WO2003080008A1 - Verwendung von extrakten des olivenbaumes als deodorant - Google Patents

Verwendung von extrakten des olivenbaumes als deodorant Download PDF

Info

Publication number
WO2003080008A1
WO2003080008A1 PCT/EP2003/002570 EP0302570W WO03080008A1 WO 2003080008 A1 WO2003080008 A1 WO 2003080008A1 EP 0302570 W EP0302570 W EP 0302570W WO 03080008 A1 WO03080008 A1 WO 03080008A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
extracts
acid
olive
olive tree
Prior art date
Application number
PCT/EP2003/002570
Other languages
English (en)
French (fr)
Inventor
Ute Griesbach
Sybille Buchwald-Werner
Original Assignee
Cognis Deutschland Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland Gmbh & Co. Kg filed Critical Cognis Deutschland Gmbh & Co. Kg
Priority to EP03711989A priority Critical patent/EP1487399A1/de
Priority to AU2003218744A priority patent/AU2003218744A1/en
Publication of WO2003080008A1 publication Critical patent/WO2003080008A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q15/00Anti-perspirants or body deodorants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9789Magnoliopsida [dicotyledons]

Definitions

  • the invention is in the field of cosmetics and relates to the use of extracts from the olive tree as a deodorant.
  • Deodorants are used in cosmetics to remove unpleasant body odors, which mainly result from the fact that originally odorless substances in the body's sweat are decomposed into malodorous compounds by microorganisms. Accordingly, deodorants are active ingredients, such as antimicrobial agents, enzyme inhibitors, odor absorbers or odor maskers, and antiperspirants.
  • Sweat secretion is mostly minimized by so-called antiperspirants such as aluminum salts and zinc salts, which have an astringent effect.
  • antiperspirants such as aluminum salts and zinc salts
  • antimicrobial substances are also used which reduce the bacterial flora and thus reduce the decomposition of the components in sweat.
  • the flow of sweat is not influenced by the latter principle.
  • German patent application DE 42 37 551 discloses a composition which contains constituents of the herb of the genus Equisetum and constituents of the herb and / or the flower of the genus Lavandula and has a good antiperspirant effect which occurs very quickly after application and which also persists, when the antiperspirant effect of this composition has waned. This indicates that this composition also effectively prevents the unpleasant odor from secretion products of the body that have already been excreted and for a long time.
  • the invention relates to the use of extracts from the olive tree as a deodorant.
  • extracts from the olive tree in particular from the leaves of the olive tree and / or from the wastewater from olive oil production, have a microbicidal action against bacteria which have the main effect on sweat-decomposing processes.
  • the inhibition of these bacteria leads to a long-lasting effectiveness against unpleasant body odors.
  • the microflora typical of the armpit skin is effectively inhibited by the use of the olive leaf extract over a long period of time.
  • the plant extracts of the olive tree are also characterized by good dermatological tolerance.
  • the extracts to be used according to the invention are prepared by customary extraction methods.
  • suitable conventional extraction methods such as maceration, remaceration, digestion, movement maceration, vortex extraction, ultrasound extraction, countercurrent extraction, percolation, repercolation, evacolation (extraction under reduced pressure), diacolation and solid-liquid extraction under continuous reflux , which is carried out in a Soxhlet extractor, which is familiar to a person skilled in the art and in principle all can be used, is exemplary of Hager's Handbook of Pharmaceutical Practice, (5th edition, vol. 2, pp. 1026-1030, Springer Verlag, Berlin- Heidelberg-New-York 1991). Fresh or dried parts of the olive tree can be used as the starting material, but usually leaves are used which are mechanically shredded before extraction. All grinding methods known to the person skilled in the art are suitable here, for example crushing with a mortar.
  • the extraction is usually carried out at 20 to 100 ° C, preferably at 20 to 85 ° C, in particular either at the boiling point of the solvent used or at room temperature.
  • the extraction takes place under an inert gas atmosphere to avoid oxidation of the ingredients of the extract.
  • the extraction times are set by the person skilled in the art, depending on the starting material, the extraction process, the extraction temperature, the ratio of solvent to raw material, and others.
  • the crude extracts obtained can optionally be subjected to further customary steps, such as purification, concentration and / or decolorization. If desired, the extracts produced in this way can, for example, be subjected to a selective separation of individual undesirable ingredients.
  • the extraction can be carried out to any desired degree of extraction, but is usually carried out until exhaustion.
  • the present invention includes the knowledge that the extraction conditions and the yields of the final extracts can be selected depending on the desired field of use. If desired, the extracts can then be subjected to spray drying or freeze drying, for example.
  • the amount of the extracts used in the preparations mentioned depends on the type of application of the extracts and on the concentration of the individual ingredients.
  • the total amount of the olive tree leaf extract which is contained in the preparations according to the invention is generally 0.01 to 15% by weight, preferably 0.05 to 5% by weight, in particular 0.1 to 3% by weight, based on the final preparation, with the proviso that the quantities with water and possibly other auxiliary substances and additives add up to 100% by weight.
  • Olive tree leaf extracts are preferably used, which are standardized with regard to their main ingredient oleuropein. They contain 1 to 40% by weight, preferably 5 to 30% by weight, particularly preferably 10 to 25% by weight and especially 18 to 22% by weight oleuropein, based on the dry extract.
  • Extracts from the wastewater of olive tree production are produced by drying the water, preferably by spray drying , after the addition of auxiliaries such as mannitol or sodium casinate. They are adjusted to a content of polyphenols, preferably hydroxytyrosol and tyrosol, which is at least 0.5% by weight, preferably at least 1% by weight and particularly preferably at least 2% by weight, based on the dry extract.
  • Active substance in the sense of the invention relates to the proportion of substances and auxiliaries and additives which are contained in the preparations, with the exception of the additionally added water.
  • Deodorant preparations relates to the proportion of substances and auxiliaries and additives which are contained in the preparations, with the exception of the additionally added water.
  • Another object of the invention are deodorant preparations containing the extracts of the olive tree, preferably from the leaves of the olive tree and / or from the wastewater of olive oil production, and at least one substance selected from the group formed by germ-inhibiting agents, enzyme inhibitors, odor absorbers or odor maskers as well Antiperspirants, preferably a substance selected from the group consisting of cationic chitosan, salts of aluminum, zirconium or zinc and their complex compounds.
  • germ-inhibiting agents such as.
  • Esterase inhibitors are suitable as enzyme inhibitors. These are preferably trialkyl citrates such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and in particular triethyl citrate (Hydagen® CAT, Cognis GmbH, Düsseldorf / FRG). This is used in amounts of 0.05 to 5% by weight, preferably 0.1 to 3% by weight and particularly preferably 0.5 to 2% by weight, based on the deodorant preparations in combination with the olive tree leaf extracts.
  • trialkyl citrates such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and in particular triethyl citrate (Hydagen® CAT, Cognis GmbH, Düsseldorf / FRG). This is used in amounts of 0.05 to 5% by weight, preferably 0.1 to 3% by weight and particularly preferably 0.5 to 2% by weight, based on the deodorant preparations in combination with the olive
  • esterase inhibitors include sterol sulfates or phosphates, such as, for example, lanosterol, cholesterol, campesterol, stigmasterol and sitosterol sulfate or phosphate, dicarboxylic acids and their esters, such as, for example, glutaric acid, glutaric acid monoethyl ester, glutaric acid diethyl ester, Adipic acid, adipic acid monoethyl ester, adipic acid diethyl ester, malonic acid and malonic acid diethyl ester, hydroxycarboxylic acids and their esters such as citric acid, malic acid, tartaric acid or tartaric acid diethyl ester and zinc glycinate.
  • sterol sulfates or phosphates such as, for example, lanosterol, cholesterol, campesterol, stigmasterol and sitosterol sulfate or phosphate
  • dicarboxylic acids and their esters such as, for
  • Suitable odor absorbers are substances that absorb odor-forming compounds and can retain them to a large extent. They reduce the partial pressure of the individual components and reduce like their spreading speed. It is important that perfumes must remain unaffected. Odor absorbers are not effective against bacteria. They contain, for example, a complex zinc salt of ricinoleic acid or special, largely odorless fragrances, which are known to the person skilled in the art as "fixators", such as, for example, the main component. B. extracts of Labdanum or Styrax or certain abietic acid derivatives. Fragrance substances or perfume oils act as odor maskers which, in addition to their function as odor maskers, give the deodorants their respective fragrance.
  • Perfume oils are, for example, mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers, stems and leaves, fruits, fruit peels, roots, woods, herbs and grasses, needles and branches as well as resins and balms. Animal raw materials, such as civet and castoreum, are also suitable. Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, p-tert-butylcyclohexyl acetate, linalyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, allyl cyclohexyl propionate, styrallyl propionate and benzyl salicylate.
  • the ethers include, for example, benzyl ethyl ether, the aldehydes, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetal dehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, the ketones, for example, the ionone and methyl cedryl ketone, and the alcohols Anethole, citronellol, eugenol, isoeugenol, geraniol ,. Linalool, phenylethyl alcohol and terpineol, the hydrocarbons mainly include the terpenes and balsams.
  • fragrance oils of lower volatility which are mostly used as aroma components, are also suitable as perfume oils, e.g. sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labdanum oil and lavandin oil.
  • Antiperspirants reduce sweat formation by influencing the activity of the eccrine sweat glands and thus counteract armpit wetness and body odor.
  • Salts of aluminum, zirconium or zinc are particularly suitable as astringent antiperspirant active ingredients.
  • suitable antiperspirant active ingredients are, for example, aluminum chloride, aluminum chlorohydrate, aluminum dichlorohydrate, aluminum sesquichlorohydrate and their complex compounds, for.
  • B. with amino acids such as Glycine.
  • Aqueous or anhydrous formulations of deodorants typically contain the following ingredients:
  • auxiliaries such as B. thickeners or complexing agents and / or
  • non-aqueous solvents such as As ethanol, propylene glycol and / or glycerin.
  • oil-soluble and water-soluble auxiliaries can be present in smaller amounts in deodorants.
  • oil soluble aids can e.g. his:
  • Customary water-soluble additives are, for example, preservatives, water-soluble fragrances, pH adjusting agents, for example Puffergernische, 'water-soluble thickeners, such as water-soluble natural or synthetic polymers such as xanthan gum, hydroxyethylcellulose, polyvinylpyrrolidone or high molecular weight polyethylene oxides.
  • the present invention also relates to the use of the olive tree extracts for the production of deodorant preparations.
  • the amount of extracts from the leaves of the olive tree and / or from the wastewater from olive oil production is usually in the order of 0.01 to 15% by weight, preferably 0.05 to 5% by weight, in particular 0.1 to 3 wt .-% - based on the preparations.
  • the deodorant preparations can be in the form of creams, gels, lotions, alcoholic and aqueous / alcoholic solutions, emulsions, wax / fat masses, stick preparations, powders or ointments.
  • agents can also be used as further auxiliaries and additives, mild surfactants, oil bodies, emulsifiers, superfatting agents, consistency enhancers, thickeners, polymers, silicone compounds, fats, waxes, biogenic agents, film formers, swelling agents, antioxidants, hydrotropes, preservatives, solubilizers, perfume oils, dyes and the like included.
  • Typical examples of particularly suitable mild, i.e. particularly skin-compatible surfactants are fatty alcohol polyglycol ether sulfates, monoglyceride sulfates, mono- and / or dialkyl sulfosuccinates, fatty acid taurides, fatty acid glutamates, ⁇ - olefin sulfonates, Ethercarbo.nklaren, alkyl oligoglucosides, fatty acid glucamides, alkylamidobetaines, amphoacetals and / or protein fatty acid condensates, the latter preferably based on wheat proteins.
  • esters of linear C6-C22 fatty acids with branched alcohols in particular 2-ethylhexanol
  • esters of Ci8-C3 - alkylhydroxycarboxylic acids with linear or branched C6-C22 fatty alcohols in particular dioctyl matte
  • esters of linear and / or branched fatty acids with polyhydric alcohols such as propylene glycol, dimer diol or trimer triol
  • polyhydric alcohols such as propylene glycol, dimer diol or trimer triol
  • Guerbet alcohols triglycerides based on C.- cio fatty acids, liquid mono- / di- / triglyceride mixtures based on C ⁇ -cis fatty acids
  • esters of C6-C 2 fatty alcohols and / or Guerbet alcohols with aromatic carboxylic acids in particular benzoic acid
  • Finsolv® TN linear or branched, symmetrical or unsymmetrical dialkyl ethers with 6 to 22 carbon atoms per alkyl group, such as dicaprylyl ether (Cetiol® OE), ring opening products of epoxidized fatty acid esters with polyols , Silicone oils (cyclomethicones, silicon methicone types, etc.) and / or aliphatic or naphthenic hydrocarbons, such as w he squalane, squalene or dialkyl cyclohexane into consideration.
  • dicaprylyl ether such as dicaprylyl ether (Cetiol® OE), ring opening products of epoxidized fatty acid esters with polyols , Silicone oils (cyclomethicones, silicon methicone types, etc.) and / or aliphatic or naphthenic hydrocarbons, such as w he squalane, squalene or dialky
  • Suitable emulsifiers are nonionic surfactants from at least one of the following groups:
  • Partial esters of polyglycerol (average degree of self-condensation 2 to 8), polyethylene glycol (molecular weight 400 to 5000), trimethylolpropane, pentaerythritol, sugar alcohols (eg sorbitol), alkyl glucosides (eg methyl glucoside, butyl glucoside, lauryl glucoside) and poly (cellulose glucose) with (eg cellulose glucose) and / or unsaturated, linear or branched ten fatty acids with 12 to 22 carbon atoms and / or hydroxycarboxylic acids with 3 to 18 carbon atoms and their adducts with 1 to 30 moles of ethylene oxide;
  • Block copolymers e.g. Polyethylene glycol 30 dipolyhydroxystearate;
  • Polymer emulsifiers e.g. Pemulen types (TR-1, TR-2) from Goodrich;
  • adducts of ethylene oxide and / or of propylene oxide with fatty alcohols, fatty acids, alkylphenols or with castor oil are known, commercially available products. These are mixtures of homologs whose average degree of alkoxylation is the ratio of the amounts of ethylene oxide and / or propylene oxide and substrate, with which the addition reaction is carried out.
  • Ci2 / i8 fatty acid monoesters and diesters of adducts of ethylene oxide with glycerol are known as refatting agents for cosmetic preparations.
  • Alkyl and / or alkenyl oligoglycosides their preparation and their use are known from the prior art. They are produced in particular by reacting glucose or oligosaccharides with primary alcohols with 8 to 18 carbon atoms.
  • glycoside residue both monoglycosides in which a cyclic sugar residue is glycosidically bonded to the fatty alcohol and oligomeric glycosides with a degree of oligomerization of up to preferably about 8 are suitable.
  • the degree of oligomerization is a statistical mean value which is based on a homolog distribution customary for such technical products. ,. > Partial glycerides
  • Suitable partial glycerides are hydroxystearic acid monoglyceride, hydroxystearic acid diglyceride, isostearic acid, Isostearinklarediglycerid, oleic acid monoglyceride, oleic acid diglyceride, Ricinolklaremoglycerid, Ricinolklarediglycerid, linoleic acid monoglyceride, Linolklarediglycerid, LinolenTalkremonoglycerid, Linolenchurediglycerid, Erucaklaremonoglycerid, Erucaklarediglycerid, Weinklaremonoglycerid, Weinklarediglyce- chloride, Citronenklamonoglycerid, Citronendiglycerid, ⁇ pfelklamonoglycerid, Malic acid diglyceride and their technical mixtures, which may still contain small amounts of triglyceride from the manufacturing process. Addition products of 1 to 30, preferably 5
  • sorbitan sorbitan, sorbitan sesquiisostearate, sorbitan come diisostearate, sorbitan triisostearate, sorbitan monooleate, sorbitan dioleate, trioleate, Sorbitanmonoerucat, Sorbitansesquierucat, Sorbitandierucat, Sorbitantrieru- cat, Sorbitanmonoricinoleat, Sorbitansesquiricinoleat, Sorbitandiricinoleat, Sorbitantriricinoleat, Sorbitanmonohydroxystearat, Sorbitansesquihydroxystearat, Sorbitandihydroxystearat, sorting bitantrihydroxystearat , Sorbitan monotartrate, sorbitan sesqui-tartrate, sorbitan ditartrate, sorbitan tritartrate, sorbitan monocitrate, sorbitan sesquicitrate, sorbitan dicitrate,
  • polyglycerol esters are polyglyceryl-2 dipolyhydroxystearates (Dehymuls® PGPH), polyglycerol-3 diisostearates (Lameform® TGI), polyglyceryl-4 isostates (Isolan® Gl 34), polyglyceryl-3 oleates, diisostearoyl polyglyearyl-3 diisostearates (Isolan® PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Care® 450), Poiyglyceryl-3 Beeswax (Cera Bellina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010 / 90), Polyglyceryl-3 Cetyl Ether ( Chimexane® NL), Polyglyceryl-3 Distearate (Cremophor® GS 32) and Polyglyceryl Polyricinoleate (Admul® WOL 1403) Polyglyceryl Dimer
  • polystyrene resin examples include those with 1 to 30, if appropriate Moles of ethylene oxide reacted mono-, di- and triesters of trimethylolpropane or pentaerythritol with lauric acid, coconut fatty acid, tallow fatty acid, palmitic acid, stearic acid, oleic acid, behenic acid and the like.
  • Typical anionic emulsifiers are aliphatic fatty acids with 12 to 22 carbon atoms, such as, for example, palmitic acid, stearic acid or behenic acid, and dicarboxylic acids with 12 to 22 carbon atoms, such as, for example, azelaic acid or sebacic acid.
  • Zwitterionic surfactants can also be used as emulsifiers.
  • Zwitterionic surfactants are those surface-active compounds which carry at least one quaternary ammonium group and at least one carboxylate and one sulfonate group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate, for example coconut acylaminopropyldimethylammonium glycinate, and 2-alkyl-3 -car- boxylmethyl-3-hydroxyethylimidazolines each having 8 to 18 carbon atoms in the alkyl or acyl group and the cocoacylaminoethylhydroxyethylcarboxymethylglycinate.
  • betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate,
  • ampholytic surfactants are surface-active compounds which, in addition to a C / i ⁇ alkyl or acyl group contain at least one free amino group and at least one -COOH or -S0 3 H group in the molecule and are capable of forming internal salts
  • suitable ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylaminobutyric acids, N- Alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamidopropylglycine, N-alkyltaurine, N-alkylsarcosine, 2-alkylaminopropionic acid and alkylaminoacetic acid, each with about 8 to 18 carbon atoms in the alkyl group.
  • ampholytic surfactants are N-coconut alkylaminopropionate , the cocoacylaminoethylamino propionate and the Ci2 / i8 acyl sarcosine.
  • cationic surfactants also come as E emulsifiers into consideration, those of the esterquat type, preferably methylquaternized di- ' fatty acid triethanolamine ester salts, being particularly preferred. Fats and waxes
  • Typical examples of fats are glycerides, i.e. Solid or liquid vegetable or animal products, which consist essentially of mixed glycerol esters of higher fatty acids, come as waxes, among others. natural waxes, e.g. Candelilla wax, camauba wax, japan wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, ouricury wax, montan wax, beeswax, shellac wax, walnut, lanolin (wool wax), pretzel fat, ceresin, ozokerite (earth wax), petrolatum, paraffin waxes chemically modified waxes (hard waxes), e.g.
  • natural waxes e.g. Candelilla wax, camauba wax, japan wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, ouricury wax, montan wax, beeswax
  • Montanester waxes Montanester waxes, Sasol waxes, hydrogenated jojoba waxes and synthetic waxes, such as Polyalkylene waxes and polyethylene glycol waxes in question.
  • fat-like substances such as lecithins and phospholipids can also be used as additives.
  • lecithins to mean those glycerophospholipids which are formed from fatty acids, glycerol, phosphoric acid and choline by esterification. Lecithins are therefore often used in the professional world as phosphatidylcholines (PC).
  • Examples of natural lecithins are the cephalins, which are also referred to as phosphatidic acids and are derivatives of 1,2-diacyl-sn-glycerol-3-phosphoric acids.
  • phospholipids are usually understood to be mono- and preferably diesters of phosphoric acid with glycerol (glycerol phosphates), which are generally classed as fats.
  • glycerol phosphates glycerol phosphates
  • sphingosines or sphingolipids are also suitable.
  • consistency agents are primarily fatty alcohols or hydroxy fatty alcohols with 12 to 22 and preferably 16 to 18 carbon atoms and in addition partial glycerides, fatty acids or hydroxy fatty acids.
  • a combination of these substances with alkyl oligoglucosides and / or fatty acid N-methyl glucamides of the same chain length and / or polyglycerol poly-12-hydroxystearates is preferred.
  • Suitable thickeners are, for example, Aerosil types (hydrophilic silicas), polysaccharides, in particular xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and hydroxyethyl and hydroxypropyl cellulose, and also higher molecular weight polyethylene glycol mono- and diesters of fatty acids, polyacrylates, (eg Carbopole® and Pemulen types from Goodrich; Synthalene® from Sigma; Keltrol types from Kelco; Sepigel types from Seppic; Salcare types from Allied Colloids), polyacrylamides, polymers, polyvinyl alcohol and polyvinylpyrrolidone, as special Bentonites such as Bentone® Gel VS-5PC (Rheox), which is a mixture of cyclopentasiloxane, disteardimonium hectorite and propylene carbonate, have also proven effective.
  • Aerosil types hydrophilic silicas
  • Surfactants such as ethoxylated fatty acid glycerides, esters of fatty acids with polyols such as for example pentaerythritol or trimethylolpropane, fatty alcohol ethoxylates with a narrow homolog distribution or alkylodogog lucoside as well as electrolytes such as table salt and ammonium chloride.
  • Substances such as lanolin and lecithin and polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, monoglycerides and fatty acid alkanolamides can be used as superfatting agents, the latter simultaneously serving as foam stabilizers.
  • Metal salts of fatty acids such as e.g. Magnesium, aluminum and / or zinc stearate or ricinoleate are used.
  • Suitable cationic polymers are, for example, cationic cellulose derivatives, e.g. a quaternized hydroxyethyl cellulose available under the name Polymer JR 400® from Amerchol, cationic starch, copolymers of diallylammonium salts and acrylamides, quaternized vinylpyrrolidone / vinylimidazole polymers such as e.g.
  • Luviquat® condensation products of polyglycols and amines, quaternized collagen polypeptides, such as, for example, lauryl-dimonium hydroxypropyl hydrolyzed collagen (Lamequat®L / Grünau), quaternized wheat polypeptides, polyethyleneimine, cationic silicone polymers, e.g.
  • Amodimethicones, copolymers of adipic acid and dimethylaminohydroxypropyldiethylenetriamine (Cartaretine® / Sandoz), copolymers of acrylic acid with dimethyldiallylammonium chloride (Merquat® 550 / Chemviron), polyaminopolyamides, and their cross-linked water-soluble polymers, optionally microcrystalline, e.g., condensation products from dihalogen, such as dihalogen products Dibromobutane with bisdialkylamines, e.g. Bis-dimethylamino-1,3-propane, cationic guar gum, e.g. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 from Celanese, quaternized ammonium salt polymers, e.g. Mirapol® A-15, Mirapol® AD-1, Mirapol® AZ-1 from Miranol.
  • dihalogen such as dihalogen products Dibromobutane with bisdialkyl
  • Anionic, zwitterionic, amphoteric and nonionic polymers include, for example, vinyl acetate / crotonic acid copolymers, vinylpyrrolidone / vinyl acrylate copolymers, vinyllace- tat / butyl maleate / isobornyl acrylate copolymers, methyl vinyl ether / maleic anhydride copolymers and their esters, uncrosslinked and polyol crosslinked polyacrylic acids, acrylamidopropyltrimethylammonium chloride / acrylate copolymers, octylacrylamide / methylmethacrylate lat , Vinyl pyrrolidone / vinyl acetate copolymers, vinyl pyrrolidone / dimethylaminoethyl methacrylate / vinyl caprolactam terpolymers and optionally derivatized cellulose ethers and silicones in question.
  • Suitable silicone compounds are, for example, dimethylpolysiloxanes, methylphenylpolysuoxanes, cyclic silicones and amino, fatty acid, alcohol, polyether, epoxy, fluorine, glycoside and / or alkyl-modified silicone compounds, which can be both liquid and resinous at room temperature.
  • Simethicones which are mixtures of dimethicones with an average chain length of 200 to 300 dimethyisiloxane units and hydrogenated silicates, are also suitable.
  • biogenic active ingredients include tocopherol, tocopherol acetate, tocopherol palmitate, ascorbic acid, (deoxy) ribonucic acid and its fragmentation products, ⁇ -glucans, retinoin, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, pseudoce-ram to understand essential oils, plant extracts and vitamin complexes. film formers
  • Common film formers are, for example, chitosan, microcrystalline chitosan, quaternized chitosan, polyvinylpyrrolidone, vinylpyrrolidone-vinyl acetate copolymers, polymers of the acrylic acid series, quaternary cellulose derivatives, collagen, hyaluronic acid or its salts and similar compounds.
  • Hydrotropes such as ethanol, isopropyl alcohol, or polyols can also be used to improve the flow behavior.
  • Polyols that come into consideration here preferably have 2 to 15 carbon atoms and at least two hydroxyl groups.
  • the polyols can also contain further functional groups, in particular amino groups, or be modified with nitrogen. Typical examples are
  • Alkylene glycols such as, for example, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol and polyethylene glycols with an average molecular weight of 100 to 1,000 daltons;
  • Methyl compounds such as in particular trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol and dipentaerythritol;
  • Dialcohol amines such as diethanolamine or 2-amino-1, 3-propanediol.
  • Suitable preservatives are, for example, phenoxyethanol, formaldehyde solution, parabens, pentanediol or sorbic acid, as well as the silver complexes known under the name Surfacine® and the other classes of substances listed in Appendix 6, Parts A and B of the Cosmetics Regulation.
  • Perfume oils include mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers (lily, lavender, roses, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patchouli, petitgrain), fruits (anise, coriander, caraway, juniper der), fruit peels (bergamot, lemon, oranges), roots (macis, angelica, celery, cardamom, costus, iris, calmus), woods (pine, sandal, guaiac, cedar, rosewood), herbs and grasses ( Tarragon, lemongrass, sage, thyme), needles and twigs (spruce, fir, pine, mountain pine), resins and balsams (galbanum, elemi, benzoin, myrrh, olibanum, opoponax).
  • Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type. Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinylacetate, phenylethyl acetate, unalylbenzoate, benzyl formate, ethyl methylphenylglycinate, allylcyclohexylatexylpropylionylpionylpylpropionate.
  • the ethers include, for example, benzylethyl ether, the aldehydes, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, the ketones include, for example, the jonones, ⁇ -isomethylionone and methylcedryl ketone the alcohols ethanol, citronellol, eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpineol, the hydrocarbons mainly include the terpenes and balsams.
  • fragrance oils of lower volatility which are mostly used as aroma components, are also suitable as perfume oils, for example sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labola oil and lavandin oil.
  • Suitable flavors are, for example, peppermint oil, spearmint oil, anise oil, stemanis oil, caraway oil, eucalyptus oil, fennel oil, lemon oil, wintergreen oil, clove oil, menthol and the like.
  • the dyes which can be used are those which are suitable and approved for cosmetic purposes. Examples are Kochillerill A (Cl 16255), Patent Blue V (C.1.42051), Indigotin (C.1.73015), Chlorophyllin (01.75810), Quinoline Yellow (CI47005), Titanium Dioxide (C.1.77891), Indanthrene Blue RS (Cl 69800) and Madder Lacquer ( CI58000).
  • Luminol can also be used as the luminescent dye be included. These dyes are usually used in concentrations of 0.001 to 0.1% by weight. %, based on the mixture as a whole.
  • Leaves of the olive tree (Olea europaea) were collected, dried, ground and passed through a 55-60 vol. % Ethanol / water mixture extracted at 60 ° C for 4 hours. The eluate was dried, ground and sieved and adjusted to a content of approximately 20% by weight oleuropein.
  • An agar diffusion test was carried out to determine the antimicrobial activity on microorganisms of the bacterial flora of the skin and scalp.
  • test germs were subcultured on Columbia blood agar (bioMerieux Art. 43049). Sufficient colonies were homogenized in NaCl peptone buffer using a swab so that the turbidity corresponded to the McFarland Standard 1.0.
  • test germs were subcultured on Schaedler agar (bioMerieux Art. 43273). So many colonies were homogenized in NaCl peptone buffer using swabs that the turbidity corresponded to the McFarland Standard 1.0.
  • a test concentration of 5% by weight of olive tree leaf extract (Herbalia®Olive - Cognis Iberia SL, Poligono San Vicente, 08755 Castellbisbal, Barcelona (Spain)) was obtained by weighing out 0.5 g of dry extract and dissolving to 10 ml with 15% by volume of ethanol ( Merck, Art. 100971).
  • test plates were created for each batch.
  • the agar plates were
  • test germs were homogenized 2% with the appropriate test medium (see below). 15 ml of this was poured into petri dishes.
  • the microorganisms from the olive tree leaf extract are significantly inhibited.
  • Staphylococcus epidermidis is subject to inhibition even at very low sample concentrations.
  • the results show that in particular microorganisms that are characteristic of the armpit microflora are effectively inhibited by olive tree leaf extract.
  • Tables 2a and 2b below contain a number of formulation examples with olive tree leaf extract. The dermatological tolerance and the feeling on the skin after use had been found to be particularly good for all formulations.
  • Deodorant preparations Deodorant cream (water, preservative ad 100 wt .-%)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Botany (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Cosmetics (AREA)

Abstract

Vorgeschlagen wird die Verwendung von Extrakten des Olivenbaumes als Deodorant. Extrakte des Olivenbaumes, insbesondere aus den Blättern des Olivenbaumes und/oder aus dem Abwasser der olivenölherstellung, haben eine antimikrobielle Wirkung gegen Mikroorganismen, die für schweißzersetzende Vorgänge verantwortlich sind.

Description

Verwendung von Extrakten des Olivenbaumes als Deodorant
Die Erfindung befindet sich auf dem Gebiet der Kosmetik und betrifft die Verwendung von Extrakten des Olivenbaumes als Deodorant.
Stand der Technik
Deodorantien werden in der Kosmetik zur Beseitigung unangenehmer Körpergerüche eingesetzt, die hauptsächlich dadurch entstehen, dass ursprünglich geruchlose körpereigene Substanzen des Schweiß durch Mikroorganismen in übelriechende Verbindungen zersetzt werden. Dementsprechend sind Deodorantien Wirkstoffe, wie keimhemmende Mittel, Enzyminhibitoren, Geruchsabsorber oder Geruchsüberdecker sowie Antitranspirantien.
Meistens wird durch sogenannte Antitranspirantien wie Aluminiumsalze und Zinksalze, die adstrin- gierend wirken, die Schweißabsonderung minimiert, andererseits werden auch antimikrobielle Substanzen eingesetzt, die die Bakterienflora reduzieren und somit die Zersetzung der Bestandteile im Schweiß senken. Durch letzteres Prinzip wird der Schweißfluß nicht beeinflußt. Die deutsche Patentanmeldung DE 42 37 551 offenbart eine Zusammensetzung, die Bestandteile des Krauts der Gattung Equisetum und Bestandteile des Krauts und/oder der Blüte der Gattung Lavandula enthält und eine gute, nach Auftragung sehr rasch eintretende schweißhemmende Wirkung aufweist, die auch noch dann anhält, wenn die schweißhemmende Wirkung dieser Zusammensetzung nachgelassen hat. Dies weist darauf hin, dass diese Zusammensetzung auch die unangenehme Geruchsbildung aus bereits ausgeschiedenen Absonderungsprodukten des Körpers wirksam und für längere Zeit unterbindet.
Es besteht jedoch weiterhin Bedarf nach gut verträglichen Substanzen mit geringer negativer Wirkung auf die Bakterienflora der Haut, geringem Einfluß auf die Absonderung des Schweiß und einer lang anhaltenden Wirksamkeit. Weiterhin war es eine Aufgabe der Erfindung, kosmetische Desodorantien zu entwickeln, die sich durch gute Hautverträglichkeit auszeichnen. Beschreibung der Erfindung
Gegenstand der Erfindung ist die Verwendung von Extrakten des Olivenbaumes als Deodorant. Überraschenderweise wurde gefunden, dass Extrakte des Olivenbaumes, insbesondere aus den Blättern des Olivenbaumes und/oder aus dem Abwasser der Olivenölherstellung, eine mikrobizide Wirkung gegen Bakterien haben, die die Hauptwirkung auf schweißzersetzende Vorgänge haben. Die Hemmung dieser Bakterien führt zu einer langanhaltenden Wirksamkeit gegen unangenehme Körpergerüche. Insbesondere die für die Achselhaut typische Mikroflora wird durch die Anwendung des Olivenblattextraktes wirksam über einen langanhaltenden Zeitraum gehemmt. Die Pflanzenextrakte des Olivenbaumes zeichnen sich außerdem durch eine gute dermatologische Verträglichkeit aus.
Extrakte des Olivenbaumes
Die Herstellung der erfindungsgemäß einzusetzenden Extrakte erfolgt durch übliche Methoden der Extraktion. Bezüglich der geeigneten herkömmlichen Extraktionsverfahren wie der Mazeration, der Remazeration, der Digestion, der Bewegungsmazeration, der Wirbelextraktion, Ultraschallextraktion, der Gegenstromextraktion, der Perkolation, der Reperkolation, der Evakolation (Extraktion unter vermindertem Druck), der Diakolation und Festflüssig-Extraktion unter kontinuierlichem Rückfluß, die in einem Soxhlet-Extraktor durchgeführt wird, die dem Fachmann geläufig und im Prinzip alle anwendbar sind, sei beispielhaft auf Hagers Handbuch der Pharmazeutischen Praxis, (5. Auflage, Bd. 2, S. 1026-1030, Springer Verlag, Berlin-Heidelberg-New-York 1991) verwiesen. Als Ausgangsmaterial können frische oder getrocknete Teile des Olivenbaumes eingesetzt werden, üblicherweise wird jedoch von Blättern ausgegangen, die vor der Extraktion mechanisch zerkleinert werden. Hierbei eignen sich alle dem Fachmann bekannten Zerkleinerungsmethoden, als Beispiel sei die Zerstoßung mit einem Mörser genannt.
Als Lösungsmittel für die Durchführung der Extraktionen können vorzugsweise Wasser, organische Lösungsmittel oder Gemische aus organischen Lösungsmitteln und Wasser, insbesondere niedermolekulare Alkohole, Kohlenwasserstoffe, Ketone, Ester oder halogenhaltige Kohlenwasserstoffe mit mehr oder weniger hohen Wassergehalten (destilliert oder nicht destilliert) vorzugsweise wässrig, alkoholische Lösungen einer Temperatur von größer oder gleich 20 °C verwendet werden. Besonders bevorzugt ist die Extraktion mit Wasser, Methanol, Ethanol, Hexan, Cyclohexan, Pentan, Aceton, Propylenglycolen, Polyethylenglycolen, Ethylacetat, Dichlormethan, Trichlor- methan sowie Mischungen hieraus. Die Extraktion erfolgt in der Regel bei 20 bis 100 °C, bevorzugt bei 20 bis 85°C, insbesondere entweder bei Siedetemperatur des verwendeten Lösungsmittels oder bei Raumtemperatur. In einer möglichen Ausführungsform erfolgt die Extraktion unter Inertgasatmosphäre zur Vermeidung der Oxidation der Inhaltsstoffe des Extraktes. Die Extraktionszeiten werden vom Fachmann, in Abhängigkeit vom Ausgangsmaterial, dem Extraktionsverfahren, der Extraktionstemperatur, vom Verhältnis Lösungsmittel zu Rohstoff u.a. eingestellt. Nach der Extraktion können die erhaltenen Rohextrakte gegebenenfalls weiteren üblichen Schritten, wie beispielsweise Aufreinigung, Konzentration und/oder Entfärbung unterzogen werden. Falls wünschenswert, können die so hergestellten Extrakte beispielsweise einer selektiven Abtrennung einzelner unerwünschter Inhaltsstoffe, unterzogen werden. Die Extraktion kann bis zu jedem gewünschten Extraktionsgrad erfolgen, wird aber gewöhnlich bis zur Erschöpfung durchgeführt. Die vorliegende Erfindung umfasst die Erkenntnis, dass die Extraktionsbedingungen sowie die Ausbeuten der Endextrakte je nach gewünschtem Einsatzgebiet gewählt werden können. Falls gewünscht, können die Extrakte anschließend beispielsweise einer Sprüh- oder Gefriertrocknung unterworfen werden.
Die Einsatzmenge der Extrakte in den genannten Zubereitungen richtet sich nach der Art der Anwendungen der Extrakte und nach der Konzentration der einzelnen Inhaltstoffe. Die Gesamtmenge des Olivenbaumblätterextraktes, der in den erfindungsgemäßen Zubereitungen enthalten ist, beträgt in der Regel 0,01 bis 15 Gew.-%, vorzugsweise 0,05 bis 5 Gew.-%, insbesondere 0,1 bis 3 Gew.-% bezogen auf die Endzubereitung, mit der Maßgabe, dass sich die Mengenangaben mit Wasser und gegebenenfalls weiteren Hilfs- und Zusatzstoffen zu 100 Gew.-% addieren.
Vorzugsweise werden Olivenbaumblätterextrakte eingesetzt die bezüglich Ihres Hauptinhaltsstoffes Oleuropein standardisiert sind. Sie enthalten 1 bis 40 Gew. % vorzugsweise 5 bis 30 Gew. %, besonders bevorzugt 10 bis 25 Gew. % und speziell 18 bis 22 Gew. % Oleuropein bezogen auf den Trockeήextrakt.
Extrakte aus dem Abwasser der Olivenbaumherstellung werden durch Trocknung des Wasser vorzugsweise über Sprühtrocknung' nach Zusatz von Hilfsstoffen wie Mannitol oder Natriumcasei- nat hergestellt. Sie werden auf einen Gehalt an Polyphenolen, vorzugsweise Hydroxytyrosol und Tyrosol eingestellt, dieser beträgt mindestens 0,5 Gew. % vorzugsweise mindestens 1 Gew. % und besonders bevorzugt mindestens 2 Gew. % Polyphenol bezogen auf den Trockenextrakt.
Aktivsubstanz im Sinne der Erfindung bezieht sich auf den Anteil an Substanzen sowie Hilfs- und Zusatzstoffen, die in den Zubereitungen enthaltend sind, mit Ausnahme des zusätzlich hinzugefügten Wassers. Deodorant-Zubereitungen
Ein weiterer Gegenstand der Erfindung sind Deodorantzubereitungen enthalted die Extrakte des Olivenbaumes, vorzugsweise aus den Blättern des Olivenbaumes und/oder aus dem Abwasser der Olivenölherstellung, und mindestens eine Substanz ausgewählt aus der Gruppe, die gebildet wird von keimhemmenden Mitteln, Enzyminhibitoren, Geruchsabsorber oder Geruchsüberdecker sowie Antitranspirantien, vorzugsweise eine Substanz ausgewählt aus der Gruppe, die gebildet wird von kationischem Chitosan, Salze des Aluminiums, Zirkoniums oder des Zinks sowie deren Komplexverbindungen.
Als keimhemmende Mittel sind grundsätzlich alle gegen grampositive Bakterien wirksamen Stoffe geeignet, wie z. B. 4-Hydroxybenzoesäure und ihre Salze und Ester, N-(4-Chlorphenyl)-N'-(3,4 dichlorphenyl)hamstoff, 2,4,4'-Trichlor-2'-hydroxydiphenylether (Triclosan), 4-Chlor-3,5- dimethylphenol, 2,2'-Methylen-bis(6-brom-4-chlorphenol), 3-Methyl-4-(1-methylethyl)phenol, 2- Benzyl-4-chlorphenol, 3-(4-Chlorphenoxy)-1 ,2-propandiol, 3-lod-2-propinylbutylcarbamat, Chlorhe- xidin, 3,4,4 '-Trichlorcarbanilid (TTC), antibakterielle Riechstoffe, Thymoi, Thymianöl, Eugenol, Nelkenöl, Menthol, Minzöl, Famesol, Phenoxyethanol, Glycerinmonocaprinat, Glycerinmonocapry- lat, Glycerinmonolaurat (GML), Diglycerinmonocaprinat (DMC), Salicylsäure-N-alkylamide wie z. B. Salicylsäure-n-octylamid oder Salicylsäure-n-decylamid.
Als Enzyminhibitoren sind beispielsweise Esteraseinhibitoren geeignet. Hierbei handelt es sich vorzugsweise um Trialkylcitrate wie Trimethylcitrat, Tripropylcitrat, Triisopropylcitrat, Tributylcitrat und insbesondere Triethylcitrat (Hydagen® CAT, Cognis GmbH, Düsseldorf/FRG). Dieses wird in -Mengen von 0,05 bis 5 Gew.%, vorzugsweise 0,1 bis 3 Gew. % und besonders bevorzugt 0,5 bis 2 Gew.% bezogen auf die Deodorant-Zubereitungen in Kombination mit den Olivenbaumblattextrak- ten eingesetzt.
Die Stoffe inhibieren die Enzymaktivität und reduzieren dadurch die Geruchsbildung. Weitere Stoffe, die als Esteraseinhibitoren in Betracht kommen, sind Sterolsulfate oder -phosphate, wie beispielsweise Lanosterin-, Cholesterin-, Campesterin-, Stigmasterin- und Sitosterinsulfat bzw - phosphat, Dicarbonsäuren und deren Ester, wie beispielsweise Glutarsäure, Glut- arsäuremonoethylester, Glutarsäurediethylester, Adipinsäure, Adipinsäuremonoethylester, Adipin- säurediethylester, Malonsäure und Malonsäurediethylester, Hydroxycarbnonsäuren und deren Ester wie beispielsweise Citronensäure, Äpfelsäure, Weinsäure oder Weinsäurediethylester, sowie Zinkglycinat.
Als Geruchsabsorber eignen sich Stoffe, die geruchsbildende Verbindungen aufnehmen und weitgehend festhalten können. Sie senken den Partialdruck der einzelnen Komponenten und verrin- gern so auch ihre Ausbreitungsgeschwindigkeit. Wichtig ist, daß dabei Parfüms unbeeinträchtigt bleiben müssen. Geruchsabsorber haben keine Wirksamkeit gegen Bakterien. Sie enthalten beispielsweise als Hauptbestandteil ein komplexes Zinksalz der Ricinolsäure oder spezielle, weitgehend geruchsneutrale Duftstoffe, die dem Fachmann als "Fixateure" bekannt sind, wie z. B. Extrakte von Labdanum bzw. Styrax oder bestimmte Abietinsäurederivate. Als Geruehsüberdecker fungieren Riechstoffe oder Parfümöle, die zusätzlich zu ihrer Funktion als Geruehsüberdecker den Deodorantien ihre jeweilige Duftnote verleihen. Als Parfümöle seien beispielsweise genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten, Stengeln und Blättern, Früchten, Fruchtschalen, Wurzeln, Hölzern, Kräutern und Gräsern, Nadeln und Zweigen sowie Harzen und Balsamen. Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, p-tert.-Butylcyclohexylacetat, Linaly- lacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Allylcyclohexylpropionat, Styrallylpropio- nat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetal- dehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jono- ne und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol,. Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Sal- beiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeren- öl, Vetiveröl, Olibanöl, Galbanumöl, Labdanumöl und Lavandinöl. Vorzugsweise werden Berga- motteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E- Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
Antitranspirantien (Antiperspirantien) reduzieren durch Beeinflussung der Aktivität der ekkrinen Schweißdrüsen die Schweißbildung, und wirken somit Achselnässe und Körpergeruch entgegen. Als adstringierende Antitranspirant-Wirkstoffe eignen sich vor allem Salze des Aluminiums, Zirkoniums oder des Zinks. Solche geeigneten antihydrotisch wirksamen Wirkstoffe sind z.B. Aluminiumchlorid, Aluminiumchlorhydrat, Aluminiumdichlorhydrat, Aluminiumsesquichlorhydrat und deren Komplexverbindungen z. B. mit Propylenglycol-1 ,2. Aluminiumhydroxyallantoinat, Aluminiumchlo- ridtartrat, Aluminium-Zirkonium-Trichlorohydrat, Aluminium-Zirkonium-Tetrachlorohydrat, Alumini- um-Zirkonium-Pentachlorohydrat und deren Komplexverbindungen z. B. mit Aminosäuren wie Gly- cin.
Wässrige oder wasserfreie Formulierungen von Deodorantien enthalten typischerweise folgende Inhaltsstoffe:
> Deodorantien (s.o.),
> Ölkomponenten,
> nichtionische Emulgatoren,
> Coemulgatoren,
> Konsistenzgeber, Hilfsstoffe wie z. B. Verdicker oder Komplexierungsmittel und/oder
> nichtwässrige Lösungsmittel wie z. B. Ethanol, Propylenglykol und/oder Glycerin.
Daneben können in Deodorantien übliche öllösliche und wasserlösliche Hilfsmittel in geringeren Mengen enthalten sein. Solche öllöslichen Hilfsmittel können z.B. sein:
> entzündungshemmende, hautschützende oder wohlriechende ätherische Öle,
> synthetische hautschützende Wirkstoffe und/oder
> öllösliche Parfümöle.
Übliche wasserlösliche Zusätze sind z.B. Konservierungsmittel, wasserlösliche Duftstoffe, pH-Wert- Stellmittel, z.B. Puffergernische,' wasserlösliche Verdickungsmittel, z.B. wasserlösliche natürliche oder synthetische Polymere wie z.B. Xanthan-Gum, Hydroxyethylcellulose, Polyvinylpyrrolidon oder hochmolekulare Polyethylenoxide.
Gewerbliche Anwendbarkeit
Gegenstand der vorliegenden Erfindung betrifft auch die Verwendung der Olivenbaumextrakte zur Herstellung von Deodorant-Zubereitungen. Die Einsatzmenge der Extrakte aus den Blättern des Olivenbaumes und/oder aus dem Abwasser der Olivenölherstellung liegt dabei üblicherweise in der Größenordnung von 0,01 bis 15 Gew.-%, vorzugsweise 0,05 bis 5 Gew.-%, insbesondere 0,1 bis 3 Gew.-% - bezogen auf die Zubereitungen. Die Deodorantzubereitungen können in Form von Cremes, Gele, Lotionen, alkoholische und wäßrig/alkoholische Lösungen, Emulsionen, Wachs/Fett-Massen, Stiftpräparaten, Pudern oder Salben vorliegen. Diese Mittel können ferner als weitere Hilfs- und Zusatzstoffe milde Tenside, Ölkörper, Emulgatoren, Überfettungsmittel, Konsistenzgeber, Verdickungsmittel, Polymere, Siliconverbindungen, Fette, Wachse, biogene Wirkstoffe, Filmbildner, Quellmittel, Antioxidantien, Hydrotrope, Konservierungsmittel, Solubilisatoren, Parfümöle, Farbstoffe und dergleichen enthalten.
Tenside
Typische Beispiele für besonders geeignete milde, d.h. besonders hautverträgliche Tenside sind Fettalkoholpolyglycolethersulfate, Monoglyceridsulfate, Mono- und/oder Dialkylsulfosuccinate, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, Fettsäureglutamate, α- Olefinsulfonate, Ethercarbo.nsäuren, Alkyloligoglucoside, Fettsäureglucamide, Alkylamidobetaine, Amphoacetale und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenproteinen.
Ölkörper
Als Ölkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C6-C22-Fettsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen bzw. Ester von verzweigten C6-Ci3-Carbonsäuren mit. linearen oderNerzweigten C6-C22-Fettalkoholen,. wie z.B. Myristylmyristat, Myristylpalmitat, Myristylstearat, Myristylisostearat, Myristyloleat, Myristylbehenat, Myristylerucat, Cetylmyristat, Cetylpalmitat, Ce- tylstearat, Cetylisostearat, Cetyloleat, Cetylbehenat, Cetylerucat, Stearylmyristat, Stearylpalmitat, Stearylstearat, Stearylisostearat, Stearyloleat, Stearylbehenat, Stearylerucat, Isostearylmyristat, Isostearylpalmitat, Isostearylstearat, Isostearylisostearat, Isostearyloleat, Isostearylbehenat, I- sostearyloleat, Oleylmyristat, Oleylpalmitat, Oleylstearat, Oleylisostearat, Oleyloleat, Oleylbehenat, Oleylerucat, Behenylmyristat, Behenylpalmitat, Behenylstearat, Behenylisostearat, Behenyloleat, Behenylbehenat, Behenylerucat, Erucylmyristat, Erucylpalmitat, Erucylstearat, Erucylisostearat, Erucyloleat, Erucylbehenat und Erucylerucat. Daneben eignen sich Ester von linearen C6-C22- Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von Ci8-C3--Alkylhy- droxycarbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, insbesondere Dioctyl Ma- late, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis C.- Cio-Fettsäuren, flüssige Mono-/Di-/Triglyceridmischungen auf Basis von Cδ-Cis-Fettsäuren, Ester von C6-C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C2-Ci2-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte C6-C22-Fettalkoholcarbonate, wie z.B. Dicaprylyl Carbonate (Cetiol® CC), Guer- betcarbonate auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 C Atomen, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22-Alkoholen (z.B. Finsolv® TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, wie z.B. Dicaprylyl Ether (Cetiol® OE), Ringöffnungsprodukte von epoxidierten Fettsäureestern mit Polyolen, Siliconöle (Cyclomethicone, Siliciummethicontypen u.a.) und/oder a- liphatische bzw. naphthenische Kohlenwasserstoffe, wie z.B. wie Squalan, Squalen oder Dialkyl- cyclohexane in Betracht.
Emulqatoren
Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage:
> Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/ oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen, an Alkylphe- nole mit 8 bis 15 C-Atomen in der Alkylgruppe sowie Alkylamine mit 8 bis 22 Kohlenstoffatomen im Alkylrest;
> Alkyl- und/oder Alkenyloligoglykoside mit 8 bis-22 Kohlenstoffatomen im Alk(en)ylrest und deren ethoxylierte Analoga;
> Anlagerungsprodukte von 1 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinu- söl;
> Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
> Partialester von Glycerin und/oder Sorbitan mit ungesättigten, linearen oder gesättigten, verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
>_. Partialester von Polyglycerin (durchschnittlicher Eigenkondensationsgrad 2 bis 8), Polyethy- lenglycol (Molekulargewicht 400 bis 5000), Trimethylolpropan, Pentaerythrit, Zuckeralkoholen (z.B. Sorbit), Alkylglucosiden (z.B. Methylglucosid, Butylglucosid, Laurylglucosid) sowie Po- lyglucosiden (z.B. Cellulose) mit gesättigten und/oder ungesättigten, linearen oder verzweig- ten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
> Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglucose und Polyolen, vorzugsweise Glycerin oder Polyglycerin.
> Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate und deren Salze;
> Wollwachsalkohole;
> Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate;
> Block-Copolymere z.B. Polyethylenglycol-30 Dipolyhydroxystearate;
> Polymeremulgatoren, z.B. Pemulen-Typen (TR-1 ,TR-2) von Goodrich;
> Polyalkylenglycole sowie
> Glycerincarbonat.
> Ethylenoxidanlaqerunqsprodukte
Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fettsäuren, Alkylphenole oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar. Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxylierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/ oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht. Ci2/i8-Fettsäuremono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind als Rückfetturigsmittel für kosmeti- - sehe Zubereitungen bekannt.
Alkyl- und/oder Alkenyloligoglykoside
Alkyl- und/oder Alkenyloligoglycoside, ihre Herstellung und ihre Verwendung sind aus dem Stand der Technik bekannt. Ihre Herstellung erfolgt insbesondere durch Umsetzung von Glu- cose oder Oligosacchariden mit primären Alkoholen mit 8 bis 18 Kohlenstoffatomen. Bezüglich des Glycosidrestes gilt, daß sowohl Monoglycoside, bei denen ein cyclischer Zuckerrest glycosidisch an den Fettalkohol gebunden ist, als auch oligomere Glycoside mit einem Oligo- merisationsgrad bis vorzugsweise etwa 8 geeignet sind. Der Oligomerisierungsgrad ist dabei ein statistischer Mittelwert, dem eine für solche technischen Produkte übliche Homologenverteilung zugrunde liegt. , . > Partialglyceride
Typische Beispiele für geeignete Partialglyceride sind Hydroxystearinsäuremonoglycerid, Hydroxystearinsäurediglycerid, Isostearinsäuremonoglycerid, Isostearinsäurediglycerid, Öl- säuremonoglycerid, Ölsäurediglycerid, Ricinolsäuremoglycerid, Ricinolsäurediglycerid, Linol- säuremonoglycerid, Linolsäurediglycerid, Linolensäuremonoglycerid, Linolensäurediglycerid, Erucasäuremonoglycerid, Erucasäurediglycerid, Weinsäuremonoglycerid, Weinsäurediglyce- rid, Citronensäuremonoglycerid, Citronendiglycerid, Äpfelsäuremonoglycerid, Äpfelsäuredigly- cerid sowie deren technische Gemische, die untergeordnet aus dem Herstellungsprozeß noch geringe Mengen an Triglycerid enthalten können. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Partialglyceride.
Sorbitanester
Als Sorbitanester kommen Sorbitanmonoisostearat, Sorbitansesquiisostearat, Sorbitan- diisostearat, Sorbitantriisostearat, Sorbitanmonooleat, Sorbitansesquioleat, Sorbitan-dioleat, Sorbitantrioleat, Sorbitanmonoerucat, Sorbitansesquierucat, Sorbitandierucat, Sorbitantrieru- cat, Sorbitanmonoricinoleat, Sorbitansesquiricinoleat, Sorbitandiricinoleat, Sorbitantriricinoleat, Sorbitanmonohydroxystearat, Sorbitansesquihydroxystearat, Sorbitandihydroxystearat, Sor- bitantrihydroxystearat, Sorbitanmonotartrat, Sorbitansesqui-tartrat, Sorbitanditartrat, Sorbi- tantritartrat, Sorbitanmonocitrat, Sorbitansesquicitrat, Sorbitandicitrat, Sorbitantricitrat, Sorbi- tanmonomaleat, Sorbitansesquimaleat, Sorbitan-dimaleat, Sorbitantrimaleat sowie deren -technische Gemiseher-Ebenfalls- geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Sorbitanester.
> Polyglycerinester
Typische Beispiele für geeignete Polyglycerinester sind Polyglyceryl-2 Dipolyhydroxystearate (Dehymuls® PGPH), Polyglycerin-3-Diisostearate (Lameform® TGI), Polyglyceryl-4 Isostea- rate (Isolan® Gl 34), Polyglyceryl-3 Oleate, Diisostearoyl Polyglyceryl-3 Diisostearate (Iso- lan® PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Care® 450), Poiyglyceryl-3 Bees- wax (Cera Bellina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010/90), Polyglyceryl-3 Cetyl Ether (Chimexane® NL), Polyglyceryl-3 Distearate (Cremophor® GS 32) und Polygly- ceryl Polyricinoleate (Admul® WOL 1403) Polyglyceryl Dimerate Isostearate sowie deren Gemische. Beispiele für weitere geeignete Polyolester sind die gegebenenfalls mit 1 bis 30 Mol Ethylenoxid umgesetzten Mono-, Di- und Triester von Trimethylolpropan oder Pentaerythrit mit Laurinsäure, Kokosfettsäure, Taigfettsäure, Palmitinsäure, Stearinsäure, Ölsäure, Behensäure und dergleichen.
Anionische Emulgatoren
Typische anionische Emulgatoren sind aliphatische Fettsäuren mit 12 bis 22 Kohlenstoffatomen, wie beispielsweise Palmitinsäure, Stearinsäure oder Behensäure, sowie Dicarbonsäuren mit 12 bis 22 Kohlenstoffatomen, wie beispielsweise Azelainsäure oder Sebacinsäure.
Amphothere und kationische Emulgatoren
Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat- und eine Sul- fonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammöniumglycinate, beispielsweise das Kokosalkyldi- methylammoniumglycinat, N-Acylaminopropyl-N,N-dimethylammonium-glycinate, beispielsweise das Kokosacylaminopropyldimethyl-ammoniumglycinat, und 2-Alkyl-3-car- boxylmethyl-3-hydroxyethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder A- cylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethylglycinat. Besonders be- "vorzugt st das unter der CTFA-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäurea- mid-Derivat. Ebenfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholyti- schen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer Cβ/iβ-Alkyl- oder Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -S03H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropion-säuren, N- Alkylaminobuttersäuren, N-Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylg- lycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäu- ren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe.. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylamino- propionat und das Ci2/i8-Acylsarcosin. Schließlich kommen auch Kationtenside als Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methylquaternierte Di- ' fettsäuretriethanolaminester-Salze, besonders bevorzugt sind. Fette und Wachse
Typische Beispiele für Fette sind Glyceride, d.h. feste oder flüssige pflanzliche oder tierische Produkte, die im wesentlichen aus gemischten Glycerinestem höherer Fettsäuren bestehen, als Wachse kommen u.a. natürliche Wachse, wie z.B. Candelillawachs, Camaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouricury- wachs, Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozokerit (Erdwachs), Petrolatum, Paraffinwachse, Mikrowachse; chemisch modifizierte Wachse (Hartwachse), wie z.B. Montanesterwachse, Sasolwachse, hydrierte Jojobawachse sowie synthetische Wachse, wie z.B. Polyalkylenwachse und Polyethylenglycolwachse in Frage. Neben den Fetten kommen als Zusatzstoffe auch fettähnliche Substanzen, wie Lecithine und Phospholi- pide in Frage. Unter der Bezeichnung Lecithine versteht der Fachmann diejenigen Glycero- Phospholipide, die sich aus Fettsäuren, Glycerin, Phosphorsäure und Cholin durch Veresterung bilden. Lecithine werden in der Fachwelt daher auch häufig als Phosphatidylcholine (PC). Als Beispiele für natürliche Lecithine seien die Kephaline genannt, die auch als Phosphatidsäuren bezeichnet werden und Derivate der 1,2-Diacyl-sn-glycerin-3-phosphorsäuren darstellen. Dem gegenüber versteht man unter Phospholipiden gewöhnlich Mono- und vorzugsweise Diester der Phosphorsäure mit Glycerin (Glycerinphosphate), die allgemein zu den Fetten gerechnet werden. Daneben kommen auch Sphingosine bzw. Sphingolipide in Frage.
Konsistenzgeber und Verdickungsmittel
Als Konsistenzgeber kommen in erster-Linie -Fettalkohole oder Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydroxyfettsäuren in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkyloligoglucosi- den und/oder Fettsäure-N-methylglucamiden gleicher Kettenlänge und/oder Polyglycerinpoly-12- hydroxystearaten. Geeignete Verdickungsmittel sind beispielsweise Aerosil-Typen (hydrophile Kieselsäuren), Polysaccharide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxymethylcellulose und Hydroxyethyl- und Hydroxypropylcellulose, ferner höhermolekulare Polyethylenglycolmono- und -diester von Fettsäuren, Polyacrylate, (z.B. Carbopo- le® und Pemulen-Typen von Goodrich; Synthalene® von Sigma; Keltrol-Typen von Kelco; Sepigel-Typen von Seppic; Salcare-Typen von Allied Colloids), Polyacrylamide, Polymere, Polyvi- nylalkohol und Polyvinylpyrrolidon, Als besonders wirkungsvoll haben sich auch Bentonite, wie z.B. Bentone® Gel VS-5PC (Rheox) erwiesen, bei dem es sich um eine Mischung aus Cyclopentasilo- xan, Disteardimonium Hectorit und Propylencarbonat handelt. Weiter in Frage kommen Tenside, wie beispielsweise ethoxylierte Fettsäureglyceride, Ester von Fettsäuren mit Polyolen wie bei- spielsweise Pentaerythrit oder Trimethylolpropan, Fettalkoholethoxylate mit eingeengter Homologenverteilung oder Alkylodgog lucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid.
Überfettunqsmittel
Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polye- thoxylierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäu reester, Monoglyceride und Fettsäurealkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.
Stabilisatoren
Als Stabilisatoren können Metallsalze von Fettsäuren, wie z.B. Magnesium-, Aluminium- und/oder Zinkstearat bzw. -ricinoleat eingesetzt werden.
Polymere
Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z.B. eine quatemierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammoniumsalzen und Acrylamiden, quatemierte Vinylpyrrolidon/Vinylimidazol-Polymere, wie z.B. Luviquat® (BASF), Kondensationsprodukte von Polyglycolen und Aminen, quatemierte Kollagenpolypeptide, wie beispielsweise Lauryl- dimonium Hydroxypropyl Hydrolyzed Collagen (Lamequat®L/Grünau), quatemierte Weizenpoly- peptide, Polyethylenimin, kationische Siliconpolymere, wie z.B. Amodimethicone, Copolymere der Adipinsäure und Dimethylaminohydroxypropyldiethylentriamin (Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dimethyl-diallylammoniumchlorid (Merquat® 550/Chemviron), Polyaminopoly- amide, sowie deren vernetzte wasserlöslichen Polymere, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z.B. Dibrombutan mit Bisdialkylaminen, wie z.B. Bis-Dimethylamino-1,3-propan, kationischer Guar-Gum, wie z.B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Celanese, quatemierte Ammoniumsalz-Polymere, wie z.B. Mirapol® A- 15, Mirapol® AD-1, Mirapol® AZ-1 der Firma Miranol.
Als anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielsweise Vinylacetat/Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat-Copolymere, Vinylace- tat/Butylmaleat/ Isobornylacrylat-Copolymere, Methylvinylether/Maleinsäureanhydrid-Copolymere und deren Ester, unvernetzte und mit Polyolen vernetzte Polyacrylsäuren, Acrylamidopropyl- trimethylammoniumchlorid/ Acrylat-Copolymere, Octylacrylamid/Methylmeth-acry- lat/tert.Butylaminoethylmethacrylat 2-Hydroxypropylmethacrylat-Copolymere, Polyvinylpyrrolidon, Vinylpyrrolidon/Vinylacetat-Copolymere, Vinylpyrrolidon/ Dimethylaminoethylmethacrylat/Vinyl- caprolactam-Terpolymere sowie gegebenenfalls derivatisierte Celluloseether und Silicone in Frage.
Siliconverbindungen
Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Methylphenylpolysüoxa- ne, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder alkylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Weiterhin geeignet sind Simethicone, bei denen es sich um Mischungen aus Dimethiconen mit einer durchschnittlichen Kettenlänge von 200 bis 300 Dimethyisi- loxan-Einheiten und hydrierten Silicaten handelt.
Biogene Wirkstoffe
Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, Tocopherolpalmitat, Ascorbinsäure, (Desoxy)RibonucIeinsäure und deren Fragmentierungsprodukte, ß-Glucane, Reti- nol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA-Säuren, Aminosäuren, Ceramide, Pseudoce- ramide,-essentielle.-Öle, Pflanzenextrakte und -Vitaminkomplexe zu verstehen. Filmbildner
Gebräuchliche Filmbildner sind beispielsweise Chitosan, mikrokristallines Chitosan, quaterniertes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäu- rereihe, quaternäre Cellulose-Derivate, Kollagen, Hyaluronsäure bzw. deren Salze und ähnliche Verbindungen.
Quellmittel
Als Quellmittel für wäßrige Phasen können Montmorillonite, Clay Mineralstoffe, Pemulen sowie alkylmodifizierte Carbopoltypen (Goodrich) dienen. Hvdrotrope
Zur Verbesserung des Fließverhaltens können ferner Hydrotrope, wie beispielsweise Ethanol, I- sopropylalkohol, oder Polyole eingesetzt werden. Polyole, die hier in Betracht kommen, besitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Die Polyole können noch weitere funktioneile Gruppen, insbesondere Aminogruppen, enthalten bzw. mit Stickstoff modifiziert sein. Typische Beispiele sind
> Glycerin;
> Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Butylengly- col, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton;
> technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1 ,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
> Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Trimethylolbu- tan, Pentaerythrit und Dipentaerythrit;
> Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl- und Butylglucosid;
> Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit,
> Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose;
> Aminozucker, wie beispielsweise Glucamin;
> Dialkoholamine, wie Diethanolamin oder 2-Amino-1 ,3-propandiol.
Konservierungsmittel
Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Para- bene, Pentandiol oder Sorbinsäure sowie die unter der Bezeichnung Surfacine® bekannten Silberkomplexe und die in Anlage 6, Teil A und B der Kosmetikverordnung aufgeführten weiteren Stoffklassen.
Parfümöle und Aromen
Als Parfümöle seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wachol- der), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbiny- lacetat, Phenylethylacetat, ünalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohe- xylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzy- lethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, α-lsomethylionon und Methylcedrylketon, zu den Alkoholen A- nethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiol, Kamillenöl, Nelkenöl, Melissenöl, Min- zenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labola- numöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Oran- genöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiol, ß-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
Als Aromen kommen beispielsweise Pfefferminzöl, Krauseminzöl, Anisöl, Stemanisöl, Kümmelöl, Eukalyptusöl, Fenchelöl, Citronenöl, Wintergrünöl, Nelkenöl, Menthol und dergleichen in Frage.
Farbstoffe
Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden. Beispiele sind Kochenillerot A (C.l. 16255), Patentblau V (C.1.42051), Indigotin (C.1.73015), Chlorophyllin (01.75810), Chinolingelb (C.I.47005), Titandioxid (C.1.77891), Indanthrenblau RS (C.l. 69800) und Krapplack (C.I.58000). Als Lumineszenzfarbstoff kann auch Luminol enthalten sein. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.' %, bezogen auf die gesamte Mischung, eingesetzt.
Beispiele
Blätter des Olivenbaumes (Olea europaea) wurden gesammt, getrocknet, gemahlen und durch ein 55-60Vol. % Ethanol/Wasser-Gemisch bei 60°C über 4 Stunden extrahiert. Das Eluat wurde getrocknet, gemahlen und gesiebt und auf einen Gehalt von ungefähr 20 Gew.% Oleuropein eingestellt.
Zur Bestimmung der antimikrobiellen Wirksamkeit auf Mikroorganismen der Bakterienflora von Haut und Kopfhaut wurde ein Agardiffusionstest durchgeführt.
Agardiffusionstest
Testkeime:
1. Corynebacterium (C.) minutissimum ATCC 23348 1 ,5 x 108 KBE/ml
2. Staphylococcus (S.) epidermidis ATCC 12228 2,5 x 108 KBE/ml
3. Propionibacterium (P.) acnes ATCC 11829 3,1 x 108 KBE/ml
Herstellung Testkeimsuspensionen (aerobe Bakterien):
Die Testkeime wurden auf Columbia-Blut-Agar (bioMerieux Art. 43049) subkultiviert. Mittels Tupfer wurden soviele Kolonien in NaCI-Peptonpuffer homogenisiert, dass die Trübung dem McFarland Standard 1,0 entsprach.
Herstellung Testkeimsuspensionen (anaerobe Bakterien):
Die Testkeime wurden auf Schaedler-Agar (bioMerieux Art. 43273) subkultiviert. Mittels Tupfer -wurden soviele Kolonien in NaCI-Peptonpuffer homogenisiert, dass die Trübung dem McFarland Standard 1,0 entsprach.
Probenvorbereitung:
Eine Testkonzentration von 5 Gew.% Olivenbaumblätterextrakt (Herbalia®Olive - Cognis Iberia S.L., Poligono San Vicente, 08755 Castellbisbal, Barcelona (Spain)) wurde durch Einwiegen von 0,5 g Trockenextrakt und Lösen ad 10 ml mit 15 Vol.% Ethanol (Merck, Art. 100971) eingestellt.
Kontrollen:
K1 Testblättchen unbeimpft
K2 Testblättchen + 10 resp. 20 μl 15 Vol.% Ethanol Inkubationsbedingungen:
Für jeden Ansatz wurden 3 Testplättchen angelegt. Die Agarplatten wurden
18 h bei 36°C Keim 1, 2
72 h bei 36°C anaerob Keim 3 inkubiert.
Testdurchführung
Die Testkeime wurden 2%ig mit dem entsprechenden Testmedium (s.u.) homogenisiert. 15 ml davon wurden in Petrischalen gegossen.
Müller Hinton-Agar Merck, Art. 5437 Keim 1 , 2
Wilkens Chalgren Oxoid, Art. CM 643 Keim 3
Nach Erstarren und Trocknung der Platten wurden 5 sterile Testplättchen (6mm Durchmesser, BioMerieux, Art. 54991) ausgelegt (3 x Probe, 2 x Kontrolle). Es wurden je Probe 2 Ansätze durchgeführt: Ansatz 1 mit 10 μl, Ansatz 2 mit 20 μl. Nach Inkubation wurden die Hemmhofdurchmesser [mm] ausgemessen.
Figure imgf000020_0001
Insbesondere bei einer Ansatzgröße von 20 μl werden die Mikroorganismen vom Olivenbaumblätterextrakt deutlich gehemmt. Staphylococcus epidermidis unterliegt der Hemmung bereits bei sehr geringen Probekonzentrationen. Aus den Ergebnissen wird ersichtlich, dass insbesondere Mikroorganismen, die charakteristisch für die Achselmikroflora sind, wirksam durch Olivenbaumblätterextrakt gehemmt werden. Die nachfolgenden Tabellen 2a und 2b enthalten eine Reihe von Formulierungsbeispielen mit Olivenbaumblätterextrakt. Die dermatologische Verträglichkeit und das Hautgefühl nach Anwendung hatte sich bei allen Rezepturen als besonders gut herausgestellt.
Tabelle 2a:
Deodorantzubereitungen PIT Deo Spray (Wasser, Konservierungsmittel ad 100 Gew.-%)
Figure imgf000022_0001
Produkte soweit nicht anders angegeben von Cognis Deutschland GmbH &Co.KG
Tabelle 2b:
Deodorantzubereitungen Deodorant-Creme (Wasser, Konservierungsmittel ad 100 Gew.-%)
Figure imgf000023_0001
Produkte soweit nicht anders angegeben von Cognis Deutschland GmbH &Co.KG

Claims

Patentansprüche
1. Verwendung von Extrakten des Olivenbaumes als Deodorant.
2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass man Extrakte aus den Blättern des Olivenbaumes und/oder aus dem Abwasser der Olivenölherstellung einsetzt.
3. Verwendung nach den Ansprüchen 1 und/oder 2, dadurch gekennzeichnet, dass man die Extrakte in Konzentrationen von 0,01 bis 15 Gew. % einsetzt.
4. Verwendung nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Extrakte mindestens 1 Gew. % Oleuropein enthalten.
5. Verwendung nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Extrakte mindestens 1 Gew. % Polyphenole enthalten.
6. Verwendung von Extrakten des Olivenbaumes zur Hemmung aerober und/oder anaerober Keime und/oder zur Hemmung von Hefen und Pilzen der Mikroflora auf Haut und Kopfhaut.
7. Deodorant-Zubereitungen, enthaltend Extrakte aus den Blättern des Olivenbaumes und/oder aus dem Abwasser der Olivenölherstellung und mindestens eine Substanz ausgewählt aus der Gruppe, die gebildet wird von keimhemmenden Mitteln, Enzyminhibitoren, Geruchsabsorber oder Geruehsüberdecker sowie Antitranspirantien.
8. Deodorant-Zubereitungen, enthaltend Extrakte aus den Blättern des Olivenbaumes und/oder aus dem Abwasser der Olivenölherstellung und mindestens eine Substanz ausgewählt aus der Gruppe, die gebildet wird von kationischem Chitosan, Salze des Aluminiums, Zirkoniums oder des Zinks sowie deren Komplexverbindungen.
PCT/EP2003/002570 2002-03-22 2003-03-13 Verwendung von extrakten des olivenbaumes als deodorant WO2003080008A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03711989A EP1487399A1 (de) 2002-03-22 2003-03-13 Verwendung von extrakten des olivenbaumes als deodorant
AU2003218744A AU2003218744A1 (en) 2002-03-22 2003-03-13 Use of olive tree extracts as a deodorant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10213032A DE10213032A1 (de) 2002-03-22 2002-03-22 Verwendung von Extrakten des Olivenbaumes als Deodorant
DE10213032.9 2002-03-22

Publications (1)

Publication Number Publication Date
WO2003080008A1 true WO2003080008A1 (de) 2003-10-02

Family

ID=27798120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/002570 WO2003080008A1 (de) 2002-03-22 2003-03-13 Verwendung von extrakten des olivenbaumes als deodorant

Country Status (4)

Country Link
EP (1) EP1487399A1 (de)
AU (1) AU2003218744A1 (de)
DE (1) DE10213032A1 (de)
WO (1) WO2003080008A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3209387B1 (de) 2014-10-24 2019-04-24 Henkel AG & Co. KGaA Verwendung von chitosanen in schweisshemmenden kosmetische mitteln, welche frei sind von halogeniden und/oder hydroxyhalogeniden von aluminium und/oder zirconiu

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2018005840A (es) * 2015-11-09 2018-08-01 Unilever Nv Composicion antitranspirante.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01265958A (ja) * 1988-04-18 1989-10-24 Earth Chem Corp Ltd 加温機構付処置具
JPH01265964A (ja) * 1988-04-15 1989-10-24 Daicel Chem Ind Ltd 消臭剤
US4898727A (en) * 1985-10-15 1990-02-06 Matsushita Electric Works, Ltd. Deodorant and filter using same, as well as method of producing the deodorant
JP2002205031A (ja) * 2001-01-11 2002-07-23 Masamichi Takahashi 産業廃棄物である、オリーブ搾油粕、及び搾油廃液処理と、それに伴う再利用物質の採取
FR2825022A1 (fr) * 2001-05-23 2002-11-29 Seppic Sa Composition de polyphenols d'olives.utilisation comme actif cosmetique et dietetique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4898727A (en) * 1985-10-15 1990-02-06 Matsushita Electric Works, Ltd. Deodorant and filter using same, as well as method of producing the deodorant
JPH01265964A (ja) * 1988-04-15 1989-10-24 Daicel Chem Ind Ltd 消臭剤
JPH01265958A (ja) * 1988-04-18 1989-10-24 Earth Chem Corp Ltd 加温機構付処置具
JP2002205031A (ja) * 2001-01-11 2002-07-23 Masamichi Takahashi 産業廃棄物である、オリーブ搾油粕、及び搾油廃液処理と、それに伴う再利用物質の採取
FR2825022A1 (fr) * 2001-05-23 2002-11-29 Seppic Sa Composition de polyphenols d'olives.utilisation comme actif cosmetique et dietetique

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 198948, Derwent World Patents Index; Class D21, AN 1989-353753, XP002243933 *
DATABASE WPI Section Ch Week 200281, Derwent World Patents Index; Class D13, AN 2002-744105, XP002243934 *
F. D'AMELIO: "Botanicals - A Phytocosmetic Desk Reference", 1999, CRC PRESS, XP002243939 *
PATENT ABSTRACTS OF JAPAN vol. 014, no. 024 (C - 677) 18 January 1990 (1990-01-18) *
SERGIO AMARI ET AL: "Olive leaves. Their extract performs effective antiradicalic action", CHEMICAL ABSTRACTS + INDEXES, AMERICAN CHEMICAL SOCIETY. COLUMBUS, US, vol. 131, no. 15, 11 October 1999 (1999-10-11), pages 1164, XP002162943, ISSN: 0009-2258 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3209387B1 (de) 2014-10-24 2019-04-24 Henkel AG & Co. KGaA Verwendung von chitosanen in schweisshemmenden kosmetische mitteln, welche frei sind von halogeniden und/oder hydroxyhalogeniden von aluminium und/oder zirconiu

Also Published As

Publication number Publication date
AU2003218744A1 (en) 2003-10-08
DE10213032A1 (de) 2003-10-02
EP1487399A1 (de) 2004-12-22

Similar Documents

Publication Publication Date Title
EP1303255B1 (de) Verwendung eines mittels welches das haarwachstum inhibiert
EP1265594A1 (de) Desodorierende zubereitungen mit nanoskaligen chitosanen und/oder chitosanderivaten
EP1242036B1 (de) Verwendung von nanoskaligen antischuppenwirkstoffen
EP1487400A2 (de) Kosmetische mittel
WO2003075861A1 (de) Antioxidative zubereitungen
WO2003015738A1 (de) Wirkstoffmischungen
EP1239828B1 (de) Verwendung von kationischen verbindungen
EP1341518A2 (de) Kosmetische und/oder pharmazeutische emulsionen
WO2001072264A2 (de) Pro-liposomal verkapselte zubereitungen (iv)
DE10347940A1 (de) Selbstemulgierende Zubereitungen
EP1526828A2 (de) Kosmetische zubereitungen mit antibakteriellen eigenschaften glyzyrrhetinsäure enthaltend
EP1254653B1 (de) Verwendung von kationischen Zubereitungen
WO2001074302A1 (de) Pro-liposomal verkapselte zubereitungen
EP1233747B1 (de) Verwendung von flavonen und/oder isoflavonen aus pflanzenextrakten
EP1487397A1 (de) Verwendung von extrakten des olivenbaumes als antischuppenmittel
WO2003079794A1 (de) Verwendung von extrakten des olivenbaumes in wasch-, spül- und reinigungsmitteln
DE10207919A1 (de) Anti-Ageingmittel
WO2003068182A1 (de) Desodorierende zubereitungen mit chitosanen und/oder chitosanderivaten
WO2001006995A1 (de) Kosmetische mittel enthaltend hydroxychavicol
WO2003080008A1 (de) Verwendung von extrakten des olivenbaumes als deodorant
EP1620067A1 (de) Kosmetische und/oder pharmazeutische zubereitungen
WO2002013778A2 (de) Kosmetische zubereitungen die dicarbonsäuren enthalten
WO2001006996A1 (de) Kosmetische mittel mit pflanzenextrakten aus der familie der piperaceae
EP1104671A1 (de) Kosmetische und/oder pharmazeutische Zubereitungen Hydroxycarbonsäuren und Aminosäuren enthaltend
EP1254656A1 (de) Verwendung von kationischen Zubereitungen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA HU JP KR MX NO NZ PL US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003711989

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003711989

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2003711989

Country of ref document: EP