WO2003080997A1 - Buffer plate - Google Patents

Buffer plate Download PDF

Info

Publication number
WO2003080997A1
WO2003080997A1 PCT/JP2003/003559 JP0303559W WO03080997A1 WO 2003080997 A1 WO2003080997 A1 WO 2003080997A1 JP 0303559 W JP0303559 W JP 0303559W WO 03080997 A1 WO03080997 A1 WO 03080997A1
Authority
WO
WIPO (PCT)
Prior art keywords
tunnel
pressure loss
cover
buffer
pressure
Prior art date
Application number
PCT/JP2003/003559
Other languages
French (fr)
Japanese (ja)
Inventor
Mikio Yamazaki
Masashi Suzuki
Satoru Kato
Takanobu Ogawa
Toshihiro Wakahara
Toshimitsu Tanaka
Original Assignee
Central Japan Railway Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Japan Railway Company filed Critical Central Japan Railway Company
Publication of WO2003080997A1 publication Critical patent/WO2003080997A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/14Layout of tunnels or galleries; Constructional features of tunnels or galleries, not otherwise provided for, e.g. portals, day-light attenuation at tunnel openings

Definitions

  • the present invention relates to a shock absorber connected to an entrance and exit of a tunnel structure, and more particularly, to a shock absorber capable of eliminating or suppressing low-frequency air vibration generated by pressure waves generated when a high-speed vehicle enters and exits a tunnel structure.
  • a compression wave is formed in the tunnel.
  • This compression wave propagates through the tunnel at the speed of sound while increasing its pressure gradient, and when it reaches the opposite wellhead (exit), it is emitted as a pulse-like pressure wave from this wellhead.
  • This pressure wave is called a micro-pressure wave and emits a sound called “dawn” when radiated from the wellhead. Therefore, measures have been considered as one of the environmental problems of high-speed railways.
  • a tunnel buffer consisting of a cover larger than the tunnel section is installed at the tunnel entrance side, side windows are formed at regular intervals on the side walls, and Measures were taken to reduce the pressure gradient of the pressure wave formed at the tunnel inlet by adjusting the opening amount.
  • This low-frequency air vibration is a pulse-like pressure wave (rush wave) that is generated when a high-speed railway moves from a light section (outside the tunnel) to a tunnel section due to a change in cross-section of a structure near the train. This is a vibration phenomenon that occurs when radiation is emitted from the entrance of the tunnel to the surrounding area.
  • This problem of low-frequency air vibration is particularly prominent in high-speed railways such as linear motor cars. If this low-frequency air vibration propagates along railway lines, it causes rattling of fittings in private houses around the tunnel. As shown in Fig. 8B, this low-frequency air vibration is also generated at the exit of the tunnel due to the exit wave (low frequency) generated when the train exits the tunnel at high speed.
  • a buffer opening of the tunnel buffer was enlarged so as to have an enlarged shape, and an opening amount of a side window of the tunnel buffer was adjusted. .
  • the ceiling on the open side of the tunnel buffer (the side opposite to the connection with the tunnel) is cut off in a V-shape, or the tunnel buffer is cut off. The approach was to reduce the opening of the side window toward the tunnel entrance.
  • an object of the present invention is to provide a tunnel buffer capable of eliminating or suppressing low-frequency air vibration generated when a high-speed vehicle enters and exits a tunnel.
  • the shock absorber of the present invention has an elongate cover having an open portion at one end and the other end connected to the entrance of the tunnel structure, and a plurality of the cover is provided on the wall surface of the cover,
  • the vehicle is provided with a pressure loss hole for adjusting a pressure loss of a pressure wave generated between a high speed vehicle that attempts to enter or exit the tunnel structure and the cover.
  • a plurality of the pressure loss holes are provided in the circumferential direction (that is, a direction perpendicular to the longitudinal direction of the cover) in the vicinity of one end of the cover, and gradually decrease from one end to the other end of the cover. It is arranged in.
  • the “tunnel structure” here includes not only a general tunnel but also a tunnel-like structure (a hood-like structure) (hereinafter, these are simply referred to as ⁇ tunnels).
  • the “pressure loss hole” here is a hole having an opening smaller than that of the side window generally seen in the above-described conventional technology, and is an effective pressure of a pressure wave generated between the high-speed vehicle and the cover. Loss can be expected. In other words, in the conventional side window, this pressure wave is released to the outside without giving a significant pressure loss, but in this buffer, the ⁇ pressure loss hole '' with a certain level of pressure loss is provided. A relatively large number is provided, each of which suppresses rapid fluctuations in pressure waves. A relatively large number of the “pressure loss holes” are provided in the circumferential direction (or width direction) near one end of the cover, and the number thereof is increased toward the other end along the longitudinal direction of the cover. It is gradually decreasing.
  • a relatively large number of pressure loss holes are arranged near the opening of the cover to reduce the pressure loss relatively. It is made smaller, and the steep rise of the pressure gradient of the pressure wave (rush wave) suppresses the rise.
  • the pressure loss is gradually increased by gradually reducing the pressure loss hole toward the tunnel entrance, thereby preventing a sudden change in the pressure gradient at the tunnel entrance.
  • the pressure loss of the pressure wave generated between the high-speed vehicle and the cover is gradually increased, The change in the pressure gradient is smoothed toward the tunnel entrance.
  • the pressure drop holes gradually increase from the tunnel entrance to the opening of the tunnel buffer. The pressure loss of the pressure wave generated between and gradually decreases, but the same is true in that the change in the pressure gradient is smoothed.
  • Such a buffer when configured as, for example, a tunnel buffer for a high-speed railway, exhibits its effect particularly remarkably.
  • High-speed train runs through a tunnel This is because, among high-speed vehicles, the speed is particularly high, and the higher the speed, the greater the pressure energy around the vehicle, and the lower frequency air vibration is likely to affect the area around the tunnel entrance.
  • This problem is considered to be particularly prominent in a high-speed railway such as a linear motor car with a traveling speed of about 500 km_h, so the effect of the present invention is particularly remarkably exhibited. Become.
  • the opening ratio of the cover wall surface due to the pressure loss hole is formed to be 10 to 20% at the extreme end near the one end, and is gradually reduced toward the other end. It is effective. This is because, as described in the embodiments described later, when the aperture ratio is set as described above, the effect of suppressing low-frequency air vibration is particularly effectively exerted.
  • the pressure loss hole is formed from near one end to near the other end of the cover.
  • the problem of low-frequency air vibration can be solved at one end of the cover, and the problem due to the micro-pressure wave can be simultaneously solved at the other end, and the pressure loss hole is provided at the other end. Since it has a configuration that is gradually reduced toward the end, both effects can be continuously and smoothly exerted.
  • the opening ratio of a portion of the cover from the tunnel entrance is about 1% (preferably 0.8% to 0.9%).
  • Experimental results show that if the pressure is maintained at, the effect of reducing the sound generated by the micro-pressure wave at the exit of the tunnel will increase. Further, in order to obtain an effective pressure loss at each pressure loss hole, the Reynolds number of the airflow passing through the pressure loss hole needs to be a certain value or more (100 or more). Experimental results show that the pressure loss coefficient becomes constant when the Reynolds number becomes constant.
  • the pressure loss hole be formed so that the hole diameter or the hole width is such that the individual pressure loss coefficient at each pressure loss hole when the high-speed vehicle passes through the cover is substantially constant.
  • the hole diameter or hole width of the pressure loss hole is the average cross section of the vehicle. It is desirable to be about 1/10 or less of the scale.
  • the buffer for high-speed railway is preferably formed so that the hole diameter or hole width of the pressure loss hole is about 10 mm or more and 100 mm or less.
  • the preferable pressure loss is almost determined by the ratio between the thickness of the wall of the cover and the size of the pressure drop hole (hole diameter or hole width).
  • the thickness of the wall of the cover must be reduced, and in this case, the strength of the cover cannot sufficiently withstand the fluctuating pressure when a vehicle passes.
  • the hole diameter or the hole width is small, a so-called “whistle” sound is easily generated, which causes a problem of noise.
  • it if it is larger than 100 O mm, the pressure wave radiated from the pressure loss hole becomes large.
  • the hole diameter or the hole width is small, it is necessary to form a large number of pressure loss holes, and thus there is a problem that the processing cost of the buffer increases. Conversely, if the hole diameter or hole width is large, especially when the pressure loss hole is provided on the upper wall of the cover, an operator throws an object into the pressure loss hole or works on the cover. There is a concern that problems such as falling accidents may occur. For this reason, it is preferable that the hole diameter or the hole width is formed to be about 100 mm or more and about 300 mm or less.
  • the whistle sound of the pressure drop hole is greatly affected by the shape of the peripheral edge.
  • the cover is made of a steel plate or the like, it may occur due to remaining burrs at the time of forming the pressure drop hole.
  • the peripheral edge of the pressure loss hole is chamfered because such a problem can be avoided.
  • the buffer may include an enclosing wall connected to one end of the cover, and the enclosing wall may be formed such that the side wall gradually increases from the roadbed surface toward one end of the cover.
  • the technology for providing such an enclosing wall is a known technology, but by combining with the configuration of the present invention, a remarkable effect that has not been achieved in the past can be exhibited.
  • the surrounding wall is gradually enlarged, so that the pressure gradient of the pressure wave between the railway vehicle and the surrounding wall can be gradually increased. it can.
  • a suitable pressure loss is applied to the pressure loss hole, and the pressure gradient of the pressure wave can be smoothly increased to reach the tunnel section.
  • the change in the pressure gradient between the clear section and the tunnel section can be further reduced, and low-frequency air vibration can be more effectively eliminated or suppressed.
  • the pressure loss hole is provided mainly in the upper wall of the cover. According to such a configuration, since the space above the surrounding wall gradually narrows toward the cover, the pressure loss hole is provided in the upper wall, so that the space becomes smaller continuously. It can create a situation that is becoming increasingly aerodynamic and can be connected very smoothly. As a result, generation of low-frequency air vibration can be more effectively eliminated or suppressed.
  • FIG. 1 is a perspective view showing a schematic configuration of a buffer according to an embodiment of the present invention.
  • 2A, 2B, and 2C are explanatory diagrams showing the configuration of the tunnel buffer according to the embodiment.
  • FIG. 3 is an explanatory diagram showing the analysis conditions of the numerical analysis performed to construct the tunnel buffer of the embodiment.
  • FIG. 4 is a graph showing the results of the numerical analysis of FIG.
  • FIG. 5 is an explanatory view of a model according to a model experiment performed to construct the tunnel buffer of the embodiment.
  • FIG. 6 is an explanatory diagram of a model according to a model experiment performed to construct the tunnel buffer of the embodiment.
  • 7A, 7B, 7C, and 7D are graphs showing the results of the model experiment.
  • the buffer of the present invention is constructed in a tunnel buffer of a high-speed railway.
  • FIG. 1 is a perspective view showing a schematic configuration of the tunnel buffer.
  • the tunnel buffer 1 is composed of a long cover 10 having a total length of about 100 m, a width of about 14 m, and a height of about 7 m. 1 O a and the other end is connected to the entrance of tunnel T.
  • the cover 10 is composed of a rectangular frame-shaped frame formed by connecting a plurality of H-shaped steels (not shown) in a grid pattern. And a PC board (prestress concrete board) 22.
  • the steel plate 21 has a rectangular main body having a length L ⁇ of about 2 m, a width W 1 of about 1 m, and a thickness t 1 of about 9 mm.
  • a plurality of pressure loss holes 30 penetrating in the direction are provided.
  • the pressure loss hole 30 is formed by a pressure generated between a high-speed railway vehicle (linear motor car: not shown in this embodiment: not shown) entering the tunnel T or leaving the tunnel T and the cover 10. It is a hole for giving a suitable pressure loss to waves.
  • the pressure loss hole 30 is formed as a circular hole having a diameter of 100 mm, and a peripheral edge thereof is chamfered (not shown) to prevent a so-called whistle sound.
  • the PC board 22 has a rectangular main body having a length L2 of about 2 m, a width W2 of about 1 m, and a thickness t2 of about 70 mm.
  • the upper wall 11 of the cover 10 is formed by a plurality of steel plates 21 (scattered patterns in the figure) and PC boards 22 (no patterns in the figure) in a fixed manner.
  • the side walls 12 of the cover 10 are P Only the C plate 22 is arranged without a plurality of gaps. Therefore, in this embodiment, only the upper wall 11 of the tunnel buffer 1 has a porous structure. Further, the steel plate 21 and the PC plate 22 are selectively arranged such that the pressure loss hole 30 gradually decreases from the open portion 10a side of the cover 10 toward the entrance and exit of the tunnel T.
  • a fixed area (about 14 m) at the end of the tunnel buffer 1 on the side of the tunnel entrance is a step-eliminated section, and no pressure loss hole 30 is provided.
  • FIG. 3 is an explanatory diagram showing the analysis conditions of the numerical analysis
  • FIG. 4 is a graph showing the analysis results.
  • the running speed of the high-speed railway vehicle was set at 500 km / h.
  • a graph showing the relationship between the opening ratio distribution and the distance from the buffer inlet, the aperture ratio in the vicinity of the inlet of the buffer is 8) and the porous wall with 14.1% (thick solid line)
  • Numerical analysis was performed for a 28.2% porous wall (1) (dashed line), a 42.3% porous wall (3) (dotted line), and a 7.05% porous wall (1) (dotted line).
  • the horizontal axis of the graph represents the dimensionless distance that represents the distance X from the buffer inlet to the length LP of the porous wall
  • the vertical axis represents the aperture ratio at the dimensionless distance.
  • Figure 4 shows the time-series data of the pressure fluctuation of the pressure wave when it is assumed that the high-speed railway vehicle is traveling 0.2 D eccentrically (traveling 0.2 D from the center of the tunnel buffer).
  • the horizontal axis represents the measurement time (s) when the time at which the tip of the high-speed railcar passes through the buffer entrance is 0.0 (s), and the vertical axis represents the pressure fluctuation at the measurement time.
  • this analysis was also performed in the case where no pressure drop hole was provided (no opening: thin solid line) as a comparative example, in addition to the porous walls 1 to 5 described above.
  • FIG. 5 is a plan view showing the model M of the tunnel buffer, the right part is a sectional view, and the lower part is a side view.
  • This model M is about 134 models of the actual tunnel buffer 1 and was created by processing a steel plate.
  • the cross section is larger than the cross section of the tunnel model t (diameter D), and has a width W of 440 mm and a height H of 220 mm.
  • a track R is eccentrically laid to one side on the left and right sides from the tunnel buffer to the inside of the tunnel t, and a high-speed railway model (not shown) can be run along the track R.
  • a large number of pressure loss holes formed in circular holes having a diameter of 10 mm were provided.
  • the arrangement is as shown in the figure, and the number of the tunnel buffer is set so as to gradually decrease from one end to the other end.
  • the analysis results showed that the best results were obtained when the opening ratio near the buffer inlet was 14%, and as a comparative example, the opening ratio was 45%.
  • a model experiment was carried out for the one with the aperture ratio of zero (fully closed).
  • a tunnel buffer with a pair of triangular walls S (enclosure wall) connected to one end of a cover M1 having an aperture ratio of 14% was also tested. Go.
  • the triangular wall S is formed by processing a steel plate into a right-angled triangle having an elevation angle of 0 (15 degrees in the present embodiment), and is formed so that its height matches the height H of the cover Ml. . That is, the triangular wall S is formed so as to gradually increase from the roadbed surface toward one end of the cover M1.
  • FIGS. 7A to 7D show the experimental results for a fully closed (zero aperture ratio), and Figure 7B shows the experimental results for an aperture ratio of 45% near the buffer inlet.
  • Fig. 7C shows the experimental results with an aperture ratio of 14%, and Fig. 7D shows the experimental results with an aperture ratio of 14% when the above-mentioned triangular wall S was further installed. I have.
  • the horizontal axis in each figure represents the measurement time (s), and the vertical axis represents the pressure fluctuation at the measurement time.
  • the pressure peak value (edge portion) greatly appears around time 0.42 (s) and around time 0.43 (s) for the fully closed type. I have.
  • the amplitude of the corresponding peak value is somewhat smaller.
  • the aperture ratio becomes 14%
  • the amplitude of the peak value becomes smaller, and it can be seen that the amplitude of the peak value almost disappears in the case where the triangular wall S is provided. Note that these graphs are the results obtained by measuring the pressure energy (pressure field) generated near the vehicle due to the high speed of the vehicle and the air vibration generated from the shock absorber.
  • Pressure energy is the traveling speed and vehicle This phenomenon occurs due to factors such as the cross-sectional area and cannot be completely suppressed by the tunnel buffer.
  • Fig. 7D the air vibration is greatly reduced, and the waveform is similar to the pressure change due to the pressure energy (pressure field).
  • the problem of the low frequency air vibration can be solved by setting the aperture ratio to 14% and further providing the triangular wall S. It can be seen that it is greatly suppressed.
  • the aperture ratio at the outermost end near one end of the cover 10 is shown.
  • the steel plate 21 (claw pressure loss hole 30) is arranged so as to be 10 to 20%, and is configured to gradually decrease toward the other end.
  • a plurality of pressure loss holes 30 for adjusting the loss are provided, and the pressure loss holes 30 are disposed so as to gradually decrease from one end of the cover 10 to the other end thereof.
  • the pressure loss hole 30 gradually increases from the tunnel entrance to the opening 10a of the tunnel buffering hole.
  • the pressure loss of the pressure wave generated between the high-speed rail car and the cover 10 gradually decreases, but the same is true in that the change in the pressure gradient is smoothed.
  • the cover 10 of the tunnel buffer 1 has a rectangular cross section formed by using a large number of rectangular steel plates 21 and PC plates 20. Is not limited to such a shape, and for example, may be formed in a semicircular cross section. Instead of using a large number of steel plates or PC plates, it is also possible to construct a cover using, for example, a reinforced concrete, and then form a pressure loss hole at a predetermined location. Furthermore, although an example in which a plurality of circular pressure loss holes 30 are formed in the steel plate 21 has been described, the pressure loss holes may be formed in other shapes such as a square hole.
  • the enclosure wall (corresponding to the triangular wall S) was not mentioned, but as can be seen from the model experiment, the effect of reducing the pressure wave is good. Therefore, it is preferable that a similar triangular wall is provided. Also, in the above model experiment, a configuration was shown in which a triangular wall S with an elevation angle of 15 degrees was provided as a surrounding wall, but if the elevation angle is 0 degrees or less (preferably 15 degrees or less), Good effect can be obtained I know from another experiment.
  • the installation of a tunnel-like structure (hood) in the lighting structure (viaduct, etc.) can be assumed.
  • hood a tunnel-like structure
  • the situation is similar to the existence of a tunnel entrance.
  • it is also possible to apply a buffer using a perforated plate that is, a buffer using a perforated plate (steel plate 21 in the above embodiment) is not applicable only to the tunnel.
  • a buffer using a perforated plate that is, a buffer using a perforated plate (steel plate 21 in the above embodiment) is not applicable only to the tunnel.
  • the same performance as that of the present invention can be obtained by installing the device in a location exhibiting a similar appearance.
  • low-frequency air vibration generated when a high-speed vehicle enters and exits a tunnel can be eliminated or suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)

Abstract

A tunnel buffer plate (11) capable of eliminating or suppressing low frequency aerial vibration produced when a high speed vehicle rushes into and exits a tunnel, comprising a plurality of pressure loss holes (30) for regulating the pressure loss of the pressure wave produced between a high speed railcar rushing into or exiting the tunnel and a cover body (10), wherein the pressure loss holes (30) are disposed so that the quantity thereof is gradually reduced starting at one end of the cover body (10) toward the other end, whereby an intermediate state for providing a proper pressure loss can be formed between a light district and a tunnel district and an effect as if the high speed vehicle gradually rushes into the tunnel can be created, i.e., a variation in pressure gradient of the pressure wave can be made smooth and, as a result, the occurrence of the low frequency air vibration by the rushing wave or exiting wave of the high speed railcar can be eliminated or suppressed and the problem of rattling of the fittings of private houses near the tunnel can be solved.

Description

明細書 緩衝ェ 技術分野  Description Buffer
本発明は、 トンネル構造物の出入口に連結される緩衝ェに関し、 詳し くは、 高速車両がトンネル構造物に突入及び退出する際に生じる圧力波 によって発生する低周波空気振動を解消又は抑制できる緩衝ェに関する < 背景技術  The present invention relates to a shock absorber connected to an entrance and exit of a tunnel structure, and more particularly, to a shock absorber capable of eliminating or suppressing low-frequency air vibration generated by pressure waves generated when a high-speed vehicle enters and exits a tunnel structure. <Background Technology
図 8 Aに示すように、 鉄道車両の先頭部がトンネルに突入すると、 卜 ンネル内に圧縮波が形成される。 この圧縮波は、 その圧力勾配を大きく しながら音速でトンネル内を伝播し、 反対側の坑口 (出口) に達した際 にこの坑口からパルス状の圧力波となって放射される。 この圧力波は微 気圧波と呼ばれ、 坑口から放射される際に 「ドーン」 という発波音を発 生させるため、 高速鉄道の環境問題の一つとしてその対策が検討されて きた。 そして、 かかる微気圧波のレベルがトンネル出口に達した圧力波 の圧力勾配にほぼ比例することが判明したため、 その微気圧波対策の一 つとして、 トンネル出口側の圧力波を発波音が発生しない程度の勾配に 抑制すること、 つまリ 卜ンネル入口で形成される圧力勾配を予め小さく することが行われた。  As shown in Fig. 8A, when the head of a railway vehicle enters a tunnel, a compression wave is formed in the tunnel. This compression wave propagates through the tunnel at the speed of sound while increasing its pressure gradient, and when it reaches the opposite wellhead (exit), it is emitted as a pulse-like pressure wave from this wellhead. This pressure wave is called a micro-pressure wave and emits a sound called “dawn” when radiated from the wellhead. Therefore, measures have been considered as one of the environmental problems of high-speed railways. Then, since it was found that the level of the micro-pressure wave was almost proportional to the pressure gradient of the pressure wave that reached the tunnel exit, one of the countermeasures against the micro-pressure wave was that no sound was generated at the tunnel exit side. The pressure gradient formed at the entrance of the tunnel was reduced in advance.
具体的には、 その地上側の対策として、 トンネル入口側にトンネル断 面よリ大きい覆体からなるトンネル緩衝ェを設置し、 その側壁に側面窓 を一定間隔で形成し、 さらにその側面窓の開口量を調整することで卜ン ネル入口で形成される圧力波の圧力勾配を緩和する等の対策がとられた。 かかる構成のトンネル緩衝ェの設置により、 微気圧波によるトンネル 出口側での発波音の低減という課題についてある程度の成果が得られた, しかしながら、 列車が高速でトンネルに突入した際には、 上述した微 気圧波によるトンネル出口側の問題だけではなく、 トンネル入口側で発 生した突入波 (低周波) による所謂低周波空気振動の問題が生じる。 Specifically, as a countermeasure on the ground side, a tunnel buffer consisting of a cover larger than the tunnel section is installed at the tunnel entrance side, side windows are formed at regular intervals on the side walls, and Measures were taken to reduce the pressure gradient of the pressure wave formed at the tunnel inlet by adjusting the opening amount. By installing a tunnel buffer with this configuration, Some achievements were made on the problem of reducing the sound emission at the exit side.However, when the train entered the tunnel at high speed, not only the above-mentioned problems at the tunnel exit side due to the micro-pressure wave but also the tunnel entrance The problem of so-called low-frequency air vibration occurs due to the rush wave (low frequency) generated on the side.
この低周波空気振動は、 高速鉄道が明かり区間 (卜ンネル外) から卜 ンネル区間に移行する際など、 列車近傍の構造物の断面変化等に伴って 発生するパルス状の圧力波 (突入波) が、 トンネル入口側の坑口から周 囲に放射されて発生する振動現象である。この低周波空気振動の問題は、 特にリニアモーターカーなどの高速鉄道において顕著に現れ、 この低周 波空気振動が鉄道沿線に伝播すると、 卜ンネル周辺民家の建具のがたつ き等を発生させる。 尚、 この低周波空気振動は、 図 8 Bに示すように、 列車が高速でトンネルを退出する際に発生する退出波 (低周波) によつ てもその卜ンネル出口側で発生する。  This low-frequency air vibration is a pulse-like pressure wave (rush wave) that is generated when a high-speed railway moves from a light section (outside the tunnel) to a tunnel section due to a change in cross-section of a structure near the train. This is a vibration phenomenon that occurs when radiation is emitted from the entrance of the tunnel to the surrounding area. This problem of low-frequency air vibration is particularly prominent in high-speed railways such as linear motor cars. If this low-frequency air vibration propagates along railway lines, it causes rattling of fittings in private houses around the tunnel. As shown in Fig. 8B, this low-frequency air vibration is also generated at the exit of the tunnel due to the exit wave (low frequency) generated when the train exits the tunnel at high speed.
そこで、 従来はこの低周波低減のための対策として、 トンネル緩衝ェ の緩衝ェ口を拡大したような形状にしたリ、 卜ンネル緩衝ェの側面窓の 開口量を調整することが行われてきた。 具体的には、 トンネル緩衝ェと トンネルとの断面変化を緩和させるため、 トンネル緩衝ェの開放側 (卜 ンネルとの連結部とは反対側) の天井を V型に切り欠いたり、 トンネル 緩衝ェの側面窓の開口量をトンネル坑口に向かって小さくする方法がと られた。  Therefore, as a countermeasure for reducing the low frequency, conventionally, a buffer opening of the tunnel buffer was enlarged so as to have an enlarged shape, and an opening amount of a side window of the tunnel buffer was adjusted. . Specifically, in order to mitigate the change in cross section between the tunnel buffer and the tunnel, the ceiling on the open side of the tunnel buffer (the side opposite to the connection with the tunnel) is cut off in a V-shape, or the tunnel buffer is cut off. The approach was to reduce the opening of the side window toward the tunnel entrance.
しかし、 かかる切り欠きや側面窓を設けても、 列車がこのような V型 切リ欠きの終端部を通過したリ側面窓を通過する際の急な圧力上昇によ り空気振動が発生してしまうため、 上記対策は抜本的な問題解決にはな つていなかった。 発明の開示 そこで、 本発明は、 高速車両の卜ンネルへの突入及び退出の際に発生 する低周波空気振動を解消又は抑制できるトンネル緩衝ェを提供するこ とを目的とする。 However, even if such notches and side windows are provided, air vibration is generated due to the sudden pressure increase when the train passes through the side window after passing through the end of such V-shaped notch. Therefore, the above measures did not solve the problem drastically. Disclosure of the invention Therefore, an object of the present invention is to provide a tunnel buffer capable of eliminating or suppressing low-frequency air vibration generated when a high-speed vehicle enters and exits a tunnel.
上記課題に鑑み、 本発明の緩衝ェは、 一端に開放部を有し、 他端が卜 ンネル構造物の出入口に連結された長尺状の覆体と、 覆体の壁面に複数 設けられ、 トンネル構造物に突入又はトンネル構造物から退出しようと する高速車両と覆体との間で発生する圧力波の圧力損失を調整する圧損 孔とを備える。この圧損孔は、覆体の一端側近傍においてその周方向(つ まり、 覆体の長手方向と直角な方向) に複数設けられるとともに、 覆体 の一端側から他端側に向けて漸減するように配設されている。 尚、 ここ でいう 「トンネル構造物」 には、 一般にいう トンネルのみならず、 卜ン ネル状の構造物 (フード状の構造物) も含まれる (以下、 これらを単に Γトンネル」 という)。  In view of the above problems, the shock absorber of the present invention has an elongate cover having an open portion at one end and the other end connected to the entrance of the tunnel structure, and a plurality of the cover is provided on the wall surface of the cover, The vehicle is provided with a pressure loss hole for adjusting a pressure loss of a pressure wave generated between a high speed vehicle that attempts to enter or exit the tunnel structure and the cover. A plurality of the pressure loss holes are provided in the circumferential direction (that is, a direction perpendicular to the longitudinal direction of the cover) in the vicinity of one end of the cover, and gradually decrease from one end to the other end of the cover. It is arranged in. The “tunnel structure” here includes not only a general tunnel but also a tunnel-like structure (a hood-like structure) (hereinafter, these are simply referred to as Γ tunnels).
また、 ここでいう 「圧損孔」 は、 上述した従来技術に一般にみられる 側面窓よりも開口量が小さな孔であり、 高速車両と覆体との間で発生す る圧力波の効果的な圧力損失を期待し得るものである。 つまり、 従来の 側面窓ではこの圧力波に対してそれほどの圧力損失を付与することなく 外部に放出することになるが、 本緩衝ェでは、 一定以上の圧力損失を付 与した 「圧損孔」 を比較的多数設け、 その一つ一つにより圧力波の急激 な変動を抑制する。 そして、 この 「圧損孔」 を、 覆体の一端側近傍にお いてはその周方向 (又は幅方向) に比較的多数設け、 覆体の長手方向に 沿って他端側に向けてその数を徐々に減少させている。  The “pressure loss hole” here is a hole having an opening smaller than that of the side window generally seen in the above-described conventional technology, and is an effective pressure of a pressure wave generated between the high-speed vehicle and the cover. Loss can be expected. In other words, in the conventional side window, this pressure wave is released to the outside without giving a significant pressure loss, but in this buffer, the `` pressure loss hole '' with a certain level of pressure loss is provided. A relatively large number is provided, each of which suppresses rapid fluctuations in pressure waves. A relatively large number of the “pressure loss holes” are provided in the circumferential direction (or width direction) near one end of the cover, and the number thereof is increased toward the other end along the longitudinal direction of the cover. It is gradually decreasing.
すなわち、 例えば高速車両がトンネルに突入する際、 壁面のない覆体 の手前 (明かり区間) では圧力損失及び圧力勾配が実質的にゼロである のに対し、壁面のある卜ンネル区間では圧力損失が理論上無限大となり、 その入口において圧力勾配が急峻に立ち上がることになる。 そこで、 こ の明かり区間とトンネル区間との圧力勾配の変化を緩和するために、 圧 損孔を複数設けた卜ンネル緩衝ェにより適度な圧力損失を付与する中間 的な状態を形成し、 高速車両が徐々にトンネルに突入又は退出するかの ような効果を創出するのである。 That is, for example, when a high-speed vehicle enters a tunnel, the pressure loss and the pressure gradient are substantially zero in front of the cover without a wall surface (light section), whereas the pressure loss in the tunnel section with a wall surface is substantially zero. Theoretically becomes infinite, and the pressure gradient rises sharply at the entrance. So this In order to mitigate the change in pressure gradient between the light section and the tunnel section, an intermediate state where moderate pressure loss is provided by a tunnel buffer with multiple pressure loss holes is formed, It creates the effect of entering or exiting a tunnel.
そして、 この中間的な状態を徐々に変化させて明かり区間とトンネル 区間とを滑らかに接続するために、 まず覆体の開放部近傍に圧損孔を比 較的多数配置して圧力損失を比較的小さくし、 圧力波 (突入波) の圧力 勾配の急峻な立ち上がリを抑制する。 そして、 トンネル出入口側に向け て圧損孔を漸減させることで徐々に圧力損失を大きく し、 トンネル出入 口での圧力勾配の急変を防止している。 つまリ、 圧損孔を覆体の開放部 側から トンネルの出入口に向けて漸減することで、 高速車両と覆体との 間で発生する圧力波の圧力損失を徐々に増大することによリ、 トンネル 出入口に向かってその圧力勾配の変化を滑らかにしているのである。 尚、 高速車両がトンネルから退出する際には、 トンネル出入口から卜 ンネル緩衝ェの開放部に向けて圧損孔が漸増することになリ、 上記とは 逆の作用を奏し、 高速車両と覆体との間で発生する圧力波の圧力損失が 徐々に減少することになるが、 その圧力勾配の変化を滑らかにしている 点では同様である。  Then, in order to gradually change the intermediate state and smoothly connect the light section and the tunnel section, first, a relatively large number of pressure loss holes are arranged near the opening of the cover to reduce the pressure loss relatively. It is made smaller, and the steep rise of the pressure gradient of the pressure wave (rush wave) suppresses the rise. The pressure loss is gradually increased by gradually reducing the pressure loss hole toward the tunnel entrance, thereby preventing a sudden change in the pressure gradient at the tunnel entrance. In other words, by gradually reducing the pressure loss hole from the open side of the cover toward the tunnel entrance, the pressure loss of the pressure wave generated between the high-speed vehicle and the cover is gradually increased, The change in the pressure gradient is smoothed toward the tunnel entrance. When a high-speed vehicle exits the tunnel, the pressure drop holes gradually increase from the tunnel entrance to the opening of the tunnel buffer. The pressure loss of the pressure wave generated between and gradually decreases, but the same is true in that the change in the pressure gradient is smoothed.
かかる構成によれば、 高速車両がトンネルに突入又は退出する際の構 造物の断面変化を小さくするのと同様の効果を得ることができ、 その結 果、 高速車両による突入波又は退出波による上記低周波空気振動の発生 を解消又は抑制することができる。 つまり、 高速車両が高速でトンネル に突入又は退出する際に発生する低周波空気振動による卜ンネル周辺民 家の建具のがたつきの問題を解決することができる。  With this configuration, it is possible to obtain the same effect as reducing the cross-sectional change of the structure when the high-speed vehicle enters or exits the tunnel. Generation of low-frequency air vibration can be eliminated or suppressed. In other words, it is possible to solve the problem of rattling of the fittings of a private house around the tunnel due to low-frequency air vibration generated when a high-speed vehicle enters or exits the tunnel at a high speed.
かかる緩衝ェは、 例えば、 高速鉄道用のトンネル緩衝ェとして構成さ れると、 その効果を特に顕著に発揮する。 高速鉄道はトンネルを走行す る高速車両の中でも特に高速であリ、 高速になればなるほど車両周辺の 圧力エネルギーが大きくなり、 トンネル出入リ口周辺で低周波空気振動 による影響が生じやすいからである。 特に走行速度が 5 0 0 k m _ h前 後となるリニアモーターカー等の高速鉄道においてはこの問題が顕著に なると考えられているため、 逆に本発明の効果が特に顕著に発揮される ことになる。 Such a buffer, when configured as, for example, a tunnel buffer for a high-speed railway, exhibits its effect particularly remarkably. High-speed train runs through a tunnel This is because, among high-speed vehicles, the speed is particularly high, and the higher the speed, the greater the pressure energy around the vehicle, and the lower frequency air vibration is likely to affect the area around the tunnel entrance. This problem is considered to be particularly prominent in a high-speed railway such as a linear motor car with a traveling speed of about 500 km_h, so the effect of the present invention is particularly remarkably exhibited. Become.
その際、 上記圧損孔による覆体壁面の開口率が上記一端近傍の最端部 において 1 0〜 2 0 %となるように形成され、 他端側に向けて漸減する 構成とするのがよリ効果的である。 後述する実施例でも述べるように、 かかる開口率に設定した場合に、 低周波空気振動の抑制効果が特に効果 的に発揮されるからである。  At this time, the opening ratio of the cover wall surface due to the pressure loss hole is formed to be 10 to 20% at the extreme end near the one end, and is gradually reduced toward the other end. It is effective. This is because, as described in the embodiments described later, when the aperture ratio is set as described above, the effect of suppressing low-frequency air vibration is particularly effectively exerted.
また、 上記圧損孔は、 覆体の一端近傍から他端近傍まで形成されてい ることが望ましい。 特に覆体のトンネル出入口近傍における開口率を低 率で保持する構成とすることで、 前述の微気圧波による卜ンネル出口側 での発波音の低減効果が大きくなることが実験結果よリ判明したからで ある。  Further, it is desirable that the pressure loss hole is formed from near one end to near the other end of the cover. Experimental results have shown that the effect of reducing the sound generated at the tunnel exit side by the above-mentioned micro-pressure wave can be enhanced by maintaining the opening ratio in the vicinity of the tunnel entrance and exit of the cover at a low rate. Because.
かかる構成によれば、 覆体の一端側で低周波空気振動の問題を解決で きるとともに、 その他端側で微気圧波による問題を同時に解決すること ができ、 しかも、 圧損孔が他端側に向けて漸減されていく構成を有する ため、 両者の効果を連続的に滑らかに発揮させることができる。  According to this configuration, the problem of low-frequency air vibration can be solved at one end of the cover, and the problem due to the micro-pressure wave can be simultaneously solved at the other end, and the pressure loss hole is provided at the other end. Since it has a configuration that is gradually reduced toward the end, both effects can be continuously and smoothly exerted.
具体的には、 覆体のトンネル出入口よりの部分 (例えば覆体の中央か ら卜ンネル出入口近傍までの部分) の開口率を 1 %前後程度 (好ましく は 0 . 8 %〜 0 . 9 % ) で保持すると、 微気圧波によるトンネル出口側 での発波音の低減効果が大きくなることが実験結果よリ判明している。 また、 各圧損孔で効果的な圧力損失を得るためには、 その圧損孔を通 る気流のレイノルズ数が一定以上 ( 1 0 0 0以上) となる必要がある。 レイノルズ数一定以上になると圧力損失係数が一定となるとなる実験結 果も得られている。 Specifically, the opening ratio of a portion of the cover from the tunnel entrance (for example, a portion from the center of the cover to the vicinity of the tunnel entrance) is about 1% (preferably 0.8% to 0.9%). Experimental results show that if the pressure is maintained at, the effect of reducing the sound generated by the micro-pressure wave at the exit of the tunnel will increase. Further, in order to obtain an effective pressure loss at each pressure loss hole, the Reynolds number of the airflow passing through the pressure loss hole needs to be a certain value or more (100 or more). Experimental results show that the pressure loss coefficient becomes constant when the Reynolds number becomes constant.
このため、 圧損孔は、 その孔径又は孔幅が、 高速車両が覆体を通過す る際の各圧損孔での個々の圧力損失係数がほぼ一定となる大きさを目安 に形成するとよい。  For this reason, it is preferable that the pressure loss hole be formed so that the hole diameter or the hole width is such that the individual pressure loss coefficient at each pressure loss hole when the high-speed vehicle passes through the cover is substantially constant.
ただし、 圧損孔が大きすぎると、 圧損孔から放射される圧力波が大き くなることが懸念されるため、 例えば高速鉄道用の場合には、 圧損孔の 孔径又は孔幅が、 車両の平均断面スケールの 1 0分の 1 以下程度となる ことが望ましい。  However, if the pressure loss hole is too large, there is a concern that the pressure wave radiated from the pressure loss hole will increase.For example, in the case of high-speed railways, the hole diameter or hole width of the pressure loss hole is the average cross section of the vehicle. It is desirable to be about 1/10 or less of the scale.
かかる事情を考慮すると、 高速鉄道用の緩衝ェについては、 上記圧損 孔の孔径又は孔幅が 1 0 m m以上 1 0 0 0 m m以下程度になるように形 成されているのがよい。  In consideration of such circumstances, the buffer for high-speed railway is preferably formed so that the hole diameter or hole width of the pressure loss hole is about 10 mm or more and 100 mm or less.
これは、 高速鉄道用の緩衝ェについて上記レイノルズ数を確保するた めには、 圧損孔の孔径又は孔幅が 1 0 m m程度の大きさがあれば十分で あると考えられるからである。 また、 好適な圧力損失は、 覆体の壁の厚 みと圧損孔の大きさ (孔径又は孔幅) との比によってほぼ決定されると ころ、 孔径又は孔幅が 1 0 m mょリ小さいと、 覆体の壁の厚みを小さく せざるを得ず、 その場合、 覆体の強度が車両が通過する際等の変動圧力 に十分に耐え得ないからである。 また、 孔径又は孔幅が小さいと所謂ホ イツスル音が発生しやすく、 騒音の問題が生じるためでもある。 また、 逆に 1 0 0 O m mより大きくすると圧損孔から放射される圧力波が大き くなるからである。  This is because it is considered that a hole diameter or hole width of about 10 mm is enough to secure the Reynolds number for the buffer for high-speed railway. Further, the preferable pressure loss is almost determined by the ratio between the thickness of the wall of the cover and the size of the pressure drop hole (hole diameter or hole width). However, the thickness of the wall of the cover must be reduced, and in this case, the strength of the cover cannot sufficiently withstand the fluctuating pressure when a vehicle passes. Also, when the hole diameter or the hole width is small, a so-called “whistle” sound is easily generated, which causes a problem of noise. On the other hand, if it is larger than 100 O mm, the pressure wave radiated from the pressure loss hole becomes large.
ただし、 孔径又は孔幅が小さいと、 それだけ圧損孔の数を多く形成す る必要が生じるため、 緩衝ェの加工コス卜が嵩むといった問題がある。 また、 逆に孔径又は孔幅が大きいと、 特に圧損孔が覆体の上壁に設けら れた場合に、 当該圧損孔への物の投げ込みや、 覆体上で作業する作業員 の転落事故等の問題が発生することも懸念される。 このため、 ょリ好ま しくは、 孔径又は孔幅が 1 0 0 m m以上 3 0 0 m m以下程度に形成され ているのがよい。 However, when the hole diameter or the hole width is small, it is necessary to form a large number of pressure loss holes, and thus there is a problem that the processing cost of the buffer increases. Conversely, if the hole diameter or hole width is large, especially when the pressure loss hole is provided on the upper wall of the cover, an operator throws an object into the pressure loss hole or works on the cover. There is a concern that problems such as falling accidents may occur. For this reason, it is preferable that the hole diameter or the hole width is formed to be about 100 mm or more and about 300 mm or less.
また、 圧損孔のホイッスル音は、 その周端縁の形状にも大きく影響さ れることが分かっている。 特に覆体が鋼板等からなる場合には、 圧損孔 加工時のバリが残存していることが原因で発生することがある。  It has also been found that the whistle sound of the pressure drop hole is greatly affected by the shape of the peripheral edge. In particular, when the cover is made of a steel plate or the like, it may occur due to remaining burrs at the time of forming the pressure drop hole.
そこで、 上記圧損孔の周端縁に面取りが施されていると、 このような 問題を回避することができるので好ましい。  Therefore, it is preferable that the peripheral edge of the pressure loss hole is chamfered because such a problem can be avoided.
また、 緩衝ェは、 覆体の一端に連結された囲い壁を備え、 この囲い壁 が、 その側壁が覆体の一端に向かって道床面から漸増するように形成さ れていてもよい。 かかる囲い壁を設ける技術自体は既に公知の技術であ るが、 上記本願発明の構成と組み合わせることにより、 従来にない顕著 な効果を発揮させることができる。  Further, the buffer may include an enclosing wall connected to one end of the cover, and the enclosing wall may be formed such that the side wall gradually increases from the roadbed surface toward one end of the cover. The technology for providing such an enclosing wall is a known technology, but by combining with the configuration of the present invention, a remarkable effect that has not been achieved in the past can be exhibited.
すなわち、 かかる構成では例えば鉄道車両がトンネルに突入しようと する際に、 徐々に囲い壁が大きくなることで、 鉄道車両と囲い壁との間 の圧力波の圧力勾配を徐々に高めていくことができる。 そして鉄道車両 が覆体に達すると、 圧損孔によリ好適な圧力損失を付与して圧力波の圧 力勾配を滑らかに高めつつ卜ンネル区間に至らせることができる。 その 結果、 明かリ区間とトンネル区間との圧力勾配の変化をさらに緩和する ことができ、 低周波空気振動を更に効果的に解消又は抑制することがで きるのである。  That is, in such a configuration, for example, when a railway vehicle tries to enter a tunnel, the surrounding wall is gradually enlarged, so that the pressure gradient of the pressure wave between the railway vehicle and the surrounding wall can be gradually increased. it can. When the railway vehicle reaches the cover, a suitable pressure loss is applied to the pressure loss hole, and the pressure gradient of the pressure wave can be smoothly increased to reach the tunnel section. As a result, the change in the pressure gradient between the clear section and the tunnel section can be further reduced, and low-frequency air vibration can be more effectively eliminated or suppressed.
ただし、 その際、 圧損孔が覆体の側壁にも分布していると、 孔の設け られていない囲い壁に連続して突然圧損孔が現れることになリ、 圧力波 による圧力分布に乱れが生じ、 騒音や振動の原因となる虞がある。  However, at this time, if the pressure loss holes are also distributed on the side wall of the cover, the pressure loss holes will appear suddenly continuously on the surrounding wall where the holes are not provided, and the pressure distribution due to the pressure wave will be disturbed. This may cause noise and vibration.
そこで孔の設けられていない囲い壁を備える場合には、 圧損孔が覆体 の上壁主体に設けられるのがよい。 かかる構成によれば、 囲い壁の上方は覆体に向けてその空間が徐々に 狭くなつていく形態を有するため、 圧損孔を上壁に設けることで、 あた かもその空間が連続的に小さくなっていく状況を創出することができ、 空力上非常に滑らかに接続することができる。 その結果、 低周波空気振 動の発生を一層効果的に解消又は抑制することができる。 Therefore, in the case where an enclosure wall having no hole is provided, it is preferable that the pressure loss hole is provided mainly in the upper wall of the cover. According to such a configuration, since the space above the surrounding wall gradually narrows toward the cover, the pressure loss hole is provided in the upper wall, so that the space becomes smaller continuously. It can create a situation that is becoming increasingly aerodynamic and can be connected very smoothly. As a result, generation of low-frequency air vibration can be more effectively eliminated or suppressed.
また、 圧損孔を上壁に設けることで、 多少の空気振動が残存したとし ても、 その回折効果にょリ当該空気振動を小さくすることができ、 さら に高速車両の走行音をも小さくすることができる。 図面の簡単な説明  In addition, by providing a pressure drop hole in the upper wall, even if some air vibration remains, the air vibration can be reduced due to its diffraction effect, and the running noise of high-speed vehicles can be further reduced. Can be. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明の実施例にかかる緩衝ェの概略構成を表す斜視図であ y、  FIG. 1 is a perspective view showing a schematic configuration of a buffer according to an embodiment of the present invention.
図 2 A, 図 2 B, 図 2 Cは、 実施例にかかるトンネル緩衝ェの構成を 表す説明図であり、  2A, 2B, and 2C are explanatory diagrams showing the configuration of the tunnel buffer according to the embodiment.
図 3は、 実施例のトンネル緩衝ェを構築するために行なった数値解析 の解析条件を表す説明図であリ、  FIG. 3 is an explanatory diagram showing the analysis conditions of the numerical analysis performed to construct the tunnel buffer of the embodiment.
図 4は、 図 3の数値解析の結果を表すグラフでぁリ、  FIG. 4 is a graph showing the results of the numerical analysis of FIG.
図 5は、 実施例の卜ンネル緩衝ェを構築するために行なった模型実験 にかかる模型の説明図であリ、  FIG. 5 is an explanatory view of a model according to a model experiment performed to construct the tunnel buffer of the embodiment.
図 6は、 実施例の卜ンネル緩衝ェを構築するために行なった模型実験 にかかる模型の説明図であリ、  FIG. 6 is an explanatory diagram of a model according to a model experiment performed to construct the tunnel buffer of the embodiment.
図 7 A , 図 7 B , 図 7 C, 図 7 Dは、 模型実験の結果を表すグラフで あり、 そして、  7A, 7B, 7C, and 7D are graphs showing the results of the model experiment, and
図 8 A, 図 8 Bは、 従来技術の問題点を表す説明図である。 発明を実施するための最良の形態 以下、本発明の好適な実施例を図面に基づいて説明する。本実施例は、 本発明の緩衝ェを高速鉄道の卜ンネル緩衝ェに構築したものであリ、 図8A and 8B are explanatory diagrams showing the problems of the conventional technology. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In this embodiment, the buffer of the present invention is constructed in a tunnel buffer of a high-speed railway.
1 は当該トンネル緩衝ェの概略構成を表す斜視図である。 FIG. 1 is a perspective view showing a schematic configuration of the tunnel buffer.
図 1 に示すように、 卜ンネル緩衝ェ 1 は、 全長約 1 0 0 m, 幅約 1 4 m, 高さ約 7 mの長尺状の覆体 1 0からなリ、 その一端が開放部 1 O a をなし、 他端がトンネル Tの出入口に連結されている。  As shown in Fig. 1, the tunnel buffer 1 is composed of a long cover 10 having a total length of about 100 m, a width of about 14 m, and a height of about 7 m. 1 O a and the other end is connected to the entrance of tunnel T.
図 2 Aに卜ンネル緩衝ェ 1 の平面図を示すように、 覆体 1 0は、 図示 しない複数の H型鋼を格子状に連結して構成した長方枠形状の骨組みに 多数の鋼板 2 1 と P C板 (プレス卜レスコンクリー卜板) 2 2を配設し て構成されている。  As shown in the plan view of the tunnel buffer 1 in FIG. 2A, the cover 10 is composed of a rectangular frame-shaped frame formed by connecting a plurality of H-shaped steels (not shown) in a grid pattern. And a PC board (prestress concrete board) 22.
鋼板 2 1 は、図 2 Bに示すように、長さ L Ί が約 2 m,幅 W 1 が約 1 m, 厚み t 1 が約 9 m mの長方形状の本体を有し、 その本体を厚み方向に貫 通する複数の圧損孔 3 0を備える。 この圧損孔 3 0は、 トンネル Tに突 入又は卜ンネル Tから退出しょうとする高速鉄道車両 (本実施例ではリ ニァモーターカー : 図示せず) と覆体 1 0との間で発生する圧力波に好 適な圧力損失を付与するための孔である。 本実施例において、 この圧損 孔 3 0は、 直径 1 0 0 m mの円孔に形成されており、 その周端縁には所 謂ホイッスル音防止のための図示しない面取りが施されている。  As shown in FIG. 2B, the steel plate 21 has a rectangular main body having a length L 約 of about 2 m, a width W 1 of about 1 m, and a thickness t 1 of about 9 mm. A plurality of pressure loss holes 30 penetrating in the direction are provided. The pressure loss hole 30 is formed by a pressure generated between a high-speed railway vehicle (linear motor car: not shown in this embodiment: not shown) entering the tunnel T or leaving the tunnel T and the cover 10. It is a hole for giving a suitable pressure loss to waves. In this embodiment, the pressure loss hole 30 is formed as a circular hole having a diameter of 100 mm, and a peripheral edge thereof is chamfered (not shown) to prevent a so-called whistle sound.
ただし、 この鋼板 2 1 は、 後述する開口率の設定の都合上、 圧損孔 3 0の数が異なる複数種類のものが存在する (本実施例では最大 3 2個、 最小 2個)。  However, there are a plurality of steel plates 21 having different numbers of pressure loss holes 30 (in the present embodiment, a maximum of 32 and a minimum of 2) due to the setting of the aperture ratio described later.
一方、 P C板 2 2は、 図 2 Cに示すように、 長さ L 2が約 2 m,幅 W 2 が約 1 m, 厚み t 2が約 7 0 m mの長方形状の本体を有する。  On the other hand, as shown in FIG. 2C, the PC board 22 has a rectangular main body having a length L2 of about 2 m, a width W2 of about 1 m, and a thickness t2 of about 70 mm.
そして、 図 2 Aに示すように、 覆体 1 0の上壁 1 1 は、 これら鋼板 2 1 (図中散点模様) 及び P C板 2 2 (図中無模様) が一定の態様で複数 隙間なく配列されることにより構成され、 覆体 1 0の両側壁 1 2は、 P C板 2 2のみが複数隙間なく配列されて構成されている。 従って本実施 例においては、 卜ンネル緩衝ェ 1 の上壁 1 1 のみが多孔構造となってい る。 また、 鋼板 2 1 及び P C板 2 2は、 覆体 1 0の開放部 1 0 a側から トンネル Tの出入口に向けて圧損孔 3 0が漸減するように、 選択的に配 列されている。 Then, as shown in FIG. 2A, the upper wall 11 of the cover 10 is formed by a plurality of steel plates 21 (scattered patterns in the figure) and PC boards 22 (no patterns in the figure) in a fixed manner. The side walls 12 of the cover 10 are P Only the C plate 22 is arranged without a plurality of gaps. Therefore, in this embodiment, only the upper wall 11 of the tunnel buffer 1 has a porous structure. Further, the steel plate 21 and the PC plate 22 are selectively arranged such that the pressure loss hole 30 gradually decreases from the open portion 10a side of the cover 10 toward the entrance and exit of the tunnel T.
尚、 本実施例において、 トンネル緩衝ェ 1 のトンネル出入口側端部の 一定領域 (約 1 4 m ) は段差解消区間となっており、 圧損孔 3 0が配置 されていない。  In this embodiment, a fixed area (about 14 m) at the end of the tunnel buffer 1 on the side of the tunnel entrance is a step-eliminated section, and no pressure loss hole 30 is provided.
次に、 覆体に設ける圧損孔の配置態様についての評価について説明す る。 すなわち、 発明者らは、 高速車両がトンネルに突入及び退出する際 に発生する低周波空気振動の対策に好適な圧損孔の配置態様を、 数値解 析及び模型実験により検証している。 以下、 これらの結果について説明 する。  Next, evaluation of the arrangement of the pressure loss holes provided in the cover will be described. In other words, the inventors have verified by numerical analysis and model experiments the arrangement of the pressure drop holes suitable for countermeasures against low-frequency air vibration generated when a high-speed vehicle enters and exits a tunnel. Hereinafter, these results will be described.
[数値解析結果]  [Numerical analysis results]
まず、 トンネル緩衝ェの覆体壁面に複数の孔 (圧損孔) を設け、 その 孔を覆体の一端側 (緩衝エロ : 開放部側) から他端側 (トンネル出入口 側) に向けて漸減した場合を想定し、 そのトンネル緩衝ェの覆体壁面の 開口率分布と、 圧力波低減効果との関係について数値解析を行なった。 具体的には、 覆体の開口率が漸減する開口率分布を有するトンネル緩 衝ェとして、 緩衝エロ近傍の最端部の開口率が異なるものを複数パター ン設定し、その各々について高速鉄道車両を突入させた場合の突入波(圧 力波) の圧力変動を解析した。 図 3は当該数値解析の解析条件を表す説 明図であり、 図 4はその解析結果を表すグラフである。  First, a plurality of holes (pressure loss holes) were provided on the wall surface of the cover of the tunnel buffer, and the holes were gradually reduced from one end of the cover (buffer erotic: open side) to the other end (the tunnel entrance side). Assuming a case, a numerical analysis was performed on the relationship between the aperture ratio distribution on the wall surface of the cover of the tunnel buffer and the pressure wave reduction effect. Specifically, as a tunnel buffer having an opening ratio distribution in which the opening ratio of the cover gradually decreases, a plurality of patterns with different opening ratios at the extreme end near the buffer erotic are set, and a high-speed railway vehicle is set for each of them. We analyzed the pressure fluctuations of the rush wave (pressure wave) when rushing. FIG. 3 is an explanatory diagram showing the analysis conditions of the numerical analysis, and FIG. 4 is a graph showing the analysis results.
図 3上段に高速鉄道車両を上からみた概念図を示すように、 本数値解 析では、 高速鉄道車両の偏心走行を模擬し、 トンネルの直径を Dとし、 トンネル緩衝ェの全長を L ( = 2 5 . 0 D )、 空気振動の評価点を緩衝ェ 入口において偏心走行する高速鉄道車両から 5. 0 Dの位置とした。 ま た、 高速鉄道車両の走行速度は 5 0 0 k m/hに設定した。 そして、 圧 損孔を配置する多孔壁の長さを、緩衝ェ入口から L p(= L/2 = 1 2. 5 D) とし、 この多孔壁として開口率分布の異なる 4種類のものを設定 した。 As shown in the conceptual diagram of a high-speed railway vehicle viewed from above in Fig. 3, the numerical analysis simulates the eccentric running of a high-speed railway vehicle, where the diameter of the tunnel is D, and the total length of the tunnel buffer is L (= 25.0 D), buffer the evaluation point of air vibration. 5.0 D from the high-speed railway car running eccentrically at the entrance. The running speed of the high-speed railway vehicle was set at 500 km / h. Then, the length of the porous wall where the pressure loss holes are arranged is L p (= L / 2 = 12.5 D) from the buffer inlet, and four types of porous walls with different aperture ratio distributions are set. did.
すなわち、 図 3下段に緩衝ェ入口からの距離に対する開口率分布の関 係を表すグラフを示すように、 緩衝ェ入口近傍の開口率) 8が 1 4. 1 % の多孔壁① (太い実線), 2 8. 2 %の多孔壁② (破線), 4 2. 3 %の 多孔壁③ (点線), 及び 7. 0 5 %の多孔壁④ (一点鎖線) について数値 解析を行なった。 尚、 当該グラフの横軸は、 緩衝ェ入口からの距離 Xを 多孔壁の長さ L Pとの比で表した無次元距離を表し、 縦軸はその無次元 距離における開口率を表している。 これらの多孔壁は、 いずれもその開 口率が緩衝ェ入口からトンネル坑口 (出入口) へ向けて漸減するように 設定されており、 トンネル緩衝ェの中央 (X = L p == 1 / 2 L) にて開 口率がゼロになるように設定されている。  In other words, as shown in the lower part of Fig. 3, a graph showing the relationship between the opening ratio distribution and the distance from the buffer inlet, the aperture ratio in the vicinity of the inlet of the buffer is 8) and the porous wall with 14.1% (thick solid line) Numerical analysis was performed for a 28.2% porous wall (1) (dashed line), a 42.3% porous wall (3) (dotted line), and a 7.05% porous wall (1) (dotted line). The horizontal axis of the graph represents the dimensionless distance that represents the distance X from the buffer inlet to the length LP of the porous wall, and the vertical axis represents the aperture ratio at the dimensionless distance. Each of these perforated walls is set so that the opening ratio gradually decreases from the buffer entrance to the tunnel entrance (exit), and the center of the tunnel buffer (X = L p == 1/2 L ) Is set so that the opening rate becomes zero.
図 4は、 高速鉄道車両が 0. 2 Dの偏心走行 (トンネル緩衝ェの中心 から 0. 2 Dの位置を走行) していると想定した場合の圧力波の圧力変 動の時系列データを表している。 評価点は、 前述したように緩衝ェ入口 位置(X = 0. 0 D) において高速鉄道車両から 5. 0 Dの位置である。 横軸はその高速鉄道車両の先端部が緩衝ェ入口を通過する時刻を 0. 0 ( s ) とした測定時刻 ( s ) を表し、 縦軸はその測定時刻における圧力 変動を表す。 尚、 本解析は、 上述した多孔壁①〜④に加え、 比較例とし て圧損孔を全く設けない場合(開口無:細い実線)についても行なった。 尚、 時刻 ( s ) については負の値が存在するが、 これは、 高速鉄道車両 がトンネル緩衝ェに突入する手前から圧力変動を解析していることを意 味する。 同図から分かるように、 いずれの場合も、 まず時刻 0. 1 ( s ) 付近 に負圧のピーク値があり、 時刻 0. 5 ( s ) 付近に正圧のピーク値があ る。 これらのピーク値 (振幅) は圧力波の大きさ (強さ) を意味するの で、 そのピーク値に着目すると、 圧力低減効果の大きいものから多孔壁 ① ( j8 = 1 4. 1 ), 多孔壁② ( = 2 8. 2 ), 多孔壁③ ( j8 = 4 2. 3 ), 多孔壁④ ()8 = 7. 0 5), 開口無 (]8 = 0. 0) の順になつてい る。 従って、 緩衝ェ入口近傍の開口率が 1 0〜 20 %の範囲で、 最も圧 力低減効果が得られることが判明した。 Figure 4 shows the time-series data of the pressure fluctuation of the pressure wave when it is assumed that the high-speed railway vehicle is traveling 0.2 D eccentrically (traveling 0.2 D from the center of the tunnel buffer). Represents. The evaluation point is 5.0 D from the high-speed railcar at the buffer entrance position (X = 0.0 D) as described above. The horizontal axis represents the measurement time (s) when the time at which the tip of the high-speed railcar passes through the buffer entrance is 0.0 (s), and the vertical axis represents the pressure fluctuation at the measurement time. In addition, this analysis was also performed in the case where no pressure drop hole was provided (no opening: thin solid line) as a comparative example, in addition to the porous walls 1 to 5 described above. Note that there is a negative value for the time (s), which means that the pressure fluctuation is analyzed before the high-speed railway vehicle enters the tunnel buffer. As can be seen from these figures, in each case, there is a negative pressure peak near time 0.1 (s) and a positive pressure near time 0.5 (s). Since these peak values (amplitude) mean the magnitude (intensity) of the pressure wave, focusing on the peak values, the porous wall ① (j8 = 14.1), the porous wall Wall ② (= 28.2), perforated wall ③ (j8 = 42.3), perforated wall ④ () 8 = 7.05), no aperture (] 8 = 0.0) . Therefore, it was found that the maximum pressure reduction effect was obtained when the opening ratio near the buffer inlet was in the range of 10 to 20%.
[模型実験結果]  [Model test results]
続いて、 上記数値解析の結果をふまえて模型実験を行った。 図 5の上 段が卜ンネル緩衝ェの模型 Mを表す平面図であリ、右段がその断面図を、 下段がその側面図をそれぞれ表している。  Subsequently, a model experiment was performed based on the results of the above numerical analysis. The upper part of FIG. 5 is a plan view showing the model M of the tunnel buffer, the right part is a sectional view, and the lower part is a side view.
この模型 Mは、 実際の卜ンネル緩衝ェ 1 の約 1 34モデルであり、 鋼板を加工して作成した。 当該模型 Mの覆体 M 1 の全長 Lは 2 9 4 1 m mであり、 圧損孔 (図中点で示す) が配設された多孔壁部分の緩衝ェ入 口からの長さ L pが 1 4 7 0 mm (= 1 /2 L) になるように形成され ている。 また、 その断面はトンネル模型 t (直径 D) の断面よりも大き くなつておリ、 幅 Wが 44 0 mm, 高さ Hが 2 2 0 m mに形成されてい る。 そして、 トンネル緩衝ェからトンネル t内にわたって線路 Rが左右 片側に偏心して敷設されており、 この線路 Rに沿って図示しない高速鉄 道模型を走行させることが可能に構成されている。  This model M is about 134 models of the actual tunnel buffer 1 and was created by processing a steel plate. The total length L of the cover M 1 of the model M is 2941 mm, and the length L p of the porous wall portion provided with the pressure loss hole (indicated by a point in the figure) is 1 from the buffer inlet. It is formed to be 470 mm (= 1/2 L). The cross section is larger than the cross section of the tunnel model t (diameter D), and has a width W of 440 mm and a height H of 220 mm. A track R is eccentrically laid to one side on the left and right sides from the tunnel buffer to the inside of the tunnel t, and a high-speed railway model (not shown) can be run along the track R.
圧損孔としては直径 1 0 mmの円孔に形成したものを多数設けた。 そ の配置態様は同図に示す通りであり、 トンネル緩衝ェの一端側から他端 側に向けてその数が漸減するように設定されている。 具体的には、 上述 した数値解析結果をふまえ、 その解析結果が最も良好であった緩衝ェ入 口近傍の開口率が 1 4 %のものと、 その比較例として開口率が 4 5 %の ものと、 開口率がゼロ (全閉) のものについて模型実験を行なった。 ま た、 本模型実験では、 さらに図 6に示すように、 開口率が 1 4 %の覆体 M 1 の一端に一対の三角壁 S (囲い壁) を連結したトンネル緩衝ェにつ いても試験を行つだ。 この三角壁 Sは、 鋼板を仰角 0 (本実施例では 1 5度) の直角三角形に加工したものであり、 その高さが覆体 M l の高さ Hに一致するように形成されている。 つまリ、 当該三角壁 Sは、 覆体 M 1 の一端に向かって道床面から漸増するように形成されている。 A large number of pressure loss holes formed in circular holes having a diameter of 10 mm were provided. The arrangement is as shown in the figure, and the number of the tunnel buffer is set so as to gradually decrease from one end to the other end. Specifically, based on the results of the numerical analysis described above, the analysis results showed that the best results were obtained when the opening ratio near the buffer inlet was 14%, and as a comparative example, the opening ratio was 45%. A model experiment was carried out for the one with the aperture ratio of zero (fully closed). In addition, in this model experiment, as shown in Fig. 6, a tunnel buffer with a pair of triangular walls S (enclosure wall) connected to one end of a cover M1 having an aperture ratio of 14% was also tested. Go. The triangular wall S is formed by processing a steel plate into a right-angled triangle having an elevation angle of 0 (15 degrees in the present embodiment), and is formed so that its height matches the height H of the cover Ml. . That is, the triangular wall S is formed so as to gradually increase from the roadbed surface toward one end of the cover M1.
当該模型実験では、 高速鉄道模型を線路 Rに沿って約 5 0 0 k m / h で走行させ、 模型 M及び卜ンネル模型 tを通過させて行なった。 圧力測 定点(評価点)は、その緩衝ェ入口の線路 Rの中心から距離 5 . 0 D ( D: トンネル tの直径) の位置とした。 その結果を図 7 A〜図 7 Dに示す。 図 7 Aには全閉 (開口率ゼロ) の実験結果が示され、 図 7 Bには緩衝ェ 入口近傍の開口率が 4 5 %の実験結果が示されている。 また、 図 7 Cに は開口率が 1 4 %の実験結果が示され、 図 7 Dには開口率が 1 4 %のも のについて更に上記三角壁 Sを設置したものの実験結果が示されている。 尚、 各図の横軸は測定時刻 ( s ) を表し、 縦軸はその測定時刻における 圧力変動を表す。  In this model experiment, a high-speed railway model was run at about 500 km / h along the track R, and passed through the model M and the tunnel model t. The pressure measurement point (evaluation point) was located at a distance of 5.0 D (D: diameter of tunnel t) from the center of track R at the entrance of the buffer. The results are shown in FIGS. 7A to 7D. Figure 7A shows the experimental results for a fully closed (zero aperture ratio), and Figure 7B shows the experimental results for an aperture ratio of 45% near the buffer inlet. Fig. 7C shows the experimental results with an aperture ratio of 14%, and Fig. 7D shows the experimental results with an aperture ratio of 14% when the above-mentioned triangular wall S was further installed. I have. The horizontal axis in each figure represents the measurement time (s), and the vertical axis represents the pressure fluctuation at the measurement time.
図 7 A〜図 7 Dから分かるように、 全閉のものについては時刻 0 . 4 2 ( s ) 付近及び時刻 0 . 4 3 ( s ) 付近に圧力のピーク値 (エッジ部) が大きく表れている。 これに対し、 開口率 4 5 %のものについては、 対 応するピーク値の振幅は幾分小さくなっている。そして、開口率が 1 4 % になるとそのピーク値の振幅がよリ小さくなリ、 さらに三角壁 Sを設け たものについてはそのピーク値の振幅がほとんどなくなつているのが分 かる。 尚、 これらのグラフは車両が高速で走行するため発生する車両近 傍の圧力エネルギー (圧力場) と緩衝ェから発生する空気振動が重なつ て計測された結果である。 圧力エネルギー (圧力場) は走行速度と車両 断面積等の要因で生じる現象で、 トンネル緩衝ェでは完全に抑制するこ とはできない。図 7 Dでは空気振動は大幅に低減し、圧力エネルギー(圧 力場) による圧力変化に近い波形となっている。 As can be seen from FIGS. 7A to 7D, the pressure peak value (edge portion) greatly appears around time 0.42 (s) and around time 0.43 (s) for the fully closed type. I have. On the other hand, for those with an aperture ratio of 45%, the amplitude of the corresponding peak value is somewhat smaller. Then, when the aperture ratio becomes 14%, the amplitude of the peak value becomes smaller, and it can be seen that the amplitude of the peak value almost disappears in the case where the triangular wall S is provided. Note that these graphs are the results obtained by measuring the pressure energy (pressure field) generated near the vehicle due to the high speed of the vehicle and the air vibration generated from the shock absorber. Pressure energy (pressure field) is the traveling speed and vehicle This phenomenon occurs due to factors such as the cross-sectional area and cannot be completely suppressed by the tunnel buffer. In Fig. 7D, the air vibration is greatly reduced, and the waveform is similar to the pressure change due to the pressure energy (pressure field).
すなわち、 低周波空気振動は上記ピーク値の大きさ (つまり圧力波の 大きさ) によってもたらされるため、 開口率を 1 4 %とし更に三角壁 S を設けることで、 この低周波空気振動の問題が大きく抑制されることが 分かる。  That is, since the low frequency air vibration is caused by the magnitude of the peak value (that is, the size of the pressure wave), the problem of the low frequency air vibration can be solved by setting the aperture ratio to 14% and further providing the triangular wall S. It can be seen that it is greatly suppressed.
図 2 A〜図 2 Cに戻り、 以上のような数値解析結果及び模型実験結果 に基づき、 本実施例のトンネル緩衝ェ 1 においては、 覆体 1 0の一端近 傍の最端部における開口率が 1 0〜 2 0 %となるように鋼板 2 1 (つま リ圧損孔 3 0 ) が配設され、 他端部に向けて徐々に漸減するように構成 されている。  Returning to FIGS. 2A to 2C, based on the results of the numerical analysis and the model experiment described above, in the tunnel buffer 1 of the present embodiment, the aperture ratio at the outermost end near one end of the cover 10 is shown. The steel plate 21 (claw pressure loss hole 30) is arranged so as to be 10 to 20%, and is configured to gradually decrease toward the other end.
以上に説明したように、 本実施例のトンネル緩衝ェ 1 によれば、 トン ネル Tに突入又はトンネル Tから退出しょうとする高速鉄道車両と覆体 1 0との間で発生する圧力波の圧力損失を調整する複数の圧損孔 3 0を 備え、 この圧損孔 3 0が、 覆体 1 0の一端側から他端側に向けて漸減す るように配設されている。  As described above, according to the tunnel buffer 1 of the present embodiment, the pressure of the pressure wave generated between the high-speed railway vehicle entering the tunnel T or exiting from the tunnel T and the cover 10. A plurality of pressure loss holes 30 for adjusting the loss are provided, and the pressure loss holes 30 are disposed so as to gradually decrease from one end of the cover 10 to the other end thereof.
このため、 明かり区間とトンネル区間との間で適度な圧力損失を付与 する中間的な状態を形成することができ、 高速鉄道車両が徐々に卜ンネ ル Tに突入するかのような効果を創出することができる。 つまり、 圧力 波 (突入波) の圧力勾配の急峻な立ち上がリを抑制して、 その圧力勾配 の変化を滑らかにすることができる。 その結果、 高速鉄道車両の突入波 による低周波空気振動の発生を解消又は抑制することができ、 トンネル 周辺民家の建具のがたつきの問題を解決することができる。  Therefore, it is possible to form an intermediate state in which an appropriate pressure loss is applied between the light section and the tunnel section, creating an effect as if a high-speed railway vehicle gradually enters the tunnel T. can do. In other words, the steep rise of the pressure gradient of the pressure wave (rush wave) suppresses the rise, and the change of the pressure gradient can be made smooth. As a result, it is possible to eliminate or suppress the occurrence of low-frequency air vibration due to the rush wave of the high-speed railway vehicle, and it is possible to solve the rattling problem of the fittings of the private house around the tunnel.
尚、 上記実施例では、 高速鉄道車両がトンネル Tに突入する場合を例 に説明をしたが、 トンネル Tから退出する場合についても同様の効果を 得ることができる。 すなわち、 上記実施例の構成によれば、 トンネル出 入口からトンネル緩衝ェ〗 の開放部 1 0 aに向けて圧損孔 3 0が漸増す ることになリ、 上記とは逆の作用を奏し、 高速鉄道車両と覆体 1 0との 間で発生する圧力波の圧力損失が徐々に減少することになるが、 その圧 力勾配の変化を滑らかにしている点では同様である。 In the above embodiment, the case where the high-speed railway vehicle enters the tunnel T has been described as an example. However, the same effect can be obtained when the vehicle exits the tunnel T. Obtainable. That is, according to the configuration of the above embodiment, the pressure loss hole 30 gradually increases from the tunnel entrance to the opening 10a of the tunnel buffering hole. The pressure loss of the pressure wave generated between the high-speed rail car and the cover 10 gradually decreases, but the same is true in that the change in the pressure gradient is smoothed.
従って、 高速鉄道車両がトンネル Tから退出する場合についても、 退 出波による低周波空気振動の発生を解消又は抑制することができ、 その 結果、 トンネル周辺民家の建具のがたつきの問題を解決することができ る。  Therefore, even when a high-speed railway vehicle exits the tunnel T, the occurrence of low-frequency air vibration due to the exit wave can be eliminated or suppressed, and as a result, the problem of rattling of the fittings of the private house around the tunnel can be solved. be able to.
以上、 本発明の実施例について説明したが、 本発明の実施の形態は、 上記実施例に何ら限定されることなく、 本発明の技術的範囲に属する限 リ種々の形態をとリ得ることはいうまでもない。  As described above, the embodiments of the present invention have been described. However, the embodiments of the present invention are not limited to the above-described embodiments, and may take various forms within the technical scope of the present invention. Needless to say.
例えば、 上記実施例では、 トンネル緩衝ェ 1 の覆体 1 0として、 長方 形状の鋼板 2 1 及び P C板 2 0を多数用いて構成した断面長方枠形状の ものを示したが、 覆体はかかる形状に限られず、 例えば断面半円形状に 形成することもできる。 また、 多数の鋼板や P C板を用いずに、 例えば 鉄筋コンクリ一卜等により覆体を施工した後、 所定箇所に圧損孔を穿孔 して構成することもできる。 さらに、 鋼板 2 1 に対して円孔である圧損 孔 3 0を複数形成した例を示したが、 圧損孔は、 角孔等その他の形状に 形成することもできる。  For example, in the above-described embodiment, the cover 10 of the tunnel buffer 1 has a rectangular cross section formed by using a large number of rectangular steel plates 21 and PC plates 20. Is not limited to such a shape, and for example, may be formed in a semicircular cross section. Instead of using a large number of steel plates or PC plates, it is also possible to construct a cover using, for example, a reinforced concrete, and then form a pressure loss hole at a predetermined location. Furthermore, although an example in which a plurality of circular pressure loss holes 30 are formed in the steel plate 21 has been described, the pressure loss holes may be formed in other shapes such as a square hole.
また、 図 2 A〜図 2 Cに示した上記実施例では、 囲い壁 (三角壁 Sに 対応) については触れていなかつたが、 模型実験からも分かるようにそ の圧力波低減の効果が良好に現れることから、 同様の三角壁を設けた構 成とするのが好ましい。 また、 上記模型実験においては、 囲い壁として 仰角 0が 1 5度の三角壁 Sを設けた構成を示したが、仰角 0については、 3 0度以下 (好ましくは 1 5度以下) であれば良好な効果が得られるこ とが別の実験よリ分かっている。 In the above embodiment shown in FIGS. 2A to 2C, the enclosure wall (corresponding to the triangular wall S) was not mentioned, but as can be seen from the model experiment, the effect of reducing the pressure wave is good. Therefore, it is preferable that a similar triangular wall is provided. Also, in the above model experiment, a configuration was shown in which a triangular wall S with an elevation angle of 15 degrees was provided as a surrounding wall, but if the elevation angle is 0 degrees or less (preferably 15 degrees or less), Good effect can be obtained I know from another experiment.
さらに、 上記実施例では、 高速鉄道用のトンネル緩衝ェについて説明 したが、鉄道車両以外の高速車両用に構築してもよいことは勿論である。 また、 民家密集地域に対する騒音対策や豪雪地域における雪対策とし て、 明かり構造物 (高架橋など) に卜ンネル状の構造物 (フード) の設 置が想定できる。 この場合、 実際にはトンネルはないがトンネル坑口が 存在するのと同様の状況になる。 当然、 この場合についても多孔板を活 用した緩衝ェの適用が可能となる (つまり、 多孔板 (上記実施例におい ては鋼板 2 1 ) を活用した緩衝ェは卜ンネルのみに適用可能ではなく、 同様の様相を呈する箇所に設置することで本発明内容と同等の性能を発 揮する)。 産業上の利用可能性  Furthermore, in the above-described embodiment, the description has been given of the tunnel buffer for a high-speed railway. In addition, as a measure against noise in densely populated houses and as a measure against snow in heavy snowfall areas, the installation of a tunnel-like structure (hood) in the lighting structure (viaduct, etc.) can be assumed. In this case, there is no actual tunnel, but the situation is similar to the existence of a tunnel entrance. Naturally, in this case, it is also possible to apply a buffer using a perforated plate (that is, a buffer using a perforated plate (steel plate 21 in the above embodiment) is not applicable only to the tunnel. However, the same performance as that of the present invention can be obtained by installing the device in a location exhibiting a similar appearance.) Industrial applicability
以上詳述したように、 本発明によれば、 高速車両のトンネルへの突入 及び退出の際に発生する低周波空気振動を解消又は抑制できる。  As described above in detail, according to the present invention, low-frequency air vibration generated when a high-speed vehicle enters and exits a tunnel can be eliminated or suppressed.

Claims

請求の範囲 The scope of the claims
1 . 一端に開放部を有し、 他端が卜ンネル構造物の出入口に連結された 長尺状の覆体と、 1. a long cover having an open portion at one end and the other end connected to the entrance of the tunnel structure;
該覆体の壁面に複数設けられ、 前記トンネル構造物に突入又は該卜ン ネル構造物から退出しょうとする高速車両と該覆体との間で発生する圧 力波の圧力損失を調整する圧損孔と、  A plurality of pressure drops provided on the wall surface of the cover to adjust pressure loss of a pressure wave generated between the high-speed vehicle entering the tunnel structure or exiting the tunnel structure and the cover. Holes and
を備えた緩衝ェであって、  A buffer with
前記圧損孔は、 前記覆体の一端側近傍においてその周方向に複数設け られるとともに、 前記覆体の一端側から他端側に向けて漸減するように 配設されたことを特徴とする緩衝ェ。  A plurality of the pressure loss holes are provided in the circumferential direction near one end of the cover, and are arranged so as to gradually decrease from one end to the other end of the cover. .
2 . 高速鉄道用の卜ンネル緩衝ェとして構成されたことを特徴とする請 求項 1 記載の緩衝ェ。  2. The buffer according to claim 1, wherein the buffer is configured as a tunnel buffer for a high-speed railway.
3 . 前記圧損孔による前記覆体の壁面の開口率が、 前記一端近傍の最端 部において 1 0 ~ 2 0 %となるように形成されたことを特徴とする請求 項 1 又は請求項 2に記載の緩衝ェ。  3. The method according to claim 1, wherein an opening ratio of a wall surface of the cover by the pressure loss hole is 10% to 20% at an outermost portion near the one end. Buffer as described.
4 . 前記圧損孔が、 前記覆体の一端近傍から他端近傍まで形成されてい ることを特徴とする請求項 1 〜 3のいずれかに記載の緩衝ェ。  4. The buffer according to any one of claims 1 to 3, wherein the pressure loss hole is formed from near one end to near the other end of the cover.
5 . 前記圧損孔は、 その孔径又は孔幅が、 前記高速車両が前記覆体を通 過する際の該圧損孔での個々の圧力損失係数がほぼ一定となる大きさに 形成されたことを特徴とする請求項 1 〜 4のいずれかに記載の緩衝ェ。  5. The pressure loss hole is formed such that its hole diameter or hole width is such that the individual pressure loss coefficient in the pressure loss hole when the high-speed vehicle passes through the cover is substantially constant. The buffer according to any one of claims 1 to 4, characterized in that:
6 . 前記圧損孔の周端縁に、 面取りが施されていることを特徴とする請 求項 1 〜 5のいずれかに記載の緩衝ェ。  6. The shock absorber according to any one of claims 1 to 5, wherein the peripheral edge of the pressure loss hole is chamfered.
7 . 請求項 1 〜 6のいずれかに記載の緩衝ェにおいて、 さらに、  7. The buffer according to any one of claims 1 to 6, further comprising:
前記覆体の一端に連結された囲い壁を備え、  An enclosure wall connected to one end of the cover,
該囲い壁は、 その側壁が該覆体の一端に向かって道床面から漸増する ように形成されたことを特徴とする緩衝ェ。 The enclosing wall has a side wall that gradually increases from a track surface toward one end of the cover. A buffer which is formed as described above.
8 . 前記圧損孔が、 前記覆体の上壁に設けられたことを特徴とする請求 項 1 〜 7のいずれかに記載の緩衝ェ。  8. The buffer according to any one of claims 1 to 7, wherein the pressure loss hole is provided in an upper wall of the cover.
PCT/JP2003/003559 2002-03-26 2003-03-24 Buffer plate WO2003080997A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-85778 2002-03-26
JP2002085778A JP4220716B2 (en) 2002-03-26 2002-03-26 Shock absorber

Publications (1)

Publication Number Publication Date
WO2003080997A1 true WO2003080997A1 (en) 2003-10-02

Family

ID=28449272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003559 WO2003080997A1 (en) 2002-03-26 2003-03-24 Buffer plate

Country Status (3)

Country Link
JP (1) JP4220716B2 (en)
TW (1) TW200304522A (en)
WO (1) WO2003080997A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016132928A (en) * 2015-01-20 2016-07-25 東海旅客鉄道株式会社 Buffer construction
CN107387111A (en) * 2017-08-17 2017-11-24 中铁第四勘察设计院集团有限公司 Relief hole buffer structure at a kind of high speed subway tunnel portal
CN110440745A (en) * 2019-08-14 2019-11-12 中铁西南科学研究院有限公司 A kind of deformation detecting method of lining cutting, device and storage medium

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4780774B2 (en) * 2006-07-14 2011-09-28 東日本旅客鉄道株式会社 Tunnel buffer
JP4861858B2 (en) * 2007-03-07 2012-01-25 株式会社神戸製鋼所 Shaft structure
JP4972598B2 (en) * 2008-03-31 2012-07-11 東日本旅客鉄道株式会社 Tunnel buffer
CN104213926A (en) * 2014-09-17 2014-12-17 中南大学 Self-adaptive device for wind pressure transition of tunnel portal of high speed railway
CN112158210B (en) * 2020-09-04 2022-06-21 五邑大学 Shock wave attenuation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05113093A (en) * 1991-03-06 1993-05-07 Taisei Corp Dome for decompressing impulse wind pressure
JPH08135381A (en) * 1994-11-15 1996-05-28 Okada Toshio Impact relaxation device of tunnel entrance
JPH10115188A (en) * 1996-10-09 1998-05-06 Hitachi Zosen Corp Tunnel forming wall
JP2994585B2 (en) * 1996-02-16 1999-12-27 神鋼鋼線工業株式会社 Construction method of shock wave damping work for high-speed vehicle tunnel
JP2000080890A (en) * 1998-09-03 2000-03-21 Railway Technical Res Inst Buffer work for reducing low frequency sound generated in tunnel entrance/exit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05113093A (en) * 1991-03-06 1993-05-07 Taisei Corp Dome for decompressing impulse wind pressure
JPH08135381A (en) * 1994-11-15 1996-05-28 Okada Toshio Impact relaxation device of tunnel entrance
JP2994585B2 (en) * 1996-02-16 1999-12-27 神鋼鋼線工業株式会社 Construction method of shock wave damping work for high-speed vehicle tunnel
JPH10115188A (en) * 1996-10-09 1998-05-06 Hitachi Zosen Corp Tunnel forming wall
JP2000080890A (en) * 1998-09-03 2000-03-21 Railway Technical Res Inst Buffer work for reducing low frequency sound generated in tunnel entrance/exit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016132928A (en) * 2015-01-20 2016-07-25 東海旅客鉄道株式会社 Buffer construction
CN107387111A (en) * 2017-08-17 2017-11-24 中铁第四勘察设计院集团有限公司 Relief hole buffer structure at a kind of high speed subway tunnel portal
CN110440745A (en) * 2019-08-14 2019-11-12 中铁西南科学研究院有限公司 A kind of deformation detecting method of lining cutting, device and storage medium
CN110440745B (en) * 2019-08-14 2021-07-23 中铁西南科学研究院有限公司 Lining deformation detection method and device and storage medium

Also Published As

Publication number Publication date
JP4220716B2 (en) 2009-02-04
TW200304522A (en) 2003-10-01
JP2003278488A (en) 2003-10-02

Similar Documents

Publication Publication Date Title
Krylov Noise and vibration from high-speed trains
Zhang et al. Acoustic performance of a semi-closed noise barrier installed on a high-speed railway bridge: Measurement and analysis considering actual service conditions
Wu et al. Sound emission comparisons between the box-section and U-section concrete viaducts for elevated railway
WO2003080997A1 (en) Buffer plate
CN113378407B (en) Railway totally-enclosed sound barrier noise reduction effect evaluation method
Tadakuma et al. Development of full-scale wind tunnel for enhancement of vehicle aerodynamic and aero-acoustic performance
JP2016132928A (en) Buffer construction
Murata et al. Noise reduction effect of noise barrier for Shinkansen based on Y-shaped structure
KR100331955B1 (en) Hood by train tunnel
JP2002082013A (en) Model experiment method of tunnel pressure wave
JP4383271B2 (en) Tubular structure
Saito et al. Countermeasure for reducing micro-pressure wave emitted from railway tunnel by installing hood at the exit of tunnel
KR200380479Y1 (en) Soundproof tunnel
He et al. Characteristics of sound insulation and insertion loss of different deloading sound barriers for high-speed railways
JP2820770B2 (en) Interference type soundproofing device
JP2002227144A (en) Sound absorbing structure for track
JP2000318696A (en) Ground test facility for aircraft engine
Chen et al. Experimental Study of Airborne Noise Reduction of Concrete Channel Girder Bridge Sections Compared With Box Girder for High-Speed Trains
JP2016132929A (en) Buffer construction and cover member
Kikuchi et al. Field measurement of wayside low-frequency noise emitted from tunnel portals and trains of high-speed railway
Maeda Protecting the trackside environment
Maeda Micropressure waves radiating from a Shinkansen tunnel portal
KR100446644B1 (en) Slit cover shelter by train tunnel
Kitagawa et al. Study on effective sound barriers for high speed trains
JP6944840B2 (en) Soundproof wall

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase