WO2003077617A1 - Generateur de puissance electrique utilisant la fusion du deuterium en helium - Google Patents

Generateur de puissance electrique utilisant la fusion du deuterium en helium Download PDF

Info

Publication number
WO2003077617A1
WO2003077617A1 PCT/FR2003/000600 FR0300600W WO03077617A1 WO 2003077617 A1 WO2003077617 A1 WO 2003077617A1 FR 0300600 W FR0300600 W FR 0300600W WO 03077617 A1 WO03077617 A1 WO 03077617A1
Authority
WO
WIPO (PCT)
Prior art keywords
needles
deuterium
laser
energy
electric
Prior art date
Application number
PCT/FR2003/000600
Other languages
English (en)
Inventor
Georges Robert Pierre Marie
Original Assignee
Marie G R P
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marie G R P filed Critical Marie G R P
Priority to AU2003233350A priority Critical patent/AU2003233350A1/en
Publication of WO2003077617A1 publication Critical patent/WO2003077617A1/fr

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/11Details
    • G21B1/23Optical systems, e.g. for irradiating targets, for heating plasma or for plasma diagnostics
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/03Thermonuclear fusion reactors with inertial plasma confinement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Definitions

  • Patent n ° 0202343 filed on February 28, 2002
  • the present invention is an improvement to Patent 9901059 filed on 01.02.1999.
  • the inventor showed how an industrial electric current could be obtained, by focusing in deutermm the energy of a powerful laser operating in pulses: the laser wave propagates according to the quadrupole transverse electric rotating mode, and its electric field accelerates the electrons on a circle whose radius is around a quarter of the laser wavelength. The accelerated electrons form a magnetically pinched current where the electron density is enormous and attracts the deuterium nuclei which, meeting in this current, merge according to the reaction:
  • the calculation shows how a thermal electron, such as a catalyst, enters the reaction, promotes it and is expelled in the form of a relativistic electron which takes away the fusion energy.
  • the relativistic electrons amplify and prolong the magnetically pinched current which renews the fusion. This makes a chain reaction that spreads in a straight line.
  • the relativistic electron packets carry the industrial current. The laser only acts as a trigger. Hence an excellent yield.
  • the present invention solves this construction problem by using transparent materials doped so as to have very similar optical indices: Let us consider two blades with parallel faces of the same thickness h and optical indices n and n + ⁇ n. Let's put them side by side in the same plane. A plane wave passes through them at normal incidence. The phase difference between the waves emerging from the two blades is:
  • the directions of the fast axes are indicated in thin lines. Waves polarized in this direction propagate faster than those polarized in the slow axis direction which is perpendicular.
  • the thickness of the blade is such that the time difference between the two propagations is equal to half a period. So that when a half-wave plate is crossed by a plane wave at normal incidence, the electric field of the emerging wave is symmetrical with the electric field of the incident wave with respect to the fast and slow axes. We want the emerging waves
  • the sets iig. 1 and 2 are constructed in the same way:
  • fig.l take six quartz blades that are polished on one side, glue them by the edge and put them in molecular adhesion on a block of molten silica previously polished. We then polish all the other faces.
  • Optical polishing is the most perfect form of machining.
  • the dopings causing the variations of indices ⁇ n and 2 ⁇ n are easy to obtain.
  • the beams After having crossed the devices fig.l and fig.2. the beams are focused at point F of the axis oz fig.4.
  • the beams which have crossed the sectors I and IN fig.l, of index n fig.2 arrive in the focal plane, they have their electric field oriented along the oy axis, but in the opposite direction. They form an antisymmetric set compared to the plane yoz, with zero electric field on oy and, in the vicinity proportional to the distance to oy.
  • the beams which have crossed sectors III and NI fig.l of index n + ⁇ n fig.2 have their electric field oriented in the direction of axis oy 'which makes the angle
  • the field created at the focal point F is indeed a quadrupole electric transverse rotating field.
  • the laser beam thus transformed is focused in the deuterium where it produces a plasma.
  • the rotating quadrupole mode acts on the plasma like an electron accelerator.
  • the accelerated electrons form magnetically clamping currents in which the deuterium (1) fusion reaction takes place.
  • needleles push the electronic cloud after having ionized the gas. They thus produce an inexpensive and easy-to-operate industrial current. But these "needles” have another effect which has not yet been exploited: by leaving the focal zone they radiate a rotating quadrupole field. An object of the present invention is to recover the energy of this quadrupole field and to reinject it into the plasma.
  • Fig. 3 represents at a given instant the circular current of magnetically pinched radius r generated by the laser wave in the focal plane. Over time this figure rotates at the angular frequency ⁇ / 2. Following two tangents to this current, two jets of “needles” are launched, which in turn emit a quadrupole radiation equivalent to that which would be emitted by a dotted circle of radius r 2 traversed by a current.
  • is the angle made by oz the rays coming from the laser which converge at F
  • This feedback is operated by the mirrors 14 and 15 fig.4, it facilitates the start of the fusion reaction and extends it.
  • Another object of the invention is to multiply the needles during their propagation by establishing a magnetic field perpendicular to the plane in which they are launched: the needles are relativistic electron packets large enough to have a macroscopic action they ionize the deuterium and push the electronic cloud creating the secondary current that we use as industrial current. At its birth, this current is dense enough to cause new fusions by magnetic pinching, but it is in a burnt environment, it is surrounded by helium nuclei. To obtain new mergers, it must be deflected using a magnetic field to launch it into the deuterium. This is the role of the magnets which appear 18 and 19 fig.4. The invention will be better understood by the explanations which will be given in correlation with the description of the figures among which:
  • FIGS. 1 and 2 represent optical devices which transform the linearly polarized wave coming from a laser into a wave propagating according to the quadrupole electric transverse rotating mode as shown above.
  • Figure 3 shows how the needle jets are launched from a magnetically pinched circular current.
  • FIG. 4 is a meridian section of the electric power generator according to the invention.
  • FIG. 4 ' represents the reflections of the laser rays between the conical and cylindrical mirrors.
  • FIG. 4 presents a great analogy with that described in patent 9901059.
  • the deuterium chamber is designated by 1. It is limited by an enclosure made of insulating material, glass or ceramic, constructed in two parts 2 and 2 ', connected together and other parts according to processes that have been proven in the canning jar industry.
  • the wall 2 ' is connected to the deuterium control device by a screw system 3.
  • the walls 2 and 2' are joined by a clip system 4.
  • the wall 2 carries bosses on which the piece 5 is screwed which resembles a jam jar cover from which the central part has been removed. This ensures the connection between the wall 2 and the part 6.
  • the roles of parts 7 and 8 have been exposed above with the description of Figures 1 and 2, they are seen here cut by a meridian plane. They are held in room 6 by rods. They receive the laser beam, transform its propagation mode and transmit energy to the focusing device.
  • the assembly of the laser and of part 7 gives a wave whose field lines are hexagonal. This is a good approximation of what is called in the theory of circular guides a TEo mode.
  • the linearly polarized laser and the part 7 can be replaced by a laser operating in TEo mode.
  • the semi-reflecting mirror of the resonant cavity is produced by a set of concentric conducting circles which reflect the TEo mode and allow the other modes to pass. Such circles are produced by photoengraving. We will not expand on this subject which we consider to be the prior art.
  • the focusing device is formed by a lens 11 and two mirrors of revolution around oz, 9 and 10.
  • the distance OF ' is therefore equal to OF "which is the focal distance / of the lens 11.
  • the line OF ' makes an angle 2 ⁇ with the axis oz. If ⁇ is also the opening angle of the beam converging at F ", we will find this angle between the limiting rays converging at F 'and at F.
  • the mirror 10 is cylindrical: the distance from its generatrices to the axis oz is half the distance from F 'to this axis. Thus the energy of the beam is focused on the axis at point F.
  • the distance OB is equal to half of OF therefore f 12. Or the length of the generator of the cone.
  • the deuterium which launches "needles” in a plane perpendicular to oz. In the immediate vicinity of this task these "needles” produce a quadrupole radiation which the mirrors of revolutions 14 and 15 return in the focal task to activate the fusion.
  • the mirror 15 is cylindrical and extends the mirror 10 '.
  • the meridian of the mirror 14 is an arc of an ellipse having for focal points, the focal point F and F 'symmetrical of F, with respect to the generatrix of the cylinder 10'.
  • the mirror 14 is cut in the base of the cone 9 '.
  • the cone 9 ' is supported by three shrouds which at one of their ends are welded to form a cup which fits on the tip of the cone. The other ends are fixed on the base of the cone. These shrouds are stretched and connected to the whole of the device by a part 17 which has a general shape is that of a crown connected to part 6.
  • Magnets of revolution around the oz, of which we see the meridian sections 18 and 19 create a magnetic field parallel to oz in two concentric rings. By crossing these crowns the secondary electrons which accompany a needle are diverted towards the clean deuterium where they can generate new needles. Then the needles, accompanied by the secondary currents which they have caused, arrive in the anode 20. It is a metallic part of vaguely toric shape, the outer surface of which is coated with insulation so as to avoid breakdowns. It is joined to one of the walls 2 or 2 'by three feet. One of these feet constitutes the output terminal 21. It is between this terminal 21 and a terminal secured to the part 6 that the current intended for industrial use is collected.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Particle Accelerators (AREA)

Abstract

Générateur de puissance électrique constitué par une chambre (1) contenant un mélange deuterium-hydrogène, dans laquelle l'énergie d'un puissant laser à impulsions est focalisée après avoir été transformée en mode quadripolaire tournant transerve électrique, en traversant un 'déphaseur azimutal' (8) dans lequel les déphasages sont causés par un dopage du matériau constituant les lames à faces parallèles. Ce dopage fait varier l'indice optique d'une quantité liée à la longueur d'onde du laser et à l'épaisseur de la lame. Cette énergie provoque la formation d'un plasma à partir duquel, dans une zone voisine du plan focal, des 'aiguilles' sont lancées qui entrainent un courant électrique aboutissant à une anode circulaire (20) entourant le foyer. Le circuit d'utilisation est branché entre l'anode et le dispositif métallique (6) utilisé comme focalisateur du faisceau laser.

Description

GÉNÉRATEUR DE PUISSANCE ÉLECTRIQUE UTILISANT LA FUSION DU DEUTERIUM EN HELIUM
Inventeur Pierre MARTE
Brevet n°0202343 déposé le 28 Février 2002
La présente invention est un perfectionnement au Brevet 9901059 déposé le 01.02.1999. Dans ce brevet, l'inventeur a montré comment on pouvait obtenir un courant électrique industriel, en focalisant dans du deutermm l'énergie d'un puissant laser fonctionnant en impulsions : l'onde laser se propage selon le mode quadripolaire tournant transverse électrique, et son champ électrique accélère les électrons sur un cercle dont le rayon est de l'ordre du quart de la longueur d'onde laser. Les électrons accélérés forment un courant magnétiquement pincé où la densité électronique est énorme et attire les noyaux de deuterium qui, en se rencontrant dans ce courant, fusionnent selon la réaction :
(1) D + D + ethermique → H«4 + e relativiste
Le calcul montre comment un électron thermique, tel un catalyseur, entre dans la réaction, la favorise et est expulsé sous forme d'électron relativiste qui emporte l'énergie de fusion. Les électrons relativistes amplifient et prolongent le courant magnétiquement pincé qui renouvelle la fusion. Cela fait une réaction en chaîne qui se propage en ligne droite. Les paquets d'électrons relativistes entraînent le courant industriel. Le laser n'agit que comme déclencheur. D'où un rendement excellent.
Malheureusement, il est très difficile d'obtenir par construction les conditions de phases exigées pour le bon fonctionnement du brevet 9901059
La présente invention résout ce problème de construction en utilisant des matériaux transparents dopés de façon à avoir des indices optiques très voisins : Considérons deux lames à faces parallèles de même épaisseur h et d'indices optiques n et n + δn. Plaçons les côte à côte dans un même plan. Une onde plane les traverse en incidence normale. La différence de phase entre les ondes qui émergent des deux lames est :
— h δn λ pour que cette différence de phase soit égale à — il faut que :
(2) h = λ
3 δn
Si λ = 10" mètre et δn = 1/1000 on a h = 3,33 millimètres. Si l'épaisseur h est garantie à 1/10 millimètre, la phase est garantie à 3 % près. A titre de comparaison pour avoir la même précision sur la phase en taillant dans un bloc homogène d'indice n il faudrait usiner au dixième de micromètre près ce qui est pratiquement impossible.
La longueur d'onde λ = 10" mètre est celle des lasers à dioxyde de carbonne qui sont les plus utilisés. On peut sans sortir de l'invention utiliser d'autres lasers, par exemple des lasers hélium-néon. On a alors : λ = 0,5 μm , δn = 1 / 6000, h = l mm
Pour obtenir le mode quadripolaire tournant on utilise un ensemble de six lames demi-onde représenté fig.l qui oriente orthoradialement les polarisations dans les six secteurs et un autre ensemble de six lames à faces parallèles d'indices optiques n, n + δn, n + 2δn qui règlent les phases, représenté fig.2. Ce deuxième ensemble est appelé « déphaseur azimutal ».
On se réfère à un trièdre oxyz. L'axe oz est perpendiculaire au plan des figures 1 et 2. L'onde issue du laser se propage parallèlement à oz et son champ électrique est dirigé selon oy.
Sur la fig.l, on indique en traits fins, les directions des axes rapides. Les ondes polarisées dans cette direction se propagent plus vite que celles polarisées dans la direction d'axe lent qui est perpendiculaire. L'épaisseur de la lame est telle que la différence de temps entre les deux propagations est égale à une demie période. Si bien que lorsqu'une lame demi-onde est traversée par une onde plane en incidence normale, le champ électrique de l'onde émergeante est symétrique du champ électrique de l'onde incidente par rapport aux axes rapide et lent. Nous voulons que les ondes émergeantes
7t fïg.1 forment un hexagone donc que leur polarisation tourne de — lorsqu'on passe d'un secteur au suivant, pour qu'il en soit ainsi il faut que les directions d'axe rapide
7t tournent de — lorsque l'on passe d'un secteur au suivant, comme indiqué fig.l. 6
Les ensembles iïg.1 et 2 sont construits de la même façon :
Pour le premier, fig.l, on prend six lames de quartz que l'on polit sur une face, on les colle par la tranche et on les met en adhésion moléculaire sur un bloc de silice fondu préalablement poli. On polit ensuite l'ensemble des autres faces.
On procède de la même façon pour les lames d'indices n, n + δn et n + 2 δn de la fig.2.
Le polissage optique est la forme d'usinage la plus parfaite. Les dopages causant les variations d'indices δn et 2 δn sont faciles à obtenir.
Ces dispositifs caractéristiques de l'invention permettent d'obtenir facilement le mode quadripolaire tournant que l'on n'a pas pu obtenir par d'autres moyens :
Après avoir traversé les dispositif fig.l et fig.2. les faisceaux sont focalisés au point F de l'axe oz fig.4. • Examinons les interférences dans le plan focal en prenant les faisceaux deux par deux : les faisceaux qui ont traversé les secteurs I et IN fig.l, d'indice n fig.2, arrivent dans le plan focal, ils ont leur champ électrique orienté suivant l'axe oy, mais en sens contraire. Ils forment un ensemble antisymétrique par rapport au plan yoz, avec champ électrique nul sur oy et, dans le voisinage proportionnel à la distance à oy. De même, les faisceaux qui ont traversé les secteurs III et NI fig.l d'indice n + δn fig.2, ont leur champ électrique orienté dans la direction d'axe oy' qui fait l'angle
— avec 1 axe oy.
3
De même, les faisceaux traversant les sections II et V fig. l, d'indice n + 2δn fig.2. Nous avons ainsi défini trois paires de faisceaux auxquelles ont peut donner une expression commune en coordonnées polaires :
Pour chaque paire on a un axe d' anti-symétrie dont la direction est celle du champ électrique. Elle correspond au nombre complexe E0 exp ψi : on prend l'axe oy pour origine des azimuts : ainsi ψi = 0 et E0 expo est un vecteur porté par oy. Pour la seconde paire ψ2 = — E0 exp — désigne un vecteur porté par oy' De même pour
471 47t la troisième paire ψ3 = — , E0 exp — est un vecteur dirigé selon oy"
Pour chaque paire la distance à l'axe de la paire est p sm (φ - Ψj) Soit θ l'angle que font les directions de propagation des deux ondes de la paire avec l'axe oz, le champ électrique dans le plan focal sera, pour une paire
(3) E0 exp Ψl sιn [ 2 π sm θ p Sm (φ - ψ, ) ]
A
Nous ne nous intéressons qu'à ce qui se passe dans le voisinage de oz C'est pourquoi nous pouvons remplacer le sinus par son approximation linéaire et écrire l'expression (3) sous la forme
Figure imgf000005_0001
( I4Λ bis Λ) en posan +t E ϋi = E r?0 2 sιn θ λ et il faut multiplier par le facteur qui exprime l'oscillation électπque et le déphasage
Figure imgf000005_0002
Le champ d'interférence des trois paires d'ondes en un point p, φ est donné par
∑ Eλ exp ψt x p s (φ - ψ,) x cos( ωt- 2 ψ,)
Lorsqu'on fait la somme des trois expressions en exprimant les sinus et cosinus par des exponentielles, on voit apparaître des termes triphasés dont la somme est nulle, et il reste
3
(5) — El ρ eχτρ (-j φ) χ exp j ωt
que l'on peut écrire
3 3
(6) — El p exp(-j φ) cos ωt + j —Elp xp(-j φ)s,mωt
L'expression p exp (- j φ) correspond à un champ de vecteurs quadripolaire et en multipliant par j on a un champ de vecteurs orthogonal au premier Pour le voir plus clairement passons en coordonnées cartésiennes au moment où t = 0 x + jy = p expj φ l'élément différentiel de la ligne de champ dx + j dy est dirigé parallèlement au vecteur champ électrique donné par (5) E0 p exp (- j φ). On a donc : y dy
d'où l'équation différentielle : xdy + ydx = 0 qui par intégration donne l'équation des lignes de champ à un instant donné.
(7) xy = Cte
Ce sont des hyperboles équilatères. Le champ créé au foyer F est bien un champ quadripolaire tournant transverse électrique. Le faisceau laser ainsi transformé est focalisé dans le deuterium où il produit un plasma. Dans nos brevets antérieurs nous avons montré que le mode quadripolaire tournant agit sur le plasma comme un accélérateur d'électrons.
Les électrons accélérés forment des courants magnétiquement pinces dans lesquels se produit la réaction de fusion du deuterium (1).
Ces réactions engendrent des jets d'électrons relativistes dans lesquels elles se reproduisent.
Dans ces jets, les électrons sont groupés en paquet que nous avons appelé des
« aiguilles ».
Ces « aiguilles » poussent le nuage électronique après avoir ionisé le gaz. Elles produisent ainsi un courant industriel bon marché et facile à exploiter. Mais ces « aiguilles » ont un autre effet qui n'a pas encore été exploité : en quittant la zone focale elles rayonnent un champ quadripolaire tournant. Un objet de la présente invention est de récupérer l'énergie de ce champ quadripolaire et de le réinjecter dans le plasma.
La fïg.3 représente à un instant donné le courant circulaire de rayon r magnétiquement pincé engendré par l'onde laser dans le plan focal. Au cours du temps cette figure tourne à la fréquence angulaire ω/2. Suivant deux tangentes à ce courant, sont lancés deux jets d'« aiguilles » qui à leur tour émettent un rayonnement quadripolaire équivalent à celui qui serait émis par un cercle tracé en pointillé de rayon r 2 parcouru par un courant. Si θ est l'angle que font avec oz les rayons issus du laser qui convergent en F, le rayonnement émis par les aiguilles fera avec oz un angle θ' tel que : 2 sin θ' = sin θ c'est ce qui permet de récupérer le rayonnement quadripolaire des « aiguilles » et d'en réinjecter l'énergie dans le plasma sans perturber le rayonnement laser. Cette rétroaction est opérée par les miroirs 14 et 15 fig.4, elle facilite le démarrage de la réaction de fusion et la prolonge.
Un autre objet de l'invention est de multiplier les aiguilles au cours de leur propagation en instaurant un champ magnétique perpendiculaire au plan dans lequel elles sont lancées: les aiguilles sont des paquets d'électrons relativistes assez importants pour avoir une action macroscopique elles ionisent le deuterium et poussent le nuage électronique créant le courant secondaire que nous utilisons comme courant industriel. A sa naissance, ce courant est assez dense pour provoquer par pincement magnétique de nouvelles fusions mais il se trouve en milieu brûlé, il est environné de noyaux d'hélium. Pour obtenir de nouvelles fusions il faut le dévier à l'aide d'un champ magnétique pour le lancer dans le deuterium. Tel est le rôle des aimants qui apparaissent 18 et 19 fig.4. L'invention sera mieux comprise par les explications qui vont être données en corrélation avec la description des figures parmi lesquelles :
Les figures 1 et 2 représentent des dispositifs optiques qui transforment l'onde polarisée linéairement issue d'un laser en onde se propageant selon le mode quadripolaire tournant transverse électrique comme on l'a montré ci-dessus. La figure 3 montre comment sont lancés les jets d'aiguilles à partir d'un courant circulaire magnétiquement pincé.
La figure 4 est une coupe méridienne du générateur de puissance électrique selon l'invention. La figure 4' représente les réflexions des rayons laser entre les miroirs conique et cylindrique.
La figure 4 présente une grande analogie avec celle décrite dans le brevet 9901059. La chambre à deuterium est désignée par 1. Elle est limitée par une enceinte en matériau isolant, verre ou céramique, construite en deux parties 2 et 2', raccordées entre elles et aux autres pièces selon des procédés qui ont fait leurs preuves dans l'industrie des bocaux pour la conserverie.
La paroi 2' est raccordée au dispositif de contrôle du deuterium par un système à vis 3. Les parois 2 et 2' sont réunies par un système d'agrafe 4. La paroi 2 porte des bossages sur lesquels se visse la pièce 5 qui ressemble à un couvercle de pot à confiture dont on a enlevé la partie centrale. Cela assure le raccordement entre la paroi 2 et la pièce 6. Les rôles des pièces 7 et 8 ont été exposés ci-dessus avec la description des figures 1 et 2, elles sont vues ici coupées par un plan méridien. Elles sont tenues dans la pièce 6 par des joncs. Elles reçoivent le faisceau laser, transforment son mode de propagation et transmettent l'énergie au dispositif focalisateur.
L'ensemble du laser et de la pièce 7 donne une onde dont les lignes de champ sont hexagonales. C'est une bonne approximation de ce que l'on appelle dans la théorie des guides circulaires un mode TEo. On peut remplacer le laser polarisé linéairement et la pièce 7 par un laser fonctionnant en mode TEo. Pour obtenir ce fonctionnement on réalise le miroir semi réfléchissant de la cavité résonante par un ensemble de cercles conducteurs concentriques qui réfléchissent le mode TEo et laissent passer les autres modes. On réalise de tels cercles par photogravure. Nous ne nous étendrons pas sur ce sujet que nous considérons comme l'art antérieur.
C'est l'utilisation de matériaux transparents dopés, d'indices très voisins, qui constituent la pièce 8 qui permet d'obtenir les déphasages précis dont nous avons besoin, elle constitue la caractéristique essentielle de la présente invention. Elle permet de réaliser facilement ce qui exigeait une précision irréalisable dans le brevet 9901059. Le dispositif focalisateur est formé d'une lentille 11 et de deux miroirs de révolution autour de oz, 9 et 10.
Dans le plan méridien sur lequel est tracée la figure 4' l'ensemble des rayons issus de la lentille 11 entre l'axe et le bord, et convergeant en F" d'une part et l'ensemble des rayons, réfléchis par le cône 9 et convergeant en F' d'autre part, sont symétriques par rapport à la génératrice du cône 9.
La distance OF' est donc égale à OF" qui est la distance focale /de la lentille 11.
Si α est l'angle d'ouverture du cône, la droite OF' fait un angle 2α avec l'axe oz. Si α est aussi l'angle d'ouverture du faisceau convergeant en F", on retrouvera cet angle entre les rayons limites convergeant en F' et en F. Le miroir 10 est cylindrique : la distance de ses génératrices à l'axe oz est la moitié de la distance de F' à cet axe. Ainsi l'énergie du faisceau est focalisée sur l'axe au point F. La distance OB est égale à la moitié de OF donc f 12. Soit a la longueur de la génératrice du cône.
Il résulte du rapport entre la longueur des côtés et les sinus des angles dans le triangle
, Λn f sin3 a
AOB que — = 2 . a sin4 a
71
Les figures 4 et 4' sont tracées dans le cas où a = — on a alors f =2 a cos π/8.
Dans la tâche focale se produit la fusion du deuterium qui lance des « aiguilles » dans un plan perpendiculaire à oz. Dans le voisinage immédiat de cette tâche ces « aiguilles » produisent un rayonnement quadripolaire que les miroirs de révolutions 14 et 15 renvoient dans la tâche focale pour activer la fusion. Le miroir 15 est cylindrique et prolonge le miroir 10'. La méridienne du miroir 14 est un arc d'une ellipse ayant pour foyers, le foyer F et F' symétrique de F, par rapport à la génératrice du cylindre 10'. Le miroirs 14 est taillé dans la base du cône 9'.
Le cône 9' est supporté par trois haubans qui à l'une de leurs extrémités sont soudés pour former une coupelle qui s'adapte sur la pointe du cône. Les autres extrémités sont fixées sur la base du cône. Ces haubans sont tendus et reliés à l'ensemble du dispositif par une pièce 17 don a forme générale est celle d'une couronne reliée à la pièce 6.
Des aimants, de révolution autour des oz, dont on voit les sections méridiennes 18 et 19 créent un champ magnétique parallèle à oz dans deux couronnes concentriques. En traversant ces couronnes les électrons secondaires qui accompagnent une aiguille sont déviés vers le deuterium propre où ils peuvent engendrer de nouvelles aiguilles. Puis les aiguilles accompagnées des courants secondaires qu'elles ont provoqués, arrivent dans l'anode 20. C'est une pièce métallique de forme vaguement torique dont la surface extérieure est revêtue d'isolant de façon à éviter les claquages. Elle est réunie à l'une des parois 2 ou 2' par trois pieds. L'un de ces pieds constitue la borne de sortie 21. C'est entre cette borne 21 et une borne solidaire de la pièce 6 que l'on recueille le courant destiné à l'utilisation industrielle.

Claims

RE V E N D I C A T I O N S
Générateur de puissance électrique constitué par une chambre contenant un mélange deuterium- hydrogène, dans laquelle l'énergie d'un puissant laser à impulsions est focalisée après avoir été transformée en mode quadripolaire tournant transverse électrique, en traversant un « déphaseur azimutal » dans lequel les déphasages sont causés par un dopage du matériau constituant les lames à faces parallèles, ce dopage fait varier l'indice optique d'une quantité δn ou 2δn, liée à la longueur d'onde λ du laser et à l'épaisseur h de la lame par la formule :
h δn = λ/ » cette énergie provoque la formation d'un plasma à partir duquel, dans une zone voisine du plan focal, des « aiguilles » sont lancées qui entraînent un courant électrique aboutissant à une anode circulaire entourant le foyer, le circuit d'utilisation est branché entre l'anode et le dispositif métallique utilisé comme focalisateur du faisceau laser.
Dispositif selon revendication 1 dans lequel le focalisateur est constitué par une lentille placée à la sortie du « déphaseur azimutal » et deux miroirs de révolution à méridiennes rectilignes l'un conique, l'autre cylindrique.
Dispositif selon revendication 1 dans lequel un aimant placé dans la chambre à deuterium, de révolution autour de l'axe, engendre dans une couronne, un champ magnétique parallèle à l'axe dont le rôle est de dévier les électrons secondaires qui accompagnent les paquets d'électrons relativistes afin de les amener dans un milieu fertile où ils créent de nouvelles aiguilles.
Dispositif selon revendication 1 dans lequel l'énergie du faisceau d'onde électromagnétique quadripolaire tournant qui accompagne le départ des « aiguilles » est réfléchie vers le foyer F par un ensemble de deux miroirs de révolution : l'un taillé dans la base du cône, ayant pour méridienne un arc d'ellipse, l'autre est un prolongement du miroir cylindrique.
PCT/FR2003/000600 2002-02-25 2003-02-25 Generateur de puissance electrique utilisant la fusion du deuterium en helium WO2003077617A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003233350A AU2003233350A1 (en) 2002-02-25 2003-02-25 Electric power generator involving the fusion of deuterium into helium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02/02343 2002-02-25
FR0202343A FR2836590B1 (fr) 2002-02-25 2002-02-25 Generateur de puissance electrique utilisant la fusion du criterium en helium

Publications (1)

Publication Number Publication Date
WO2003077617A1 true WO2003077617A1 (fr) 2003-09-18

Family

ID=27676037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/000600 WO2003077617A1 (fr) 2002-02-25 2003-02-25 Generateur de puissance electrique utilisant la fusion du deuterium en helium

Country Status (3)

Country Link
AU (1) AU2003233350A1 (fr)
FR (1) FR2836590B1 (fr)
WO (1) WO2003077617A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2904465B1 (fr) * 2006-07-25 2008-10-17 Marie G R P Generateur de puissance electrique utilisant la fusion du deuterium en helium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4211471A (en) * 1977-12-28 1980-07-08 Marie G R P Mode converters for converting a non-confining wave into a confining wave in the far infrared range
JPH0460637A (ja) * 1990-06-29 1992-02-26 Kawasaki Steel Corp 位相シフトマスクとその製造方法
FR2789216A1 (fr) * 1999-02-01 2000-08-04 Marie G R P Generateur de puissance electrique
FR2789217A1 (fr) * 1999-02-01 2000-08-04 Pierre Marie Generateur de puissance electrique

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4211471A (en) * 1977-12-28 1980-07-08 Marie G R P Mode converters for converting a non-confining wave into a confining wave in the far infrared range
JPH0460637A (ja) * 1990-06-29 1992-02-26 Kawasaki Steel Corp 位相シフトマスクとその製造方法
FR2789216A1 (fr) * 1999-02-01 2000-08-04 Marie G R P Generateur de puissance electrique
FR2789217A1 (fr) * 1999-02-01 2000-08-04 Pierre Marie Generateur de puissance electrique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 016, no. 252 (P - 1367) 9 June 1992 (1992-06-09) *

Also Published As

Publication number Publication date
FR2836590A1 (fr) 2003-08-29
FR2836590B1 (fr) 2004-11-19
AU2003233350A1 (en) 2003-09-22

Similar Documents

Publication Publication Date Title
Baer Continuous-wave laser oscillation in a Nd: YAG sphere
Rodríguez‐Fortuño et al. Universal method for the synthesis of arbitrary polarization states radiated by a nanoantenna
Qiu et al. Enhancing terahertz magnetic near field induced by a micro-split-ring resonator with a tapered waveguide
EP0564359A1 (fr) Dispositif d'application de micro-ondes et réacteur à plasma utilisant ce dispositif
Bakunov et al. Efficient Cherenkov-type terahertz generation in Si-prism-LiNbO3-slab structure pumped by nanojoule-level ultrashort laser pulses
CN108054633B (zh) 单模面发射oam激光器
CN114389125B (zh) 圆艾里三色场激光产生太赫兹波的系统和方法
EP3338330B1 (fr) Laser térahertz, source térahertz et utilisation d'un tel laser térahertz
JP2693582B2 (ja) 波長変換素子
CN107561815B (zh) 一种高能太赫兹脉冲产生装置及方法
JPS644161B2 (fr)
Lee et al. Electrically controllable terahertz second‐harmonic generation in GaAs
Thiele et al. Terahertz emission from laser-driven gas plasmas: a plasmonic point of view
Deveikis et al. Multi-pixel photoconductive emitters for the controllable generation of azimuthal and radial terahertz beams
WO2003077617A1 (fr) Generateur de puissance electrique utilisant la fusion du deuterium en helium
FR3004294A1 (fr) Dispositif et procede de generation d'un rayonnement smith-purcell coherent.
EP0049198B1 (fr) Accélérateur d'électrons et générateur d'ondes millimétriques et infra-millimétriques comportant un tel accélérateur
Walther et al. Emission and detection of terahertz pulses from a metal-tip antenna
EP2700133A1 (fr) Dispostif laser d'emission d'ondes dans le domaine des terahertz
EP3405835B1 (fr) Dispositif de génération d'un faisceau de photons polychromatique et spatialement autoadapté
RU2636808C1 (ru) Способ и устройство источника поляризационно-перепутанных фотонов с максимально возможной степенью перепутанности
EP2962305A1 (fr) Dispositif de magnetisation de plasma laser par champ magnetique pulse
FR2617364A1 (fr) Procede et dispositif de production d'electrons utilisant un couplage de champ et l'effet photoelectrique
Chaloupka et al. Characterization of a tunable, single-beam ponderomotive-optical trap
FR2690778A1 (fr) Dispositif provoquant et utilisant la "micro-fusion" thermonucléaire.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP