WO2003092147A1 - Sperrwandleranordnung - Google Patents

Sperrwandleranordnung Download PDF

Info

Publication number
WO2003092147A1
WO2003092147A1 PCT/EP2003/003887 EP0303887W WO03092147A1 WO 2003092147 A1 WO2003092147 A1 WO 2003092147A1 EP 0303887 W EP0303887 W EP 0303887W WO 03092147 A1 WO03092147 A1 WO 03092147A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformers
converter arrangement
flyback converter
arrangement according
voltage
Prior art date
Application number
PCT/EP2003/003887
Other languages
English (en)
French (fr)
Inventor
Andreas Kreitz
Andreas Nagel
Jochen Mast
Original Assignee
Abb Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Patent Gmbh filed Critical Abb Patent Gmbh
Publication of WO2003092147A1 publication Critical patent/WO2003092147A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33561Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having more than one ouput with independent control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/16Toroidal transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F2038/006Adaptations of transformers or inductances for specific applications or functions matrix transformer consisting of several interconnected individual transformers working as a whole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers

Definitions

  • the invention relates to a flyback converter arrangement which is particularly suitable for supplying power to so-called gate units, that is to say control units for controlling power semiconductor switches in high-voltage switches or converters in which a plurality of semiconductor switches are connected in series.
  • gate units that is to say control units for controlling power semiconductor switches in high-voltage switches or converters in which a plurality of semiconductor switches are connected in series.
  • dust separators for flue gas cleaning or high-voltage pulse applications in food and medical technology are also potential areas of application.
  • MOSFETs and IGBTs are the typical semiconductor switches that are electrically connected in series, with a potential separation for large voltage differences being required for the power supply to the control units.
  • the invention is therefore based on the object of specifying a suitable arrangement for supplying power to consumers at different high-voltage potentials, with which both high requirements for electrical isolation and a small coupling capacity can be met.
  • the invention accordingly proposes a flyback converter arrangement which contains a plurality of transformers, a primary circuit having a series connection of the primary windings of the transformers, a controlled switch and a DC voltage source. Rectifiers, output capacitors and an output voltage regulator are connected to the secondary windings of the transformers.
  • the transformers preferably each contain a ferrite toroid, which carries the respective secondary winding, the series connection of the primary windings being designed as a high-voltage-insulated conductor loop through all ferrite toroids.
  • the low outlay required to implement the flyback converter arrangement is advantageous.
  • the flyback converter arrangement is therefore particularly suitable for high-voltage converters with a large number of individual elements connected in series, since the number of components of the flyback converter arrangement assigned to the individual gate units is minimal.
  • the transformers are small in volume and can be mounted directly on the usual PCB of the gate units.
  • One of the advantages is that problems with creepage distances do not occur, since the primary circuit does not have to be separated and tapped.
  • a particularly low-cost design of the primary circuit and the transmitters also results in a very low parasitic coupling capacitance.
  • Stabilized positive and negative voltages are generally required to supply control circuits. With the proposed arrangement, the generation of such supply voltages is possible in a particularly simple manner. Different numbers of turns or additional windings on the secondary side can also generate differently high output voltages.
  • FIG. 2 shows a preferred arrangement of the switching power supply transformer with toroidal cores and a primary-side conductor loop
  • FIG. 3 circuit details of a first variant of the flyback converter arrangement
  • FIG. 4 circuit details of a second variant of the flyback converter arrangement
  • FIG. 5 circuit details of a third variant of the flyback converter arrangement.
  • the arrangement contains several transformers T1, T2 to TN, with respective primary windings P1, P2 to PN, secondary windings S1, S2 to SN and transformer cores ÜK1, ÜK2 to ÜKN.
  • a series connection of the primary windings P1, P2 to PN forms one Primary circuit in which a primary current i pri flows, which a DC voltage source GQ supplies with the DC voltage VD C.
  • the secondary sides each contain rectifier diodes D1, D2 to DN (Dx) and a voltage regulator SR1, SR2 to SRN (SRx).
  • the primary-side switch S is controlled (ie not regulated) via a pulse width modulation (PWM) (not shown in FIG. 1), preferably with a high switching frequency.
  • PWM pulse width modulation
  • the arrangement represents a current-mode flyback converter operating in discontinuous conduction mode (DCM).
  • DCM discontinuous conduction mode
  • the processes of energy storage and transmission are completely separate, ie a new switching cycle is only initiated when all the memory transmitters have been completely demagnetized and so that the secondary currents have dropped to zero.
  • DCM discontinuous conduction mode
  • the philosophy behind this concept is to allow the primary current ip r j, which is the same for all transmitters, to rise to a specific, fixed value and thus a constant energy in every switching cycle in each of the transmitters
  • the transformers are completely demagnetized via their secondary sides and the energy is transferred to the respective output capacitors C1, C2 to CN (Cx). Since a flyback transformer has to store energy, a core with an air gap should normally be used here; this air gap simultaneously reduces the tolerance of the primary inductance Lp r j, so that one can assume almost the same impedances at the terminals of the primary winding. This is important for the correct functioning of the arrangement, because this is the only way to guarantee that the desired energy can really be stored at every level.
  • Transverse regulators shunt regulators
  • the SRx voltage regulator which convert the excess power that is not required by the load connected to the respective output into heat.
  • Such an arrangement is therefore particularly advantageous for feeding the gate units in High-voltage semiconductor switches, which are made up of a large number of individual switching elements connected in series: the power requirement of the individual gate units is the same, except for inevitable tolerances.
  • the tolerances of the primary inductance Lpri are therefore essential for the power loss occurring in the voltage regulators SRx; If possible, these tolerances should be minimized.
  • the transformers Tx can be designed particularly advantageously as a stack, as shown schematically in FIG. 2.
  • the transformer cores ÜK1, ÜK2 to ÜKN are designed as ferrite ring cores RK1 to RKN, each carrying a secondary winding S1 to SN.
  • the necessary series connection of primary windings is designed as a conductor loop SL, which is guided through all core openings and is connected via a switch (not shown in FIG. 2) to the DC voltage source (also not shown in FIG. 2).
  • the necessary electrical isolation can be achieved through the inner diameter of the toroid, the insulation properties, e.g. B. can be adjusted by choice of material, thickness and semiconducting coating of the cable used for the formation of the primary winding as a conductor loop SL.
  • FIG. 3 A first embodiment variant is shown in FIG. 3.
  • a standard PWM circuit controls a power switch S (preferably MOSFET or IGBT) with a PWM signal.
  • a power switch S preferably MOSFET or IGBT
  • the peak current l max in the primary circuit set here by way of example with a potentiometer R, is reached, the
  • the current measurement is carried out here by way of example using a shunt resistor Rcs.
  • the secondary-side voltage regulators SRx are designed here in the simplest way as Zener diodes DZ1, DZ2 to DZN. Any other type of cross-regulator, as described in great variety in the literature, can also be used.
  • means Z1 to ZN, D1 to DN, and C1 to CN are also shown here for generating an additional negative output voltage per transformer Tx; it is essential that a voltage regulator is used only at a single output voltage per core ÜK1 to ÜKN.
  • a second embodiment variant is shown in FIG. 4.
  • FIG. 5 A third embodiment variant is shown in FIG. 5.
  • the transformers Tx are each provided with several, e.g. B. three secondary windings, e.g. B. S1a, S1b and S1c arranged.
  • two or more gate units can be connected by means of a transformer, e.g. B. T1 can be fed.
  • An advantage of this arrangement is thus the reduced number of transformers (which, however, must have more secondary windings) and only one voltage regulator SRx per transformer, since only one regulator may be used per transformer.
  • the outputs that are not directly controlled are also controlled by the flyback principle.
  • a combination of the designs according to FIGS. 4 and 5 is also interesting, since only one choke Lx is required per transformer Tx.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Die Erfindung bezieht sich auf eine Sperrwandleranordnung, die mehrere Übertrager (T1 bis TN) enthält, wobei die Primärwicklungen (P1 bis PN) der Übertrager (T1 bis TN) elektrisch in Reihe geschaltet und über einen gesteuerten Schalter (S) mit einer Gleichspannungsquelle (GQ) verbunden sind, und an Sekundärwicklungen (S1 bis SN) der Übertrager (T1 bis TN) jeweils ein Gleichrichter (D1 bis DN) mit Ausgangskondensatoren (C1 bis CN), sowie ein Ausgangsspannungsregler (SR1 bis SRN) angeschlossen sind. Vorzugsweise enthalten die Übertrager (T1 bis TN) jeweils einen G Ferrit-Ringkern (RK1 bis RKN), der die jeweilige Sekundärwicklung (S1 bis SN) trägt, wobei die Reihenschaltung der Primärwicklungen (P1 bis PN) als eine durch alle Ferrit-Ringkerne (RK1 bis RKN) geführte hochspannungsisolierte Leiterschleife (SL) ausgeführt ist.

Description

Sperrwandleranordnung
Beschreibung
Die Erfindung betrifft eine Sperrwandleranordnung, die insbesondere geeignet ist zur Stromversorgung von sogenannten Gate-Units, also AnSteuereinheiten zur Steuerung von Leistungs-Halbleiterschaltern in Hochspannungs-Schaltern oder Konvertern, in denen mehrere Halbleiterschalter in Reihe geschaltet sind. Neben der Stromrichtertechnik sind auch beispielsweise Staubabscheider zur Rauchgasreinigung oder Hochspannungspulsanwendungen in der Lebensmittel- und Medizintechnik potentielle Anwendungsgebiete. Dabei sind in solchen Hochspannungsanordnungen MOSFETs und IGBTs die typischen verwendeten, elektrisch in Reihe geschalteten Halbleiterschalter, wobei für die Stromversorgung der AnSteuereinheiten eine Potentialtrennung bei großen Spannungsunterschieden benötigt wird.
Stand der Technik ist die Versorgung der AnSteuereinheiten durch jeweils einzelne Stromversorgungseinrichtungen mit hoher Potentialtrennung, entweder a) mittels an einen Niederspannungs-AC-Bus parallel angeschlossenen hochisolierenden Transformatoren, meistens in 50 Hz-Technik, oder b) mittels an eine Gleichspannungsversorgung angeschlossenen, eingangsspannungsseitig parallelgeschalteten separaten hochisolierenden DC/DC- Wandlern.
Nachteile der bekannten Anordnungen sind im Fall der Variante a), daß Transformatoren in der typischen 50 Hz-Technik voluminös, schwer und teuer sind, und der Montageaufwand erheblich ist. Bei den Varianten a) und b) ergeben sich Probleme mit Isolation/Kriechstrecken, da der Versorgungs-AC- respektive DC-Bus bis zu jeder Schalterstufe geführt und dort angezapft werden muß.
In der Hochleistungs-Stromrichtertechnik, insbesondere wenn eine Reihenschaltung von Leitungsschaltelementen zürn Einsatz kommt, bestehen erhöhte Anforderungen an die Isolation verwendeter Transformatoren in den jeweiligen Ansteuerungen und insbesondere auch an deren parasitäre kapazitive Kopplung zwischen Primär- und Sekundärkreis. Diese Kopplung muß unbedingt sehr niedrig sein, um Beeinflussungen der Elektronik auf den Gate-Units durch Lade- / Entladeströme der parasitären Koppelkapazitäten zu vermeiden. Nach dem Stand der Technik werden deshalb vergossene Übertrager eingesetzt, um den Isolationsanforderungen gerecht zu werden. Diese besitzen in der Regel aber eine unerwünscht hohe parasitäre Koppelkapazität, insbesondere wenn es sich um Transformatoren in 50 Hz-Technik handelt.
Der Erfindung liegt daher die Aufgabe zugrunde, eine zur Stromversorgung von auf unterschiedlichem Hochspannungspotential befindlichen Verbrauchern geeignete Anordnung anzugeben, mit der sowohl hohen Anforderungen an die Potentialtrennung, als auch an eine kleine Koppelkapazität entsprochen werden kann.
Diese Aufgabe wird durch eine Sperrwandleranordnung gelöst, die die im Anspruch 1 angegebenen Merkmale aufweist. Vorteilhafte Ausgestaltungen sind in weiteren Ansprüchen angegeben.
Mit der Erfindung wird demnach eine Sperrwandleranordnung vorgeschlagen, die mehrere Übertrager enthält, wobei ein Primärkreis mit einer Reihenschaltung der Primärwicklungen der Übertrager, einem gesteuerten Schalter und einer Gleichspannungsquelle gebildet ist. An die Sekundärwicklungen der Übertrager sind jeweils Gleichrichter, Ausgangskondensatoren und ein Ausgangsspannungsregler angeschlossen.
Die Übertrager enthalten vorzugsweise jeweils einen Ferrit-Ringkern, der die jeweilige Sekundärwicklung trägt, wobei die Reihenschaltung der Primärwicklungen als eine durch alle Ferrit-Ringkerne geführte hochspannungsisolierte Leiterschleife ausgeführt ist. Vorteilhaft ist der zur Realisierung der Sperrwandleranordnung erforderliche geringe Aufwand. Die Sperrwandleranordnung ist dadurch insbesondere für Hochspannungs- Stromrichter mit einer großen Anzahl in Reihe geschalteter Einzelelemente geeignet, da die Anzahl der den einzelnen Gate-Units zugeordneten Bauelemente der Sperrwandleranordnung minimal ist. Die Übertrager sind kleinvolumig und können direkt auf die übliche Leiterplatte der Gate-Units montiert werden.
Einer der Vorteile besteht weiterhin darin, daß Probleme mit Kriechstrecken nicht auftreten, da der Primärkreis nicht aufgetrennt und angezapft werden muß. Durch eine besonders günstige Ausführung des Primärkreises und der Übertrager wird auch eine sehr geringe parasitäre Koppelkapazität erzielt.
Zur Versorgung von Ansteuerschaltungen werden in der Regel stabilisierte positive und negative Spannungen benötigt. Mit der vorgeschlagenen Anordnung ist die Erzeugung solcher Versorgungsspannungen auf besonders einfache Weise möglich. Durch sekundärseitig unterschiedliche Windungszahlen oder Zusatzwicklungen können auch unterschiedlich hohe Ausgangsspannungen erzeugt werden.
Eine weitere Erläuterung der Erfindung erfolgt nachstehend anhand von Ausführungsbeispielen, die in Zeichnungsfiguren dargestellt sind.
Es zeigt:
Fig. 1 eine Prinzipschaltung der Schaltnetzteilanordnung,
Fig. 2 eine bevorzugte Anordnung der Schaltnetzteilübertrager mit Ringkernen und einer primärseitigen Leiterschleife, Fig. 3 Schaltungsdetails einer ersten Variante der Sperrwandleranordnung, Fig. 4 Schaltungsdetails einer zweiten Variante der Sperrwandleranordnung, und Fig. 5 Schaltungsdetails einer dritten Variante der Sperrwandleranordnung.
Fig. 1 zeigt eine Prinzipschaltung der vorgeschlagenen Sperrwandleranordnung. Die Anordnung enthält mehrere Übertrager T1 , T2 bis TN, mit jeweiligen Primärwicklungen P1 , P2 bis PN, Sekundärwicklungen S1 , S2 bis SN und Übertragerkernen ÜK1, ÜK2 bis ÜKN. Eine Reihenschaltung der Primärwicklungen P1 , P2 bis PN bildet einen Primärkreis, in dem ein Primärstrom ipri fließt, den eine Gleichspannungsquelle GQ mit der Gleichspannung VDC liefert.
Die Sekundärseiten enthalten jeweils Gleichrichterdioden D1 , D2 bis DN (Dx), sowie jeweils einen Spannungsregler SR1 , SR2 bis SRN (SRx).
Der primärseitige Schalter S wird über eine (in Fig. 1 nicht dargestellte) Pulsweitenmodulation (PWM) gesteuert (also nicht geregelt), vorzugsweise mit einer hohen Schaltfrequenz. Die Anordnung stellt einen im Lückbetrieb (discontinuous conduction mode DCM) arbeitenden current-mode Flyback-Konverter dar. Bei einem solchen Konverter sind die Vorgänge Energiespeicherung und -Übertragung vollkommen getrennt, d.h. ein neuer Schaltzyklus wird erst eingeleitet, wenn alle Speicherübertrager vollständig abmagnetisiert sind und damit die sekundärseitigen Ströme auf Null abgefallen sind. Die Philosophie hinter diesem Konzept ist, den für alle Übertrager gleichen Primärstrom iprj auf einen bestimmten, festen Wert ansteigen zu lassen und damit bei jedem Schaltzyklus in jedem der Übertrager eine konstante Energie
W = Lprilp 2 ri
zu speichern. In der Flybackphase werden die Übertrager über deren Sekundärseiten alle vollständig abmagnetisiert und die Energie in die jeweiligen Ausgangskondensatoren C1, C2 bis CN (Cx) übertragen. Da ein Flyback-Übertrager Energie speichern muß, ist hier normalerweise ein Kern mit Luftspalt zu verwenden; dieser Luftspalt reduziert gleichzeitig die Toleranz der Primärinduktivität Lprj, so daß man von nahezu gleichen Impedanzen an den Klemmen der Primärwicklung ausgehen kann. Das ist für die korrekte Funktion der Anordnung wichtig, denn nur damit wird garantiert, daß auch wirklich auf jeder Stufe die gewünschte Energie gespeichert werden kann.
Es versteht sich, daß ein solches Konzept impliziert, daß die gesamte pro Schaltzyklus übertragene Energie auch während dieser Zeitdauer verbraucht wird, ansonsten würde die Ausgangsspannung ansteigen. Als Spannungsregler SRx werden daher Querregler (Shuntregler) eingesetzt, die die überschüssige, von der am jeweiligen Ausgang angeschlossenen Last nicht benötigte Leistung in Wärme umsetzen. Eine solche Anordnung ist deshalb besonders vorteilhaft zur Speisung der Gate-Units in Hochspannungs-Halbleiterschaltem geeignei, die aus einer größeren Anzahl in Reihe geschalteter Einzelschaltelemente aufgebaut sind: Der Leistungsbedarf der einzelnen Gate-Units ist hierbei nämlich, bis auf unvermeidliche Toleranzen, gleich. Wesentlich für die in den Spannungsreglern SRx anfallende Verlustleistung sind daher die Toleranzen der Primärinduktivität Lpri; Diese Toleranzen sind nach Möglichkeit zu minimieren.
Die Erzeugung mehrerer positiver oder negativer Ausgangsspannungen ist, wie aus der Literatur bekannt ist, durch das Flyback-Prinzip besonders einfach möglich. Dabei ist pro Übertrager nur an einer einzigen Wicklung ein Spannungsregler notwendig.
Die Übertrager Tx können besonders vorteilhaft als Stapel ausgeführt werden, wie in Fig. 2 schematisiert dargestellt ist. Dabei sind die Übertragerkerne ÜK1 , ÜK2 bis ÜKN als Ferrit-Ringkerne RK1 bis RKN ausgeführt, die jeweils eine Sekundärwicklung S1 bis SN tragen. Die erforderliche Reihenschaltung von Primärwicklungen ist als Leiterschleife SL ausgeführt, die durch alle Kernöffnungen geführt und über einen - in Fig. 2 nicht dargestellten - Schalter an die - in Fig. 2 ebenfalls nicht dargestellte - Gleichspannungsquelle angeschlossen ist. Die nötige Potentialtrennung kann durch den Ringkerninnendurchmesser, die Isolationsbeschaffenheit, z. B. durch Wahl von Material, Dicke und halbleitende Beschichtung des für die Bildung der Primärwicklung als Leiterschleife SL verwendeten Kabels eingestellt werden.
Eine erste Ausführungsvariante ist in Fig. 3 dargestellt. Im Primärkreis steuert dabei ein Standard-PWM-Schaltkreis einen Leistungsschalter S (vorzugsweise MOSFET oder IGBT) mit einem PWM-Signal an. Beim Erreichen des hier beispielhaft mit einem Potentiometer R eingestellten Spitzenstromes lmax im Primärkreis schaltet der
Leistungsschalter S ab. Die Strommessung ist hier beispielhaft mittels eines Shuntwiderstandes Rcs ausgeführt. Die sekundärseitigen Spannungsregler SRx sind hier auf einfachste Weise als Zener-Dioden DZ1 , DZ2 bis DZN ausgeführt. Es ist auch jede andere Art von Querregler, wie sie in der Literatur in großer Vielfalt beschrieben sind, einsetzbar. Beispielhaft sind hier außerdem Mittel Z1 bis ZN, D1- bis DN-, sowie C1- bis CN- für die Erzeugung einer zusätzlichen negativen Ausgangsspannung pro Übertrager Tx dargestellt; wesentlich ist, daß nur an jeweils einer einzigen Ausgangsspannung pro Kern ÜK1 bis ÜKN ein Spannungsregler eingesetzt ist. Eine zweite Ausführungsvariante ist in Fig. 4 dargestellt. Mit dieser Variante läßt sich vermeiden, daß bei Einsatz der Übertrageranordnung nach Fig. 2 in die Ringkerne ein Luftspalt eingebracht werden muß (ein produktionstechnisch eher aufwendiger Vorgang). Vielmehr können preisgünstige Standard-Ferritkerne mit hoher Permeabilität eingesetzt werden; die Energiespeicherung erfolgt bei diesem Prinzip in den sekundärseitigen Drosselspulen L1 bis LN (Lx), die jeweils den Sekundärwicklungen S1 bis SN parallel geschaltet sind. Neben zusätzlichen Freiheitsgraden bei der Dimensionierung (in der ersten Variante können sich, bedingt durch die feste Primärwindungszahl von Npri = 1 , schlecht realisierbare Luftspaltmaße ergeben) lassen sich solche Drosseln Lx auch sehr leicht mit den geforderten Induktivitätstoleranzen herstellen.
Eine dritte Ausführungsvariante zeigt Fig. 5. Dabei sind die Übertrager Tx jeweils mit mehreren, z. B. drei Sekundärwicklungen, z. B. S1a, S1b und S1c, angeordnet. Mit dieser dritten Variante können zwei oder mehrere Gate-Units mittels einem Übertrager, z. B. T1 gespeist werden. Ein Vorteil dieser Anordnung ist somit die reduzierte Zahl der Übertrager (die allerdings entsprechend mehr Sekundärwicklungen besitzen müssen) sowie der nur eine Spannungsregler SRx pro Übertrager, da pro Übertrager überhaupt nur ein Regler eingesetzt werden darf. Die nicht direkt geregelten Ausgänge werden durch das Flyback-Prinzip mitgeregelt. Interessant ist außerdem eine Kombination der Ausführungen gemäß der Figuren 4 und 5, da auch nur eine Drossel Lx pro Übertrager Tx benötigt wird.

Claims

Patentansprüche
1. Sperrwandleranordnung, die mehrere Übertrager (T1 bis TN) enthält, wobei die Primärwicklungen (P1 bis PN) der Übertrager (T1 bis TN) elektrisch in Reihe geschaltet und über einen gesteuerten Schalter (S) mit einer Gleichspannungsquelle (GQ) verbunden sind, und an Sekundärwicklungen (S1 bis SN) der Übertrager (T1 bis TN) jeweils ein Gleichrichter (D1 bis DN) mit Ausgangskondensatoren (C1 bis CN), sowie ein Ausgangsspannungsregler (SR1 bis SRN) angeschlossen sind.
2. Sperrwandleranordnung nach Anspruch 1 , dadurch gekennzeichnet, daß die Übertrager (T1 bis TN) jeweils einen Ferrit-Ringkern (RK1 bis RKN) aufweisen, der die jeweilige Sekundärwicklung (S1 bis SN) trägt, und die Reihenschaltung der Primärwicklungen (P1 bis PN) als eine durch alle Ferrit-Ringkerne (RK1 bis RKN) geführte hochspannungsisolierte Leiterschleife (SL) ausgeführt ist.
3. Sperrwandleranordnung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß wenigstens einer der Übertrager (T1 bis TN) eine sekundärseitige Zusatzwicklung zur Erzeugung einer negativen Ausgangsspannung trägt.
4. Sperrwandleranordnung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß den Sekundärwicklung (S1 bis SN) der Übertrager (T1 bis TN) jeweils eine Drosselspule (L1 bis LN) parallel geschaltet ist.
5. Sperrwandleranordnung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß je Übertrager (T1 bis TN) jeweils mehrere Sekundärwicklungen (z.B. S1a, S1 b, S1c bis SNa, SNb, SNc) sowie zugehörige Mittel (D, C) zur Bildung mehrerer positiver oder auch negativer Ausgangsspannungen angeordnet sind.
6. Sperrwandleranordnung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Anordnung zur potentialgetrennten Stromversorgung der Ansteuereinrichtungen von in Reihe geschalteten Leistungshalbleiterbauelementen verwendet ist.
PCT/EP2003/003887 2002-04-25 2003-04-15 Sperrwandleranordnung WO2003092147A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2002118455 DE10218455A1 (de) 2002-04-25 2002-04-25 Sperrwandleranordnung
DE10218455.0 2002-04-25

Publications (1)

Publication Number Publication Date
WO2003092147A1 true WO2003092147A1 (de) 2003-11-06

Family

ID=28798779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/003887 WO2003092147A1 (de) 2002-04-25 2003-04-15 Sperrwandleranordnung

Country Status (2)

Country Link
DE (1) DE10218455A1 (de)
WO (1) WO2003092147A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856063A (zh) * 2012-09-12 2013-01-02 无锡天和电子有限公司 用于隔离放大器的变压器
US9537382B2 (en) 2014-07-03 2017-01-03 CT-Concept Technologie GmbH Switch controller with validation circuit for improved noise immunity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10978953B2 (en) 2016-05-26 2021-04-13 Mitsubishi Electric Corporation Flyback power supply, inverter and electrically powered vehicle

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU266037A1 (ru) * 1965-06-02 1985-07-15 Научно-Исследовательский Институт Постоянного Тока Преобразовательный блок
DE3630775A1 (de) * 1986-09-10 1988-03-24 Frank Behlke Mosfet-hochspannungsschalter mit extrem kurzer schaltzeit
DD265252A1 (de) * 1987-09-30 1989-02-22 Elektroprojekt Anlagenbau Veb Einrichtung zur vermeidung gegenseitiger elektrostatischer beeinflussung der wicklungen von uebertragern
WO1989010621A1 (en) * 1988-04-28 1989-11-02 Fmtt, Inc. Matrix transformer having high dielectric isolation
US5317496A (en) * 1989-12-19 1994-05-31 Seiersen Ole S DC/DC-converter with a primary circuit and at least one secondary circuit tuned as individually oscillatory circuits
JPH1155097A (ja) * 1997-07-31 1999-02-26 Hiroshi Iwai 高電圧半導体スイッチ
EP1020973A2 (de) * 1999-01-18 2000-07-19 Hitachi, Ltd. Ladungs- und Entladungssystem für eine elektrische Energiespeicheranlage
WO2001037414A1 (en) * 1999-11-12 2001-05-25 Koninklijke Philips Electronics N.V. System and method for alternating standby mode
US20010043056A1 (en) * 2000-05-19 2001-11-22 Kiyohiko Watanabe Multi outputting power supply circuit
JP2002084668A (ja) * 2000-09-04 2002-03-22 Nippon Telegr & Teleph Corp <Ntt> 組電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162360A (ja) * 1984-09-03 1986-03-31 Hitachi Ltd 多出力スイツチング電源回路
DE3513170A1 (de) * 1985-04-12 1986-10-16 Siemens AG, 1000 Berlin und 8000 München Verfahren zum ansteuern ein- und ausschaltbarer leistungshalbleiterbauelemente und vorrichtung zur durchfuehrung des verfahrens
JPH08130875A (ja) * 1994-10-31 1996-05-21 Fuji Electric Co Ltd 直流電源装置
US5835367A (en) * 1998-01-20 1998-11-10 Industrial Technology Research Institute Distributed plannar-type high voltage transformer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU266037A1 (ru) * 1965-06-02 1985-07-15 Научно-Исследовательский Институт Постоянного Тока Преобразовательный блок
DE3630775A1 (de) * 1986-09-10 1988-03-24 Frank Behlke Mosfet-hochspannungsschalter mit extrem kurzer schaltzeit
DD265252A1 (de) * 1987-09-30 1989-02-22 Elektroprojekt Anlagenbau Veb Einrichtung zur vermeidung gegenseitiger elektrostatischer beeinflussung der wicklungen von uebertragern
WO1989010621A1 (en) * 1988-04-28 1989-11-02 Fmtt, Inc. Matrix transformer having high dielectric isolation
US5317496A (en) * 1989-12-19 1994-05-31 Seiersen Ole S DC/DC-converter with a primary circuit and at least one secondary circuit tuned as individually oscillatory circuits
JPH1155097A (ja) * 1997-07-31 1999-02-26 Hiroshi Iwai 高電圧半導体スイッチ
EP1020973A2 (de) * 1999-01-18 2000-07-19 Hitachi, Ltd. Ladungs- und Entladungssystem für eine elektrische Energiespeicheranlage
WO2001037414A1 (en) * 1999-11-12 2001-05-25 Koninklijke Philips Electronics N.V. System and method for alternating standby mode
US20010043056A1 (en) * 2000-05-19 2001-11-22 Kiyohiko Watanabe Multi outputting power supply circuit
JP2002084668A (ja) * 2000-09-04 2002-03-22 Nippon Telegr & Teleph Corp <Ntt> 組電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 05 31 May 1999 (1999-05-31) *
PATENT ABSTRACTS OF JAPAN vol. 2002, no. 07 3 July 2002 (2002-07-03) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856063A (zh) * 2012-09-12 2013-01-02 无锡天和电子有限公司 用于隔离放大器的变压器
US9537382B2 (en) 2014-07-03 2017-01-03 CT-Concept Technologie GmbH Switch controller with validation circuit for improved noise immunity
US10020801B2 (en) 2014-07-03 2018-07-10 CT-Concept Technologie GmbH Switch controller with validation circuit for improved noise immunity

Also Published As

Publication number Publication date
DE10218455A1 (de) 2003-11-06

Similar Documents

Publication Publication Date Title
EP1497910B1 (de) Schaltnetzteilanordnung
EP0071008B1 (de) Schaltnetzteil-Transformator, insbesondere für einen Fernsehempfänger
DE2306917B2 (de) Drosselspule oder Transformator
DE112010005649T5 (de) Isoliertransformator und Leistungsquelle
DE102017212224A1 (de) Hochspannungsgenerator für ein Röntgengerät
EP1867035A1 (de) Verfahren zum betreiben eines schaltnetzteils mit rückspeisung primärseitiger streuenergie
DE4238197A1 (de) Mehrsystemfahrzeug
EP0265938B1 (de) Gleichspannunswandler
EP1310036A1 (de) Energieversorgungseinheit zur übertragung von hilfsenergie für eine elektrische anordnung
DE112019001586T5 (de) LLC-Resonanzumrichter
EP1243066A1 (de) Hochspannungswandler
DE10238606A1 (de) Schaltnetzteil
WO2003092147A1 (de) Sperrwandleranordnung
WO2019115207A1 (de) Gleichtakt-gegentakt-drossel für ein elektrisch betreibbares kraftfahrzeug
EP0263936B1 (de) Sekundärseitig schaltbares Netzgerät
EP0253978B1 (de) Elektrischer Wandler
WO2016008619A1 (de) Wicklungsschema für einen transformator eines hochsetzstellers und zündsystem zur versorgung einer funkenstrecke einer brennkraftmaschine mit elektrischer energie
DE4238198A1 (de) Schaltungsanordnung für ein Schaltnetzteil
EP3526889A1 (de) Umrichteranordnung mit sternpunktbildner
DE19542357A1 (de) Schaltungsanordnung für einen AC/DC-Konverter mit Potentialtrennung und induktives Bauelement zur Verwendung in einer solchen Schaltungsanordnung
EP3402062B1 (de) Kopplung von mindestens zwei modularen multilevel umrichtern
EP2760103A1 (de) Symmetrieren von Kondensatorspannungen in einer Reihenschaltung von Kondensatoren
DE102022100303A1 (de) Magnetische integration eines dreiphasigen resonanzwandlers und einer stromversorgung für nebenverbraucher
DE102019209983A1 (de) Schaltwandler und Verfahren zum Wandeln einer Eingangsspannung in eine Ausgangsspannung
EP0771063A1 (de) Schaltungsanordnung für einen AC/DC-Konverter mit Potentialtrennung und induktives Bauelement zur Verwendung in einer solchen Schaltungsanordnung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP