungen. Wird die Δ-5-Desaturase zusätzlich in Pflanze eingebracht, so entstehen zusätzlich ÄRA oder EPA. Vorteilhaft werden nur ÄRA oder EPA oder deren Mischungen synthetisiert, abhängig von der in der Pflanze vorliegenden Fettsäure, die als AusgangsSubstanz für die Synthese dient. Da es sich um Biosyntheseketten handelt, liegen die jeweiligen Endprodukte nicht als Reinsubstanzen in den Pflanzen vor. Es sind immer auch geringe Mengen der Vorläuferverbindungen im Endprodukt enthalten. Diese geringen Mengen betragen weniger als 20 Gew.-%, vorteilhaft weniger als 15 Gew.-%, besonders vorteilhaft weniger als 10 Gew.-%, ganz besonders vorteilhaft weniger als 5, 4, 3, 2 oder 1 Gew.-% bezogen auf das Endprodukt DGLA, ETA oder deren Mischungen bzw. ÄRA, EPA oder deren Mischungen.
Im erfindungsgemäßen Verfahren werden sind unter transgenen Pflanzen auch Pflanzenzellen, -gewebe, -organe oder ganze Pflanzen zu verstehen, die zur Herstellung von Verbindungen der allgemeinen Formel I angezüchtet werden. Unter Anzucht ist beispielsweise die Kultivierung der transgenen Pflanzenzellen, -gewebe oder -organe auf einem Nährmedium oder der ganzen Pflanze auf bzw. in einem Substrat beispielsweise in Hydrokultur oder auf einem Ackerboden zu verstehen.
Im erfindungsgemäßen Verfahren können prinzipiell alle Nukleinsäuren verwendet werden, die für Polypeptide mit Δ-5-, Δ-6-Desaturase- oder Δ-6-Elongaseaktivität codieren. Vorteilhaft Stammen diese Nukleinsäuren aus Pflanzen wie Algen wie Isochrysis oder Crypthecodinium, Diatomeen wie Phaeodactylum, Moose wie Physco itrella, Ceratodon oder höheren Pflanzen wie den Primulaceae wie Aleuritia, Calendula stellata, Osteos- permu spinescens oder Osteospermum hyoseroides, Mikroorganismen wie Pilzen wie Aspergillus, Thraustochytrium, Phytophtora, Ento- mophthora, Mucor oder Mortierella, Hefen oder Tieren wie Nema- toden wie Caenorhabditis, Insekten oder dem Mensch. Vorteilhaft stammen die Δ-5-, Δ-6-Desaturase- oder Δ-6-Elongasegene aus Pilzen oder aus Pflanzen wie Algen oder Moosen, bevorzugt aus Pflanzen.
Vorteilhaft wird im erfindungsgemäßen Verfahren eine Nuklein- säuresequenz ausgewählt aus der Gruppe den in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 oder deren Derivat oder Homologe, die für Polypeptide codieren, die noch die enzymatische Aktivität besitzen. Diese Sequenzen werden einzeln oder in Kombination in Expressionskonstrukte cloniert, diese Expressionskonstrukte sind in den Sequenzen SEQ ID NO: 33-37 wiedergegeben. Diese Expressionskonstrukte ermöglichen eine optimale Synthese der im erfindungsgemäßen Verfahren produzierten Verbindungen der allgemeinen Formel I .
Bei einer bevorzugten Ausführungsform umfasst das Verfahren ferner den Schritt des Gewinnens einer Zelle, die die im Verfahren verwendeten Nukleinsauresequenzen, die für eine Δ-5- oder Δ-6-Desaturase und eine Δ-6-Elongase codieren, enthält, wobei eine Zelle mit den Nukleinsauresequenz, einem Genkonstrukt oder einem Vektor, welche die Expression der Δ-5-, Δ-6-Desaturase- oder Δ-6-Elongasenukleinsäure allein oder in Kombination herbeiführen, transformiert wird. Bei einer weiteren bevorzugten Ausführungsform umfasst dieses Verfahren ferner den Schritt des Gewinnens der Feinchemikalie aus der Kultur. Die so hergestellte Zelle ist vorteilhaft eine Zelle einer Ölfruchtpflanze wie beispielsweise Erdnuss, Raps, Canola, Lein, Soja, Safflower, Hanf, Sonnenblumen oder Borretsch.
Unter transger Pflanze im Sinne der Erfindung ist zu verstehen, daß die im Verfahren verwendeten Nukleinsäuren nicht an ihrer natürlichen Stelle im Genom eines Organismus sind, dabei können die Nukleinsäuren homolog oder heterolog exprimiert werden. Tansgen bedeutet aber auch, dass die erfindungsgemäßen Nukleinsäuren an ihrem natürlichen Platz im Genom eines Organismus sind, dass jedoch die Sequenz gegenüber der natürlichen Sequenz verändert wurde und/oder das die Regulationssequenzen, der natür- liehen Sequenzen verändert wurden. Bevorzugt ist unter transgen die Expression der erfindungsgemäßen Nukleinsäuren an nicht natürlicher Stelle im Genom zu verstehen, das heißt eine homologe oder bevorzugt heterologe Expression der Nukleinsäuren liegt vor. Bevorzugte transgene Pflanzen sind die Ölfruchtpflanzen.
Transgene Pflanzen, die die im erfindungsgemäßen Verfahren synthetisierten Verbindungen der Formel I enthalten, können direkt vermarktet werden ohne die synthetisierten Verbindungen zu isolieren. Unter Pflanzen im erfindungsgemäßen Verfahren sind alle Pflanzenteile, Pflanzenorgane wie Blatt, Stiel, Wurzel, Knollen oder Samen oder die gesamte Pflanze zu verstehen. Der Samen umfasst dabei alle Samenteile wie die Samenhüllen, Epidermis- und Samenzellen, Endosperm oder Embyrogewebe . Die im erfindungsgemäßen Verfahren hergestellten Verbindungen können aber auch aus den Pflanzen in Form ihrer Öle, Fett, Lipide und/ oder freien Fettsäuren isoliert werden. Durch dieses Verfahren hergestellte Verbindungen der Formel I lassen sich durch Ernten der Organismen entweder aus der Kultur, in der sie wachsen, oder vom Feld ernten. Dies kann über Pressen oder Extraktion der Pflanzenteile bevorzugt der Pflanzensamen erfolgen. Dabei können die Öle, Fette, Lipide und/oder freien Fettsäuren durch sogenanntes kalt schlagen oder kalt pressen ohne Zuführung von Wärme durch Pressen gewonnen werden. Damit sich die Pflanzenteile speziell die Samen leichter aufschließen lassen, werden sie vor- her zerkleinert, gedämpft oder geröstet. Die so vorbehandelten Samen können anschließend gepresst werden oder mit Lösungsmittel wie warmen Hexan extrahiert werden. Anschließend wird das Lösungsmittel wieder entfernt . Auf diese Weise können mehr als 96 % der im Verfahren hergestellten Verbindungen isoliert werden. Anschließend werden die so erhaltenen Produkte weiter bearbeitet, das heißt raffiniert. Dabei werden zunächst die Pflanzenschleime und Trübstoffe. Die sogenannte Entschleimung kann enzymatisch oder beispielsweise chemisch/physikalisch durch Zugabe von Säure wie Phosphorsäure erfolgen. Anschließend werden die freien Fettsäuren durch Behandlung mit einer Base beispielsweise Natronlauge entfernt. Das erhaltene Produkt wird zur Entfernung der im Produkt verbliebenen Lauge mit Wasser gründlich gewaschen und getrocknet. Um die noch im Produkt enthaltenen Farbstoffe zu entfernen werden die Produkte einer Bleichung mit beispielsweise Bleicherde oder Aktivkohle unterzogen. Zum Schluss wird das Produkt noch beispielsweise mit Wasserdampf noch desodoriert.
Vorzugsweise sind die durch dieses Verfahren produzierten PUFAs Cχe~ oder C2o-22 -Fettsäuremoleküle mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise drei, vier, bei Kombination mit einer weiteren Elongasen und einer Δ-4 Desaturase fünf oder sechs Doppelbindungen. Diese C_β- oder C20-22-Fettsäure- moleküle lassen sich aus dem Organismus in Form eines Öls, Lipids oder einer freien Fettsäure isolieren. Geeignete Organismen sind beispielsweise die vorstehend erwähnten. Bevorzugte Organismen sind transgene Pflanzen.
Eine erfindungsgemäße Ausführungsform sind Öle, Lipide oder Fett- säuren oder Fraktionen davon, die durch das oben beschriebene Verfahren hergestellt worden sind, besonders bevorzugt Öl, Lipid oder eine Fettsäurezusammensetzung, die PUFAs umfassen und von transgenen Pflanzen herrühren.
Eine weitere erfindungsgemäße Ausführungsform ist die Verwendung des Öls, Lipids oder der Fettsäurezusammensetzung in Futtermitteln, Nahrungsmitteln, Kosmetika oder Pharmazeutika.
Unter dem Begriff "Öl" oder "Fett" wird ein Fettsäuregemisch verstanden, das ungesättigte, gesättigte, vorzugsweise veresterte Fettsäure (n) enthält. Bevorzugt ist, dass das Öl oder Fett einen hohen Anteil an ungesättigter, unkonjugierter veresterter Fettsäure (n), insbesondere Linolsäure, γ-Linolensäure, Dihomo-γ-lino- lensäure, Arachidonsäure, α-Linolensäure, Stearidonsäure, Eicosa- tetraensäure oder Eicosapentaensäure hat. Vorzugsweise ist der Anteil an ungesättigten veresterten Fettsäuren ungefähr 30 %, mehr bevorzugt ist ein Anteil von 50 %, noch mehr bevorzugt ist ein Anteil von 60 %, 70 %, 80 % oder mehr. Zur Bestimmung kann z.B. der Anteil an Fettsäure nach Überführung der Fettsäuren in die Methylestern durch Umesterung gaschromatographisch bestimmt werden. Das Öl oder Fett kann verschiedene andere gesättigte oder ungesättigte Fettsäuren, z.B. Calendulasäure, Palmitin-, Stearin-, Ölsäure etc., enthalten. Insbesondere kann je nach Ausgangspflanze der Anteil der verschiedenen Fettsäuren in dem Öl oder Fett schwanken.
Bei den im Verfahren hergestellten Verbindungen der Formel I, die mehrfach ungesättigte Fettsäuren mit mindestens zwei Doppelbindungen enthalten, handelt es sich um Sphingolipide, Phospho- glyceride, Lipide, Glycolipide, Phospholipide, Monoacylglycerin, Diacylglycerin, Triacylglycerin oder sonstige Fettsäureester. Aus den so im erfindungsgemäßen Verfahren hergestellten Verbindungen der allgemeinen Formel I lassen sich die enthaltenden mehrfach ungesättigten Fettsäuren beispielsweise über eine Alkalibehandlung beispielsweise wäßrige KOH oder NaOH oder saure Hydrolyse vorteilhaft in Gegenwart eines Alkohols wie Methanol oder Ethanol oder über eine enzymatische Abspaltung freisetzen und isolieren über beispielsweise Phasentrennung und anschließender Ansäuerung über z.B. H2S04. Die Freisetzung der Fettsäuren kann auch direkt ohne die vorhergehend beschriebene Aufarbeitung erfolgen.
Die im Verfahren verwendeten Nukleinsäuren können nach Einbringung in eine Pflanzenzelle bzw. Pflanze entweder auf einem separaten Plasmid liegen oder in das Genom der Wirtszelle inte- griert sein. Bei Integration in das Genom kann die Integration zufallsgemäß sein oder durch derartige Rekombination erfolgen, dass das native Gen durch die eingebrachte Kopie ersetzt wird, wodurch die Produktion der gewünschten Verbindung durch die Zelle moduliert wird, oder durch Verwendung eines Gens in trans, so dass das Gen mit einer funktioneilen Expressionseinheit, welche mindestens eine die Expression eines Gens gewährleistende Sequenz und mindestens eine die Polyadenylierung eines funktioneil transkribierten Gens gewährleistende Sequenz enthält, funktioneil verbunden ist. Vorteilhaft werden die Nukleinsäuren über Multi- expressionskassetten oder Konstrukte zur multiparallelen samenspezifischen Expression von Genen in die Pflanzen gebracht.
Moose und Algen sind die einzigen bekannten Pflanzensysteme, die erhebliche Mengen an mehrfach ungesättigten Fettsäuren, wie Arachidonsäure (ÄRA) und/oder Eicosapentaensäure (EPA) und/oder Docosahexaensäure (DHA) herstellen. Moose enthalten PUFAs in Membranlipiden während Algen, algenverwandte Organismen und einige Pilze auch nennenswerte Mengen an PUFAs in der Triacyl- glycerolfraktion akkumulieren. Daher eignen sich Nukleinsäure- moleküle, die aus solchen Stämmen isoliert werden, die PUFAs auch in der Triacylglycerolfraktion akkumulieren, besonders vorteilhaft für das erfindungsgemäße Verfahren und damit zur Modifikation des Lipid- und PUFA-Produktionssystems in einem Wirt, insbesondere Pflanzen, wie Ölfruchtpflanzen, beispielsweise Raps, Canola, Lein, Hanf, Soja, Sonnenblumen, Borretsch. Sie sind deshalb vorteilhaft im erfindungsgemäßen Verfahren verwendbar.
Die Herstellung einer Triensäure mit Cχs-Kohlenstoffkette mithilfe von Desaturasen konnte bisher gezeigt werden. In diesen literaturbekannten Verfahren wurde die Herstellung von γ-Linolen- säure beansprucht. Bisher konnte jedoch niemand die Herstellung sehr langkettiger mehrfach ungesättigter Fettsäuren (mit C2Q- und längerer Kohlenstoffkette sowie von Triensäuren und höher ungesättigten Typen) allein durch modifizierte Pflanzen zeigen.
Zur Herstellung der erfindungsgemäßen langkettiger PUFAs müssen die mehrfach ungesättigten Cχs-Fettsäuren zunächst durch die enzymatische Aktivität einer Desaturase zunächst desaturiert und anschließend über eine Elongase um mindestens zwei Kohlenstoffatome verlängert werden. Nach einer Elongationsrunde führt diese Enzymaktivität zu C2o-Fettsäuren, und nach zwei oder drei Elongationsrunden zu C22- oder C24-Fettsäuren. Die Aktivität der erfindungsgemäßen Verfahren verwendeten Desaturasen und Elongasen führt vorzugsweise zu C8~, Co~ und/oder C22-Fettsäuren mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise mit drei, vier oder fünf Doppelbindungen, besonders bevor- zugt zu Cχ8~ und/oder C2o-Fettsäuren mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise mit drei, vier oder fünf Doppelbindungen im Molekül. Nachdem eine erste Desaturierung und die die Verlängerung stattgefunden hat, können weitere Desa- turierungsschritte wie z.B. eine solche in Δ-5-Position erfolgen. Besonders bevorzugt als Produkte des erfindungsgemäßen Verfahrens sind Arachidonsäure und Eicosapentaensäure. Die Cχs-Fettsäuren mit mindestens zwei Doppelbindungen in der Fettsäure können durch die erfindungsgemäße enzymatische Aktivität in Form der freien Fettsäure oder in Form der Ester, wie Phospholipide, Glycolipide, Sphingolipide, Phosphoglyceride, Monoacylglycerin, Diacylglycerin oder Triacylglycerin, verlängert werden.
Unter der Verwendung von Klonierungsvektoren in Pflanzen und bei der Pflanzentransformation, wie denjenigen, die veröffent- licht sind in und dort zitiert sind: Plant Molecular Biology and Biotechnology (CRC Press, Boca Raton, Florida), Kapitel 6/7, S. 71-119 (1993); F.F. White, Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb. : Kung und R. Wu, Academic Press, 1993, 15-38; B. Jenes et al . , Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb. : Kung und R. Wu, Academic Press (1993), 128-143; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225)), lassen sich die Nukleinsäuren zur gentechnologischen Veränderung eines breiten Spektrums an Pflanzen verwenden, so dass diese ein besserer oder effizienterer Produzent eines oder mehrerer von Lipiden hergeleiteter Produkte, wie PUFAs, wird. Diese verbesserte Produktion oder Effizienz der Produktion eines von Lipiden hergeleiteten Produktes, wie PUFAs, kann durch direkte Wirkung der Manipulation oder eine indirekte Wirkung dieser Manipulation hervorgerufen werden. Es gibt eine Reihe von Mechanismen, durch die die Veränderung eines erfindungsgemäßen Desaturase-Proteins die Ausbeute, Produktion und/oder Effizienz der Produktion einer Feinchemikalie aus einer Ölfruchtpflanze oder einem Mikroorganismus aufgrund eines veränderten Proteins direkt beeinflussen kann. Die Anzahl oder Aktivität des Desaturase-Proteins oder -Gens sowie von Genkombinationen von Desaturasen und Elongasen kann erhöht sein, so dass größere Mengen dieser Verbindungen de novo hergestellt werden, weil den Organismen diese Aktivität und Fähigkeit zur Biosynthese vor dem Einbringen des entsprechenden Gens fehlte. Entsprechendes gilt für die Kombination mit weiteren Desaturasen oder Elongasen oder weiteren Enzymen aus dem LipidstoffWechsel. Auch die Verwendung verschiedener divergenter, d.h. auf DNA- Sequenzebene unterschiedlicher Sequenzen kann dabei vorteilhaft sein bzw. die Verwendung von Promotoren zur Genexpression, die eine andere zeitliche Genexpression z.B. abhängig vom Reifegrad eines Samens oder Öl-speichernden Gewebes ermöglicht.
Durch das Einbringen eines Desaturase- und/oder Elongase-Gens oder mehrerer Desaturase- und Elongase-Gene in einen Organismus allein oder in Kombination mit anderen Genen in eine Zelle kann nicht nur den Biosynthesefluss zum Endprodukt erhöhen, sondern auch die entsprechende Triacylglycerin-Zusammensetzung erhöhen oder de novo schaffen. Ebenso kann die Anzahl oder Aktivität anderer Gene, die am Import von Nährstoffen, die zur Biosynthese einer oder mehrerer Feinchemikalien (z.B. Fettsäuren, polaren und neutralen Lipiden) nötig sind, erhöht sein, so dass die Konzentration dieser Vorläufer, Cofaktoren oder Zwischenverbindungen innerhalb der Zellen oder innerhalb des Speicher- kompartiments erhöht ist, wodurch die Fähigkeit der Zellen zur Produktion von PUFAs, wie im folgenden beschrieben, weiter gesteigert wird. Fettsäuren und Lipide sind selbst als Feinchemikalien wünschenswert; durch Optimierung der Aktivität oder Erhöhung der Anzahl einer oder mehrerer Desaturasen und/oder Elongasen, die an der Biosynthese dieser Verbindungen beteiligt sind, oder durch Zerstören der Aktivität einer oder mehrerer Desaturasen, die am Abbau dieser Verbindungen beteiligt sind, kann es möglich sein, die Ausbeute, Produktion und/oder Effizienz der Produktion von Fettsäure- und Lipidmolekülen aus Pflanzen zu steigern.
Die im erfindungsgemäßen Verfahren verwendeten isolierten Nukleinsäuremoleküle codieren für Proteine oder Teilen von diesen, wobei die Proteine oder das einzelne Protein oder Teilen davon eine Aminosäuresequenz enthält, die ausreichend homolog zu einer Aminosäuresequenz der Sequenz SEQ ID NO : 2 , 4 , 6 , 8 , 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32 ist, so dass das Protein oder der Teil davon eine Desaturase- oder Elongase- Aktivität beibehält. Vorzugsweise hat das Protein oder der Teil davon, das/der von dem Nukleinsäuremolekül kodiert wird, seine wesentliche enzymatische Aktivität und die Fähigkeit, am Stoff- 5 Wechsel von zum Aufbau von Zellmembranen von Pflanzen notwendigen Verbindungen oder am Transport von Molekülen über diese Membranen teilzunehmen. Vorteilhaft ist das von den Nukleinsäuremolekülen kodierte Protein zu mindestens etwa 50 %, vorzugsweise mindestens etwa 60 % und stärker bevorzugt mindestens etwa 70 %, 80 % oder
10 90 % und am stärksten bevorzugt mindestens etwa 95 %, 96 %, 97 %, 98 %, 99 % oder mehr homolog zu einer Aminosäuresequenz der Sequenz SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32. Bevorzugt ist das Protein ein Volllängen- Protein, das im wesentlichen in Teilen homolog zu einer gesamten
15 Aminosäuresequenz der SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32 (die von dem in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 gezeigten offenen Leserahmen herrührt) ist. Im Sinne der Erfindung ist unter Homologie oder homolog, Identität oder identisch zu ver-
20 stehen.
Unter wesentlicher enzymatischer Aktivität der verwendeten Desaturasen und der Elongase ist zu verstehen, dass sie gegenüber den durch die Sequenzen mit SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15,
25 17, 19, 21, 23, 25, 27, 29 oder 31 codierten Proteinen/Enzymen im Vergleich noch mindestens eine enzymatische Aktivität von mindestens 10 %, bevorzugt 20 %, besonders bevorzugt 30 % und ganz besonders 40 % aufweisen und damit am Stoffwechsel von zum Aufbau von Fettsäuren in einer Pflanzenzelle notwendigen
30 Verbindungen oder am Transport von Molekülen über Membranen teilnehmen können, wobei desaturierte C 8~ oder C20-22-Kohlenstoffketten mit Doppelbindungen an mindestens zwei, vorteilhaft drei, vier oder fünf Stellen gemeint ist .
35 Vorteilhaft im Verfahren verwendbare Nukleinsäuren stammen aus Pilzen oder Pflanzen wie Algen oder Moosen wie den Gattungen Physcomitrella, Thraustochytrium, Phytophtora, Ceratodon, Iso- chrysis, Aleurita, Muscarioides , Mortierella, Borago, Phaeo- dactylum, Crypthecodinium oder aus Nematoden wie Ceanorhabditis,
40 speziell aus den Gattungen und Arten Physcomitrella patens,
Phytophtora infestans, Ceratodon purpureus, Isochrysis galbana, Aleurita farinosa, Muscarioides viallii, Mortierella alpina, Borago officinalis, Phaeodactylum tricormutum oder Ceanorhabditis elegans .
45 Alternativ können die verwendeten isolierten Nukleotidsequenzen für Desaturasen oder Elongasen codieren, die an eine Nukleotid- sequenz der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 hybridisieren, z.B. unter stringenten Bedingungen hybridisieren.
Die im Verfahren verwendeten Nukleinsauresequenzen werden vorteilhaft in einer Expressionskassette, die die Expression der Nukleinsäuren in Pflanzen ermöglicht, eingebracht.
Vorteilhafte Expressionskassetten werden in SEQ ID NO: 33 bis 37 wiedergegeben. Dabei werden die für die Desaturasen und/oder die Elongasen codierenden Nukleinsauresequenzen mit einem oder mehreren Regulationssignalen vorteilhafterweise zur Erhöhung der Genexpression funktionell verknüpft. Diese regulatorischen Sequenzen sollen die gezielte Expression der Gene und der Proteinexpression ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, dass das Gen erst nach Induktion exprimiert und/oder überexprimiert wird, oder dass es sofort exprimiert und/oder überexprimiert wird. Beispielsweise handelt es sich bei diesen regulatorischen Sequenzen um Sequenzen an die Induktoren oder Repressoren binden und so die Expression der Nukleinsäure regulieren. Zusätzlich zu diesen neuen Regulationssequenzen oder anstelle dieser Sequenzen kann die natürliche Regulation dieser Sequenzen vor den eigentlichen Strukturgenen noch vorhanden sein und gegebenenfalls genetisch verändert worden sein, so dass die natürliche Regulation ausgeschaltet und die Expression der Gene erhöht wurde. Die Expressionskassette (= Expressionskonstrukt = Genkonstrukt) kann aber auch ein- facher aufgebaut sein, das heißt es wurden keine zusätzlichen Regulationssignale vor die Nukleinsauresequenz oder dessen Derivate inseriert und der natürliche Promotor mit seiner Regulation wurde nicht entfernt. Stattdessen wurde die natürliche Regulationssequenz so mutiert, dass keine Regulation mehr erfolgt und/oder die Genexpression gesteigert wird. Diese veränderten Promotoren können in Form von Teilsequenzen (= Promotor mit Teilen der erfindungsgemäßen Nukleinsauresequenzen) auch allein vor das natürliche Gen zur Steigerung der Aktivität gebracht werden. Das Genkonstrukt kann außerdem vorteilhafterweise auch eine oder mehrere sogenannte "enhancer Sequenzen" funktionell verknüpft mit dem Promotor enthalten, die eine erhöhte Expression der Nukleinsauresequenz ermöglichen. Auch am 3 '-Ende der DNA- Sequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden wie weitere regulatorische Elemente oder Terminatoren. Die Δ5-Desaturase-/Δ6-Desaturase und/oder Δ6-Elongase-Gene können in einer oder mehreren Kopien in der Expressionskassette (= Genkonstrukt) enthalten sein. Vorteilhaft liegt nur jeweils eine Kopie der Gene in der Expressionskassette vor. Dieses Genkonstrukt oder die Genkonstrukte können zusammen im Wirtsorganismus exprimiert werden. Dabei kann das Genkonstrukt oder die Genkonstrukte in einem oder mehreren Vektoren inseriert sein und frei in der Zelle vorliegen oder aber im Genom inseriert sein. Es ist vorteilhaft für die Insertion weiterer Gene im Wirtsgenom, wenn die zu exprimierenden Gene zusammen in einem Genkonstrukt vorliegen.
Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird.
Eine weitere Ausführungsform der Erfindung sind ein oder mehrere Genkonstrukte, die eine oder mehrere Sequenzen enthalten, die durch Seq ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 definiert sind und gem. SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32 Polypeptide kodieren. Die genannten Desaturasen führen dabei eine Doppel- bindung in Δ-5 oder Δ-6-Position ein, wobei das Substrat ein, zwei, drei oder vier Doppelbindungen aufweisen. Die Elongase (Δ-6-Elongase) besitzt eine Enzymaktivität, die eine Fettsäure um mindestens zwei Kohlenstoffatome verlängert. Gleiches gilt für ihre Homologen, Derivate oder Analoga, die funktionsfähig mit einem oder mehreren Regulationssignalen, vorteilhafterweise zur Steigerung der Genexpression, verbunden sind.
Vorteilhafte Regulationssequenzen für das neue Verfahren liegen beispielsweise in Promotoren vor, wie dem cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, lacis-- T7-, T5-, T3-, gal-, trc-, ara-, SP6-, -PR- oder λ-Pi,-Promotor und werden vorteilhafterweise in Gram-negativen Bakterien angewendet . Weitere vorteilhafte Regulationssequenzen liegen beispielsweise in den Gram-positiven Promotoren amy und SP02, in den Hefe- oder Pilzpromotoren ADC1, MFα, AC, P-60, CYCl, GAPDH, TEF, rp28, ADH oder in den Pflanzen- promotoren CaJ_V/35S [Franck et al., Cell 21 (1980) 285-294], PRP1 [Ward et al., Plant. Mol. Biol. 22 (1993)], SSU, OCS, lib4, usp, STLS1, B33, nos oder im Ubiquitin- oder Phaseolin-Promotor vor. In diesem Zusammenhang vorteilhaft sind ebenfalls induzier- bare Promotoren, wie die in EP-A-0 388 186 (Benzylsulfonamid- induzierbar) , Plant J. 2, 1992:397-404 (Gatz et al . , Tetra- cyclin-induzierbar) , EP-A-0 335 528 (Abzisinsäure-induzierbar) oder WO 93/21334 (Ethanol- oder Cyclohexenol-induzierbar) beschriebenen Promotoren. Weitere geeignete Pflanzenpromotoren sind der Promotor von cytosolischer FBPase oder der ST-LSI-Promotor der Kartoffel (Stockhaus et al., EMBO J. 8, 1989, 2445), der Phosphoribosylpyrophosphatamidotransferase-Promotor aus Glycine ax (Genbank-Zugangsnr. U87999) oder der in EP-A-0 249 676 beschriebene nodienspezifische Promotor. Besonders vorteilhafte Promotoren sind Promotoren, welche die Expression in Geweben ermöglichen, die an der Fettsäurebiosynthese beteiligt sind. Ganz besonders vorteilhaft sind samenspezifische Promotoren, wie der ausführungsgemäße USP Promotor aber auch andere Promotoren wie der LeB4-, DC3, Phaseolin- oder Napin-Promotor. Weitere besonders vorteilhafte Promotoren sind samenspezifische Promotoren, die für monokotyle oder dikotyle Pflanzen verwendet werden können und in US 5,608,152 (Napin-Promotor aus Raps), WO 98/45461 (Oleosin- Promotor aus Arobidopsis) , US 5,504,200 (Phaseolin-Promotor aus Phaseolus vulgaris) , WO 91/13980 (Bce4-Promotor aus Brassica) , von Baeumlein et al., Plant J., 2, 2, 1992:233-239 (LeB4- Promotor aus einer Leguminose) beschrieben sind, wobei sich diese Promotoren für Dikotyledonen eignen. Die folgenden
Promotoren eignen sich beispielsweise für Monokotyledonen lpt-2- oder lpt-1-Promotor aus Gerste (WO 95/15389 und WO 95/23230), Hordein-Promotor aus Gerste und andere, in WO 99/16890 beschriebene geeignete Promotoren.
Es ist im Prinzip möglich, alle natürlichen Promotoren mit ihren Regulationssequenzen, wie die oben genannten, für das neue Verfahren zu verwenden. Es ist ebenfalls möglich und vorteilhaft, zusätzlich oder alleine synthetische Promotoren zu verwenden, besonders wenn sie eine Samen-spezifische Expression vermitteln, wie z.B. beschrieben in WO 99/16890.
Um einen besonders hohen Gehalt an PUFAs in transgenen Pflanzen zu erzielen, sollten die PUFA-Biosynthesegene vorteilhaft samen- spezifisch in Ölsaaten exprimiert werden. Hierzu können Samenspezifische Promotoren verwendet werden, bzw. solche Promotoren die im Embryo und/oder im Endosperm aktiv sind. Samen-spezifische Promotoren können prinzipiell sowohl aus dikotolydonen als auch aus monokotolydonen Pflanzen isoliert werden. Im folgenden sind vorteilhafte bevorzugte Promotoren aufgeführt: USP (= unknown seed protein) und Vicilin (Vicia faba) [Bäumlein et al., Mol. Gen Genet., 1991, 225(3)], Napin (Raps) [US 5,608,152], Acyl- Carrier Protein (Raps) [US 5,315,001 und WO 92/18634], Oleosin (Arabidopsis thaliana) [WO 98/45461 und WO 93/20216], Phaseolin (Phaseolus vulgaris) [US 5,504,200], Bce4 [WO 91/13980],
Leguminosen B4 (LegB4-Promotor) [Bäumlein et al., Plant J. , 2,2, 1992], Lpt2 und lpt1 (Gerste) [WO 95/15389 u. WO95/23230] , Samen- spezifische Promotoren aus Reis, Mais u. Weizen [WO 99/16890], Amy32b, Amy 6-6 und Aleurain [US 5,677,474], Bce4 (Raps) [US 5,530,149], Glycinin (Soja) [EP 571 741], Phosphoenol- Pyruvatcarboxylase (Soja) [JP 06/62870], ADR12-2 (Soja) 5 [WO 98/08962], Isocitratlyase (Raps) [US 5,689,040] oder ß-Amylase (Gerste) [EP 781 849] .
Die Pflanzengenexpression lässt sich auch über einen chemisch induzierbaren Promotor erleichtern (siehe eine Übersicht in Gatz
10 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol . , 48:89-108). Chemisch induzierbare Promotoren eignen sich besonders, wenn gewünscht wird, dass die Genexpression auf zeitspezifische Weise erfolgt. Beispiele für solche Promotoren sind ein Salicylsäure- induzierbarer Promotor (WO 95/19443), ein Tetracyclin-induzier-
15 barer Promotor (Gatz et al. (1992) Plant J. 2, 397-404) und ein Ethanol-induzierbarer Promotor.
Um eine stabile Integration der Biosynthesegene in die trans- gene Pflanze über mehrere Generation sicherzustellen, sollte
20 jede der im Verfahren verwendeten Nukleinsäuren, die für die
Δ-6-Desaturase, die Δ-5-Desaturase oder die Δ-6-Elongase codieren, tinter der Kontrolle eines eigenen bevorzugt eines unterschiedlichen Promotors exprimiert werden, da sich wiederholende Sequenzmotive zu Instabilität der T-DNA bzw. zu Rekombinations-
25 ereignissen früheren können. Die Expressionskassette ist dabei vorteilhaft so aufgebaut, dass einem Promotor eine geeignete Schnittstelle zur Insertion der zu expremierenden Nukleinsäure folgt vorteilhaft in einem Polylinker anschließend gegebenenfalls ein Terminator hinter dem Polylinker liegt. Diese Abfolge wieder-
30 holt sich mehrfach bevorzugt drei-, vier- oder fünfmal, so dass bis zu fünf Gene in einem Konstrukt zusammengeführt werden und so zur Expression in die transgene Pflanze eingebracht werden können. Vorteilhaft wiederholt sich die Abfolge bis zu dreimal (siehe Sequenzprotokoll SEQ ID NO: 33 bis 37) . Die Nukleinsäure- 5 Sequenzen werden zur Expression über die geeignete Schnittstelle beispielsweise im Polylinker hinter den Promotor inseriert. Vorteilhaft hat jede Nukleinsauresequenz ihren eigenen Promotor und gegebenenfalls ihren eigenen Terminator. Es ist aber auch möglich mehrere Nukleinsauresequenzen hinter einem Promotor und ggf. 0 vor einem Terminator zu inserieren. Dabei ist die Insertions- stelle bzw. die Abfolge der inserierten Nukleinsäuren in der Expressionskassette nicht von entscheidender Bedeutung, das heißt eine Nukleinsauresequenz kann an erster oder letzter Stelle in der Kassette inseriert sein, ohne dass dadurch die Expression 5 wesentlich beeinflusst wird. Es können in der Expressionskassette vorteilhaft unterschiedliche Promotoren wie beispielsweise der USP-, LegB4 oder DC3-Promotor und unterschiedliche Terminatoren verwendet werden. Es ist aber auch möglich nur einen Promotortyp in der Kassette zu verwenden. Dies kann jedoch zu unerwünschten Rekombinationsereignissen führen.
Wie oben beschrieben sollte die Transkription der eingebrachten Gene vorteilhaft durch geeignete Terminatoren am 3 ' -Ende der eingebrachten Biosynthesegene (hinter dem Stoppcodon) abgebrochen werden. Verwendet werden kann hier z.B. der 0CS1 Terminator. Wie auch für die Promotoren, so sollten hier für jedes Gen unter- schiedliche Terminatorsequenzen verwendet werden.
Das Genkonstrukt kann, wie oben beschrieben, auch weitere Gene umfassen, die in die Organismen eingebracht werden sollen. Es ist möglich und vorteilhaft, in die Wirtsorganismen Regulationsgene, wie Gene für Induktoren, Repressoren oder Enzyme, welche durch ihre Enzymaktivität in die Regulation eines oder mehrerer Gene eines Biosynthesewegs eingreifen, einzubringen und darin zu exprimieren. Diese Gene können heterologen oder homologen Ursprungs sein. Weiterhin können vorteilhaft im Nukleinsäure- konstrukt bzw. Genkonstrukt weitere Biosynthesegene des Fettsäure- oder Lipidstoffwechsels enthalten sein oder aber diese Gene können auf einem weiteren oder mehreren weiteren Nuklein- säurekonstrukten liegen. Vorteilhaft werden als Biosynthesegene des Fettsäure- oder Lipidstoffwechsels ein Gen ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n) , Acyl-ACP[= acyl carrier protein] -Desaturase (n) , Acyl-ACP-Thioesterase(n) , Fettsäure-Acyl- Transferase(n) , Fettsäure-Synthase(n) , Fettsäure-Hydroxylase(n) , Acetyl-Coenzym A-Carboxylase (n) , Acyl-Coenzym A-Oxidase (n) , Fett- säure-Desaturase(n) , Fettsäure-Acetylenasen, Lipoxygenasen, Tri- acylglycerol-Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n) oder deren Kombinationen verwendet.
Dabei können die vorgenannten Desaturasen in Kombination mit Elongasen und anderen Desaturasen in erfindungsgemäßen Expressionskassetten kloniert werden und zur Transformation von Pflanzen mithilfe von Agrobakterium eingesetzt werden.
Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird. Die Expressionskassetten können prinzipiell direkt zum Einbringen in die Pflanze verwendet werden oder aber in einen Vektoren eingebracht werden.
Diese vorteilhaften Vektoren, vorzugsweise Expressionsvektoren, enthalten die im Verfahren verwendeten Nukleinsäure, die für Δ-5- oder Δ-6-Desaturen oder Δ-6-Elonagasen codieren, oder ein Nukleinsäurekonstrukt, die die verwendeten Nukleinsäure allein oder in Kombination mit weiteren Biosynthesegenen des Fettsäure- oder Lipidstoffwechsels. Wie hier verwendet, betrifft der Begriff "Vektor" ein Nukleinsäuremolekül, das eine andere Nukleinsäure transportieren kann, an welche es gebunden ist. Ein Vektortyp ist ein "Plasmid", was für eine zirkuläre doppel- strängige DNA-Schleife steht, in die zusätzlichen DNA-Segmente ligiert werden können. Ein weiterer Vektortyp ist ein viraler Vektor, wobei zusätzliche DNA-Segmente in das virale Genom ligiert werden können. Bestimmte Vektoren können in einer Wirts- zelle, in die sie eingebracht worden sind, autonom replizieren (z.B. Bakterienvektoren mit bakteriellem Replikationsursprung) . Andere Vektoren werden vorteilhaft beim Einbringen in die Wirts- zelle in das Genom einer Wirtszelle integriert und dadurch zusammen mit dem Wirtsgenom repliziert. Zudem können bestimmte Vektoren die Expression von Genen, mit denen sie funktionsfähig verbunden sind, steuern. Diese Vektoren werden hier als "Expressionsvektoren" bezeichnet. Gewöhnlich haben Expressions- vektoren, die für DNA-Rekombinationstechniken geeignet sind, die Form von Plasmiden. In der vorliegenden Beschreibung können "Plasmid" und "Vektor" austauschbar verwendet werden, da das Plasmid die am häufigsten verwendete Vektorform ist. Die Erfindung soll jedoch diese anderen Expressionsvektorformen, wie virale Vektoren, die ähnliche Funktionen ausüben, umfassen. Ferner soll der Begriff Vektor auch andere Vektoren, die dem Fachmann bekannt sind, wie Phagen, Viren, wie SV40, CMV, TMV, Transposons, IS-Elemente, Phasmide, Phagemide, Cosmide, lineare oder zirkuläre DNA, umfassen.
Die im Verfahren vorteilhaft verwendeten rekombinanten Expressionsvektoren umfassen die die unten beschriebenen Nukleinsäuren oder das oben beschriebene Genkonstrukt in einer Form, die sich zur Expression der verwendeten Nukleinsäuren in einer Wirtszelle eignen, was bedeutet, dass die rekombinanten Expressionsvektoren eine oder mehrere Regulationssequenzen, ausgewählt auf der Basis der zur Expression zu verwendenden Wirtszellen, die mit der zu expri ierenden Nukleinsauresequenz funktionsfähig verbunden ist, umfasst. In einem rekombinanten Expressionsvektor bedeutet "funktionsfähig verbunden", dass die Nukleotidsequenz von Interesse derart an die Regulationssequenz (en) gebunden ist, dass die Expression der Nukleotid- sequenz möglich ist und sie -ineinander gebunden sind, so dass beide Sequenzen die vorhergesagte, der Sequenz zugeschriebene Funktion erfüllen (z.B. in einem In-vitro-Transkriptions-/Trans- lationssystem oder in einer Wirtszelle, wenn der Vektor in die Wirtszelle eingebracht wird) . Der Begriff "Regulationssequenz" soll Promotoren, Enhancer und andere Expressionskontrollelemente (z.B. Polyadenylierungssignale) umfassen. Diese Regulationssequenzen sind z.B. beschrieben in Goeddel: Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990) , oder siehe: Gruber und Crosby, in: Methods in Plant Molecular Biology and Biotechnolgy, CRC Press, Boca Raton, Florida, Hrsgb.: Glick und Thompson, Kapitel 7, 89-108, einschließlich der Literaturstellen darin. Regulationssequenzen umfassen solche, welche die konstitutive Expression einer Nukleotidsequenz in vielen Wirtszelltypen steuern, und solche, welche die direkte Expression der Nukleotidsequenz nur in bestimmten Wirtszellen unter bestimmten Bedingungen steuern. Der Fachmann weiß, dass die Gestaltung des Expressionsvektors von Faktoren, wie der Auswahl der zu transformierenden Wirts- zelle, dem Ausmaß der Expression des gewünschten Proteins usw., abhängen kann.
Die verwendeten rekombinanten Expressionsvektoren können zur Expression von Desaturasen und Elongasen in prokaryotischen oder eukaryotischen Zellen gestaltet sein. Dies ist vorteilhaft, da häufig Zwischenschritte der Vektorkonstruktion der Einfachheithalber in Mikroorganismen durchgeführt werden. Beispielsweise können Desaturase- und/oder Elongase-Gene in bakteriellen Zellen, Insektenzellen (unter Verwendung von Baculovirus-Expressions- vektoren), Hefe- und anderen Pilzzellen (siehe Romanos, M.A. , et al. (1992) "Foreign gene expression in yeast: a review" , Yeast 8:423-488; van den Hondel, C.A.M.J.J., et al. (1991) "Heterologous gene expression in filamentous fungi", in: More Gene Manipulations in Fungi, J.W. Bennet & L.L. Lasure, Hrsgb., S. 396-428: Academic Press: San Diego; und van den Hondel,
C.A.M.J.J., & Punt, P.J. (1991) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy, J.F., et al., Hrsgb., S. 1-28, Cambridge University Press: Cambridge), Algen (Falciatore et al . , 1999, Marine Biotechnology.1, 3:239-251), Ciliaten der Typen: Holo- trichia, Peritrichia, Spirotrichia, Suctoria, Tetrahymena, Para- mecium, Colpidium, Glaucoma, Platyophrya, Potomacus, Desaturase- udocohnilembus, Euplotes, Engelmanieila und Stylonychia, insbesondere der Gattung Stylonychia lemnae, mit Vektoren nach einem Transformationsverfahren, wie beschrieben in WO 98/01572, sowie bevorzugt in Zellen vielzelliger Pflanzen (siehe Schmidt, R. und Willmitzer, L. (1988) "High efficiency Agrobacteriu turn faciens- mediated transformation of Arabidopsis thaliana leaf and cotyle- don explants" Plant Cell Rep. : 583-586; Plant Molecular Biology and Biotechnology, C Press, Boca Raton, Florida, Kapitel 6/7, S.71-119 (1993); F.F. White, B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb. : Kung und R. Wu, Academic Press (1993) , 128-43; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol . 42 (1991) , 205-225 (und darin zitierte Literaturstellen) ) exprimiert werden. Geeignete Wirtszellen werden ferner erörtert in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990) . Der rekombinante Expressionsvektor kann alternativ, zum Beispiel unter Verwendung von T7-Promotor- Regulationssequenzen und T7-Polymerase, in vitro transkribiert und translatiert werden.
Die Expression von Proteinen in Prokaryoten erfolgt meist mit Vektoren, die konstitutive oder induzierbare Promotoren enthalten, welche die Expression von Fusions- oder nicht-Fusions- proteinen steuern. Typische Fusions-Expressionsvektoren sind u.a. pGEX (Pharmacia Biotech Ine; Smith, D.B., und Johnson, K.S. (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) und pRIT5 (Pharmacia, Piscataway, NJ) , bei denen Glutathion- S-Transferase (GST) , Maltose E-bindendes Protein bzw. Protein A an das rekombinante Zielprotein fusioniert wird.
Beispiele für geeignete induzierbare nicht-Fusions-E. coli- Expressionsvektoren sind u.a. pTrc (Amann et al. (1988) Gene 69:301-315) und pET lld (Studier et al . , Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Kalifornien (1990) 60-89) . Die Zielgenexpression vom pTrc-Vektor beruht auf der Transkription durch Wirts-RNA-Polymerase von einem Hybrid-trp-lac-Fusionspromotor . Die Zielgenexpression aus dem pET lld-Vektor beruht auf der Transkription von einem T7-gnl0-lac- Fusions-Promotor, die von einer coexprimierten viralen RNA-Poly- merase (T7 gnl) vermittelt wird. Diese virale Polymerase wird von den Wirtsstämmen BL21 (DE3) oder HMS174 (DE3) von einem residenten λ-Prophagen bereitgestellt, der ein T7 gnl-Gen unter der Transkriptionskontrolle des lacUV 5-Promotors birgt.
Andere in prokaryotisehen Organismen geeignete Vektoren sind dem Fachmann bekannt, diese Vektoren sind beispielsweise in E. coli PLG338, pACYC184, die pBR-Reihe, wie pBR322, die pUC-Reihe, wie PUC18 oder pUC19, die Mll3mp-Reihe, pKC30, pRep4, pHSl, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-III113-Bl, λgtll or pBdCI, in Streptomyces pIJlOl, pIJ364, pIJ702 oder pIJ361, in Bacillus pUBllO, pC194 oder pBD214, in Corynebacteriu pSA77 oder pAJ667. Bei einer weiteren Ausführungsform ist der Expressionsvektor ein Hefe-Expressionsvektor. Beispiele für Vektoren zur Expression in der Hefe S. cerevisiae umfassen pYeDesaturasecl (Baldari et al. (1987) Embo J. 6:229-234), pMFa (Kurjan und Herskowitz (1982) Cell 30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:113-123) sowie pYES2 (Invitrogen Corporation, San Diego, CA) . Vektoren und Verfahren zur Konstruktion von Vektoren, die sich zur Verwendung in anderen Pilzen, wie den fila entösen Pilzen, eignen, umfassen diejenigen, die eingehend beschrieben sind in: van den Hondel, C.A.M.J.J., & Punt, P.J. (1991) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of fungi, J.F. Peberdy et al., Hrsgb., S. 1-28, Cambridge University Press: Cambridge, oder in: More Gene Manipulations in Fungi [J.W. Bennet & L.L. Lasure, Hrsgb., S. 396-428: Academic Press: San Diego]. Weitere geeignete Hefevektoren sind beispielsweise pAG-1, YEp6, YEpl3 oder pEMBLYe23.
Alternativ können die Desaturasen und/oder Elongasen in Insektenzellen unter Verwendung von Baculovirus-Expressionsvektoren exprimiert werden. Baculovirus-Vektoren, die zur Expression von Proteinen in gezüchteten Insektenzellen (z.B. Sf9-Zellen) verfügbar sind, umfassen die pAc-Reihe (Smith et al. (1983) Mol. Cell Biol.. 3:2156-2165) und die pVL-Reihe (Lucklow und Summers (1989) Virology 170:31-39).
Die oben genannten Vektoren bieten nur einen kleinen Überblick über mögliche geeignete Vektoren. Weitere Plasmide sind dem Fachmann bekannt und sind zum Beispiel beschrieben in: Cloning Vectors (Hrsgb. Pouwels, P.H., et al., Elsevier, Amsterdam- New York-Oxford, 1985, ISBN 0 444 904018) . Weitere geeignete Expressionssysteme für prokaryotisehe und eukaryotische Zellen siehe in den Kapiteln 16 und 17 von Sambrook, J., Fritsch, E.F., und Maniatis, T. , Molecular Cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.
Bei einer weiteren Ausführungsform können des Verfahrens können die Desaturasen und/oder Elongasen in einzelligen Pflanzenzellen (wie Algen), siehe Falciatore et al., 1999, Marine Biotechnology 1 (3):239-251 und darin zitierte Literaturangaben, und Pflanzenzellen aus höheren Pflanzen (z.B. Spermatophyten, wie Feldfrüchten) exprimiert werden. Beispiele für Pflanzen-Expressionsvektoren umfassen solche, die eingehend beschrieben sind in: Becker, D. , Kemper, E. , Schell, J., und Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border", Plant Mol. Biol. 20:1195-1197; und Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12:8711-8721; Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb. : Kung und R. Wu, Academic Press, 1993, S. 15-38.
Eine Pflanzen-Expressionskassette enthält vorzugsweise Regulationssequenzen, welche die Genexpression in Pflanzenzellen steuern können und funktionsfähig verbunden sind, so dass jede Sequenz ihre Funktion, wie Termination der Transkription, erfüllen kann, beispielsweise Polyadenylierungssignale. Bevorzugte Polyadenylierungssignale sind diejenigen, die aus Agro- bacterium tumefaciens-t-DNA stammen, wie das als Octopinsynthase bekannte Gen 3 des Ti-Plasmids pTiACH5 (Gielen et al., EMBO J. 3 (1984) 835ff.) oder funktioneile Äquivalente davon, aber auch alle anderen in Pflanzen funktionell aktiven Terminatoren sind geeignet.
Da die Pflanzengenexpression sehr oft nicht auf Transkriptionsebenen beschränkt ist, enthält eine Pflanzen-Expressionskassette vorzugsweise andere funktionsfähig verbunden Sequenzen, wie Translationsenhancer, beispielsweise die Overdrive-Sequenz , welche die 5'-untranslatierte Leader-Sequenz aus Tabakmosaikvirus, die das Protein/RNA-Verhältnis erhöht, enthält (Gallie et al., 1987, Nucl. Acids Research 15:8693-8711).
Die Pflanzengenexpression muss wie oben beschrieben funktionsfähig mit einem geeigneten Promotor verbunden sein, der die Genexpression auf rechtzeitige, zell- oder gewebespezifische Weise durchführt. Nutzbare Promotoren sind konstitutive Promotoren (Benfey et al., EMBO J. 8 (1989) 2195-2202), wie diejenigen, die von Pflanzenviren stammen, wie 35S CAMV (Franck et al., Cell 21 (1980) 285-294), 19S CaMV (siehe auch US 5352605 und WO 84/02913) oder Pflanzenpromotoren, wie der in US 4,962,028 beschriebene der kleinen Untereinheit der Rubisco.
Andere bevorzugte Sequenzen für die Verwendung zur funktionsfähigen Verbindung in Pflanzengenexpressions-Kassetten sind Targeting-Sequenzen, die zur Steuerung des Genproduktes in sein entsprechendes Zellkompartiment notwendig sind (siehe eine Über- sieht in Kermode, Crit. Rev. Plant Sei. 15, 4 (1996) 285-423 und darin zitierte Literaturstellen) , beispielsweise in die Vakuole, den Zellkern, alle Arten von Piastiden, wie Amylo- plasten, Chloroplasten, Chromoplasten, den extrazellulären Raum, die Mitochondrien, das Endoplasmatische Retikulum, Ölkörper, Peroxisomen und andere Kompartimente von Pflanzenzellen. Die Pflanzengenexpression lässt sich auch wie oben beschrieben über einen chemisch induzierbaren Promotor erleichtern (siehe eine Übersicht in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108). Chemisch induzierbare Promotoren eignen sich besonders, wenn gewünscht wird, dass die Genexpression auf zeitspezifische Weise erfolgt. Beispiele für solche Promotoren sind ein Salicylsäure-induzierbarer Promotor (WO 95/19443), ein Tetra- cyclin-induzierbarer Promotor (Gatz et al. (1992) Plant J. 2, 397-404) und ein Ethanol-induzierbarer Promotor.
Auch Promotoren, die auf biotische oder abiotische Stressbedingungen reagieren, sind geeignete Promotoren, beispielsweise der pathogeninduzierte PRPl-Gen-Promotor (Ward et al., Plant. Mol. Biol. 22 (1993) 361-366), der hitzeinduzierbare hsp80- Promotor aus Tomate (US 5,187,267), der kalteinduzierbare Alpha- amylase-Promotor aus Kartoffel (WO 96/12814) oder der durch Wunden induzierbare pinll-Promotor (EP-A-0 375 091) .
Es sind insbesondere solche Promotoren bevorzugt, welche die Genexpression in Geweben und Organen herbeiführen, in denen die Lipid- und Ölbiosynthese stattfindet, in Samenzellen, wie den Zellen des Endosperms und des sich entwickelnden Embryos. Geeignete Promotoren sind der Napingen-Promotor aus Raps (US 5,608,152), der USP-Promotor aus Vicia faba (Baeumlein et al., Mol Gen Genet, 1991, 225 (3):459-67), der Oleosin-
Promotor aus Arabidopsis (WO 98/45461) , der Phaseolin-Promotor aus Phaseolus vulgaris (US 5,504,200), der Bce4-Promotor aus Brassica (WO 91/13980) oder der Legumin-B4-Promotor (LeB4; Baeumlein et al . , 1992, Plant Journal, 2 (2):233-9) sowie Promotoren, welche die samenspezifische Expression in Monokotyledonen-Pflanzen, wie Mais, Gerste, Weizen, Roggen, Reis usw. herbeiführen. Geeignete beachtenswerte Promotoren sind der lpt2- oder lptl-Gen-Promotor aus Gerste (WO 95/15389 und WO 95/23230) oder die in WO 99/16890 beschriebenen (Promotoren aus dem Gersten-Hordein-Gen, dem Reis-Glutelin-Gen, dem Reis-Oryzin-Gen, dem Reis-Prolamin-Gen, dem Weizen-Gliadin-Gen, Weizen-Glutelin- Gen, dem Mais-Zein-Gen, dem Hafer-Glutelin-Gen, dem Sorghum- Kasirin-Gen, dem Roggen-Secalin-Gen) .
Insbesondere kann die multiparallele Expression der im Verfahren verwendeten Desaturasen und/Elongasen allein oder in Kombination mit anderen Desaturasen oder Elongasen gewünscht sein. Die Einführung solcher Expressionskassetten kann über eine simultane Transformation mehrerer einzelner Expressionskonstrukte erfolgen oder bevorzugt durch Kombination mehrerer Expressionskassetten auf einem Konstrukt. Auch können mehrere Vektoren mit mit jeweils mehreren Expressionskassetten transformiert und auf die Wirtszelle übertragen werden.
Ebenfalls besonders geeignet sind Promotoren, welche die plastidenspezifische Expression herbeiführen, da Piastiden das Kompartiment sind, in dem die Vorläufer sowie einige Endprodukte der Lipidbiosynthese synthetisiert werden. Geeignete Promotoren, wie der virale RNA-Polymerase-Promotor, sind beschrieben in WO 95/16783 und WO 97/06250, und der clpP- Promotor aus Arabidopsis, beschrieben in WO 99/46394.
Vektor-DNA lässt sich in prokaryotisehe oder eukaryotische Zellen über herkömmliche Transformations- oder Transfektionstechniken einbringen. Die Begriffe "Transformation" und "Transfektion" , Konjugation und Transduktion, wie hier verwendet, sollen eine Vielzahl von im Stand der Technik bekannten Verfahren zum Einbringen fremder Nukleinsäure (z.B. DNA) in eine Wirtszelle, einschließlich Calciumphosphat- oder Calciu chlorid-Copräzi- pitation, DEAE-Dextran-vermittelte Transfektion, Lipofektion, natürliche Kompetenz, chemisch vermittelter Transfer, Elektro- poration oder Teilchenbeschuss , umfassen. Geeignete Verfahren zur Transformation oder Transfektion von Wirtszellen, einschließlich Pflanzenzellen, lassen sich finden in Sambrook et al. (Molecular Cloning: A Laboratory Manual., 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) und anderen Labor-Handbüchern, wie Methods in Molecular Biology, 1995, Bd. 44, Agrobacterium protocols, Hrsgb: Gartland und Davey, Humana Press, Totowa, New Jersey.
Wirtszellen, die im Prinzip zum Aufnehmen der erfindungsgemäßen Nukleinsäure, des erfindungsgemäßen Genproduktes oder des erfindungsgemäßen Vektors geeignet sind, sind alle prokaryotischen oder eukaryotischen Organismen. Die vorteilhafterweise ver- wendeten Wirtsorganismen sind Organismen, wie Bakterien, Pilze, Hefen oder Pflanzenzellen vorzugsweise Pflanzen oder Teile davon. Pilze, Hefen oder Pflanzen werden vorzugsweise verwendet, besonders bevorzugt Pflanzen, ganz besonders bevorzugt Pflanzen, wie Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten, wie Raps, Nachtkerze, Hanf, Diestel, Erdnuss, Canola, Lein, Soja, Safflor, Sonnenblume, Borretsch, oder Pflanzen, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Baumwolle, Maniok, Pfeffer, Tagetes, Solanaceen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Alfalfa, Busch- pflanzen (Kaffee, Kakao, Tee) , Salix-Arten, Bäume (Ölplame, Kokosnuss) sowie ausdauernde Gräser und Futterfeldfrüchte. Besonders bevorzugte erfindungsgemäße Pflanzen sind Ölfrucht- pflanzen, wie Soja, Erdnuß, Raps, Canola, Lein, Hanf, Nachtkerze, Sonnenblume, Safflor, Bäume (Ölpalme, Kokosnuß) .
Im erfindungsgemäßen Verfahren werden vorteilhaft Nuklein- Säuresequenzen verwendet, die für die Polypeptide mit einer Δ-6-Desaturaseaktivität, Δ-6-Elongaseaktivität oder Δ-5-Desaturaseaktivität codierenden, ausgewählt aus der Gruppe:
a) einer Nukleinsauresequenz mit der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9,
SEQ ID NO: 11, SEQ ID NO 13, SEQ ID NO: 15, SEQ ID NO: 17,
SEQ ID NO: 19, SEQ ID NO 21, SEQ ID NO: 23, SEQ ID NO: 25,
SEQ ID NO: 27, SEQ ID NO 29 oder SEQ ID NO: 31 dargestellten
Sequenz ,
b) Nukleinsauresequenzen, die aufgrund des degenerierten genetischen Codes durch Rückübersetzung der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26,
SEQ ID NO: 28, SEQ ID NO: 30 oder SEQ ID NO: 32 dargestellten Aminosäuresequenzen erhalten werden,
c) Derivate der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13,
SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29 oder SEQ ID NO: 31 dargestellten Nukleinsauresequenz, die für Polypeptide mit der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12,
SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30 oder SEQ ID NO: 32 dargestellten Aminosäuresequenzen codieren und mindestens 50 % Homologie auf Amino- säureebene aufweisen, ohne daß die enzymatische Wirkung der Polypeptide wesentlich reduziert ist.
Die oben genannte erfindungsgemäße Nukleinsäure stammt von Organismen, wie Tieren, Ciliaten, Pilzen, Pflanzen wie Algen oder Dinoflagellaten, die PUFAs synthetisieren können.
Der Begriff "Nukleinsäure (molekül) " , wie hier verwendet, umfasst zudem die am 3 ' - und am 5 ' -Ende des kodierenden Genbereichs gelegene untranslatierte Sequenz: mindestens 500, bevorzugt 200, besonders bevorzugt 100 Nukleotide der Sequenz stromaufwärts des 5 '-Endes des kodierenden Bereichs und mindestens 100, bevorzugt 50, besonders bevorzugt 20 Nukleotide der Sequenz stromabwärts des 3 '-Endes des kodierenden Genbereichs. Ein "isoliertes" Nukleinsäuremolekül wird von anderen Nukleinsäuremolekülen abgetrennt, die in der natürlichen Quelle der Nukleinsäure vorliegen. Eine "isolierte" Nukleinsäure hat vorzugsweise keine Sequenzen, 5 welche die Nukleinsäure in der genomischen DNA des Organismus, aus dem die Nukleinsäure stammt, natürlicherweise flankieren (z.B. Sequenzen, die sich an den 5'- und 3 '-Enden der Nukleinsäure befinden) . Bei verschiedenen Ausführungsformen kann das isolierte Desaturase- oder Elongase-Nukleinsäuremolekül zum Bei- 10 spiel weniger als etwa 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0,5 kb oder 0,1 kb an Nukleotidsequenzen enthalten, die natürlicherweise das Nukleinsäuremolekül in der genomischen DNA der Zelle, aus der die Nukleinsäure stammt flankieren.
15 Die im Verfahren verwendeten Nukleinsäuremoleküle, z.B. ein Nukleinsäuremolekül mit einer Nukleotidsequenz der SEQ ID N0:1 oder eines Teils davon, kann unter Verwendung molekularbiologischer Standardtechniken und der hier bereitgestellten Sequenzinformation isoliert werden. Auch kann mithilfe von Ver-
20 gleichsalgorithmen beispielsweise eine homologe Sequenz oder homologe, konservierte Sequenzbereiche auf DNA oder Aminosäureebene identifiziert werden. Diese können als Hybridisierungssonde sowie Standard-Hybridisierungstechniken (wie z.B. beschrieben in Sambrook et al . , Molecular Cloning: A Laboratory Manual .
25 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) zur Isolierung weiterer im Verfahren nützlicher Nukleinsauresequenzen verwendet werden. Überdies lässt sich ein Nukleinsäuremolekül, umfassend eine vollständige Sequenz der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13,
30 15, 17, 19, 21, 23, 25, 27, 29 oder 31 oder einen Teil davon, durch Polymerasekettenreaktion isolieren, wobei Oligonukleotid- primer, die auf der Basis dieser Sequenz oder von Teilen davon, verwendet werden (z.B. kann ein Nukleinsäuremolekül, umfassend die vollständigen Sequenz oder einen Teil davon, durch Poly-
35 merasekettenreaktion unter Verwendung von Oligonukleotidprimem isoliert werden, die auf der Basis dieser gleichen Sequenz erstellt worden sind) . Zum Beispiel lässt sich mRNA aus Zellen isolieren (z.B. durch das Guanidiniumthiocyanat-Extraktions- verfahren von Chirgwin et al. (1979) Biochemistry 18:5294-5299)
40 und cDNA mittels Reverser Transkriptase (z.B. Moloney-MLV-
Reverse-Transkriptase, erhältlich von Gibco/BRL, Bethesda, MD, oder AMV-Reverse-Transkriptase, erhältlich von Seikagaku America, Inc., St .Petersburg, FL) herstellen. Synthetische Oligonukleotid- primer zur A plifizierung mittels Polymerasekettenreaktion lassen
45 sich auf der Basis einer der in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 sowie der in Figur 5a gezeigten Sequenzen oder mithilfe der in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32 dargestellten Aminosäuresequenzen erstellen. Eine erfindungsgemäße Nukleinsäure kann unter Verwendung von cDNA oder alternativ von genomischer DNA als Matrize und geeigneten Oligonukleotidprimem gemäß 5 Standard-PCR-Amplifikationstechniken amplifiziert werden. Die so amplifizierte Nukleinsäure kann in einen geeigneten Vektor kloniert werden und mittels DNA-Sequenzanalyse charakterisiert werden. Oligonukleotide, die einer Desaturase-Nukleotidsequenz entsprechen, können durch Standard-Syntheseverfahren, beispiels- 10 weise mit einem automatischen DNA-Synthesegerät, hergestellt werden.
Homologe der verwendeten Desaturase- oder Elongase-Nukleinsäure- sequenzen mit der Sequenz SEQ ID NO: 1, 3, 5, 7, 9, 11, 13,
15 15, 17, 19, 21, 23, 25, 27, 29 oder 31 bedeutet beispielsweise allelische Varianten mit mindestens etwa 50 bis 60 %, vorzugsweise mindestens etwa 60 bis 70 %, stärker bevorzugt mindestens etwa 70 bis 80 %, 80 bis 90 % oder 90 bis 95 % und noch stärker bevorzugt mindestens etwa 95 %, 96 %, 97 %, 98 %, 99 % oder
20 mehr Homologie zu einer in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 gezeigten Nukleotidsequenzen oder ihren Homologen, Derivaten oder Analoga oder Teilen davon. Weiterhin sind isolierte Nukleinsäuremoleküle einer Nukleotidsequenz, die an eine der in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15,
25 17, 19, 21, 23, 25, 27, 29 oder 31 gezeigten Nukleotidsequenzen oder einen Teil davon hybridisieren, z.B. unter stringenten Bedingungen hybridisiert. Allelische Varianten umfassen insbesondere funktioneile Varianten, die sich durch Deletion, Insertion oder Substitution von Nukleotiden aus/in der in
30 SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27,
29 oder 31 dargestellten Sequenz erhalten lassen, wobei aber die Absicht ist, dass die Enzymaktivität der davon herrührenden synthetisierten Proteine für die Insertion eines oder mehrerer Gene vorteilhafterweise beibehalten wird. Proteine, die noch die
35 enzymatische Aktivität der Desaturase oder Elongase besitzen, das heißt deren Aktivität im wesentlichen nicht reduziert ist, bedeutet Proteine mit mindestens 10 %, vorzugsweise 20 %, besonders bevorzugt 30 %, ganz besonders bevorzugt 40 % der ursprünglichen Enzymaktivität, verglichen mit dem durch
40 SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28,
30 oder 32 kodierten Protein.
Homologen der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 bedeuten beispielsweise auch bakterielle, 45 Pilz- und Pflanzenhomologen, verkürzte Sequenzen, einzelsträngige DNA oder RNA der kodierenden und nicht-kodierenden DNA-Sequenz . Homologen der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 bedeutet auch Derivate, wie beispielsweise Promotorvarianten. Die Promotoren stromaufwärts der angegebenen Nukleotidsequenzen können durch einen oder mehrere Nukleotidaus- tausche, durch Insertion (en) und/oder Deletion(en) modifiziert werden, ohne dass jedoch die Funktionalität oder Aktivität der Promotoren gestört wird. Es ist weiterhin möglich, dass die Aktivität der Promotoren durch Modifikation ihrer Sequenz erhöht ist oder dass sie vollständig durch aktivere Promotoren, sogar aus heterologen Organismen, ersetzt werden.
Die vorgenannten Nukleinsäuren und Proteinmoleküle mit Desaturase- oder Elongaseaktivität, die am Stoffwechsel von Lipiden und Fettsäuren, PUFA-Cofaktoren und Enzymen oder am Transport lipophiler Verbindungen über Membranen beteiligt sind, werden im
Figure imgf000036_0001
Verfahren zur Modulation der Produktion von Verbindungen der allgemeinen Formel I in transgenen Pflanzen, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Sojabohne, Erdnuss, Baumwolle, Linu Arten wie Öl- oder Faserlein, Brassica-Arten, wie Raps, Canola und Rübsen, Pfeffer, Sonnenblume, Borretsch, Nachtkerze und Tagetes, Solanacaen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Maniok, Alfalfa, Buschpflanzen (Kaffee, Kakao, Tee) , Salix-Arten, Bäume (Ölpalme, Kokosnuss) und ausdauernden Gräsern und Futter- feldfrüchten, entweder direkt (z.B. wenn die Überexpression oder Optimierung eines Fettsäurebiosynthese-Proteins einen direkten Einfluss auf die Ausbeute, Produktion und/oder Effizienz der Produktion der Fettsäure aus modifizierten Organismen hat) verwenden und/oder können eine indirekt Auswirkung haben, die dennoch zu einer Steigerung der Ausbeute, Produktion und/oder Effizienz der Produktion einer gewünschten Verbindung oder einer Abnahme unerwünschter Verbindungen führt (z.B. wenn die Modulation des Stoffwechsels von Lipiden und Fettsäuren, Cofaktoren und Enzymen zu Veränderungen der Ausbeute, Produktion und/oder Effizienz der Produktion oder der Zusammensetzung der gewünschten Verbindungen innerhalb der Zellen führt, was wiederum die Produktion einer oder mehrerer Fettsäuren beeinflussen kann) .
Die Kombination verschiedener Vorläufermoleküle und Biosynthese- enzyme führt zur Herstellung verschiedener Fettsäuremoleküle, was eine entscheidende Auswirkung auf die Zusammensetzung der Lipide hat. Da mehrfach ungesättigte Fettsäuren (= PUFAs) nicht nur einfach in Triacylglycerin sondern auch in Membranlipide eingebaut werden. Die Lipidsynthese lässt sich in zwei Abschnitte unterteilen: die Synthese von Fettsäuren und ihre Bindung an sn-Glycerin-3- Phosphat sowie die Addition oder Modifikation einer polaren Kopfgruppe. Übliche Lipide, die in Membranen verwendet werden, umfassen Phospholipide, Glycolipide, Sphingolipide und Phosphoglyceride. Die Fettsäuresynthese beginnt mit der Umwandlung von Acetyl-CoA in Malonyl-CoA durch die Acetyl-CoA-Carboxylase oder in Acetyl-ACP durch die Acetyltransacylase. Nach einer Kondensationsreaktion bilden diese beiden Produktmoleküle zusammen Acetoacetyl-ACP, das über eine Reihe von Kondensations-, Reduktions- und Dehydratisierungsreaktionen umgewandelt wird, so dass ein gesättigtes Fettsäuremolekül mit der gewünschten Kettenlänge erhalten wird. Die Produktion der ungesättigten Fettsäuren aus diesen Molekülen wird durch spezifische Desaturasen kata- lysiert, und zwar entweder aerob mittels molekularem Sauerstoff oder anaerob (bezüglich der Fettsäuresynthese in Mikroorganismen siehe F.C. Neidhardt et al . (1996) E. coli und Salmonella. ASM Press: Washington, D.C., S. 612-636 und darin enthaltene Literaturstellen; Lengeier et al. (Hrsgb.) (1999) Biology of Procaryotes. Thieme: Stuttgart, New York, und die enthaltene Literaturstellen, sowie Magnuson, K. , et al . (1993) Micro- biological Reviews 57:522-542 und die enthaltenen Literaturstellen) .
Vorläufer für die PUFA-Biosynthese sind beispielsweise Ölsäure, Linol- und Linolensäure. Diese Cχs-Kohlenstoff-Fettsäuren müssen auf C20 und C22 verlängert werden, damit Fettsäuren vom Eicosa- und Docosa-Kettentyp erhalten werden. Mithilfe der im Verfahren verwendeten Desaturasen wie der Δ-5- und Δ-6-Desaturase und der Δ-6-Elongase können Arachidonsäure und Eicosapentaensäure sowie verschiedene andere langkettige PUFAs erhalten, extrahiert und für verschiedene Zwecke bei Nahrungsmittel-, Futter-, Kosmetikoder pharmazeutischen Anwendungen verwendet werden. Mit den genannten Enzymen können vorzugsweise Cχ8 + C o Fettsäuren mit mindestens zwei, drei, vier oder fünf Doppelbindungen im Fettsäuremolekül, vorzugsweise zu C2o~Fettsäuren mit vorteilhaft drei, vier oder fünf Doppelbindungen im Fettsäuremolekül hergestellt werden. Die Desaturierung kann vor oder nach Elongation der entsprechenden Fettsäure erfolgen. Daher führen die Produkte der Desaturaseaktivitäten und der möglichen weiteren Desaturierung und Elongation zu bevorzugten PUFAs mit höherem Desaturierungs- grad, einschließlich einer weiteren Elongation von Co zu C22-Fettsäuren, zu Fettsäuren wie γ-Linolensäure, Dihomo-γ-linolen- säure, Arachidonsäure, Stearidonsäure, Eicosatetraensäure oder Eicosapentaensäure. Substrate im erfindungsgemäßen Verfahren sind zum Beispiel Linolsäure, γ-Linolensäure, α-Linolensäure, Dihomo- γ-linolensäure, Eicosatetraensäure oder Stearidonsäure. Bevorzugte Substrate sind Linolsäure, γ-Linolensäure und/oder α-Linolensäure, dihomo-γ-linolensäure bzw. Arachidonsäure, Eicosatetraensäure oder Eicosapentaensäure. Die Cχs-oder C20~Fettsäuren mit mindestens zwei Doppelbindungen in der Fettsäure fallen im erfindungsgemäßen Verfahren in Form der freien Fettsäure oder in Form ihrer Ester (siehe Formel I) beispielsweise in Form ihrer Glyceride an.
Unter dem Begriff "Glycerid" wird ein mit ein, zwei oder drei Carbonsäureresten verestertes Glycerin verstanden (Mono-,
Di- oder Triglycerid) . Unter "Glycerid" wird auch ein Gemisch an verschiedenen Glyceriden verstanden. Das Glycerid oder das Gylceridgemisch kann weitere Zusätze, z.B. freie Fettsäuren, Antioxidantien, Proteine, Kohlenhydrate, Vitamine und/oder andere Substanzen enthalten.
Unter einem "Glycerid" im Sinne des erfindungsgemäßen Verfahrens werden ferner vom Glycerin abgeleitete Derivate verstanden. Dazu zählen neben den oben beschriebenen Fettsäureglyceriden auch Glycerophospholipide und Glyceroglycolipide. Bevorzugt seien hier die Glycerophospholipide wie Lecithin (Phosphatidylcholin) , Cardiolipin, Phosphatidylglycerin, Phosphatidylserin und Alkyl- acylglycerophospholipide beispielhaft genannt.
Ferner müssen Fettsäuren anschließend an verschiedene Modifikationsorte transportiert und in das Triacylglycerin-Speicher- lipid eingebaut werden. Ein weiterer wichtiger Schritt bei der Lipidsynthese ist der Transfer von Fettsäuren auf die polaren Kopfgruppen, beispielsweise durch Glycerin-Fettsäure-Acyl- transferase (siehe Frentzen, 1998, Lipid, 100 (4-5) : 161-166) .
Veröffentlichungen über die Pflanzen-Fettsäurebiosynthese, Desaturierung, den LipidstoffWechsel und Membrantransport von fetthaltigen Verbindungen, die Betaoxidation, Fettsäure- modifikation und Cofaktoren, Triacylglycerin-Speicherung und -Assemblierung einschließlich der Literaturstellen darin siehe in den folgenden Artikeln: Kinney, 1997, Genetic Engeneering, Hrsgb.: JK Setlow, 19:149-166; Ohlrogge und Browse, 1995, Plant Cell 7:957-970; Shanklin und Cahoon, 1998, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:611-641; Voelker, 1996, Genetic
Engeneering, Hrsgb.: JK Setlow, 18:111-13; Gerhardt, 1992, Prog. Lipid R. 31:397-417; Gühnemann-Schäfer & Kindl, 1995, Biochim. Biophys Acta 1256:181-186; Kunau et al., 1995, Prog. Lipid Res. 34:267-342; Stymne et al . , 1993, in: Biochemistry and Molecular Biology of Membrane and Storage Lipids of Plants, Hrsgb.: Murata und Somerville, Rockville, American Society of Plant Physiologists, 150-158, Murphy & Ross 1998, Plant Journal. 13(1) :1-16.
Die im Verfahren hergestellten PUFAs, umfassen eine Gruppe von Molekülen, die höhere Tiere nicht mehr synthetisieren können und somit aufnehmen müssen oder die höhere Tiere nicht mehr ausreichend selbst herstellen können und somit zusätzlich aufnehmen müssen, obwohl sie leicht von anderen Organismen, wie Bakterien, synthetisiert werden, beispielsweise können Katzen Arachidonsäure nicht mehr synthetisieren..
Der Begriff "Desaturase oder Elongase" oder "Desaturase- oder Elongase-Polypeptid" im Sinne der Erfindung umfasst Proteine, die an der Desaturierung und Elongierung von Fettsäuren teilnehmen, sowie ihre Homologen, Derivaten oder Analoga. Die Begriffe Desaturase oder Elongase-Nukleinsäuresequenz (en) umfassen Nukleinsauresequenzen, die eine Desaturase oder Elongase kodieren und bei denen ein Teil eine kodierende Region und ebenfalls entsprechende 5 ' - und 3 ' -untranslatierte Sequenzbereiche sein können. Die Begriffe Produktion oder Produktivität sind im Fachgebiet bekannt und beinhalten die Konzentration des Fermentationsproduktes (Verbindungen der Formel I) , das in einer bestimmten Zeitspanne und einem bestimmten Fermentationsvolumen gebildet wird (z.B. kg Produkt pro Stunde pro Liter). Der Begriff Effizienz der Produktion umfasst die Zeit, die zur Erzielung einer bestimmten Produktionsmenge nötig ist (z.B. wie lange die Zelle zur Aufrichtung einer bestimmten Durchsatzrate einer Feinchemikalie benötigt) . Der Begriff Ausbeute oder Produkt/ Kohlenstoff-Ausbeute ist im Fachgebiet bekannt und umfasst die Effizienz der Umwandlung der Kohlenstoffquelle in das Produkt (d.h. die Feinchemikalie) . Dies wird gewöhnlich beispielsweise ausgedrückt als kg Produkt pro kg Kohlenstoffquelle. Durch Erhöhen der Ausbeute oder Produktion der Verbindung wird die Menge der gewonnenen Moleküle oder der geeigneten gewonnenen Moleküle dieser Verbindung in einer bestimmten Kulturmenge über einen festgelegten Zeitraum erhöht. Die Begriffe Biosynthese oder Biosyntheseweg sind im Fachgebiet bekannt und umfassen die Synthese einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle aus Zwischenverbindungen, beispielsweise in einem Mehrschritt- und stark regulierten Prozess. Die Begriffe Abbau oder Abbauweg sind im Fachgebiet bekannt und umfassen die Spaltung einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle in Abbauprodukte (allgemeiner gesagt, kleinere oder weniger komplexe Moleküle) beispielsweise in einem Mehrschritt- und stark regulierten Prozess. Der Begriff Stoffwechsel ist im Fachgebiet bekannt und umfasst die Gesamtheit der biochemischen Reaktionen, die in einem Organismus stattfinden. Der Stoffwechsel einer bestimmten Verbindung (z.B. der Stoffwechsel einer Fettsäure) umfasst dann die Gesamtheit der Biosynthese-, Modifikations- und Abbauwege dieser Verbindung in der Zelle, die diese Verbindung betreffen. 5
Bei einer weiteren Ausführungsform kodieren Derivate des erfindungsgemäßen Nukleinsäuremoleküls Proteine mit mindestens 50 %, vorteilhaft etwa 50 bis 60 %, vorzugsweise mindestens etwa 60 bis 70 % und stärker bevorzugt mindestens etwa 70 bis 80 %,
10 80 bis 90 %, 90 bis 95 % und am stärksten bevorzugt mindestens etwa 96 %, 97 %, 98 %, 99 % oder mehr Homologie (= Identität) zu einer vollständigen Aminosäuresequenz der SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32. Die Homologie der Aminosäuresequenz kann über den gesamten Sequenzbereich mit
15 dem Programm PileUp (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al . , CABIOS, 5, 1989:151-153) oder BESTFIT oder GAP bestimmt (Henikoff, S. and Henikoff, J. G. (1992) . Amino acid Substitution matrices from protein blocks. Proc. Natl . Acad. Sei. USA 89: 10915-10919.)
20
Die Erfindung umfasst zudem Nukleinsäuremoleküle, die sich von einer der in SEQ ID NO: 1, 3, 5 oder 11 gezeigten Nukleotidsequenzen (und Teilen davon) aufgrund des degenerierten genetischen Codes unterscheiden und somit die gleiche Desaturase
25 kodieren wie diejenige, die von den in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 gezeigten Nukleotidsequenzen kodiert wird.
Zusätzlich zu den in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 30 19, 21, 23, 25, 27, 29 oder 31 gezeigten Desaturase-Nukleotid- sequenzen erkennt der Fachmann, dass DNA-Sequenzpolymorphismen, die zu Änderungen in den Aminosäuresequenzen der Desaturasen oder Elongasen führen, innerhalb einer Population existieren können. Diese genetischen Polymorphismen im Desaturase- oder Elongase-Gen 35 können zwischen Individuen innerhalb einer Population aufgrund von natürlicher Variation existieren. Diese natürlichen Varianten bewirken üblicherweise eine Varianz von 1 bis 5 % in der Nukleotidsequenz des Desaturase- oder Elongase-Gens . Sämtliche und alle dieser Nukleotidvariationen und daraus resultierende Aminosäure- 40 polymorphismen in der Desaturase oder Elongase, die das Ergebnis natürlicher Variation sind und die funktionelle Aktivität von Desaturasen oder Elongasen nicht verändern, sollen im Umfang der Erfindung enthalten sein.
5 Für das erfindungsgemäße Verfahren vorteilhafte Nukleinsäuremoleküle können auf der Grundlage ihrer Homologie zu den hier offenbarten Desaturase- oder Elongase-Nukleinsäuren unter Verwendung der Sequenzen oder eines Teils davon als Hybridisierungssonde gemäß Standard-Hybridisierungstechniken unter stringenten Hybridi- sierungsbedingungen isoliert werden. Dabei können beispielsweise isolierte Nukleinsäuremoleküle verwendet werden, die mindestens 15 Nukleotide lang sind und unter stringenten Bedingungen mit dem Nukleinsäuremolekülen, die eine Nukleotidsequenz der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 umfassen, hybridisieren. Es können auch Nukleinsäuren mindestens 25, 50, 100, 250 oder mehr Nukleotide verwendet werden. Der Begriff "hybridisiert unter stringenten Bedingungen", wie hier verwendet, soll Hybridisierungs- und Waschbedingungen beschreiben, unter denen Nukleotidsequenzen, die mindestens 60 % homolog zueinander sind, gewöhnlich aneinander hybridisiert bleiben. Die Bedingungen sind vorzugsweise derart, dass Sequenzen, die mindestens etwa 65 %, stärker bevorzugt mindestens etwa 70 % und noch stärker bevorzugt mindestens etwa 75 % oder stärker zueinander homolog sind, gewöhnlich aneinander hybridisiert bleiben. Diese stringenten Bedingungen sind dem Fachmann bekannt und lassen sich in Current Protocols in Molecular Biology, John Wiley & Sons, N. Y. (1989), 6.3.1-6.3.6., finden. Ein bevorzugtes, nicht einschränkendes Beispiel für stringente Hybridi- sierungsbedingungen sind Hybridisierungen in 6 x Natriumchlorid/ Natriumeitrat (sodium Chloride/sodiumeiträte = SSC) bei etwa 45°C, gefolgt von einem oder mehreren Waschschritten in 0,2 x SSC, 0,1 % SDS bei 50 bis 65°C. Dem Fachmann ist bekannt, dass diese Hybridisierungsbedingungen sich je nach dem Typ der Nukleinsäure und, wenn beispielsweise organische Lösungsmittel vorliegen, hinsichtlich der Temperatur und der Konzentration des Puffers unterscheiden. Die Temperatur unterscheidet sich beispielsweise unter "Standard-Hybridisierungsbedingungen" je nach dem Typ der Nukleinsäure zwischen 42°C und 58°C in wässrigem Puffer mit einer Konzentration von 0,1 bis 5 x SSC (pH 7,2). Falls organisches Lösungsmittel im obengenannten Puffer vorliegt, zum Beispiel 50 % Formamid, ist die Temperatur unter Standardbedingungen etwa 42°C. Vorzugsweise sind die Hybridisierungsbedingungen für DNA:DNA- Hybride zum Beispiel 0,1 x SSC und 20°C bis 45°C, vorzugsweise zwischen 30°C und 45°C. Vorzugsweise sind die Hybridisierungsbedingungen für DNA:RNA-Hybride zum Beispiel 0,1 x SSC und 30°C bis 55°C, vorzugsweise zwischen 45°C und 55°C. Die vorstehend genannten Hybridisierungstemperaturen sind beispielsweise für eine Nukleinsäure mit etwa 100 bp (= Basenpaare) Länge und einem G + C-Gehalt von 50 % in Abwesenheit von Formamid bestimmt. Der Fachmann weiß, wie die erforderlichen Hybridisierungsbedingungen anhand von Lehrbüchern, wie dem vorstehend erwähnten oder aus den folgenden Lehrbüchern Sambrook et al., "Molecular Cloning", Cold Spring Harbor Laboratory, 1989; Harnes und Higgins (Hrsgb.) 1985, "Nucleic Acids Hybridization: A Practical Approach" , IRL Press at Oxford University Press, Oxford; Brown (Hrsgb.) 1991, "Essential Molecular Biology: A Practical Approach" , IRL Press at Oxford University Press, Oxford, bestimmt werden können.
Zur Bestimmung der prozentualen Homologie (= Identität) von zwei Aminosäuresequenzen (z.B. einer der Sequenzen der SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32) oder von zwei Nukleinsäuren (z.B. einer der Sequenzen der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31) werden die Sequenzen zum Zweck des optimalen Vergleichs untereinander geschrieben (z.B. können Lücken in die Sequenz eines Proteins oder einer Nukleinsäure eingefügt werden, um ein optimales Alignment mit dem anderen Protein oder der anderen Nukleinsäure zu erzeugen) . Die Aminosäurereste oder Nukleotide an den entsprechenden Aminosäurepositionen oder Nukleotidpositionen werden dann verglichen. Wenn eine Position in einer Sequenz durch den gleichen Aminosäurerest oder das gleiche Nukleotid wie die entsprechende Stelle in der anderen Sequenz belegt wird, dann sind die Moleküle an dieser Position homolog (d.h. Aminosäure- oder Nukleinsäure-"Homologie" , wie hier verwendet, entspricht
Aminosäure- oder Nukleinsäure-"Identität") . Die prozentuale Homologie zwischen den beiden Sequenzen ist eine Funktion der Anzahl an identischen Positionen, die den Sequenzen gemeinsam sind (d.h. % Homologie = Anzahl der identischen Positionen/Gesamtanzahl der Positionen x 100) . Die Begriffe Homologie und Identität sind damit als Synonym anzusehen.
Ein isoliertes Nukleinsäuremolekül, das eine Desaturase oder Elongase kodiert, die zu einer Proteinsequenz der SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32 homolog ist, kann durch Einbringen einer oder mehrerer Nukleotid- substi utionen, -additionen oder -deletionen in eine Nukleotidsequenz der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 erzeugt werden, so dass eine oder mehrere Aminosäuresubstitutionen, -additionen oder -deletionen in das kodierte Protein eingebracht werden. Mutationen können in eine der Sequenzen der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 durch Standardtechniken, wie stellenspezifische Mutagenese und PCR-vermittelte Mutagenese, ein- gebracht werden. Vorzugsweise werden konservative Aminosäuresubstitutionen an einer oder mehreren der vorhergesagten nichtessentiellen Aminosäureresten hergestellt. Bei einer "konservativen Aminosäuresubstitution" wird der Aminosäurerest gegen einen Aminosäurerest mit einer ähnlichen Seitenkette ausge- tauscht. Im Fachgebiet sind Familien von Aminosäureresten mit ähnlichen Seitenketten definiert worden. Diese Familien umfassen Aminosäuren mit basischen Seitenketten (z.B. Lysin, Arginin, Histidin) , sauren Seitenketten (z.B. Asparaginsäure, Glutaminsäure), ungeladenen polaren Seitenketten (z.B. Glycin, Asparagin, Glutamin, Serin, Threonin, Tyrosin, Cystein) , unpolaren Seitenketten, (z.B. Alanin, Valin, Leucin, Isoleucin, Prolin, Phenyl- alanin, Methionin, Tryptophan) , beta-verzweigten Seitenketten (z.B. Threonin, Valin, Isoleucin) und aromatischen Seitenketten (z.B. Tyrosin, Phenylalanin, Tryptophan, Histidin). Ein vorhergesagter nicht-essentieller Aminosäurerest in einer Desaturase oder Elongase wird somit vorzugsweise durch einen anderen Amino- säurerest aus der gleichen Seitenkettenfamilie ausgetauscht. Alternativ können bei einer anderen Ausführungsform die Mutationen zufallsgemäß über die gesamte oder einen Teil der Desaturase-kodierenden Sequenz eingebracht werden, z.B. durch Sättigungsmutagenese, und die resultierenden Mutanten können nach der hier beschriebenen Desaturase-Aktivität durchmustert werden, um Mutanten zu identifizieren, die Desaturase- oder Elongase-Aktivität beibehalten. Nach der Mutagenese einer der Sequenzen der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 kann das kodierte Protein rekombinant exprimiert werden, und die Aktivität des Proteins kann z.B. unter Verwendung der hier beschriebenen Tests bestimmt werden.
Diese Erfindung wird durch die nachstehenden Beispiele weiter veranschaulicht, die nicht als beschränkend aufgefaßt werden sollten. Der Inhalt sämtlicher in dieser Patentanmeldung zitierten Literaturstellen, Patentanmeldungen, Patente und veröffentlichten Patentanmeldungen ist hier durch Bezugnahme aufgenommen.
Beispielteil
Beispiel 1 : Allgemeine Verfahren
a) Allgemeine Klonierungsverfahren:
Klonierungsverfahren, wie beispielsweise Restriktionsspaltungen, Agarosegelelektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrocellulose- und Nylonmembranen, Verbindung von DNA-Fragmenten, Transformation von Escherichia coli- und Hefe-Zellen, Anzucht von Bakterien und Sequenz nalyse rekombinanter DNA, wurden durchgeführt wie beschrieben in Sairibrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) oder Kaiser, Michaelis und Mitchell (1994) "Methods in Yeast Genetics" (Cold Spring Harbor Laboratory Press: ISBN 0-87969-451-3). b) Chemikalien
Die verwendeten Chemikalien wurden, wenn im Text nicht anders angegeben, in p. A. -Qualität von den Firmen Fluka (Neu-Ulm) , 5 Merck (Darmstadt) , Roth (Karlsruhe) , Serva (Heidelberg) und Sigma (Deisenhofen) bezogen. Lösungen wurden unter Verwendung von reinem pyrogenfreiem Wasser, im nachstehenden Text als H2O bezeichnet, aus einer Milli-Q-Wassersystem-Wasserreinigungs- anlage (Millipore, Eschborn) hergestellt. Restriktionsendo-
10 nukleasen, DNA-modifizierende Enzyme und molekularbiologische Kits wurden bezogen von den Firmen AGS (Heidelberg) , Amersham (Braunschweig) , Biometra (Göttingen) , Boehringer (Mannheim) , Genomed (Bad Oeynhausen) , New England Biolabs (Schwalbach/ Taunus) , Novagen (Madison, Wisconsin, USA) , Perkin-Elmer
15 (Weiterstadt) , Pharmacia (Freiburg) , Qiagen (Hilden) und
Stratagene (Amsterdam, Niederlande) . Wenn nicht anders angegeben, wurden sie nach den Anweisungen des Herstellers verwendet.
20 Beispiel 2: Isolierung von Gesamt-RNA und poly(A)+-RNA aus Pflanzen
Die Isolierung von Gesamt-RNA aus Pflanzen wie Lein und Raps etc . erfolgt nach einer bei Logemann et al beschriebenen 25 Methode (1987, Anal. Biochem. 163, 21) isoliert. Aus Moos kann die Gesamt-RNA Protonema-Gewebe nach dem GTC-Verfahren (Reski et al., 1994, Mol. Gen. Genet., 244:352-359) gewonnen werden.
Beispiel 3: Transformation von Agrobacterium
30
Die Agrobacterium-vermittelte Pflanzentransformation kann zum Beispiel unter Verwendung des GV3101- (pMP90-) (Koncz und Schell, Mol. Gen. Genet. 204 (1986) 383-396) oder LBA4404- (Clontech) oder C58C1 pGV2260 (Deblaere et al 1984, Nucl. Acids Res. 13, 35 4777-4788) Agrobacterium tumefaeiens-Stamms durchgeführt werden. Die Transformation kann durch Standard-Transformationstechniken durchgeführt werden (ebenfalls Deblaere et al . 1984).
Beispiel 4: Pflanzentransformation
40
Die Agrobacterium-vermittelte Pflanzentransformation kann unter Verwendung von Standard-Transformations- und Regenerations- techniken durchgeführt werden (Gelvin, Stanton B. , Schilperoort, Robert A. , Plant Molecular Biology Manual, 2. Aufl., Dordrecht: 45 Kluwer Academic Publ . , 1995, in Sect., Ringbuc Zentrale Signatur: BT11-P ISBN 0-7923-2731-4; Glick, Bernard R. , Thompson, John E., Methods in Plant Molecular Biology and Biotechnology, Boea Raton: CRC Press, 1993, 360 S., ISBN 0-8493-5164-2).
Beispielsweise kann Raps mittels Kotyledonen- oder Hypokotyl- transformation transformiert werden (Moloney et al., Plant
Cell 8 (1989) 238-242; De Block et al., Plant Physiol. 91 (1989) 694-701) . Die Verwendung von Antibiotika für die Agrobacterium- und Pflanzenselektion hängt von dem für die Transformation verwendeten binären Vektor und Agrobacterium-Stamm ab. Die Rapsselektion wird gewöhnlich unter Verwendung von Kanamycin als selektierbarem Pflanzenmarker durchgeführt.
Der Agrobacterium-vermittelte Gentransfer in Lein (Linum usitatissimum) lässt sich unter Verwendung von beispielsweise einer von Mlynarova et al . (1994) Plant Cell Report 13:282-285 beschriebenen Technik durchführen.
Die Transformation von Soja kann unter Verwendung von beispielsweise einer in EP-A-0 0424 047 (Pioneer Hi-Bred International) oder in EP-A-0 0397 687, US 5,376,543, US 5,169,770 (University Toledo) beschriebenen Technik durchgeführt werden.
Die Pflanzentransformation unter Verwendung von Teilchen- beschuss, Polyethylenglycol-vermittelter DNA-Aufnahme oder über die Siliziumcarbonatfaser-Technik ist beispielsweise bes chrieben von Freeling und Walbot "The maize handbook" (1993) ISBN 3-540-97826-7, Springer Verlag New York).
Beispiel 5: Plasmide für die Pflanzentransformation
Zur Pflanzentransformation können binäre Vektoren, wie pBinAR (Höfgen und Willmitzer, Plant Science 66 (1990) 221-230) oder pGPTV (Becker et al 1992, Plant Mol. Biol. 20:1195-1197) verwendet werden. Die Konstruktion der binären Vektoren kann durch Ligation der cDNA in Sense- oder Antisense-Orientierung in T-DNA erfolgen. 5' der cDNA aktiviert ein Pflanzenpromotor die Transkription der cDNA. Eine Polyadenylierungssequenz befindet sich 3' von der cDNA. Die binären Vektoren können unterschiedliche Markergene tragen. Insbesondere kann das nptll-Markergen codierend für Kanamycin-Resistenz vermittelt durch Neomycin- phosphotransferase gegen die herbizidresistente Form eines Acetolactat Synthasegens (AHAS oder ALS) ausgetauscht werden. Das ALS-Gen ist beschrieben in Ott et al., J. Mol. Biol. 1996, 263:359-360. Der v-ATPase-cl-Promotor kann in das Plasmid pBinl9 oder pGPTV kloniert werden und durch Klonierung vor das ALS Codierregion für die Markergenexpression genutzt werden. Der genannte Promotor entspricht einem 1153 Basenpaarfrag ent aus beta-Vulgaris (Plant Mol Biol, 1999, 39:463-475). Dabei können sowohl Sulphonylharnstoffe als auch Imidazolinone wie Imazethapyr oder Sulphonylharnstoffe als Antimetaboliten zur Selektion verwendet werden.
Die gewebespezifische Expression lässt sich unter Verwendung eines gewebespezifischen Promotors erzielen. Beispielsweise kann die samenspezifische Expression erreicht werden, indem der DC3- oder der LeB4- oder der USP-Promotor oder der Phaseolin-Promotor 5' der cDNA einkloniert wird. Auch jedes andere samenspezifische Promotorelement wie z.B. der Napin- oder Arcelin Promotor
Goossens et al. 1999, Plant Phys. 120(4) .1095-1103 und Gerhardt et al. 2000, Biochimica et Biophysica Acta 1490 (1-2) : 87-98) kann verwendet werden. Zur konstitutiven Expression in der ganzen Pflanzen lässt sich der CaMV-35S-Promotor oder ein v-ATPase Cl Promotor verwenden.
Insbesondere lassen sich Gene codierend für Desaturasen und Elongasen durch Konstruktion mehrerer Expressionskassetten hintereinander in einen binären Vektor klonieren, um den StoffWechselweg in Pflanzen nachzubilden.
Innerhalb einer Expressionskassette kann das zu exprimierende Protein unter Verwendung eines Signalpeptids, beispielsweise für Piastiden, Mitochondrien oder das Endoplasmatische Retikulum, in ein zelluläres Kompartiment dirigiert werden (Kermode, Crit. Rev. Plant Sei. 15, 4 (1996) 285-423). Das Signalpeptid wird 5' im Leseraster mit der cDNA einkloniert, um die subzelluläre Lokalisierung des Fusionsprotein zu erreichen.
Beispiele für Multiexpressionskassetten sind im folgenden gegeben.
I . ) Promotor-Terminator-Kassetten
Expressionskassetten bestehen aus wenigstens zwei funktioneilen Einheiten wie einem Promotor und einem Terminator. Zwischen Promotor und Terminator können weitere gewünschte Gensequenzen wie Targetting-Sequenzen, Codierregionen von Genen oder Teilen davon etc. eingefügt werden. Zum Aufbau von Expressionskassetten werden Promotoren und Terminatoren (USP Promotor: Baeumlein et al., Mol Gen Genet, 1991, 225 (3) :459-67) ; OCS Terminator: Gielen et al. EMBO J. 3 (1984) 835ff.) mithilfe der Polymerasekettenreaktion isoliert und mit flankierenden Sequenzen nach Wahl auf Basis von synthetischen Oligonukleotiden maßgeschneidert. Folgende Oligonukleotide können beispielsweise verwendet werden:
USP1 vorne: CCGGAATTCGGCGCGCCGAGCTCCTCGAGCAAATTTACACATTGCCA USP2 vorne : CCGGAATTCGGCGCGCCGAGCTCCTCGAGCAAATTTACACATTGCCA USP3 vorne: CCGGAATTCGGCGCGCCGAGCTCCTCGAGCAAATTTACACATTGCCA USP1 hinten:AAAACTGCAGGCGGCCGCCCACCGCGGTGGGCTGGCTATGAAGAAATT USP2 hinten:CGCGGATCCGCTGGCTATGAAGAAATT
USP3 hinten:TCCCCCGGGATCGATGCCGGCAGATCTGCTGGCTATGAAGAAATT OCS1 vorne : AAAACTGCAGTCTAGAAGGCCTCCTGCTTTAATGAGATAT 0CS2 vorne: CGCGGATCCGATATCGGGCCCGCTAGCGTTAACCCTGCTTTAATGAGATAT 0CS3 vorne: TCCCCCGGGCCATGGCCTGCTTTAATGAGATAT
OCS1 hinten: CCCAAGCTTGGCGCGCCGAGCTCGAATTCGTCGACGGACAATCAGTAAATTGA OCS2 hinten:CCCAAGCTTGGCGCGCCGAGCTCGAATTCGTCGACGGACAATCAGTAAATTGA OCS3 hinten:CCCAAGCTTGGCGCGCCGAGCTCGTCGACGGACAATCAGTAAATTGA
Die Methoden sind dem Fachmann auf dem Gebiet bekannt und sind allgemein literaturbekannt.
In einem ersten Schritt werden ein Promotor und ein Terminator über PCR amplifiziert. Dann wird der Terminator in ein Empfänger- plasmid kloniert und in einem zweiten Schritt der Promotor vor den Terminator inseriert. Mithin erhält man eine Expressionskassette auf einem Trägerplasmid. Auf Basis des Plamides pUC19 werden die Plasmide pUTl, 2 und 3 erstellt.
Die Konstrukte sind erfindungsgemäß in SEQ ID NO: 33, 34 bis 42 definiert. Sie enthalten den USP-Promotor und den OCS Terminator. Auf Basis dieser Plasmide wird das Konstrukt pUT12 erstellt, indem pUTl mittels Sall/Scal geschnitten wird und pUT2 mittels Xhol/Scal geschnitten wird. Die die Expressionskassetten enthaltenden Fragmente werden ligiert und in E. coli XLI blue MRF transformiert. Es wird nach Vereinzelung ampicillinresistenter Kolonien DNA präpariert und per Restriktionsanalyse solche Klone identifiziert, die zwei Expressionskassetten enthalten. Die Xhol/ Sall Ligation kompatibler Enden hat dabei die beiden Schnittstellen Xhol und Sall zwischen den Expressionskassetten elemi- niert. Es resultiert das Plasmid pUT12 , das in SEQ ID NO: 36 definiert ist. Anschließend wird pUTl2 wiederum mittels Sal/Scal geschnitten und pUT3 mittels Xhol/Scal geschnitten. Die die Expressionskassetten enthaltenden Fragmente werden ligiert und in E. coli XLI blue MRF transformiert. Es wird nach Vereinzelung ampicillinresistenter Kolonien DNA präpariert und per Restriktionsanalyse solche Klone identifiziert, die drei Expressionskassetten enthalten. Auf diese Weise wird ein Set von Multi- expressionskassetten geschaffen, dass für die Insertion gewünschter DNA genutzt werden kann und in Tabelle 1 beschrieben wird und zudem noch weitere Expressionskassetten aufnehmen kann.
Diese enthalten folgende Elemente:
Tabelle 1
10
15
20
Figure imgf000048_0001
Weiterhin lassen sich wie beschrieben und wie in Tabelle 2 näher 25 spezifiziert weitere Multiexpressionskassetten mithilfe des
i) USP-Promotors oder mithilfe des ii) 700 Basenpaare 3 ' -Fragmentes des LeB4-Promotors oder mithilfe des 20 iii) DC3-Promotors erzeugen und für samenspezifische Genexpression einsetzen.
Der DC3-Promotor ist beschrieben bei Thomas, Plant Cell 1996, 263:359-368 und besteht lediglich aus der Region -117 bis +26 ,B weshalb er mithin einer der kleinsten bekannten samenspezifischen Promotoren darstellt. Die Expressionskassetten können mehrfach den selben Promotor enthalten oder aber über drei verschiedene Promotoren aufgebaut werden.
40 Dem Sequenzprotokoll SEQ ID NO: 43 bis 49 sind die für die
Pflanzentransformation verwendeten Vektoren sowie die Sequenzen der inserierten Gene/Proteine zu entnehmen.
Vorteilhaft verwendete Polylinker- bzw. Polylinker-Terminator- 45 Polylinker sind den Sequenzen SEQ ID NO: 50 bis 52 zu entnehmen. Tabelle 2 : Multiple Expressionskassetten
0
5
0
Figure imgf000049_0001
* EcoRV Schnittstelle schneidet im 700 Basenpaarfragment des LeB4
Promotors (LeB4-700) 5
Analog lassen sich weitere Promotoren für Multigenkonstrukte erzeugen insbesondere unter Verwendung des
a) 2,7 kB Fragmentes des LeB4-Promotors oder mithilfe des ^ b) Phaseolin-Promotors oder mithilfe des c) konstitutiven v-ATPase cl-Promotors.
Es kann insbesondere wünschenswert sein, weitere besonders geeignete Promotoren zum Aufbau samenspezifischer Multiexpressions- 5 kassetten wie z.B. den Napin-Promotor oder den Arcelin-5 Promotor zu verwenden.
II) Erstellung von Expressionskonstrukten, die Promotor,
Terminator und gewünschte Gensequenz zur PUFA Genexpression 0 in pflanzlichen Expresεionskassetten enthalten.
In pUTl23 wird zunächst über BstXI und Xbal die Δ-6-Elongase Pp_PSEl in die erste Kassette inseriert. Dann wird die Δ-6-Desaturase aus Moos (Pp_des6) über BamHI/Nael in die 5 zweite Kassette inseriert und schließlich die Δ-5-Desaturase aus Phaeodactylum (Pt_des5) über Bglll/Ncol in die dritte Kassette inseriert. Das Dreifachkonstrukt erhält den Namen pARAl. Unter Berücksichtigung sequenzspezifischer Restriktionsschnittstellen können weitere Expressionskassetten gemäß Tabelle 3 mit der Bezeichnung pARA2, pARA3 und pARA4 erstellt werden.
5 Tabelle 3 : Kombinationen von Desaturasen und Elongasen
10
Figure imgf000050_0001
Pp = Physcomitrella patens, Pt = Phaeodactylum tricornutum 15 Pp_PSEl entspricht der Sequenz aus SEQ ID NO: 9. PSE = PUFA spezifische Δ-6-Elongase
Ce_des5 = Δ-5-Desaturase aus Caenorhabditis elegans (Genbank Acc. Nr. AF078796)
Ce_des6 = Δ-6-Desaturase aus Caenorhabditis elegans elegans
20 (Genbank Acc. Nr. AF031477, Basen 11-1342)
Ce_PSEl = Δ-6-Elongase aus Caenorhabditis elegans (Genbank Acc. Nr. AF244356, Basen 1-867)
Auch weitere Desaturasen oder Elongasegensequenzen können in 2g Expressionskassetten beschriebener Art inseriert werden wie z.B. Genbank Acc. Nr. AF231981, NM_013402, AF206662, AF268031, AF226273, AF110510 oder AF110509.
iii) Transfer von Expressionskassetten in Vektoren zur
30 Transformation von Agrobakterium tumefaciens und zur Transformation von Pflanzen
Die so erstellten Konstrukte werden mittels Ascl in den binären Vektor pGPTV inseriert. Die multiple Klonierungssequenz wird zu
35 diesem Zweck um eine Ascl Schnittstelle erweitert. Zu diesem Zweck wird der Polylinker als zwei doppelsträngige Oligonukleo- tide neu synthetisiert, wobei eine zusätzliche Ascl DNA Sequenz eingefügt wird. Das Oligonukleotid wird mittels EcoRI und Hindlll in den Vektor pGPTV inseriert . Die notwendigen Kloniertechniken -0 sind dem Fachmann bekannt und können einfach wie in Beispiel 1 beschrieben nachgelesen werden.
5 Beispiel 6 : Untersuchung der Expression eines rekombinanten Genproduktes in einem transformierten Organismus
Die Aktivität eines rekombinanten Genproduktes im transformierten WirtsOrganismus kann auf der Transkriptions- und/oder der Translationsebene gemessen werden.
Ein geeignetes Verfahren zur Bestimmung der Menge an Transkription des Gens (ein Hinweis auf die Menge an RNA, die für die Translation des Genproduktes zur Verfügung steht) ist die Durchführung eines Northern-Blots wie unten ausgeführt (als Bezugsstelle siehe Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley. New York, oder den oben erwähnten Beispielteil) , wobei ein Primer, der so gestaltet ist, dass er an das Gen von Interesse bindet, mit einer nachweisbaren
Markierung (gewöhnlich radioaktiv oder chemilumineszent) markiert wird, so dass, wenn die Gesamt-RNA einer Kultur des Organismus extrahiert, auf einem Gel aufgetrennt, auf eine stabile Matrix transferiert und mit dieser Sonde inkubiert wird, die Bindung und das Ausmaß der Bindung der Sonde das Vorliegen und auch die Menge der mRNA für dieses Gen anzeigt . Diese Information zeigt den Grad der Transkription des transformierten Gens an. Zelluläre Gesamt-RNA kann aus Zellen, Geweben oder Organen mit mehreren Verfahren, die alle im Fachgebiet bekannt sind, wie zum Beispiel das von Bormann, E.R., et al . (1992) Mol. Microbiol. 6:317-326 beschriebene, präpariert werden.
Northern-Hybridisierung:
Für die RNA-Hybridisierung wurden 20 μg Gesamt-RNA oder 1 μg poly(A)+-RNA mittels Gelelektrophorese in Agarosegelen mit einer Stärke von 1,25 % unter Verwendung von Formaldehyd, wie beschrieben in Amasino (1986, Anal. Biochem. 152, 304) aufgetrennt, mittels Kapillaranziehung unter Verwendung von 10 x SSC auf positiv geladene Nylonmembranen (Hybond N+, Amersham, Braunschweig) übertragen, mittels UV-Licht immobilisiert und 3 Stunden bei 68°C unter Verwendung von Hybridisierungspuffer (10 % Dextransulfat Gew. /Vol., 1 M NaCl, 1 % SDS, 100 mg Heringssperma-DNA) vorhybridisiert. Die Markierung der DNA-Sonde mit dem Highprime DNA labeling-Kit (Röche, Mannheim, Deutschland) erfolgte während der Vorhybridisierung tinter Verwendung von alpha-32P-dCTP (Amersham, Braunschweig, Deutschland) . Die Hybridisierung wurde nach Zugabe der markierten DNA-Sonde im gleichen Puffer bei 68°C über Nacht durchgeführt. Die Waschschritte wurden zweimal für 15 min unter Verwendung von 2 X SSC und zweimal für 30 min unter Verwendung von 1 X SSC, 1 % SDS, bei 68°C durch- geführt. Die Exposition der verschlossenen Filter wurde bei -70°C für einen Zeitraum von 1 bis 14 T durchgeführt .
Zur Untersuchung des Vorliegens oder der relativen Menge an von dieser mRNA translatiertem Protein können Standardtechniken, wie ein Western-Blot, eingesetzt werden (siehe beispielsweise Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York) . Bei diesem Verfahren werden die zellulären Gesamt- Proteine extrahiert, mittels Gelelektrophorese aufgetrennt, auf eine Matrix, wie Nitrozellulose, übertragen und mit einer Sonde, wie einem Antikörper, der spezifisch an das gewünschte Protein bindet, inkubiert. Diese Sonde ist gewöhnlich mit einer chemilumineszenten oder kolorimetrischen Markierung versehen, die sich leicht nachweisen lässt. Das Vorliegen und die Menge der beobachteten Markierung zeigt das Vorliegen und die Menge des gewünschten, in der Zelle vorliegenden mutierten Proteins an.
Beispiel 7 : Analyse der Auswirkung der rekombinanten Proteine auf die Produktion des gewünschten Produktes
Die Auswirkung der genetischen Modifikation in Pflanzen, Pilzen, Algen, Ciliaten oder auf die Produktion einer gewünschten Verbindung (wie einer Fettsäure) kann bestimmt werden, indem die modifizierten Mikroorganismen oder die modifizierte Pflanze unter geeigneten Bedingungen (wie den vorstehend beschriebenen) gezüchtet werden und das Medium und/oder die zellulären Komponenten auf die erhöhte Produktion des gewünschten Produktes (d.h. von Lipiden oder einer Fettsäure) untersucht wird. Diese Analysetechniken sind dem Fachmann bekannt und umfassen Spektroskopie, Dünnschichtchromatographie, Färbeverfahren verschiedener Art, enzymatische und mikrobiologische Verfahren sowie analytische Chromatographie, wie Hochleistungs-Flüssigkeitschromatographie (siehe beispielsweise Ullman, Encyclopedia of Industrial Chemistry, Bd. A2, S. 89-90 und S. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, Bd. 17; Rehm et al. (1993) Biotechnology, Bd. 3, Kapitel III: "Product recovery and purification" , S. 469-714, VCH: Weinheim; Belter, P.A., et al . (1988) Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, J.F., und
Cabral, J.M.S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J.A., und Henry, J.D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Bd. B3 ; Kapitel 11, S. 1-27, VCH: Weinheim; und Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications) . Neben den oben erwähnten Verfahren werden Pflanzenlipide aus Pflanzenmaterial wie von Cahoon et al. (1999) Proc. Natl. Acad. Sei. USA 96 (22) : 12935-12940, und Browse et al. (1986) Analytic Biochemistry 152:141-145, beschrieben extrahiert. Die qualitative und quantitative Lipid- oder Fettsäureanalyse ist beschrieben bei Christie, William W. , Advances in Lipid Methodology, Ayr/ Scotland: Oily Press (Oily Press Lipid Library; 2) ; Christie, William W., Gas Chromatography and Lipids. A Practical Guide - Ayr, Scotland: Oily Press, 1989, Repr. 1992, IX, 307 S. (Oily Press Lipid Library; 1) ; "Progress in Lipid Research, Oxford: Pergamon Press, 1 (1952) - 16 (1977) u.d.T. : Progress in the Chemistry of Fats and Other Lipids CODEN.
Zusätzlich zur Messung des Endproduktes der Fermentation ist es auch möglich, andere Komponenten der Stoffwechselwege zu analysieren, die zur Produktion der gewünschten Verbindung verwendet werden, wie Zwischen- und Nebenprodukte, um die Gesamteffizienz der Produktion der Verbindung zu bestimmen. Die Analyseverfahren umfassen Messungen der Nährstoffmengen im Medium (z.B. Zucker, Kohlenwasserstoffe, Stickstoffquellen, Phosphat und andere
Ionen), Messungen der Biomassezusammensetzung und des Wachstums, Analyse der Produktion üblicher Metabolite von Biosynthesewegen und Messungen von Gasen, die während der Fermentation erzeugt werden. Standardverfahren für diese Messungen sind in Applied Microbial Physiology; A Practical Approach, P.M. Rhodes und P.F. Stanbury, Hrsgb., IRL Press, S. 103-129; 131-163 und 165-192 (ISBN: 0199635773) und darin angegebenen Literaturstellen beschrieben.
Ein Beispiel ist die Analyse von Fettsäuren (Abkürzungen: FAME, Fettsäuremethylester; GC-MS, Gas-Flüssigkeitschromatographie- Massenspektrometrie; TAG, Triacylglycerin; TLC, Dünnschichtchromatographie) .
Der unzweideutige Nachweis für das Vorliegen von Fettsäureprodukten kann mittels Analyse rekombinanter Organismen nach Standard-Analyseverfahren erhalten werden: GC, GC-MS oder TLC, wie verschiedentlich beschrieben von Christie und den Literaturstellen darin (1997, in: Advances on Lipid Methodology, Vierte Aufl.: Christie, Oily Press, Dundee, 119-169; 1998, Gaschromato- graphie-Massenspektrometrie-Verfahren, Lipide 33:343-353).
Das zu analysierende Material kann durch Ultraschallbehandlung, Mahlen in der Glasmühle, flüssigen Stickstoff und Mahlen oder über andere anwendbare Verfahren aufgebrochen werden. Das Material muss nach dem Aufbrechen zentrifugiert werden. Das Sediment wird in Aqua dest. resuspendiert, 10 min bei 100°C erhitzt, auf Eis abgekühlt und erneut zentrifugiert, gefolgt von Extraktion in 0,5 M Schwefelsäure in Methanol mit 2 % Dirnethoxypropan für 1 Std. bei 90°C, was zu hydrolysierten Öl- und Lipidverbindungen führt, die transmethylierte Lipide ergeben. Diese Fettsäuremethylester werden in Petrolether extrahiert und schließlich einer GC-Analyse unter Verwendung einer Kapillarsäule (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 mikrom, 0,32 mm) bei einem Temperaturgradienten zwischen 170°C und 240°C für 20 min und 5 min bei 240°C unterworfen. Die Identität der erhaltenen Fettsäuremethylester muss unter Verwendung von Standards, die aus kommerziellen Quellen erhältlich sind (d.h. Sigma) , definiert werde .
Bei Fettsäuren, für die keine Standards verfügbar sind, muss die Identität über Derivatisierung und anschließende GC-MS-Analyse gezeigt werden. Beispielsweise muss die Lokalisierung von Fettsäuren mit Dreifachbindung über GC-MS nach Derivatisierung mit 4, 4-Dimethoxyoxazolin-Derivaten (Christie, 1998, siehe oben) gezeigt werden.
Expressionskonstrukte in heterologen mikrobiellen Systemen
Stämme, Wachstumsbedingungen und Plasmide
Der Escherichia coli-Stamm XLI Blue MRF' kan (Stratagene) wurde zur Subklonierung der neuen Desaturase pPDesaturasel aus Physcomitrella patens verwendet. Für die funktioneile Expression dieses Gens verwendeten wir den Saccharomyces cerevisiae-Stamm INVSc 1 (Invitrogen Co.). E. coli wurde in Luria-Bertini-Brühe (LB, Duchefa, Haarlem, Niederlande) bei 37°C kultiviert. Wenn nötig, wurde Ampicillin (100 mg/Liter) zugegeben, und 1,5 % Agar (Gew./ Vol . ) wurde für feste LB-Medien hinzugefügt . S . cerevisiae wurde bei 30°C entweder in YPG-Medium oder in komplettem Minimalmedium ohne Uracil (CMdu ; siehe in: Ausubel, F.M., Brent, R. , Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. , Struhl, K. , Albright, L.B., Coen, D.M., und Varki, A. (1995) Current Protocols in Molecular Biology, John Wiley Sc Sons, New York) mit entweder 2 % (Gew. /Vol.) Raffinose oder Glucose kultiviert. Für feste Medien wurden 2 % (Gew. /Vol.) Bacto™-Agar (Difco) hinzugefügt. Die zur Klonierung und Expression verwendeten Plasmide sind pUC18 (Pharmacia) und pYES2 (Invitrogen Co.) . Beispiel 8: Klonierung und Expression PUFA-spezifischer Desaturasen und Elongaen
Für die Expression in Pflanzen wurden cDNA Klone aus SeQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31. so modifiziert, dass lediglich die Codierregion mittels Polymerase Kettenreaktion unter Zuhilfenahme zweier Oligo- nukleotide amplifiziert werden. Dabei wurde darauf geachtet, dass eine Konsensusequenz vor dem Startcodon zur effizienten Translation eingehalten wurde. Entweder wurde hierzu die Basenfolge ATA oder AAA gewählt und vor das ATG in die Sequenz eingefügt (Kozak, M. (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes, Cell 44, 283-292) . Vor diesem Konsensustriplett wurde zusätzlich eine Restriktionsschnittstelle eingeführt, die kompatibel sein muss zur Schnittstelle des Zielvektors, in den das Fragment kloniert werden soll und mit dessen Hilfe die Genexpression in Mikroorganismen oder Pflanzen erfolgen soll.
Die PCR-Reaktion wurde mit Plasmid-DNA als Matrize in einem Thermocycler (Biometra) mit der Pfu-DNA-(Stratagene) Polymerase und dem folgenden Temperaturprogramm durchgeführt: 3 min bei 96°C, gefolgt von 30 Zyklen mit 30 s bei 96°C, 30 s bei 55°C und 2 min bei 72°C, 1 Zyklus mit 10 min bei 72°C und Stop bei 4°C. Die Anlagerungstemperatur wurde je nach gewählten Oligonukleotiden variiert. Pro Kilobasenpaare DNA ist von einer Synthesezeit von etwa einer Minute auszugehen. Weitere Parameter, die Einfluss auf die PCR haben wie z.B. Mg-Ionen, Salz, DNA Polymerase etc., sind dem Fachmann auf dem Gebiet geläufig und können nach Bedarf variiert werden.
Die korrekte Größe des amplifizierten DNA-Fragments wurde mittels Agarose-TBE-Gelelektrophorese bestätigt. Die amplifizierte DNA wurde aus dem Gel mit dem QIAquick-Gelextraktionskit (QIAGEN) extrahiert und in die Smal-Restriktionsstelle des dephosphory- lierten Vektors pUC18 unter Verwendung des Sure Clone Ligations Kit (Pharmacia) ligiert, wobei die pUC-Derivate erhalten wurden. Nach der Transformation von E. coli XLI Blue MRF' kan wurde eine DNA-Minipräparation (Riggs, M.G. , & McLachlan, A. (1986) A simplified screening procedure for large numbers of plasmid mini- preparation. BioTechniques 4, 310-313) an ampicillinresistenten Transformanden durchgeführt, und positive Klone mittels BamHI- Restriktionsanalyse identifiziert. Die Sequenz des klonierten PCR-Produktes wurde mittels Resequenzierung unter Verwendung des ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin-Elmer, Weiterstadt) bestätigt.
Fettsäureanalyse 5
Die Gesamt-Fettsäuren wurden aus Pflanzensamen extrahiert und mittels Gaschromatographie analysiert.
Die Samen wurden mit 1 % Natriummethanolat in Methoanol aufgenommen und 20 min bei RT inkubiert. Anschließend wird mit NaCl
10 Lösung gewaschen und die FAME in 0,3 ml Heptan aufgenommen. Die Proben wurden auf einer ZEBRON-ZB-Wax-Kapillarsäule (30 m, 0,32 mm, 0,25 mikro m; Phenomenex) in einem Hewlett Packard- 6850-Gaschromatograph mit einem Flammenionisationsdetektor aufgetrennt. Die Ofentemperatur wurde von 70°C (1 min halten) bis
15 200°C mit einer Rate von 20°C/min, dann auf 250°C (5 min halten) mit einer Rate von 5°C/min und schließlich auf 260°C mit einer Rate von 5°C/min programmiert. Stickstoff wurde als Trägergas verwendet (4,5 ml/min bei 70°C) . Die Fettsäuren wurden durch Vergleich mit Retentionszeiten von FAME-Standards (SIGMA)
20 identifiziert.
Expressionsanalyse
Ergebnis der Expression einer Phaeodactylum tricornutum Δ-6-Acyl 25 Lipid Desaturase, einer Phaeodactylum tricornutum Δ-5-Acyl Lipid Desaturase und der delta-6 spezifischen Elongase in Tabaksamen:
Figur 2: Fettsäureprofil von transgenen Tabaksamen. Die Pflanzen wurden mit einer 3-fach Expressionskassette transformiert, die 30 unter der Kontrolle des USP Promotors die delta-6-, die delta-5- und die Physcomitrella patens PpPSEl exprimiert (pARA2) . Es wurden 100 transgene Tabak und Leinpflanzen hergestellt, von denen ca. 20 % Arachidonsäure im Samen synthetisierten.
35 Figur 3: Tabak Wildtypkontrolle.
Beispiel 9: Reinigung des gewünschten Produktes aus transformierten Organismen
40 Die Gewinnung des gewünschten Produktes aus Pflanzenmaterial oder Pilzen, Algen, Ciliaten, tierischen Zellen oder aus dem Überstand der vorstehend beschriebenen Kulturen kann durch verschiedene, im Fachgebiet bekannte Verfahren erfolgen. Wird das gewünschte Produkt nicht aus den Zellen sezerniert, können die Zellen aus
45 der Kultur durch langsame Zentrifugation geerntet werden, die
Zellen können durch Standardtechniken, wie mechanische Kraft oder Ultraschallbehandlung, lysiert werden. Organe von Pflanzen können mechanisch von anderem Gewebe oder anderen Organen getrennt werden. Nach der Homogenisation werden die Zelltrümmer durch Zentrifugation entfernt, und die Überstandsfraktion, welche die löslichen Proteine enthält, wird zur weiteren Reinigung der gewünschten Verbindung aufbewahrt. Wird das Produkt aus gewünschten Zellen sezerniert, werden die Zellen durch langsame Zentrifugation aus der Kultur entfernt, und die Überstandsfraktion wird zur weiteren Reinigung aufbewahrt.
Die Überstandsfraktion aus jedem Reinigungsverfahren wird einer Chromatographie mit einem geeigneten Harz unterworfen, wobei das gewünschte Molekül entweder auf dem Chromatographieharz zurückgehalten wird, viele Verunreinigungen in der Probe jedoch nicht, oder die Verunreinigungen auf dem Harz zurückbleiben, die Probe hingegen nicht . Diese Chromatographieschritte können wenn nötig wiederholt werden, wobei die gleichen oder andere Chromatographieharze verwendet werden. Der Fachmann ist in der Auswahl geeigneter Chromatographieharze und ihrer wirksamsten Anwendung für ein bestimmtes zu reinigendes Molekül bewandert . Das gereinigte Produkt kann durch Filtration oder Ultrafiltration konzentriert und bei einer Temperatur aufbewahrt werden, bei der die Stabilität des Produktes maximal ist.
Im Fachgebiet ist ein breites Spektrum an Reinigungsverfahren bekannt, und das vorstehende Reinigungsverfahren soll nicht beschränkend sein. Diese Reinigungsverfahren sind zum Beispiel beschrieben in Bailey, J.E., & Ollis, D.F., Biochemical Engineering Fundamentals, McGraw-Hill: New York (1986) .
Die Identität und Reinheit der isolierten Verbindungen kann durch Standardtechniken des Fachgebiets bestimmt werden. Dazu gehören Hochleistungs-Flüssigkeitschromatographie (HPLC) , spektroskopische Verfahren, Färbeverfahren, Dünnschichtchromatographie, insbesondere Dünnschichtchromatographie und Flammenionisations- detektion (IATROSCAN, Iatron, Tokio, Japan), NIRS, Enzymtest oder mikrobiologisch. Eine Übersicht über diese Analyseverfahren siehe in: Patek et al. (1994) Appl. Environ. Microbiol. 60:133-140; Malakhova et al. (1996) Biotekhnologiya 11:27-32; und Schmidt et al. (1998) Bioprocess Engineer. 19:67-70. Ulmann's Encyclopedia of Industrial Chemistry (1996) Bd. A27, VCH: Weinheim, S. 89-90, S. 521-540, S. 540-547, S. 559-566, 575-581 und S. 581-587;
Michal, G (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. , et al. (1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, Bd. 17. Äquivalente
Der Fachmann erkennt oder kann viele Äquivalente der hier beschriebenen erfindungsgemäßen spezifischen Ausführungsformen feststellen, indem er lediglich Routineexperimente verwendet. Diese Äquivalente sollen von den Patentansprüchen umfasst sein.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I:
Figure imgf000059_0001
in transgenen Pflanzen mit einem Gehalt von mindestens 1 Gew.-% bezogen auf die gesamten Fettsäuren dadurch gekennzeichnet, dass das Verfahren folgende Schritte umfasst:
a) Einbringen mindestens einer Nukleinsauresequenz in eine Pflanze, die für ein Polypeptid mit einer Δ-6-Desaturaseaktivität codiert; sowie
b) Einbringen mindestens einer zweiten Nukleinsauresequenz, die für ein Polypeptid mit einer Δ-6-Elongaseaktivität codiert; und
c) gegebenenfalls Einbringen einer dritten Nukleinsauresequenz, die für ein Polypeptid mit einer Δ-5-Desaturase- aktivität codiert; und
d) anschließend kultivieren und ernten der Pflanzen; und
wobei die Variablen und Substituenten in der Formeln I folgende Bedeutung haben:
R1 = -OH, Coenzym A-(Thioester) , Phosphatidylcholin-, Phos- phatidylethanolamin-, Phoshatidylglycerol-, Diphosphatidylglycerol-, Phosphatidylserin-, Phosphatidylinositol-, Sphingolipid-, Glycoshingolipid- oder einen Rest der folgenden allgemeinen Formel II
Figure imgf000059_0002
R2 = H, Phosphatidylcholin-, Phosphatidylethanolamin-,
Phoshatidylglycerol-, Diphosphatidylglycerol-, Phosphatidylserin-, Phosphatidylinositol-, Shingolipid-, Glycoshingolipid-, Glycoshingolipid- oder gesättigtes oder ungesättigtes C-C24-Alkylcarbonyl-,
R3 = H, gesättigtes oder ungesättigtes C2-C24-Alkylcarbonyl-, oder
R2 und R3 unabhängig voneinander einen Rest der allgemeinen Formel Ia
Figure imgf000060_0001
n = 3 , 4 oder 6 , m = 3 , 4 oder 5 und p = 0 oder 3.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Substituenten R2 und R3 unabhängig voneinander Cχo-C22-Alkyl- carbonyl- bedeuten.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Substituenten R2 und R3 unabhängig voneinander Ciς-, Ci8~ C20- oder C22-Alkylcarbonyl- bedeuten.
4. Verfahren nach den Ansprüchen 1 bis 3 , dadurch gekennzeich- net, dass die Substituenten R2 und R3 unabhängig voneinander ungesättigtes Ciß-, Cis-, C2o- oder C22-Alkylcarbonyl- mit ein, Zwei, drei, vier oder fünf Doppelbindungen bedeuten.
Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass die transgene Pflanze eine Ölfruchtpflanze ist.
6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass die transgene Pflanze ausgewählt aus der Gruppe Soja, Erdnuss, Raps, Canola, Lein, Nachtkerze, Königskerze, Distel, Haselnuss, Mandel, Macadamia, Avocado, Lorbeer,
Wildrosen, Kürbis, Pistazien, Sesam, Sonnenblume, Färberdistel, Borretsch, Mais, Mohn, Senf, Hanf, Rhizinus, Olive, Calendula, Punica, Ölpalme, Walnuss oder Kokosnuß ist.
7. Verfahren nach den Ansprüchen 1 bis 6 , dadurch gekennzeichnet, dass die Verbindungen der Formel I durch Pressen oder Extraktion aus den transgenen Pflanzen in Form ihrer Öle, Fette, Lipide oder freien Fettsäuren gewonnen werden.
5
8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass die gemäß Anspruch 7 gewonnenen Öle, Fette, Lipide oder freien Fettsäuren raffiniert werden.
10 9. Verfahren nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass man die in den Verbindungen der Formel I enthaltenden gesättigten oder ungesättigten Fettsäuren freisetzt.
15 10. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, dass die gesättigten oder ungesättigten Fettsäuren über ein alkalische Hydrolyse oder eine enzymatische Abspaltung freigesetzt werden.
20 11. Verfahren nach den Ansprüchen 1 bis 10, dadurch gekennzeichnet, dass die Verbindungen der allgemeinen Formel I in den transgenen Pflanzen mit einem Gehalt von mindestens 5 Gew.-% bezogen auf die gesamten Fettsäuren enthalten sind.
25 12. Verfahren nach den Ansprüchen 1 bis 11, dadurch gekennzeichnet, dass, die für die Polypeptide mit einer Δ-6-Desaturaseaktivität, Δ-6-Elongaseaktivität oder Δ-5-Desaturaseaktivität codierenden Nukleinsauresequenzen, ausgewählt aus der Gruppe sind:
30 a) einer Nukleinsauresequenz mit der in SEQ ID NO: 1,
SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9,
SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15,
SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21,
35 SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27,
SEQ ID NO: 29 oder SEQ ID NO: 31 dargestellten Sequenz,
b) Nukleinsauresequenzen, die aufgrund des degenerierten genetischen Codes durch Rückübersetzung der in
40 SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8,
SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30 oder SEQ ID NO: 32
45 dargestellten Aminosäuresequenzen erhalten werden, c) Derivate der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29 oder SEQ ID NO: 31 dargestellten Nukleinsauresequenz, die für Polypeptide mit der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24,
SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30 oder SEQ ID NO: 32 dargestellten Aminosäuresequenzen codieren und mindestens 50 % Homologie auf Aminosäureebene aufweisen, ohne daß die enzymatische Wirkung der Polypeptide wesentlich reduziert ist.
13. Verfahren nach den Ansprüchen 1 bis 12 , dadurch gekennzeichnet, dass die Nukleinsauresequenzen gemäß Anspruch 8 in einem Nukleinsäurekonstrukt mit einem oder mehreren Regulationssignalen verknüpft sind.
14. Verfahren nach den Ansprüchen 1 bis 13 , dadurch gekennzeichnet, dass das Nukleinsäurekonstrukt zusätzliche Biosynthesegene des Fettsäure- oder Lipidstoffwechsels enthält ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n) , Acyl- ACP[= acyl carrier protein] -Desaturase (n) , Acyl-ACP-Thio- esterase(n), Fettsäure-Acyl-Transferase(n) , Fettsäure- Synthase(n), Fettsäure-Hydroxylase(n) , Acetyl-Coenzym A-Carboxylase (n) , Acyl-Coenzym A-Oxidase(n) , Fettsäure- Desaturase (n) , Fettsäure-Acetylenasen, Lipoxygenasen,
Triacylglycerol-Lipasen, Allenoxid-Synthasen, Hydroperoxid- Lyasen oder Fettsäure-Elongase (n) .
PCT/EP2003/004297 2002-04-29 2003-04-25 Verfahren zur herstellung mehrfach ungesättigter fettsäuren in pflanzen WO2003093482A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03747357A EP1501932A2 (de) 2002-04-29 2003-04-25 Verfahren zur herstellung mehrfach ungesättigter fettsäuren in pflanzen
AU2003232512A AU2003232512B2 (en) 2002-04-29 2003-04-25 Method for producing multiple unsaturated fatty acids in plants
US10/511,621 US7893320B2 (en) 2002-04-29 2003-04-25 Method for producing multiple unsaturated fatty acids in plants
CA002485060A CA2485060A1 (en) 2002-04-29 2003-04-25 Method for producing multiple unsaturated fatty acids in plants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10219203A DE10219203A1 (de) 2002-04-29 2002-04-29 Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in Pflanzen
DE10219203.0 2002-04-29

Publications (2)

Publication Number Publication Date
WO2003093482A2 true WO2003093482A2 (de) 2003-11-13
WO2003093482A3 WO2003093482A3 (de) 2004-11-04

Family

ID=29224898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/004297 WO2003093482A2 (de) 2002-04-29 2003-04-25 Verfahren zur herstellung mehrfach ungesättigter fettsäuren in pflanzen

Country Status (6)

Country Link
US (1) US7893320B2 (de)
EP (1) EP1501932A2 (de)
AU (1) AU2003232512B2 (de)
CA (3) CA2485060A1 (de)
DE (1) DE10219203A1 (de)
WO (1) WO2003093482A2 (de)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005080578A2 (en) * 2004-02-17 2005-09-01 The University Of York Desaturase enzymes
AU2005217079A1 (en) * 2004-02-27 2005-09-09 Basf Plant Science Gmbh Method for producing polyunsaturated fatty acids in transgenic plants
EP1592392A2 (de) * 2003-02-12 2005-11-09 E. I. du Pont de Nemours and Company Produktion von sehr langkettigen polyungesättigten fettsäuren in ölsamenpflanzen
WO2006008099A2 (de) * 2004-07-16 2006-01-26 Basf Plant Science Gmbh Verfahren zur erhöhung des gehalts an mehrfach ungesättigten langkettigen fettsäuren in transgenen organismen
WO2006069710A1 (de) * 2004-12-23 2006-07-06 Basf Plant Science Gmbh Verfahren zur herstellung mehrfach ungesättigter fettsäuren in transgenen organismen
EP1710306A1 (de) * 2003-12-17 2006-10-11 Suntory Limited Arachidonsäurehaltige pflanze und nutzung derselben
WO2006100241A3 (de) * 2005-03-22 2006-12-07 Basf Plant Science Gmbh Verfahren zur herstellung von mehrfach ungesättigten c20- und c22-fettsäuren mit mindestens vier doppelbindungen in transgenen pflanzen
WO2007017419A3 (de) * 2005-08-09 2007-05-10 Basf Plant Science Gmbh Verfahren zur herstellung von arachidonsäure und/oder eicosapentaensäure in transgenen nutzpflanzen
EP1790731A2 (de) * 2005-11-24 2007-05-30 BASF Plant Science GmbH Verfahren zur Herstellung von ungesättigten Delta-5-Fettsäuren in transgenen Organismen
EP1807527A2 (de) * 2004-11-04 2007-07-18 E.I. Dupont De Nemours And Company Hoch arachidonische säure, die stämme von yarrowia lipolytica produziert
US7834250B2 (en) 2004-04-22 2010-11-16 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cells
WO2010142522A2 (en) 2009-06-08 2010-12-16 Basf Plant Science Company Gmbh Novel fatty acid elongation components and uses thereof
WO2011006948A1 (en) 2009-07-17 2011-01-20 Basf Plant Science Company Gmbh Novel fatty acid desaturases and elongases and uses thereof
WO2011064181A1 (en) 2009-11-24 2011-06-03 Basf Plant Science Company Gmbh Novel fatty acid desaturase and uses thereof
WO2011064183A1 (en) 2009-11-24 2011-06-03 Basf Plant Science Company Gmbh Novel fatty acid elongase and uses thereof
DE112009002048T5 (de) 2008-08-26 2012-01-26 Basf Plant Science Gmbh Nukleinsäure, die Desaturasen kodieren, und modifiziertes Planzenöl
US8106226B2 (en) 2004-04-22 2012-01-31 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cells
WO2012052468A2 (en) 2010-10-21 2012-04-26 Basf Plant Science Company Gmbh Novel fatty acid desaturases, elongases, elongation components and uses therof
WO2014020533A2 (en) 2012-08-03 2014-02-06 Basf Plant Science Company Gmbh Novel enzymes, enzyme components and uses thereof
US8685679B2 (en) 2004-11-04 2014-04-01 E I Du Pont De Nemours And Company Acyltransferase regulation to increase the percent of polyunsaturated fatty acids in total lipids and oils of oleaginous organisms
US8816111B2 (en) 2012-06-15 2014-08-26 Commonwealth Scientific And Industrial Research Organisation Lipid comprising polyunsaturated fatty acids
EP2169052B1 (de) 2003-08-01 2016-01-06 BASF Plant Science GmbH Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Organismen
WO2016075327A2 (en) 2014-11-14 2016-05-19 Basf Plant Science Company Gmbh Production of pufas in plants
US9718759B2 (en) 2013-12-18 2017-08-01 Commonwealth Scientific And Industrial Research Organisation Lipid comprising docosapentaenoic acid
US9938486B2 (en) 2008-11-18 2018-04-10 Commonwealth Scientific And Industrial Research Organisation Enzymes and methods for producing omega-3 fatty acids
US10005713B2 (en) 2014-06-27 2018-06-26 Commonwealth Scientific And Industrial Research Organisation Lipid compositions comprising triacylglycerol with long-chain polyunsaturated fatty acids at the sn-2 position
US10513717B2 (en) 2006-08-29 2019-12-24 Commonwealth Scientific And Industrial Research Organisation Synthesis of fatty acids
WO2020168277A1 (en) 2019-02-14 2020-08-20 Cargill, Incorporated Brassica plants producing elevated levels of polyunsaturated fatty acids
WO2022098631A1 (en) 2020-11-04 2022-05-12 Cargill, Incorporated Harvest management
WO2022204454A1 (en) 2021-03-25 2022-09-29 Cargill, Incorporated Fertilizer management

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10030976A1 (de) * 2000-06-30 2002-01-10 Basf Ag DELTA6-Desaturasegene exprimierende Pflanzen und PUFAS enthaltende Öle aus diesen Pflanzen und ein Verfahren zur Herstellung ungesättigter Fettsäuren
AU2004215705B2 (en) 2003-02-27 2009-11-12 Basf Plant Science Gmbh Method for the production of polyunsaturated fatty acids
US7855321B2 (en) 2003-03-31 2010-12-21 University Of Bristol Plant acyltransferases specific for long-chained, multiply unsaturated fatty acids
US11952581B2 (en) 2003-08-01 2024-04-09 Basf Plant Science Gmbh Process for the production of polyunsaturated fatty acids in transgenic organisms
RU2447147C2 (ru) * 2003-08-01 2012-04-10 Басф Плант Сайенс Гмбх Способ получения полиненасыщенных кислот жирного ряда в трансгенных организмах
ES2421440T3 (es) 2004-02-27 2013-09-02 Basf Plant Science Gmbh Método para preparar ácidos grasos poliinsaturados en plantas transgénicas
WO2005083053A2 (de) 2004-02-27 2005-09-09 Basf Plant Science Gmbh Verfahren zur herstellung von ungesättigten omega-3-fettsäuren in transgenen organismen
GB0603160D0 (en) 2006-02-16 2006-03-29 Rothamsted Res Ltd Nucleic acid
AR059376A1 (es) 2006-02-21 2008-03-26 Basf Plant Science Gmbh Procedimiento para la produccion de acidos grasos poliinsaturados
US8629195B2 (en) 2006-04-08 2014-01-14 Bayer Materialscience Ag Production of polyurethane foams
ES2531391T3 (es) 2006-10-06 2015-03-13 Basf Plant Science Gmbh Delta-5 desaturasas y procedimiento para la preparación de ácidos grasos poliinsaturados en organismos transgénicos no humanos
GB0807619D0 (en) * 2008-04-28 2008-06-04 Whitton Peter A Production of bio fuels from plant tissue culture sources
EP2669380B1 (de) 2008-12-12 2017-09-27 BASF Plant Science GmbH Desaturasen und Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren in transgenen Organismen
EP2430166A1 (de) 2009-05-13 2012-03-21 BASF Plant Science Company GmbH Acyltransferasen und verwendungen davon bei der fettsäureherstellung
US9388437B2 (en) 2010-06-25 2016-07-12 Basf Plant Science Company Gmbh Acyltransferases and uses thereof in fatty acid production
JP7189145B2 (ja) * 2017-03-29 2022-12-13 ベーリンガー インゲルハイム エルツェーファウ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト 改変された膜脂質組成を有するリコンビナントホスト細胞

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001002591A1 (de) * 1999-07-06 2001-01-11 Basf Plant Science Gmbh Δ6-desaturasegene exprimierende pflanzen und pufas enthaltende öle aus diesen pflanzen und ein verfahren zur herstellung ungesättigter fettsäuren
WO2001059128A2 (de) * 2000-02-09 2001-08-16 Basf Aktiengesellschaft Neues elongasegen und verfahren zur herstellung mehrfach ungesättigter fettsäuren

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0472722B1 (de) 1990-03-16 2003-05-21 Calgene LLC Dnas, die für pflanzliche desaturasen kodieren und deren anwendungen
PH31293A (en) 1991-10-10 1998-07-06 Rhone Poulenc Agrochimie Production of y-linolenic acid by a delta6-desaturage.
US5614393A (en) 1991-10-10 1997-03-25 Rhone-Poulenc Agrochimie Production of γ-linolenic acid by a Δ6-desaturase
EP0616644B1 (de) 1991-12-04 2003-07-02 E.I. Du Pont De Nemours And Company Fettsäure-desaturase gene aus pflanzen
CA2084348A1 (en) 1991-12-31 1993-07-01 David F. Hildebrand Fatty acid alteration by a d9 desaturase in transgenic plant tissue
DK0668919T3 (da) 1992-11-17 2003-09-15 Du Pont Gener for mikorsomale delta-12-fedtsyredesaturaser og beslægtede enzymer fra planter
US7205457B1 (en) 1993-02-05 2007-04-17 Monsanto Technology Llc Altered linolenic and linoleic acid content in plants
AU688834B2 (en) 1993-12-28 1998-03-19 Kirin Holdings Kabushiki Kaisha Gene for fatty acid desaturase, vector containing said gene, plant containing said gene transferred thereinto, and process for creating said plant
US6310194B1 (en) 1994-09-26 2001-10-30 Carnegie Institution Of Washington Plant fatty acid hydroxylases
EP1714543B1 (de) 1995-12-14 2011-08-17 Cargill, Incorporated Pflanzen mit mutierten Sequenzen, welche einen veränderten Fettsäuregehalt vermitteln
EP0794250A1 (de) 1996-03-04 1997-09-10 Soremartec S.A. Isolierung und Sequenzierung des FAd2-N Gens der Haselnuss
US5972664A (en) 1997-04-11 1999-10-26 Abbott Laboratories Methods and compositions for synthesis of long chain poly-unsaturated fatty acids
TR199902474T2 (xx) 1997-04-11 2000-02-21 Calgene Llc Bitkilerde uzun zincirli �ok-doymam�� ya�l� asitlerin sentezi i�in y�ntemler ve bile�imler.
AR013633A1 (es) 1997-04-11 2001-01-10 Calgene Llc METODO PARA LA ALTERACIoN DE LA COMPOSICIoN DE ÁCIDOS GRASOS DE CADENA MEDIA EN SEMILLAS VEGETALES QUE EXPRESAN UNA TIOESTERASA QUE PREFIERE CADENA MEDIA VEGETAL HETERoLOGA.
US5968809A (en) 1997-04-11 1999-10-19 Abbot Laboratories Methods and compositions for synthesis of long chain poly-unsaturated fatty acids
US6075183A (en) * 1997-04-11 2000-06-13 Abbott Laboratories Methods and compositions for synthesis of long chain poly-unsaturated fatty acids in plants
GB9724783D0 (en) 1997-11-24 1998-01-21 Inst Arable Crops Research Novel polypeptides
JP2002527051A (ja) 1998-10-09 2002-08-27 メルク エンド カムパニー インコーポレーテッド デルタ6脂肪酸デサチュラーゼ
DE10102338A1 (de) * 2001-01-19 2002-07-25 Basf Plant Science Gmbh Verfahren zur Expression von Biosynthesegenen in pflanzlichen Samen unter Verwendung von neuen multiplen Expressionskonstrukten
US6635451B2 (en) * 2001-01-25 2003-10-21 Abbott Laboratories Desaturase genes and uses thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001002591A1 (de) * 1999-07-06 2001-01-11 Basf Plant Science Gmbh Δ6-desaturasegene exprimierende pflanzen und pufas enthaltende öle aus diesen pflanzen und ein verfahren zur herstellung ungesättigter fettsäuren
WO2001059128A2 (de) * 2000-02-09 2001-08-16 Basf Aktiengesellschaft Neues elongasegen und verfahren zur herstellung mehrfach ungesättigter fettsäuren

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALONSO D L ET AL: "Plants as 'chemical factories' for the production of polyunsaturated fatty acids" BIOTECHNOLOGY ADVANCES, ELSEVIER PUBLISHING, BARKING, GB, Bd. 18, Nr. 6, Oktober 2000 (2000-10), Seiten 481-497, XP004218725 ISSN: 0734-9750 *
SAYANOVA ET AL: "Expression of a borage desaturase cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of high levels of delta-6-desaturated fatty acids in transgenic tobacco" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE. WASHINGTON, US, Bd. 94, April 1997 (1997-04), Seiten 4211-4216, XP002099447 ISSN: 0027-8424 *
See also references of EP1501932A2 *

Cited By (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2522216A1 (de) * 2003-02-12 2012-11-14 E. I. du Pont de Nemours and Company Herstellung von sehr langkettigen, mehrfach ungesättigten Fettsäuren in Ölsamenpflanzen
EP1592392A2 (de) * 2003-02-12 2005-11-09 E. I. du Pont de Nemours and Company Produktion von sehr langkettigen polyungesättigten fettsäuren in ölsamenpflanzen
EP1592392A4 (de) * 2003-02-12 2009-04-15 Du Pont Produktion von sehr langkettigen polyungesättigten fettsäuren in ölsamenpflanzen
EP2169052B1 (de) 2003-08-01 2016-01-06 BASF Plant Science GmbH Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Organismen
EP1654344B1 (de) 2003-08-01 2018-10-17 BASF Plant Science GmbH Verfahren zur herstellung mehrfach ungesättigter fettsäuren in transgenen
JPWO2005059130A1 (ja) * 2003-12-17 2007-12-13 サントリー株式会社 アラキドン酸を含有する植物体およびその利用
US7943816B2 (en) 2003-12-17 2011-05-17 Suntory Holdings Limited Arachidonic acid-containing plants and use of the plants
CN1894405B (zh) * 2003-12-17 2011-02-02 三得利控股株式会社 含有花生四烯酸的植物体及其利用
EP1710306A1 (de) * 2003-12-17 2006-10-11 Suntory Limited Arachidonsäurehaltige pflanze und nutzung derselben
AU2004298565B2 (en) * 2003-12-17 2009-06-04 Suntory Holdings Limited Arachidonic acid-containing plant and utilization of the same
EP1710306A4 (de) * 2003-12-17 2007-02-21 Suntory Ltd Arachidonsäurehaltige pflanze und nutzung derselben
EP1918367A3 (de) * 2004-02-17 2008-07-30 The University Of York Desaturase-Enzyme
WO2005080578A2 (en) * 2004-02-17 2005-09-01 The University Of York Desaturase enzymes
WO2005080578A3 (en) * 2004-02-17 2006-04-27 Univ York Desaturase enzymes
AU2005214135B2 (en) * 2004-02-17 2008-10-30 The University Of York Desaturase enzymes
AU2005217079B2 (en) * 2004-02-27 2012-02-02 Basf Plant Science Gmbh Method for producing polyunsaturated fatty acids in transgenic plants
AU2005217079A1 (en) * 2004-02-27 2005-09-09 Basf Plant Science Gmbh Method for producing polyunsaturated fatty acids in transgenic plants
AU2005217079C1 (en) * 2004-02-27 2016-02-04 Basf Plant Science Gmbh Method for producing polyunsaturated fatty acids in transgenic plants
US7834250B2 (en) 2004-04-22 2010-11-16 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cells
US8106226B2 (en) 2004-04-22 2012-01-31 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cells
US9926579B2 (en) 2004-04-22 2018-03-27 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cell
US9458410B2 (en) 2004-04-22 2016-10-04 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cell
US9970033B2 (en) 2004-04-22 2018-05-15 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cell
US10443079B2 (en) 2004-04-22 2019-10-15 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cell
US9453183B2 (en) 2004-04-22 2016-09-27 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cell
US10781463B2 (en) 2004-04-22 2020-09-22 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cells
US11220698B2 (en) 2004-04-22 2022-01-11 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cells
US7932438B2 (en) 2004-04-22 2011-04-26 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cells
US9951357B2 (en) 2004-04-22 2018-04-24 Commonweatlh Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cell
US11597953B2 (en) 2004-04-22 2023-03-07 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cells
US9994880B2 (en) 2004-04-22 2018-06-12 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cell
US8158392B1 (en) 2004-04-22 2012-04-17 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cells
US8071341B2 (en) 2004-04-22 2011-12-06 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cells
US9963723B2 (en) 2004-04-22 2018-05-08 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cells
US7842852B2 (en) 2004-07-16 2010-11-30 Basf Plant Science Gmbh Method for increasing the content of polyunsaturated long-chained fatty acids in transgenic organisms
WO2006008099A2 (de) * 2004-07-16 2006-01-26 Basf Plant Science Gmbh Verfahren zur erhöhung des gehalts an mehrfach ungesättigten langkettigen fettsäuren in transgenen organismen
WO2006008099A3 (de) * 2004-07-16 2007-03-15 Basf Plant Science Gmbh Verfahren zur erhöhung des gehalts an mehrfach ungesättigten langkettigen fettsäuren in transgenen organismen
US8685679B2 (en) 2004-11-04 2014-04-01 E I Du Pont De Nemours And Company Acyltransferase regulation to increase the percent of polyunsaturated fatty acids in total lipids and oils of oleaginous organisms
JP2008518628A (ja) * 2004-11-04 2008-06-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ヤロウィア・リポリティカ(yarrowialipolytica)の高アラキドン酸生成株
EP1807527A2 (de) * 2004-11-04 2007-07-18 E.I. Dupont De Nemours And Company Hoch arachidonische säure, die stämme von yarrowia lipolytica produziert
EP1807527A4 (de) * 2004-11-04 2009-08-19 Du Pont Hoch arachidonische säure, die stämme von yarrowia lipolytica produziert
WO2006069710A1 (de) * 2004-12-23 2006-07-06 Basf Plant Science Gmbh Verfahren zur herstellung mehrfach ungesättigter fettsäuren in transgenen organismen
WO2006100241A3 (de) * 2005-03-22 2006-12-07 Basf Plant Science Gmbh Verfahren zur herstellung von mehrfach ungesättigten c20- und c22-fettsäuren mit mindestens vier doppelbindungen in transgenen pflanzen
US8049064B2 (en) 2005-03-22 2011-11-01 Basf Plant Science Gmbh Method for producing polyunsaturated C20- and C22-fatty acids with at least four double bonds in transgenic plants
WO2007017419A3 (de) * 2005-08-09 2007-05-10 Basf Plant Science Gmbh Verfahren zur herstellung von arachidonsäure und/oder eicosapentaensäure in transgenen nutzpflanzen
US8134046B2 (en) 2005-08-09 2012-03-13 Basf Plant Science Gmbh Method for producing arachidonic acid and/or eicosapentaenoic acid in useful transgenic plants
EP1790731A2 (de) * 2005-11-24 2007-05-30 BASF Plant Science GmbH Verfahren zur Herstellung von ungesättigten Delta-5-Fettsäuren in transgenen Organismen
EP1790731A3 (de) * 2005-11-24 2007-07-18 BASF Plant Science GmbH Verfahren zur Herstellung von ungesättigten Delta-5-Fettsäuren in transgenen Organismen
US7723574B2 (en) 2005-11-24 2010-05-25 Basf Plant Science Gmbh Process for the production of Δ5-unsaturated fatty acids in transgenic organisms
US10513717B2 (en) 2006-08-29 2019-12-24 Commonwealth Scientific And Industrial Research Organisation Synthesis of fatty acids
DE112009002048T5 (de) 2008-08-26 2012-01-26 Basf Plant Science Gmbh Nukleinsäure, die Desaturasen kodieren, und modifiziertes Planzenöl
US9938486B2 (en) 2008-11-18 2018-04-10 Commonwealth Scientific And Industrial Research Organisation Enzymes and methods for producing omega-3 fatty acids
US8993841B2 (en) 2009-06-08 2015-03-31 Basf Plant Science Company Gmbh Fatty acid elongation components and uses thereof
WO2010142522A2 (en) 2009-06-08 2010-12-16 Basf Plant Science Company Gmbh Novel fatty acid elongation components and uses thereof
DE112010002353T5 (de) 2009-06-08 2012-08-09 Basf Plant Science Company Gmbh Neue fettsäure-elongations-komponenten und anwenduingen davon
DE112010002967T5 (de) 2009-07-17 2012-10-11 Basf Plant Science Company Gmbh Neue Fettsäuredesaturasen und -elongasen und Anwendungen davon
WO2011006948A1 (en) 2009-07-17 2011-01-20 Basf Plant Science Company Gmbh Novel fatty acid desaturases and elongases and uses thereof
WO2011064181A1 (en) 2009-11-24 2011-06-03 Basf Plant Science Company Gmbh Novel fatty acid desaturase and uses thereof
WO2011064183A1 (en) 2009-11-24 2011-06-03 Basf Plant Science Company Gmbh Novel fatty acid elongase and uses thereof
WO2012052468A2 (en) 2010-10-21 2012-04-26 Basf Plant Science Company Gmbh Novel fatty acid desaturases, elongases, elongation components and uses therof
EP2695936A1 (de) 2010-10-21 2014-02-12 BASF Plant Science Company GmbH Neue Fettsäuredesaturasen und Verwendungen davon
US9458477B2 (en) 2010-10-21 2016-10-04 Basf Plant Science Company Gmbh Fatty acid desaturases, elongases, elongation components and uses thereof
DE112011103527T5 (de) 2010-10-21 2013-10-17 Basf Plant Science Company Gmbh Neue Fettsäure-Desaturasen, -Elongasen, -Elongations-Komponenten und Anwendungen davon
US8816111B2 (en) 2012-06-15 2014-08-26 Commonwealth Scientific And Industrial Research Organisation Lipid comprising polyunsaturated fatty acids
US9550718B2 (en) 2012-06-15 2017-01-24 Commonwealth Scientific And Industrial Research Organisation Lipid comprising polyunsaturated fatty acids
US9932289B2 (en) 2012-06-15 2018-04-03 Commonwealth Scientific And Industrial Research Ogranisation Process for producing ethyl esters of polyunsaturated fatty acids
US8946460B2 (en) 2012-06-15 2015-02-03 Commonwealth Scientific And Industrial Research Organisation Process for producing polyunsaturated fatty acids in an esterified form
US9556102B2 (en) 2012-06-15 2017-01-31 Commonwealth Scientific And Industrial Research Organisation Process for producing ethyl esters of polyunsaturated fatty acids
US10335386B2 (en) 2012-06-15 2019-07-02 Commonwealth Scientific And Industrial Research Organisation Lipid comprising polyunsaturated fatty acids
WO2014020533A2 (en) 2012-08-03 2014-02-06 Basf Plant Science Company Gmbh Novel enzymes, enzyme components and uses thereof
US11623911B2 (en) 2013-12-18 2023-04-11 Commonwealth Scientific And Industrial Research Organisation Lipid comprising docosapentaenoic acid
US10190073B2 (en) 2013-12-18 2019-01-29 Commonwealth Scientific And Industrial Research Organisation Lipid comprising long chain polyunsaturated fatty acids
US10800729B2 (en) 2013-12-18 2020-10-13 Commonwealth Scientific And Industrial Research Organisation Lipid comprising long chain polyunsaturated fatty acids
US9718759B2 (en) 2013-12-18 2017-08-01 Commonwealth Scientific And Industrial Research Organisation Lipid comprising docosapentaenoic acid
US9725399B2 (en) 2013-12-18 2017-08-08 Commonwealth Scientific And Industrial Research Organisation Lipid comprising long chain polyunsaturated fatty acids
US10125084B2 (en) 2013-12-18 2018-11-13 Commonwealth Scientific And Industrial Research Organisation Lipid comprising docosapentaenoic acid
US10005713B2 (en) 2014-06-27 2018-06-26 Commonwealth Scientific And Industrial Research Organisation Lipid compositions comprising triacylglycerol with long-chain polyunsaturated fatty acids at the sn-2 position
US10793507B2 (en) 2014-06-27 2020-10-06 Commonwealth Scientific And Industrial Research Organisation Lipid compositions comprising triacylglycerol with long-chain polyunsaturated fatty acids at the SN-2 position
US10760089B2 (en) 2014-11-14 2020-09-01 Basf Plant Science Company Gmbh Materials and methods for increasing the tocopherol content in seed oil
US11033593B2 (en) 2014-11-14 2021-06-15 Basf Plant Science Company Gmbh Brassica events LBFLFK and LBFDAU and methods for detection thereof
US10829775B2 (en) 2014-11-14 2020-11-10 Basf Plant Science Company Gmbh Materials and methods for increasing the tocopherol content in seed oil
US11260095B2 (en) 2014-11-14 2022-03-01 Basf Plant Science Company Gmbh Modification of plant lipids containing PUFAs
US11484560B2 (en) 2014-11-14 2022-11-01 Basf Plant Science Company Gmbh Stabilising fatty acid compositions
US11613761B1 (en) 2014-11-14 2023-03-28 Bioriginal Food & Science Corporation Materials and methods for PUFA production, and PUFA-containing compositions
WO2016075327A2 (en) 2014-11-14 2016-05-19 Basf Plant Science Company Gmbh Production of pufas in plants
US11771728B2 (en) 2014-11-14 2023-10-03 Basf Plant Science Company Gmbh Materials and methods for increasing the tocopherol content in seed oil
US11813302B2 (en) 2014-11-14 2023-11-14 Basf Plant Science Company Gmbh Brassica events LBFLFK and LBFDAU and methods for detection thereof
WO2020168277A1 (en) 2019-02-14 2020-08-20 Cargill, Incorporated Brassica plants producing elevated levels of polyunsaturated fatty acids
WO2022098631A1 (en) 2020-11-04 2022-05-12 Cargill, Incorporated Harvest management
WO2022204454A1 (en) 2021-03-25 2022-09-29 Cargill, Incorporated Fertilizer management

Also Published As

Publication number Publication date
US20070028326A1 (en) 2007-02-01
WO2003093482A3 (de) 2004-11-04
AU2003232512B2 (en) 2009-08-27
CA2977570A1 (en) 2003-11-13
CA2485060A1 (en) 2003-11-13
AU2003232512A1 (en) 2003-11-17
EP1501932A2 (de) 2005-02-02
US7893320B2 (en) 2011-02-22
DE10219203A1 (de) 2003-11-13
CA2870809A1 (en) 2003-11-13
CA2870809C (en) 2018-02-13

Similar Documents

Publication Publication Date Title
EP1599582B1 (de) Verfahren zur herstellung mehrfach ungesättigter fettsäuren
EP2180046B1 (de) Verfahren zur Herstellung von mehrfach ungesättigten langkettigen Fettsäuren in transgenen Organismen
US7893320B2 (en) Method for producing multiple unsaturated fatty acids in plants
EP1613746B1 (de) Neue pflanzliche acyltransferasen spezifisch für langkettige, mehrfach ungesättigte fettsäuren
EP1356067B1 (de) Verfahren zur herstellung mehrfach ungesaettigter fettsaeuren, neue biosynthesegene sowie neue pflanzliche expressionskonstrukte
EP2177605B1 (de) Delta-5 Desaturasen und Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen nicht-humanen Organismen
EP1613744B1 (de) Delta-4-desaturasen aus euglena gracilis, exprimierende pflanzen und pufa enthaltende öle
EP1472357B1 (de) Verfahren zur herstellung mehrfach ungesättigter fettsäuren mittels eines neuen elongase-gens
DE10102338A1 (de) Verfahren zur Expression von Biosynthesegenen in pflanzlichen Samen unter Verwendung von neuen multiplen Expressionskonstrukten
EP2046960A1 (de) Verfahren zur herstellung von arachidonsäure und/oder eicosapentaensäure in pflanzen
EP4219670A2 (de) Verfahren zur herstellung mehrfach ungesättigter fettsäuren in transgenen pflanzen
EP1866417A2 (de) Verfahren zur herstellung von mehrfach ungesättigten c20- und c22-fettsäuren mit mindestens vier doppelbindungen in transgenen pflanzen
EP2176433A2 (de) Desaturasen und verfahren zur herstellung mehrfach ungesättigter fettsäuren in transgenen organismen
DE102004017518A1 (de) Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003747357

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007028326

Country of ref document: US

Ref document number: 10511621

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2485060

Country of ref document: CA

Ref document number: 2003232512

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2003747357

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP

WWP Wipo information: published in national office

Ref document number: 10511621

Country of ref document: US