WO2003083035A1 - Procedimiento para la fabricación de minitabletas de manganeso de alta concentración para la aleación de baños de aluminio y dispositivo de ejecución del mismo - Google Patents

Procedimiento para la fabricación de minitabletas de manganeso de alta concentración para la aleación de baños de aluminio y dispositivo de ejecución del mismo Download PDF

Info

Publication number
WO2003083035A1
WO2003083035A1 PCT/ES2002/000161 ES0200161W WO03083035A1 WO 2003083035 A1 WO2003083035 A1 WO 2003083035A1 ES 0200161 W ES0200161 W ES 0200161W WO 03083035 A1 WO03083035 A1 WO 03083035A1
Authority
WO
WIPO (PCT)
Prior art keywords
compaction
hopper
powder
product
level
Prior art date
Application number
PCT/ES2002/000161
Other languages
English (en)
French (fr)
Inventor
Rafael San Pedro Guerrenabarrena
Luis-Maria GONZÁLEZ HERNÁNDEZ
Gregorio Borge Bravo
Raquel ANTOLÍN GANUZA
Tomás Posada Fernández
Original Assignee
Bostlan, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bostlan, S.A. filed Critical Bostlan, S.A.
Priority to ES02720013T priority Critical patent/ES2240728T3/es
Priority to AU2002251085A priority patent/AU2002251085A1/en
Priority to DE60204484T priority patent/DE60204484T2/de
Priority to US10/507,396 priority patent/US20050120829A1/en
Priority to BR0215663-6A priority patent/BR0215663A/pt
Priority to CA002480087A priority patent/CA2480087A1/en
Priority to EP02720013A priority patent/EP1489161B1/en
Priority to PCT/ES2002/000161 priority patent/WO2003083035A1/es
Priority to AT02720013T priority patent/ATE296874T1/de
Publication of WO2003083035A1 publication Critical patent/WO2003083035A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • B30B11/025Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space whereby the material is transferred into the press chamber by relative movement between a ram and the press chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/30Feeding material to presses
    • B30B15/302Feeding material in particulate or plastic state to moulding presses

Definitions

  • the present invention relates to a process for the manufacture of high concentration manganese (Mn) minitabletas for the alloy of aluminum baths (Al), whose purpose is to obtain Mn minitabletas with a concentration between 90 and 98% of said metal, to be added in the foundry of Al.
  • Mn manganese
  • the device for executing the aforementioned procedure a device in which the loading, dosing, compaction and final conformation of the minitabletas takes place.
  • the alloy of aluminum baths with manganese has varied substantially in recent decades, from the primitive addition of metal billets, which gave rise to serious problems of purity of dissolution speed, two different concepts of the alloy were passed.
  • mother alloys consisting of Al and Mn alloys with a content of Mn between 10 and 25%
  • Mn powder by injection of the powder into the powder within oven.
  • the tablets consist of Mn powder in a concentration generally greater than 75% compacted using as binder Al powder, a flux, or a mixture of both, in a concentration less than or equal to 25%.
  • binder Al powder a flux, or a mixture of both
  • These materials significantly reduced the amount of cold material that is added to the Al furnace in the alloy operation compared to the mother alloys.
  • the mother alloys usually contain 75 to 90% of second fusion aluminum, which can cause problems in the broth, in addition to assuming a stock 4 times higher than that of compacted powder alloys.
  • they are easy-to-handle materials that do not need the investments in equipment and safety that dust injection requires.
  • the material may not dissolve as quickly as the compact materials of lower concentration in Mn, due to the decrease in the percentage of Al and / or flux, which also act as disintegrating elements of the compact once it has been introduced into the oven , as the scientific literature includes in this regard.
  • the active alloying element of the compact is Mn
  • the diminution of the content in Al supposes a series of advantages for the smelter.
  • the amount of material to be added in the oven is smaller, which means that less cold material is added to the Al bath, and that stocks of raw materials are reduced.
  • there is a decrease in material transport costs which will be significantly lower than those of the compact 75% or 80%.
  • the price of products depends less on the value of Al, subject to changes in its exchange price (London Metal Exchange), and being currently more expensive than Al than the Mn, the cost of all materials premiums used in production would also be lower.
  • the smelter / user is not interested in adding to his oven a material (Al powder) that he himself can sell and that it also has an added value by atomization that is lost when it is melted again.
  • the present study focuses on the continuous production and behavior in the Al furnace of alloy minitabletas (in a cylindrical shape) that contain Mn in a concentration greater than 90%, with Al being the remaining material. Although it would be desirable to have this concentration also in tablets of standard size, the need to apply high pressures to the material makes the study complicated if the size of the diameter of the compact is greater than 40 mm. For another On the other hand, the fluxes were initially rejected in this study in terms of materials whose binding action is much lower than that of Al powder.
  • the Mn is the first limitation of the study.
  • the chemical requirements of Al baths involve the use of high chemical purity Mn, generally above 99.7% purity, which can only be ensured if Mn is produced by electrolysis.
  • electrolytic Mn is produced in the Republic of South Africa and in the People's Republic of China, which reduces the chances of finding materials with different specifications.
  • the Mn which is usually in the form of scales, must be passed to powder by grinding.
  • the material commonly used in the compaction of minitableta of Mn has a grain size of less than 450 microns.
  • Mn powder is highly abrasive, behavior that is favored if the amount of fines (powder below 100 microns) increases, and that directly affects the quality of the pressing and the half-life of the materials (punches and jacket) of the press in which the material is compacted.
  • the Al used in the production of Mn minitableta is a gas atomized powder, although materials obtained by mechanized atomization procedures, annealed materials, chips or micronizdas can also be used.
  • atomized powders are the most appropriate to the demands of the great functions of Al.
  • the minitabletas of Mn acts as a binder, while the electrolytic Mn, highly abrasive and not very malleable, is a material that alone does not compact.
  • the improvements in the process seem to go through an application on the material of higher pressures that allow the compaction of these materials. Apart from the use of hydraulic groups of greater performance and the application of greater efforts in the pressing punches.
  • Another possibility comes from the reduction of the diameter of the minitabletas, since in a smaller surface of application of the force it results in a greater effective pressure. This is a problem at the industrial level, since minitables of a smaller diameter result in lower productivity (minitables weigh less).
  • the procedure also includes the fact that the most appropriate Al to achieve the compaction of the minitableta of Mn, is atomized powder that is obtained by mechanical processes, with a controlled granulogy, being its nominal ranges of grain size between 100 microns and 800 honey, with more than 80% dust between 350 and 720 microns.
  • Said grain distribution is thick enough to allow compaction of the material, and fine enough not to delay the dissolution rate, as the number of Al grains has been reduced with the increase in the concentration of Mn in the minitableta.
  • the invention also relates to the device for executing the aforementioned process, constituted from a hopper receiving the mixture of Mn and Al with the aforementioned characteristics, there being in said hopper a central diffuser of the product that forces it to flow on the sides of the hopper to prevent the mixture from directly reaching the supply of a second hopper that discharges into the respective pressing or compaction chamber, in which some pressing punches will act.
  • the device has appropriate means that allow to maintain a controlled maximum, minimum and security levels in the chamber of compaction, so that it is permanently with a level of filling such that none of the punches try to perform a vacuum compaction.
  • the device includes, as one of the fundamental characteristics of novelty, in addition to the aforementioned central diffuser, an alveolar dosing valve disposed between the feed hopper and the compaction chamber, there being a series of matrices that are mounted on a supportive support of the feed hopper itself, so that the hopper support assembly is capable of running through guides, in one direction or another, by the effect of a pneumatic device, on whose guides a mobile punch holder is mounted which is also driven by a pneumatic cylinder, so that the support-hopper movement is independent of the movement of the mobile punches, although such movements must be synchronized to fill, press, compact and eject the shaped mini-cylinder.
  • the device also includes as a novelty feature, three electrical control means, to control the maximum level, a minimum level and the safety level, corresponding to the filling of the compaction chamber.
  • Figure 1 Shows the graph corresponding to the granulometry type of the Mn used in the process of the invention.
  • the Y axis contains some Grain size intervals in millimeters, and the X axis the volume percentage of each fraction.
  • the granulometry was performed by laser diffraction and introduction of the sample by dry route.
  • Figure 2. Shows a representation corresponding to the micrograph of Al powder in granules used in the process of the invention.
  • Figure 3. Shows the graph corresponding to the granulometry type of Al used in the process of the invention.
  • the Y axis contains the intervals of the grain size in millimeters, and the X axis the percentage by weight of each fraction.
  • the granulometry was performed using a sieve tower.
  • Figure 4.- Shows a schematic side elevation view, with sectioned part, of the device for executing the process of the invention.
  • Figure 5. Shows an elevation view, in this case frontal and sectioned, of the same device of the previous figure.
  • the process of the invention intended to obtain minitableta of Mn by compaction, with a concentration greater than 90% of this metal, is based on using molded electrolytic Mn from Mn flakes of chemical purity equal to or greater than 99.7%, being performed a sieve of the product by means of a light mesh of less than 450 microns, since it has been proven that materials containing large fractions of larger grain size result in very low dissolution rates in the aluminum oven.
  • the milling process is controlled so that the content of Mn fine powders (below 100 microns) is not more than 15%, since above this percentage it has been proven that compaction of minitablets with more can not be ensured of 90% of Mn in its composition.
  • Figure 1 shows the graph corresponding to the granulometry type of the Mn used.
  • the aforementioned Al powder also has a controlled granulometry, with its nominal grain size ranges between 100 and 800 microns, with more than 80% dust between 350 and 720 microns.
  • This grain distribution is thick enough to allow compaction of the material, and fine enough not to delay the dissolution rate by having reduced the number of Al grains (which initiate the dissolution reaction of the Mn of the minitableta in the oven) with the increase in the concentration of Mn in the minitableta.
  • Figure 3 shows the graph corresponding to the granulometry type of Al in grains used.
  • the device for the execution of the process is represented in Figures 4 and 5, comprising a hopper (1) for receiving and storing the mixture that is introduced through the corresponding filling mouth (2), a mixture that as already He said it is from Mn and Al.
  • the mixture must be homogeneous and in the reception on the hopper (1) it affects a centrally established diffuser (3), diffuser (3) that has a conical configuration and is supported through legs (4), so that this diffuser forces the product to flow through the sides of the hopper (1) and never directly over the feed hopper (5) provided at the outlet of the hopper (1) and from whose hopper ( 5) the product accesses the compaction hopper (6).
  • the diffuser (3) avoids the effects of product segregation and ensures fluidity in continuous at the same product level inside the hopper (1).
  • the compaction hopper (6) is a vertical continuation of the feed hopper (5), so that it determines a chamber that maintains a product level and in which the compaction is performed by means of fixed punches (7) and about mobile punches (8).
  • a series of nuances (9) are established, in variable number and depending on the dimensions of the device, whose matrices (9) access the product or powder mixture of Mn and Al through an alveolar valve (10) intercalated between the outlet of the feed hopper (5) and the compaction hopper (6), so that through this valve the product is dosedly loaded onto each of the dies (9) , since the alveolar valve (10) constitutes a kind of drum-sectors that are loaded with a certain amount of product so that when said valve rotates an angle, the corresponding sector load discharges onto the compaction hopper (6) and the product reaches the corresponding matrix (9).
  • the matrices are provided on a support (11) that is integral with the compaction hopper itself (6), and that support-hopper assembly is mounted on guides (12), along which it can move in one direction and another by the effect of a pneumatic device, and on whose guides (12) a support (13) of the corresponding mobile punches (8) is in turn mounted, said support (8) also being driven by a pneumatic cylinder or device.
  • the support-hopper movement is independent of the movement of the mobile punches, although such movements must be synchronized to fill, press, compact and eject the shaped minitableta.
  • the fixed punches (7) are arranged coaxially facing the mobile punches (8), those being mounted on a static support (14).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Powder Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

El procedimiento tiene por finalidad obtener minitabletas de Mn con una concentración entre el 90 y el 98% de dicho metal, siendo elemento ligante partículas de Al. El procedimiento se base en utilizar Mn electrolítico molturado a partir de escamas de pureza química igual o superior al 99.7%, efectuándose un tamizado de dicho producto mediante malla de luz inferior a 450 micras, donde el contenido de polvos finos debe encontrarse por debajo del 15%. Asimismo, en el procedimiento debe utilizarse Al en polvo atomizado obtenido por procedimientos mecánicos, con una granulometría entre 100 y 800 micras y con más del 80% del polvo entre 350 y 720 micras. La ejecución del procedimiento se realiza en un dispositivo con una tolva de almacenamiento (1), un difusor (4) del producto en esa tolva (1), una tolva de compactado (6) y conformación de las minitabletas, en matrices (9), en combinación con unos punzones de prensado (7) y (8) y con la colaboración de una válvula alveolar y dosificadora (10) establecida entre la cámara de alimentación (5) y la cámara de compactación (6).

Description

PROCEDIMIENTO PARA LA FABRICACIÓN DE MINITABLETAS DE MANGANESO DE ALTA CONCENTRACIÓN PARA LA ALEACIÓN DE BAÑOS DE ALUMINIO Y DISPOSITIVO DE EJECUCIÓN DEL MISMO
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
La presente invención se refiere a un procedimiento para la fabricación de minitabletas de manganeso (Mn) de alta concentración para la aleación de baños de aluminio (Al), cuya finalidad es obtener minitabletas de Mn con una concentración entre el 90 y el 98% de dicho metal, para ser añadidas en la fundición de Al.
Es objeto de la invención obtener un producto en minitabletas, en el que intervienen Mn y Al en polvo, cuyo primer componente es obtenido por electrólisis y molturado, mientras que el segundo componente es polvo atomizado conseguido mediante procesos mecánicos, mezclándose y compactándose ambos componentes para obtener las minitabletas con alta concentración de Mn.
Es también objeto de la invención, el dispositivo para ejecución del procedimiento referido, dispositivo en el que tiene lugar la carga, dosificación, compactación y conformación definitiva de las minitabletas.
ANTECEDENTES DE LA INVENCIÓN
La aleación de baños de aluminio con manganeso ha variado sustancialmente en las últimas décadas, de la primitiva adición de tochos de metal, que daba lugar a serios problemas de pureza de velocidad de disolución, se pasó a dos conceptos diferentes de la aleación. Por un lado, el uso de aleaciones madre, consistente en aleaciones de Al y Mn con un contenido de Mn entre el 10 y el 25 % , y, por otro, la adición de polvo de Mn mediante inyección del polvo en el seno del horno. Aunque ambas técnicas se han seguido utilizando, su empleo se ha rebajado drásticamente desde que a finales de los años setenta se introdujeron las primeras pastillas compactas de Mn. Estas pastillas, que se presentaron en su forma de tabletas, minitabletas o briquetas, combinan conceptos de las dos técnicas previas, aprovechan sus ventajas y disminuyen sus inconvenientes. Las pastillas consisten en polvo de Mn en una concentración generalmente superior al 75% compactados utilizando como aglomerante polvo de Al, un fundente, o una mezcla de ambos, en una concentración inferior o igual al 25%. Estos materiales redujeron considerablemente la cantidad de material frío que se añade al horno del Al en la operación de aleación en comparación con las aleaciones madre. Además, las aleaciones madre suelen contener de un 75 a un 90% de aluminio de segunda fusión, que puede dar problemas en el caldo, además de suponer un stock 4 veces superior al de los aleantes en polvo compactados. Por otro lado, son materiales de fácil manejo y que no necesitan las inversiones en equipamiento y seguridad que requiere la inyección de polvo.
El importante paso económico que se produjo al cambiar las aleaciones madre, que contienen un máximo de 25% de Mn, a los compactos aleantes, cuyo contenido en Mn es igual o supera el 75 % , ha generado una presión continuada sobre los fabricantes de compactos aleantes para conseguir materiales que siendo efectivos en el proceso de aleación del baño de Al permiten a su vez aumentar la concentración de Mn en el compacto aleante. En este sentido, no se pueden encontrar en el mercado materiales que contengan un porcentaje por encima del 85 % de Mn, debido fundamentalmente a los problemas de compatibilidad del Mn, un material abrasivo y poco maleable. Además, se sospecha que el material puede no disolverse tan rápidamente como los materiales compactos de menor concentración en Mn, debido a la disminución del porcentaje de Al y/o fundente, que actúan también como elementos disgregadores del compacto una vez introducido éste en el horno, tal y como recoge la literatura científica al respecto.
Ya que el elemento activo aleante de los compactos es el Mn, la diminución del contenido en Al supone una serie de ventajas para el fundidor. La cantidad de material a añadir en el horno es menor, lo cual implica que se añade menor material frío al baño de Al, y que se reducen los stocks de materias primas. Del mismo modo, se produce una baja en los costes de transporte de material, que serán sensiblemente inferiores a los de los compactos del 75% o el 80% . Además de esto, el precio de los productos depende menos del valor del Al, sujeto a los cambios de su cotización en bolsa (London Metal Exchange), y al ser actualmente más caro el Al que el Mn, el coste del conjunto de las materias primas empleadas en la producción también sería inferior. Finalmente, hay que considerar que el fundidor/usuario no está interesado en añadir a su horno un material (polvo de Al) que él mismo puede vender y que además tiene un valor añadido por atomización que se pierde al fundirlo de nuevo.
A pesar de estas ventajas económicas, no se ha constatado la existencia en el mercado de materiales compactos de Mn con una concentración superior o igual al
90%. La consecución de este objetivo plantea una serie de retos científicos a la hora de conseguir producir en continuo estos materiales. Por un lado, la experiencia indica que el proceso de prensado debe mejorarse para permitir alcanzar estos porcentajes de Mn. Por otro, las materias primas tienen una serie de factores que pueden ser modificados a la hora de conseguir mejores prestaciones. Además, resulta necesario comprobar si verdaderamente es necesario disponer en el horno de compactos con concentraciones de polvo de Al superiores al 10% ó al 15% para que la velocidad de disolución del Mn sea aceptable, o si compactos con menos de un 10% de Al se disuelven en el horno con velocidad adecuada.
El presente estudio se centra en la producción en continuo y comportamiento en el horno de Al de minitabletas aleantes (de forma cilindrica) que contienen Mn en concentración superior al 90%, siendo Al el material restante. Aunque sería deseable contar con esta concentración también en tabletas de tamaño estándar, la necesidad de aplicar presiones elevadas al material hace que el estudio se complique si el tamaño del diámetro del compacto es superior a 40 mm. Por otro lado, los fundentes se rechazaron inicialmente en este estudio en cuanto se trata de materiales cuya acción aglomerante es muy inferior a la del Al en polvo.
Respecto a las materias primas a utilizar, el Mn es la primera limitación del estudio. Los requisitos químicos de los baños de Al suponen la utilización de Mn de alta pureza química, por encima generalmente del 99.7% de pureza, lo cual solo se puede asegurar si el Mn se produce mediante electrólisis. Actualmente solo se produce Mn electrolítico en la República Sudafricana y en la República Popular China, lo cual reduce las posibilidades de encontrar materiales con especificaciones diversas. El Mn, que habitualmente se encuentra en forma de escamas, debe ser pasado a polvo mediante molturación. El material habitualmente utilizado en la compactación de minitabletas de Mn presenta un tamaño de grano inferior a 450 mieras. El polvo de Mn es altamente abrasivo, comportamiento que se ve favorecido si la cantidad de finos (polvo por debajo de 100 mieras) aumenta, y que afecta directamente a la calidad el prensado y a la vida media de los materiales (punzones y camisa) de la prensa en que se compacta el material.
La situación es muy diferente en lo que respecta al polvo de Al implicado. Existe en el mercado una gran variedad de polvos de Al que se pueden usar en procesos industriales en continuo y con diferentes aplicaciones. En el caso de la compactación de semitabletas de Mn, es habitual utilizar fracciones de Al que se encuentran por encima de las 100 mieras y por debajo de las 1000 mieras en lo que al tamaño de grano se refiere. Estas fracciones son lo que en general los productores de Al en polvo entiende como subproducto en sus procesos de producción, en tanto en que son las fracciones finas de Al (por debajo de 100 mieras) las que debido a la capacidad explosiva del Al encuentran aplicaciones de gran interés en aeronáutica o pirotecnia. Este hecho hace que de nuevo la producción de un material de características específicas para la compactación de tabletas de Mn, se encuentre sesgada o supeditada a las condiciones de producción independientes de la aplicación que se quiere estudiar en este trabajo. En general, el Al utilizado en la producción de minitabletas de Mn es un polvo atomizado por gas, aunque también pueden utilizarse materiales obtenidos mediante procedimientos de atomización mecanizada, materiales recocidos, virutas o micronizdas. En general, son los polvos atomizados los más adecuados a las exigencias de las grandes funciones de Al.
En la producción de las minitabletas de Mn, el Al actúa como aglomerante, mientras que el Mn electrolítico, altamente abrasivo y poco maleable, es un material que en solitario no compacta. Las mejoras en el proceso parecen pasar por una aplicación sobre el material de mayores presiones que permitan la compactación de estos materiales. Aparte de la utilización de grupos hidráulicos de mayor rendimiento y de la aplicación de mayores esfuerzos en los punzones de prensado. Otra posibilidad viene de la reducción del diámetro de las minitabletas, ya que en una menor superficie de aplicación de la fuerza da lugar a una mayor presión efectiva. Esto supone un problema a nivel industrial, puesto que minitabletas de un menor diámetro dan lugar a una productividad inferior (las minitabletas pesan menos). Para evitar este problema, es necesario trabajar con varios punzones a la vez, y el proceso de prensado debe ser eficaz para todas las minitabletas fabricadas en un ciclo. Ello implica que todas las camisas debe llenarse adecuadamente con el material a compactar, que éste debe estar adecuadamente mezclado y no ser diferente en cada una de las camisas en que se reciben, y que el material debe fluir bien hasta estas camisas. En este sentido, es muy importante evitar que la mezcla de los polvos de Mn y Al no se segregue en ningún momento del proceso (problema que puede producirse con facilidad al ser ambos materiales de muy diferentes densidades) y, por otro lado, que el equipamiento esté dimensionado de manera adecuada para aplicar la presión necesaria para la compactación.
DESCRIPCIÓN DE LA INVENCIÓN
El procedimiento que se preconiza permite superar los problemas y dificultades que se ha comentado en el apartado anterior, para lo cual se ha previsto que, a partir de los dos componentes utilizados y que debe mezclarse, los cuales son Mn y Al, la compactación de minitabletas de Mn de concentración superior al 90% se realizará mediante la utilización de Mn obtenido por electrólisis y molturado a partir de escamas de Mn de pureza química igual o superior al 99.7%, al que se somete a un proceso de tamizado mediante malla con una luz inferior a 450 mieras; con la particularidad de que el proceso de molturación del Mn es controlado para que el contenido de polvos finos de Mn, con un tamaño inferior a 100 mieras, no sea superior al 15%, ya que por encima de este porcentaje no se puede asegurar la compactación de minitabletas de Mn con más del 90% de Mn en su composición.
El procedimiento incluye igualmente el hecho de que el Al más apropiado para conseguir la compactación de las minitabletas de Mn, sea polvo atomizado que se obtiene mediante procesos mecánicos, con una granulogía controlada, siendo sus intervalos nominales de tamaño de grano entre 100 mieras y 800 mieras, con más de un 80% de polvo entre 350 y 720 mieras.
Dicha distribución de grano resulta suficientemente gruesa como para permitir la compactación del material, y lo suficientemente fina como para no retrasar la velocidad de disolución, al haberse rebajado el número de granos de Al con el aumento de la concentración de Mn en la minitableta.
La invención se refiere también al dispositivo para la ejecución del procedimiento referido, constituido a partir de una tolva de recepción de la mezcla de Mn y Al con las características anteriormente referidas, existiendo en dicha tolva un difusor central del producto que obliga a éste a fluir por los laterales de la tolva para evitar que la mezcla alcance directamente la alimentación de una segunda tolva que descarga en la respectiva cámara de prensado o de compactación, en la que actuarán unos punzones de prensado.
El dispositivo cuenta con medios apropiados que permiten mantener controladamente unos niveles máximo, mínimo y de seguridad, en la cámara de compactación, para que ésta se encuentre permanentemente con un nivel de llenado tal que ninguno de los punzones intente realizar una compactación en vacío.
El dispositivo incluye, como una de las características fundamentales de novedad, además del referido difusor central, una válvula alveolar de dosificación dispuesta entre la tolva de alimentación y la cámara de compactación, existiendo en ésta una serie de matrices que van montadas en un soporte solidario de la propia tolva de alimentación, de manera que el conjunto de soporte-tolva es susceptible de discurrir por unas guías, en un sentido u otro, por efecto de un dispositivo neumático, sobre cuyas guías va a su vez montado un soporte de punzones móviles que también es accionado mediante un cilindro neumático, de manera que el movimiento soporte-tolva es independiente del movimiento de los punzones móviles, aunque tales movimientos deben ser sincronizados para llenar, presionar, compactar y expulsar la minitableta conformada.
Además del difusor central ya referido y del emplazamiento y utilización de la válvula alveolar dosificadora, el dispositivo incluye también como característica de novedad, tres medios de control eléctrico, para controlar el nivel máximo, un nivel mínimo y el nivel de seguridad, correspondientes al llenado de la cámara de compactación.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características del invento, de acuerdo con un ejemplo preferente de realización práctica del mismo, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
La figura 1.- Muestra la gráfica correspondiente a la granulometría tipo del Mn utilizado en el procedimiento de la invención. El eje Y contiene unos intervalos del tamaño del grano en milímetros, y el eje X el porcentaje en volumen de cada fracción. La granulometría se realizó mediante difracción láser e introducción de la muestra por vía seca.
La figura 2.- Muestra una representación correspondiente a la micrografía del polvo de Al en granulos utilizados en el procedimiento de la invención.
La figura 3.- Muestra la gráfica correspondiente a la granulometría tipo del Al utilizado en el procedimiento de la invención. El eje Y contiene los intervalos del tamaño del grano en milímetros, y el eje X el porcentaje en peso de cada fracción. La granulometría se realizó mediante torre de tamices.
La figura 4.- Muestra una vista en alzado lateral esquemática, con parte seccionada, del dispositivo para la ejecución del procedimiento de la invención.
La figura 5.- Muestra una vista en alzado, en este caso frontal y seccionada, del mismo dispositivo de la figura anterior.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
El procedimiento de la invención, previsto para obtener minitabletas de Mn por compactación, con una concentración superior al 90% de este metal, se basa en utilizar Mn electrolítico molmrado a partir de escamas de Mn de pureza química igual o superior al 99.7% , efectuándose un tamizado del producto mediante malla de luz inferior a 450 mieras, puesto que se ha comprobado que materiales que contengan fracciones importantes de tamaño de grano superior dan lugar a velocidades de disolución muy bajas en el horno de aluminio. El proceso de molturación es controlado para que el contenido de polvos finos de Mn (por debajo de 100 mieras) no sea superior a un 15%, ya que por encima de este porcentaje se ha comprobado que no puede asegurarse la compactación de minitabletas con mas de un 90% de Mn en su composición. En la figura 1 se deja ver la gráfica correspondiente a la granulometría tipo del Mn utilizado.
Las pruebas realizadas indican que el polvo Al mas apropiado para la compactación de tabletas de Mn con concentración superior al 90%, es el polvo atomizado mediante procedimientos mecánicos, debiéndose el comportamiento especial de este polvo Al a su estructura, en forma de granulos esponjosos que permiten una fluidez adecuada sobre las superficies metálicas de tolvas, pero que mantiene suficientes huecos de aire en el interior de los granos que permiten una mayor compresibilidad del material. En la figura 2 se muestra la micrografía del polvo de Al en granos, según una ampliación al microscopio de este tipo de polvo.
El referido polvo de Al tiene además una granulometría controlada, siendo sus intervalos nominales de tamaño de grano entre 100 y 800 mieras, con más de un 80% de polvo entre 350 y 720 mieras. Esta distribución de grano es lo suficientemente gruesa como para permitir la compactación del material, y lo suficientemente fina como para no retrasar la velocidad de disolución al haberse rebajado el número de granos de Al (que inician la reacción de disolución del Mn de la minitableta en el horno) con el aumento de la concentración de Mn en la minitableta. En la figura 3 se ve la gráfica correspondiente a la granulometría tipo de Al en granos utilizado.
El dispositivo para la ejecución del procedimiento, se representa en las figuras 4 y 5, comprendiendo una tolva (1) de recepción y almacenamiento de la mezcla que se introduce a través de la correspondiente boca de llenado (2), mezcla que como ya se ha dicho es de Mn y Al. La mezcla ha de ser homogénea y en la recepción sobre la tolva (1) incide sobre un difusor (3) establecido centralmente, difusor (3) que tiene una configuración cónica y está apoyado a través de unas patas (4), de manera que ese difusor obliga al producto a fluir por los laterales de la tolva (1) y nunca directamente sobre la tolva de alimentación (5) prevista a la salida de la tolva (1) y desde cuya tolva (5) el producto accede a la tolva de compactación (6). El difusor (3) evita los efectos de segregación del producto y asegura una fluidez en continuo en el mismo nivel de producto dentro de la tolva (1). La tolva de compactación (6) es una continuación vertical de la tolva de alimentación (5), de manera que aquella determina una cámara que mantiene un nivel de producto y en la que se realiza la compactación mediante unos punzones fijos (7) y unos punzones móviles (8).
En la tolva de compactación (6) están establecidas una serie de matices (9), en número variable y en función de las dimensiones del dispositivo, a cuyas matrices (9) accede el producto o mezcla en polvo de Mn y Al a través de una válvula alveolar (10) intercalada entre la salida de la tolva de alimentación (5) y la tolva de compactación (6), de manera que a través de esa válvula se va cargando dosificadamente el producto sobre cada una de las matrices (9), ya que la válvula alveolar (10) constituye una especie de tambores-sectores que se van cargando con una cantidad determinada de producto para que cuando dicha válvula gire un ángulo, la carga del sector correspondiente descargue sobre la tolva de compactación (6) y el producto alcance la correspondiente matriz (9). Las matrices están previstas en un soporte (11) que es solidario de la propia tolva de compactación (6), y ese conjunto soporte-tolva va montado sobre unas guías (12), a lo largo de las cuales puede desplazarse en un sentido y otro por efecto de un dispositivo neumático, y sobre cuyas guías (12) va a su vez montado un soporte (13) de los correspondientes punzones móviles (8), siendo ese soporte (8) accionado también por un cilindro o dispositivo neumático. El movimiento de soporte-tolva es independiente del movimiento de los punzones móviles, aunque tales movimientos deben ser sincronizados para llenar, presionar, compactar y expulsar la minitableta conformada.
Los punzones fijos (7) están dispuestos enfrentadamente de forma coaxial a los punzones móviles (8), estando aquellos montados sobre un soporte estático (14).
De esta manera, cuando el soporte (11) con la tolva de compactación (6) avanza, se llena la matriz (9), para entrar seguidamente en funcionamiento el punzón móvil (8) que avanza y compacta el material situado entre él y el punzón fijo (7). A continuación retrocede el punzón móvil (8) y el conjunto soporte-tolva avanza ligeramente para que el punzón fijo (7) expulse la minitableta, reiniciándose seguidamente el ciclo.
Es imprescindible en dicho dispositivo mantener un nivel mínimo de columna de producto en la cámara de compactación (6), para que ninguno de los punzones intente compactar una matriz vacía, lo que significaría la rotura de punzones y columna o cámara. Ese nivel se mantiene mediante el uso de tres controles eléctricos y la ya comentada válvula alveolar (10), controles que corresponden a las referencias A, B y S, y que indican, el nivel máximo, el nivel mínimo y el nivel de seguridad del producto en la cámara de compactación (6), todo ello de manera tal que el nivel de seguridad S hace que si el producto desciende de dicho nivel el dispositivo se pare, porque existirá peligro de vaciado de la cámara, mientras que el nivel B es el nivel de producto que permite mantener un peso de columna reproducible capaz de asegurar una fluidez adecuada y un llenado homogéneo y reproducible en todos los punzones. Cuando el producto ha alcanzado ese nivel, la válvula alveolar (10) se abre y se dispensa más producto procedente de la tolva, cerrándose dicha válvula alveolar (10) cuando el producto llega al nivel máximo A.
Para obtener una compactación adecuada de la semitableta de concentración de Mn igual o superior al 90% es necesario trabajar con punzones capaces de aplicar una presión 7500 Kg/cm2 de punzón. En un ejemplo práctico se ha comprobado la resistencia mecánica del producto obtenido con un 90% y un 95% de Mn, en las condiciones explicadas, comprobación de resistencia mecánica que se ha realizado mediante un test de caída consistente en dejar caer sobre un suelo de cemento varias minitabletas desde 1 m de altura, registrando el número de golpes registrados para su rotura y para la pérdida de un 2% de peso de la minitableta.
Figure imgf000014_0001
Se han realizado pruebas de disolución de estas minitabletas de Mn con concentraciones iguales o superiores al 90% en baños de Al, habiéndose utilizado para ello un horno semi-industrial de 400 kg de Al de capacidad, de calentamiento mediante gas y rotatorio. Los experimentos se ha realizado siguiendo procesos estándar y habituales para la adición de minitabletas, el descoriado del baño, la agitación y la toma de muestra. Las muestras se analizaron mediante expectro fotometría de chispa.

Claims

R E I V I N D I C A C I O N E S
I a .- Procedimiento para la fabricación de minitabletas de manganeso de alta concentración para la aleación de baños de aluminio, que teniendo por finalidad obtener minitabletas o tabletas de Mn con una concentración entre el 90 y el 98% de dicho metal, a partir de una mezcla de Mn y de Al en polvo, para la aleación de baños de aluminio y otros metales, se caracteriza porque consiste en utilizar Mn electrolítico molturado, a partir de escamas de pureza química igual o superior al 99.7% , y Al en polvo atomizado por medios mecánicos, con una granulometría controlada entre 100 y 800 mieras, y con más de un 80% del polvo entre 350 y 720 mieras, efectuándose un control de la molturación de Mn para impedir que el contenido de polvos finos de Mn sea inferior al 15 % .
2a .- Procedimiento para la fabricación de minitabletas de manganeso de alta concentración para la aleación de baños de aluminio, según reivindicación Ia, caracterizado porque el Mn electrolítico molturado es sometido a un proceso de tamizado mediante malla de luz inferior a 450 mieras.
3a .- Procedimiento para la fabricación de minitabletas de manganeso de alta concentración para la aleación de baños de aluminio, según reivindicaciones anteriores, caracterizado porque el nivel de la mezcla de Mn y Al, en el interior del medio de compactación correspondiente, es controlado mediante respectivos sensores para mantener dicho nivel de mezcla entre unos límites que aseguren la ejecución de la propia compactación.
4a .- Dispositivo de fabricación de minitabletas de Mn de alta concentración para la aleación de baños de aluminio, que estando previsto para la ejecución del procedimiento de las reivindicaciones precedentes, partiendo de una mezcla de polvo de Mn electrolítico molturado y Al en polvo atomizado, incluyendo el dispositivo una tolva de almacenamiento y recepción de la mezcla, así como medios de compactado en una cámara de compactación apropiada con matrices en las que se conforman las minitabletas, incluyendo además punzones de prensado y de expulsión de las tabletas conformadas, se caracteriza porque en la tolva de almacenamiento (1) se ha previsto un difusor central (3) que desvía el producto hacia los laterales de la tolva, evitando el paso directo de dicho producto hacia la cámara de alimentación (5) y de compactación (6) correspondientes, incluyendo entre la tolva de alimentación (5) y la tolva de compactación (6) una válvula alveolar (10) para dosificado de producto hacia las correspondientes matrices (9) que forman parte de la cámara de compactación (6) y en las que se conforman las minitabletas; habiéndose previsto que dicha válvula alveolar (10) esté dividida sectorialmente para ir suministrando unitariamente dosis del producto hacia la cámara de compactación (6), produciéndose el llenado de cada una de las matrices (9) para la posterior compactación, conformación de la minitabletas y expulsión de éstas mediante los correspondientes punzones fijos (7), los cuales en combinación con otros punzones móviles (8) realizan el compactado y prensado del producto en las matrices (9) .
5a .- Dispositivo de fabricación de minitabletas de Mn de lata concentración para la aleación de baños de aluminio, según reivindicación 4a, caracterizado porque incluye tres sensores eléctricos de nivel del producto en el interior de la cámara de compactación (6), para controlar el nivel máximo A, el nivel mínimo B y el nivel de seguridad S, que determinen una correcta compactación del producto en las matrices (9).
PCT/ES2002/000161 2002-03-27 2002-03-27 Procedimiento para la fabricación de minitabletas de manganeso de alta concentración para la aleación de baños de aluminio y dispositivo de ejecución del mismo WO2003083035A1 (es)

Priority Applications (9)

Application Number Priority Date Filing Date Title
ES02720013T ES2240728T3 (es) 2002-03-27 2002-03-27 Procedimiento para la fabricacion de minitabletas de manganeso de alta concentracion para la aleacion de baños de aluminio y dispositivo de ejecucion del mismo.
AU2002251085A AU2002251085A1 (en) 2002-03-27 2002-03-27 Method for the production of high-concentration manganese mini-tablets for alloying aluminum baths and device for implementing said method
DE60204484T DE60204484T2 (de) 2002-03-27 2002-03-27 Verfahren zur herstellung hochkonzentrierter mangan-minitabletten zum legieren von aluminiumbädern und vorrichtung zur realisierung des verfahrens
US10/507,396 US20050120829A1 (en) 2002-03-27 2002-03-27 Method for the production of high-concentration manganese mini-tablets for alloying aluminum baths and device for implementing said method
BR0215663-6A BR0215663A (pt) 2002-03-27 2002-03-27 Procedimento para a fabricação de minitabletes com uma concentração elevada de manganês para a aliagem com banho de alumìnio e dispositivo para a execução do mesmo
CA002480087A CA2480087A1 (en) 2002-03-27 2002-03-27 Method for the production of high-concentration manganese mini-tablets for alloying aluminum baths and device for implementing said method
EP02720013A EP1489161B1 (en) 2002-03-27 2002-03-27 Method for the production of high-concentration manganese mini-tablets for alloying aluminum baths and device for implementing said method
PCT/ES2002/000161 WO2003083035A1 (es) 2002-03-27 2002-03-27 Procedimiento para la fabricación de minitabletas de manganeso de alta concentración para la aleación de baños de aluminio y dispositivo de ejecución del mismo
AT02720013T ATE296874T1 (de) 2002-03-27 2002-03-27 Verfahren zur herstellung hochkonzentrierter mangan-minitabletten zum legieren von aluminiumbädern und vorrichtung zur realisierung des verfahrens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2002/000161 WO2003083035A1 (es) 2002-03-27 2002-03-27 Procedimiento para la fabricación de minitabletas de manganeso de alta concentración para la aleación de baños de aluminio y dispositivo de ejecución del mismo

Publications (1)

Publication Number Publication Date
WO2003083035A1 true WO2003083035A1 (es) 2003-10-09

Family

ID=28459661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2002/000161 WO2003083035A1 (es) 2002-03-27 2002-03-27 Procedimiento para la fabricación de minitabletas de manganeso de alta concentración para la aleación de baños de aluminio y dispositivo de ejecución del mismo

Country Status (9)

Country Link
US (1) US20050120829A1 (es)
EP (1) EP1489161B1 (es)
AT (1) ATE296874T1 (es)
AU (1) AU2002251085A1 (es)
BR (1) BR0215663A (es)
CA (1) CA2480087A1 (es)
DE (1) DE60204484T2 (es)
ES (1) ES2240728T3 (es)
WO (1) WO2003083035A1 (es)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EE05521B1 (et) 2007-12-14 2012-02-15 Mihhail@Terehhov Alumiiniumip hine ligatuur metallisulamite mangaaniga legeerimiseks selle saamise meetod ja selle kasutamine
CN107234830B (zh) * 2017-07-13 2018-12-14 泉州台商投资区鑫贵丰建材科技有限公司 一种自动成型的蜂窝煤加工装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788839A (en) * 1972-02-28 1974-01-29 Diamond Shamrock Corp Method for incorporating metals into molten metal baths
US3935004A (en) * 1973-09-20 1976-01-27 Diamond Shamrock Corporation Addition of alloying constituents to aluminum
US3941588A (en) * 1974-02-11 1976-03-02 Foote Mineral Company Compositions for alloying metal
US4171215A (en) * 1978-07-03 1979-10-16 Foote Mineral Company Alloying addition for alloying manganese to aluminum
GB2117409A (en) * 1982-01-21 1983-10-12 Solmet Alloys Limited An alloying additive for producing alloys of aluminium and a method of producing such an additive
JPS594999A (ja) * 1982-06-30 1984-01-11 Toshiba Corp 粉末成形プレスへの粉末供給方法
US4564393A (en) * 1981-12-23 1986-01-14 Shieldalloy Corporation Introducing one or more metals into a melt comprising aluminum
US4581069A (en) * 1982-12-29 1986-04-08 Aluminum Company Of America Master alloy compacted mass containing non-spherical aluminum particulate
US4595558A (en) * 1985-05-17 1986-06-17 Kerr-Mcgee Chemical Corporation Additive agents for use in the manufacture of molded particulate metal articles
US4880462A (en) * 1986-07-16 1989-11-14 Skw Trostberg Aktiengesellschaft Rapidly dissolving additive for molten metal method of making and method of using
DE19530295C1 (de) * 1995-08-11 1997-01-30 Eos Electro Optical Syst Vorrichtung zur schichtweisen Herstellung eines Objektes mittels Lasersintern
WO1997032716A1 (de) * 1996-03-06 1997-09-12 Schering Aktiengesellschaft Zuführeinrichtung für pressmassen in tablettiermaschinen
US5910324A (en) * 1995-12-22 1999-06-08 Courtoy Nv Device for the manufacture of tablets

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5713062A (en) * 1996-09-26 1998-01-27 Xerox Corporation Color mixing and control system for use in an electrostatographic printing machine

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788839A (en) * 1972-02-28 1974-01-29 Diamond Shamrock Corp Method for incorporating metals into molten metal baths
US3935004A (en) * 1973-09-20 1976-01-27 Diamond Shamrock Corporation Addition of alloying constituents to aluminum
US3941588A (en) * 1974-02-11 1976-03-02 Foote Mineral Company Compositions for alloying metal
US4171215A (en) * 1978-07-03 1979-10-16 Foote Mineral Company Alloying addition for alloying manganese to aluminum
US4564393A (en) * 1981-12-23 1986-01-14 Shieldalloy Corporation Introducing one or more metals into a melt comprising aluminum
GB2117409A (en) * 1982-01-21 1983-10-12 Solmet Alloys Limited An alloying additive for producing alloys of aluminium and a method of producing such an additive
JPS594999A (ja) * 1982-06-30 1984-01-11 Toshiba Corp 粉末成形プレスへの粉末供給方法
US4581069A (en) * 1982-12-29 1986-04-08 Aluminum Company Of America Master alloy compacted mass containing non-spherical aluminum particulate
US4595558A (en) * 1985-05-17 1986-06-17 Kerr-Mcgee Chemical Corporation Additive agents for use in the manufacture of molded particulate metal articles
US4880462A (en) * 1986-07-16 1989-11-14 Skw Trostberg Aktiengesellschaft Rapidly dissolving additive for molten metal method of making and method of using
DE19530295C1 (de) * 1995-08-11 1997-01-30 Eos Electro Optical Syst Vorrichtung zur schichtweisen Herstellung eines Objektes mittels Lasersintern
US5910324A (en) * 1995-12-22 1999-06-08 Courtoy Nv Device for the manufacture of tablets
WO1997032716A1 (de) * 1996-03-06 1997-09-12 Schering Aktiengesellschaft Zuführeinrichtung für pressmassen in tablettiermaschinen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN *

Also Published As

Publication number Publication date
DE60204484D1 (de) 2005-07-07
ATE296874T1 (de) 2005-06-15
EP1489161A1 (en) 2004-12-22
AU2002251085A1 (en) 2003-10-13
DE60204484T2 (de) 2006-03-23
EP1489161B1 (en) 2005-06-01
ES2240728T3 (es) 2005-10-16
US20050120829A1 (en) 2005-06-09
CA2480087A1 (en) 2003-10-09
BR0215663A (pt) 2005-01-11

Similar Documents

Publication Publication Date Title
CN107405685B (zh) 钛类粉末、铸锭的制造方法和烧结制品
US6613119B2 (en) Inoculant pellet for late inoculation of cast iron
CA3110511C (en) Oxide ore smelting method
ES2240728T3 (es) Procedimiento para la fabricacion de minitabletas de manganeso de alta concentracion para la aleacion de baños de aluminio y dispositivo de ejecucion del mismo.
Bayor et al. Evaluation of starch from new sweet potato genotypes for use as a pharmaceutical diluent, binder or disintegrant
Szabó-Révész et al. Development of spherical crystal agglomerates of an aspartic acid salt for direct tablet making
WO2001098067A1 (fr) Article moule a noyau, procede de production de cet article et dispositif permettant de le produire
CS199250B2 (en) Method of making spheroidal graphite in molten raw iron
US20090107294A1 (en) Process for producing spherical titanium alloy powder
CN100384400C (zh) 一种小金微丸及其制备方法
ES2262615T3 (es) Procedimiento de fabricacion de elementos compuestos de estaño-tungsteno de poco espesor.
CN1615191A (zh) 孕育过滤器
JPS6224494B2 (es)
JP2005082811A (ja) ブリケットおよびブリケット製造装置
CN102138944B (zh) 一种银杏酮酯分散片的制备方法
CN106539766A (zh) 鲁格列净片剂及其制备方法
AU641198B2 (en) Treatment vessel for the treatment of molten metal melts
CN219028641U (zh) 一种用于粉状药品的高效压片装置
JP5771381B2 (ja) 乾燥酵母を含有する錠剤
CN107758623A (zh) 一种超氧化钾颗粒及其成型方法
CN211706953U (zh) 一种中药粉剂动物用药均匀下料设备
US6977058B2 (en) Inoculant-strainer with improved filtration effectiveness and inoculant dissolution
RU2180363C1 (ru) Модификатор и способ его получения (варианты)
JP7220078B2 (ja) 溶解原料の製造方法及び、チタン鋳造材の製造方法
Ambore et al. Development of pharmaceutical excipient from Vigna mungo husk powder

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10507396

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2480087

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002720013

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002720013

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002720013

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP