WO2003075885A1 - Composition a proprietes gelifiantes destinee a la delivrance prolongee de substances bio-actives - Google Patents

Composition a proprietes gelifiantes destinee a la delivrance prolongee de substances bio-actives Download PDF

Info

Publication number
WO2003075885A1
WO2003075885A1 PCT/FR2003/000797 FR0300797W WO03075885A1 WO 2003075885 A1 WO2003075885 A1 WO 2003075885A1 FR 0300797 W FR0300797 W FR 0300797W WO 03075885 A1 WO03075885 A1 WO 03075885A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition according
liquid
substance
composition
organogel
Prior art date
Application number
PCT/FR2003/000797
Other languages
English (en)
Inventor
Jean Christophe Leroux
Anne-Claude Couffin-Hoarau
Original Assignee
Ethypharm
Universite De Montreal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0203059A external-priority patent/FR2837099B1/fr
Priority to CA2478825A priority Critical patent/CA2478825C/fr
Priority to IL16403103A priority patent/IL164031A0/xx
Priority to MXPA04008906A priority patent/MXPA04008906A/es
Priority to NZ535270A priority patent/NZ535270A/en
Priority to EP03725281.4A priority patent/EP1485066B1/fr
Priority to AU2003227827A priority patent/AU2003227827B2/en
Priority to US10/507,281 priority patent/US7691408B2/en
Application filed by Ethypharm, Universite De Montreal filed Critical Ethypharm
Priority to BRPI0308360A priority patent/BRPI0308360B8/pt
Priority to JP2003574161A priority patent/JP2005528352A/ja
Priority to ES03725281.4T priority patent/ES2607980T3/es
Priority to US10/647,243 priority patent/US20050031650A1/en
Publication of WO2003075885A1 publication Critical patent/WO2003075885A1/fr
Priority to IL164031A priority patent/IL164031A/en
Priority to NO20044310A priority patent/NO339426B1/no
Priority to HK05104957.8A priority patent/HK1071704A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/10Drugs for disorders of the endocrine system of the posterior pituitary hormones, e.g. oxytocin, ADH
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • A61K47/183Amino acids, e.g. glycine, EDTA or aspartame
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/44Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue

Definitions

  • thermosensitive chemical composition comprising a hydrophobic organic solvent, a so-called organogelling substance, and a bioactive substance, said composition being intended to be administered to a living organism, for the prolonged delivery of bioactive substances.
  • Said composition has the capacity to form an organogel spontaneously or by cooling, once brought into contact with an aqueous medium, and in particular a physiological liquid.
  • the organogel formed serves as a support for the sustained release of bioactive substances by diffusion and / or erosion and / or progressive biodegradation of said organogel in the body.
  • the present invention also extends to the uses that can be made of this composition in the therapeutic field and more particularly in the field of prolonged delivery of bioactive substances.
  • thermosensitive composition any composition capable of passing from the liquid state to the gel state as a function of temperature and by organogel any gel whose liquid phase is composed of an organic solvent.
  • bioactive substance any substance having the capacity to act on a living organism or its functioning so as to prevent, cure, relieve or improve the state of said organism.
  • hydrophobic organic liquid is meant a solvent or a mixture of organic solvents whose molecules or parts of molecules have a certain repulsion vis-à-vis the water molecules.
  • hydrophilic solvent is meant a solvent whose molecules establish attraction interactions with the water molecules.
  • the gels can be classified according to the type of bonds which connect the molecules of the solid phase to each other or according to the type of solvent, organic or aqueous, which composes the liquid phase.
  • Hydrogels the gels whose liquid phase is an aqueous phase, are differentiated to differentiate them from organogels in which the liquid phase is an organic phase.
  • Gels whose matrix consists of molecules linked together by covalent bonds are generally in a stable and irreversible state once formed. Conversely, gels whose solid matrix is obtained by low energy bonds (hydrogen bond type or Van der Waals bonds in particular), are generally reversible gels that is to say that can pass from the state gel in the liquid state depending on the surrounding conditions (pH, temperature, ionic strength etc.).
  • the temperature at which the change of state is observed is called the transition temperature.
  • the gel / liquid transition temperature is different from the liquid / gel transition temperature.
  • gels are especially used in the pharmaceutical industry, for their retention capacity vis-à-vis bioactive molecules, particularly in the context of an administration of transcutaneously active substances.
  • hydrogels forming in situ have been developed.
  • US Patent Application No. 20010007673 describes the use of a hydrogel forming in vivo for the delayed delivery of bioactive molecules, including proteins.
  • a hydrophilic polymer-based composition including alginate, a polyvalent metal ion and the desired active substance is injected in liquid form and gelated once placed in the body.
  • This hydrogel allows delayed diffusion of the bioactive substance into body fluids.
  • U.S. Patent No. 5,575,815 discloses intra-caviteal, i.e., intra-arterial or intravenous administration of an aqueous liquid composition that is transformed or viscosified into hydrogel in vivo.
  • the use of this gel for the incorporation of active substances is provided, in particular for angioplasty.
  • the hydrogels used consist of polyether polymers.
  • U.S. Patent No. 6,344,488 describes the formation of a temperature-controlled and pH-dependent gel comprising an aqueous chitosan / organophosphate salt mixture.
  • a temperature-controlled and pH-dependent gel comprising an aqueous chitosan / organophosphate salt mixture.
  • the addition of a dibasic polyol or sugar mono-phosphate salt to aqueous solutions of chitosan results in temperature-controlled gelation and is pH dependent.
  • the drugs are incorporated in said gel before gelation.
  • the chitosan / organophosphate salt solutions are stored at low temperatures in the form of solution and gell in situ after subcutaneous, intraperitoneal or intramuscular injection following an increase in temperature.
  • the hydrogel thus formed can be used for the release of active ingredients.
  • the patent application WO 97/15287 describes a system and a method for the parenteral (intramuscular, intraperitoneal, subcutaneous) administration of drug in a biodegradable polymer matrix to a warm-blooded animal in the form of a liquid resulting in the formation of a gel deposit, for controlled release of the drug.
  • the liquid is an aqueous solution in which an effective amount of drug contained in a biodegradable copolymer block matrix is dissolved or dispersed.
  • the copolymer has a reverse gelation temperature lower than the body temperature of the animal to which it is administered and is made of a hydrophobic polymer block and a hydrophilic polymer block.
  • thermogelling solutions Other aqueous thermogelling solutions are described in the literature. Among these are poloxamers solutions (Johnston, TP et al., Inulin disposition following intramuscular administration of an inulin / poloxamer gel matrix, J. Parent, Sci Technol., Vol 43, 279, 1989; , TP et al., Sustained delivery of interleukin-2 from a poloxamer 407 gel matrix following intraperitoneal injection in mice, Pharm Res., 9, 425, 1992; Pec et al., Biological activity of urease formulated in poloxamer 407 after intraperitoneal injection in the rat, J.
  • the object of the present invention is to provide a new pharmaceutical composition having the capacity to form an organogel allowing the release over long periods of time of active substances.
  • the object of the present invention is also to provide such a delayed release medium that is both biocompatible and biodegradable, furthermore allowing it to be administered in liquid form, that is to say in an easy, fast and inexpensive.
  • Organogels have already been used as a support for the delayed release of active principle.
  • the present invention relates to a hydrophobic organogel generated in vivo after being applied in liquid form.
  • Such gels have already been described in the prior art.
  • Patent Application No. WO 94/08623 discloses a hydrophobic organogel containing lecithin and a hydrophobic lecithin solvent used for delayed release of protein.
  • the gel is formed in vivo, from a solution injected intramuscularly or subcutaneously, by absorption of water from the interstitial medium during the injection.
  • the hydrophobic organogel of the present invention is not formed by absorption of the surrounding water.
  • the present invention relates to a thermosensitive liquid composition with gelling properties comprising a hydrophobic organic liquid, a so-called organogelling substance, and a bioactive substance.
  • the organogelling substance consists of molecules capable of binding together by low energy bonds, so that the self-assembly of these molecules is advantageously thermoreversible.
  • thermosensitive composition in liquid form according to the invention contains a hydrophobic organic liquid, an organogelling substance whose molecules have the capacity to bind to each other by low energy bonds, and a bioactive substance. It passes in the form of organogel when it comes into contact with a physiological fluid when it is administered to a body animal, especially humans, especially during injection into the body, for example using a conventional syringe, parenterally extra vascular, or intramuscular subcutaneous.
  • Parenteral extra-vascular means any route of penetration into the body other than the digestive tract and the vascular pathway (veins, arteries and blood vessels).
  • composition of the invention may also be administered intra-ocularly, intracavitally or on prostheses prior to their application, vaginally, on an open wound or during surgery.
  • Lecithin is a mixture of phospholipids of low molecular weight. Lecithins are amphoteric, they are soluble in alcohol and they form an emulsion with water. Lecithin organogels have been described as useful vehicles for facilitating the penetration of low molecular weight molecules (Willimann, H., et al., "Organogel lecithin as a matrix for transdermal drug transport", J. Pharm Sci., Vol. 81, 1992).
  • the lecithin organogels are obtained by adding a little water to a solution of lecithin in organic solvents such as isopropyl palmitate or cyclooctane. In these documents, water is added to form the desired gel so that the organogel is formed before it is applied to the skin.
  • organogels of the present invention are in liquid form when administered to a living organism and take the form of a gel once they come into contact with a physiological fluid.
  • lecithins do not constitute organogelling substances as defined in the context of the present invention.
  • Physiological fluid is understood to mean any liquid circulating in an animal body, such as, for example, lymphatic fluid, lachrymal fluid, cerebrospinal fluid, amniotic fluid, parenteral liquid and blood.
  • the organogel formed from the composition according to the invention has retention capacities for bioactive molecules and more particularly molecules with a weight of less than 100,000 daltons having a hydrophilic nature, making it possible to envisage a release of said molecules in the body. organism for periods longer than 3 days.
  • said organogel formed in the body from the composition according to the invention has the capacity to be eliminated slowly by erosion and or progressive biodegradation, without toxicity to the organism where it is implanted.
  • This in situ gelling property according to the invention is obtained by the use of a hydrophobic organic liquid constituting the organic phase of said organogel and an organogelling substance (or organogelling agent) constituting the solid matrix of said organogel.
  • the molecules constituting this organogelling substance are of the type in particular fatty acid ester derivatives of amino acids which have the ability to self-assemble spontaneously to form a matrix immobilizing said hydrophobic organic liquid.
  • This molecular self-assembly can be achieved by hydrogen bonds between the alcohol (-OH), acid (-COOH), amine (-NH or NH 2 ) groups carried by the organogelling molecules.
  • the gelation of the liquid composition is induced by cooling the application site of the composition or by diffusion of a hydrophilic organic solvent added to the composition of the invention.
  • the Applicant has selected hydrophilic organic solvents capable of creating weak bonds (eg hydrogen bridges) with the molecules of organogelling substance, and capable of diffusing in aqueous media to produce the composition according to the invention.
  • the hydrophilic organic solvent introduced into the mixture forming the composition according to the invention will compete with the molecules of organogelling substance, creating with said molecules weak bonds (eg hydrogen bridges) preventing said molecules from occurring. to self-assemble in a dense and united network.
  • the composition according to the invention will remain therefore in liquid form as long as the molecules of said hydrophilic organic solvent remain bound to the molecules of the organogelling agent.
  • the use according to the present invention of the reversibility of weak bonds will advantageously allow the organogelling matrix to reassemble as soon as said hydrophilic organic solvent has diffused into the surrounding medium.
  • said hydrophilic organic solvent present in the composition according to the invention will diffuse into said surrounding liquid due to its hydrophilicity.
  • the present invention thus provides a simple system of spontaneous in situ gelling, and easy administration.
  • the present invention is based on the hysteresis properties observed by the applicant on organogels based on organogelling substances according to the invention.
  • Hysteresis is understood to mean the physical phenomenon observed especially for the gelling compositions, representing the difference between the gel / liquid transition temperature and the liquid / gel transition temperature.
  • These properties make it possible to design a composition according to the invention which is liquid, and therefore easily injectable, at ambient temperature (or at a temperature around ambient temperature).
  • these properties also make it possible to produce an organogel according to the invention which, once formed in vivo, will remain in gel form at the body temperature of the organism in question. Indeed, such an organogel, whether it is formed by diffusion or simple cooling, has a gel / liquid transition temperature greater than the temperature of the site injection or application. As a result, it is perfectly stable in said organism.
  • the present invention has the advantage of providing a sustained release support for drugs or other active substances.
  • the organogel formed in the body and according to the present invention comprises a true organized matrix structure which has little affinity for the surrounding aqueous medium and thus allows a slow release of the active substance by diffusion, erosion or biodegradation progressive said organogel.
  • the present invention thus provides a simple, effective and easy-to-administer support for prolonged release into the body, for a period of at least 1 day, of substances such as bioactive substances and more particularly hydrophilic molecules. weighing less than 100,000 dalton.
  • the composition according to the present invention has the advantage of being extremely inexpensive, both in terms of manufacturing as described below, as well as in terms of packaging and administration.
  • the organogelling substances according to the invention are substances whose molecules have the capacity to bind to each other by low energy bonds, and in particular by hydrogen bonds, allowing the formation of a thermosensitive matrix. These molecules are especially low molecular weight molecules having acid (-COOH) or alcohol (-OH) or amino (-NH 2 or -NH) ends, for example.
  • these substances are preferably biocompatible and do not give rise to metabolites that are toxic or harmful to the body during their degradation by the latter.
  • Amino acid derivatives or fatty acid ester derivatives of amino acids such as alanine which have both a good biocompatibility and a satisfactory organogelling power and, above all, confer on the gelled system hysteresis properties, will preferably be used. These properties result in a transition from the liquid state to the gel state at a temperature different from that observed during the transition from the gel form to the liquid form. of said composition.
  • the Applicant has the merit of having noticed that the difference between these two transition temperatures is variable depending on the type of hydrophobic organic liquid used, and the amount of organogelling substance used.
  • the Applicant has produced compositions in accordance with the invention whose transition temperatures and the differences between these temperatures are adjustable by simple modification of these two parameters. The results reflecting these variations are shown in FIGS. 1 to 7.
  • the difference between these two transition temperatures is chosen so that the liquid / gel transition temperature is lower than the body temperature of the living organism considered in the case where the organogel is administered without a hydrophilic organic solvent and the gel / liquid transition temperature is above the aforesaid temperature.
  • alanine derivatives such as N-lauroyl L-alanine acid (LA) or alanine ester derivatives such as N-lauroyl L-alanine methyl ester (LAM), or N- lauroyl L-alanine ethyl ester (LAE), N-stearoyl L-alanine methyl ester (LAM) or N-stearoyl L-alanine ethyl ester (SAE) as organogelling substance according to the invention.
  • LA N-lauroyl L-alanine acid
  • LAE N- lauroyl L-alanine ethyl ester
  • LAM N-stearoyl L-alanine methyl ester
  • SAE N-stearoyl L-alanine ethyl ester
  • the amount of organogelling substance is a function of the type of hydrophobic organic liquid employed and of the transition temperature that it is desired to choose for the organogel according to the invention.
  • the proportion of this substance is advantageously chosen between 0.5 and 50% by weight of the total weight of said composition.
  • the Applicant has found that the use as an organogelling substance of N-lauroyl L-alanine methyl ester allows said composition to go into the gelled state by simply cooling below the liquid / gel transition threshold and to remain in the gel state. at a temperature exceeding the liquid / gel transition temperature, in particular the temperature of the living organism. Indeed, the applicant has noticed that said organogel formed by cooling is stable in the temperature range between the liquid / gel transition temperature and the gel / liquid transition temperature. All these findings led the applicant to develop a thermosensitive composition with gelling properties having the ability to go into gelled form by simple local cooling and keep this gelled state at body temperature. In this particular case of the invention, the amount of hydrophilic organic solvent can be extremely reduced, or even zero since the gelation is effected by a cooling of said composition and no longer by diffusion of said hydrophilic organic solvent.
  • This embodiment is particularly advantageous since it makes it possible to dispense with the presence of the hydrophilic organic solvent and thus to further simplify the process for preparing the composition according to the invention and also to reduce its cost price.
  • thermosensitive composition according to the invention contains a proportion of N-lauroyl L-alanine methyl ester sufficient to allow the passage of said composition from the liquid state to the organogel state by simple cooling said composition in contact with its injection site in the body.
  • Such cooling must be sufficient to pass said composition, applied in liquid form, to its gelled form.
  • This cooling which can be performed by external application of a cold object such as an ice cake or a cold compress or any other means cooling around the injection site, must allow a local lowering, under the liquid transition temperature. gel of said composition.
  • composition according to the invention is therefore preferably in liquid form at the temperature of the application site, has a gel / liquid transition temperature greater than the body temperature and a liquid / gel transition temperature lower than the temperature of the organism considered or the gel implantation zone.
  • the cutaneous temperature may be a few degrees lower than the general temperature of the body.
  • the proportion of N-lauroyl L-alanine methyl ester of said composition is sufficient so that the liquid / gel transition temperature is lower than the body temperature (37 ° C. general) and that the gel / liquid transition temperature is above body temperature (typically 37 ° C).
  • the composition according to the invention must comprise a liquid / gel transition temperature of less than 30 ° C. and a gel / liquid transition temperature of greater than + 35 ° C.
  • the composition according to the invention is preferably a composition whose interval between the liquid / gel transition temperature and the gel / liquid transition temperature is advantageously at least 20 ° C., the liquid / gel transition temperature being preferably between + 5 ° C and + 36 ° C.
  • the hydrophobic organic liquid of the composition according to the present invention is a hydrophobic organic solvent or a mixture of different hydrophobic organic solvents.
  • the mixtures of different hydrophobic organic solvents have the advantage of modifying the gelling profile or of facilitating the solubilization of certain bioactive substances.
  • the hydrophobic organic solvents that can be used for producing the composition according to the present invention belong to the group of water-immiscible organic solvents capable of creating an organogel-like structure, in the presence of a sufficient quantity of so-called organogelling substance as described. above.
  • solvents are preferably biocompatible, that is to say, tolerated by the host organism, not triggering or little immune reaction, of inflammatory or allergic type, for example.
  • hydrophobic organic solvents that are liquid at room temperature, which simplifies the process for manufacturing and administering the composition in accordance with the invention.
  • organic solvents which can be degraded in a slow manner, that is to say, not rapidly metabolized by the enzymes present at the injection site, and in particular by the lipases.
  • the hydrophobic organic solvents according to the invention belong to the group comprising vegetable oils, semi-organic oils and synthetic and certain esters of fatty acids, in particular glycerol (in particular biglycerides and triglycerides).
  • biocompatible vegetable oils such as soybean oil, corn oil, cottonseed oil, peanut oil, olive oil, coconut oil and castor oil, sesame oil, almond oil, or safflower oil for example.
  • the hydrophobic organic solvent used is a vegetable oil such as soybean oil having an adequate gelling behavior, a slow biodegradability and excellent biocompatibility.
  • fatty acid esters of glycerol especially triglycerides.
  • medium chain triglycerides such as Labrafac ® CC comprising two fatty acids of 8 to 10 carbon atoms.
  • hydrophobic organic solvents there may be mentioned especially squalene, benzyl benzoate, benzyl chloride, and benzyl benzoate / benzyl alcohol mixtures or
  • Crodamol ® GTCC-PN Crodamol ® GTCC-PN.
  • hydrophilic organic solvent is meant according to the invention, a solvent having a significant affinity for aqueous media, that is to say miscible with water.
  • a solvent is also advantageously biocompatible, that is to say, tolerated by the body, of so that its diffusion does not result in or little immune reaction of inflammatory or allergic type.
  • a solvent which has been approved for parenteral use will therefore preferably be used for carrying out the present invention.
  • Said hydrophilic organic solvent according to the invention will be advantageously used in proportions of less than 60% by weight of said composition, and more preferably less than 20%.
  • Hydrophilic solvents include solvents such as alcohols such as ethanol, glycerol, propylene glycol, poly (ethylene) glycol of low molecular weight, benzyl alcohol or chlorobutanol and mixtures thereof.
  • solvents such as alcohols such as ethanol, glycerol, propylene glycol, poly (ethylene) glycol of low molecular weight, benzyl alcohol or chlorobutanol and mixtures thereof.
  • other water-miscible solvents may be envisaged, such as dimethyl sulfoxide (DMSO), N-methyl-pyrrolidone, N, N-dimethylacetamide, furfural, glycerol formal, isopropylidene glycerol, lactate ethyl, acetic acid or lactic acid and mixtures thereof.
  • DMSO dimethyl sulfoxide
  • N-methyl-pyrrolidone N, N-dimethylacetamide
  • furfural glycerol formal
  • bioactive substances that can be released into the body from the organogel according to the present invention are advantageously substances which are difficult to condition for sustained release, such as molecules of low molecular weight with a hydrophilic or very hydrophilic nature.
  • said bioactive substance will be used in proportions of 0.5 to 70% by weight of the composition according to the invention.
  • FITC Fluoro-lso Thio Cyanate
  • the release profile of dextran was monitored in vitro over 20 days by fluorescence assay as shown in FIG. 8.
  • the fluorescence was measured by regular sampling of an aqueous solution of phosphate buffered saline.
  • proteins of particular therapeutic interest such as interferon- ⁇ , interferon- ⁇ , somatostatin, calcitonin, heparin, interleukins or erythropoietin, peptides , amino acids or vitamins.
  • proteins of particular therapeutic interest such as interferon- ⁇ , interferon- ⁇ , somatostatin, calcitonin, heparin, interleukins or erythropoietin, peptides , amino acids or vitamins.
  • nucleic acids oligonucleotides or nucleic acid derivatives in particular.
  • the present invention for the purpose of solubilizing and then releasing hydrophobic bioactive substances, that is to say having a high affinity for the organogel and a low affinity for the organogel. the surrounding aqueous medium.
  • the present invention is therefore usable for a large number of substances of therapeutic or medical interest for which prolonged release is desired in the body.
  • composition according to the present invention can be prepared in the following manner.
  • the spontaneous dissolution or by heating and / or stirring of the organogelling agent in the hydrophilic organic solvent is carried out first.
  • the active substance is first "wetted” by dispersing it in the organic phase formed by the hydrophilic organic solvent and the organogelling substance. After stirring, a suspension of active substance is then formed in the mixture. This suspension can then be added to the other constituents of the composition according to the present invention.
  • aqueous solution of active substance will be added to the organic phase formed by the hydrophilic organic solvent and the organogelling substance.
  • the aqueous phase is then emulsified in the organic phase by vigorous stirring. The more lively the agitation, the smaller is the size of the aqueous particles formed in the organic suspension and the more stable is the emulsion.
  • This emulsion will then be used for the preparation of a composition according to the invention.
  • this technique using an emulsion has the advantage of keeping the complex molecules of active substance in an aqueous micro environment, which greatly limits the disturbances to which they may be subjected when subjected to to the change of environment, in particular the possibilities of denaturation of the substance.
  • the hydrophobic organic liquid is then added to the previously obtained mixture, optionally with stirring and / or moderate heating until a homogeneous mixture is obtained.
  • This homogeneous mixture according to the invention can then be injected into a living organism parenterally extra vascular using a conventional syringe for subcutaneous injections. After a latency depends on the chosen formulation, there is the formation of a hardening at the injection site, proof of the in vivo formation of the organogel according to the invention.
  • said organogel will, depending on its size and the nature of the components that constitute it, be biodegraded and / or erode gradually more or less long term in the body.
  • organogels whose biodegradation will be included for periods longer than 3 days.
  • the organogelling substance having hysteresis properties is firstly mixed with the hydrophobic organic liquid. Then we proceed to the incorporation of the active substance in this mixture. If the active substance is organosoluble, it will be dissolved in the mixture directly or by gentle agitation. In the case where the active substance is little or not organosoluble, one proceeds as before to the dispersion of the latter in the organic phase or to the production of a stable emulsion of active substance previously dissolved in water, in the organic phase formed.
  • the composition thus formed is stable and preferably liquid at room temperature. It is injected, for example, by the extravascular parenteral route. Immediately after the injection, a cold object (or any other cooling system) is kept in contact with the injection site for a time sufficient to allow in situ gelling of the composition according to the present invention.
  • thermosensitive composition with gelling properties according to the invention can be used, for example, for the delayed delivery of bioactive substances over long periods, that is to say over periods of at least one day up to a week, usually greater than 3 days. This composition can therefore be used as a support for the delayed delivery of any type of substance, in particular of substances of therapeutic or medical interest.
  • thermosensitive composition according to the invention for the delivery of drugs which need to be maintained at a constant blood level.
  • This invention is therefore particularly interesting for drugs commonly administered by several daily doses to maintain an effective therapeutic rate in the body.
  • the present invention can serve as a support for the prolonged delivery of hormones requiring daily intake, and still today administered by injection, painful and restrictive mode of administration.
  • Such an organogel release support by its easy administration, its safety and its low cost would overcome these constraints for the patient.
  • composition may also be used for the manufacture of a medicament intended to be injected into the body by the extravascular parenteral route and in particular by the subcutaneous, intradermal, intraperitoneal or intramuscular route, intraocularly or intravascularly, vaginally, on an open wound or during surgery.
  • FIGURES It can also allow the manufacture of a medicament for use as a sustained release vector of bioactive substance (s) in the body.
  • FIG. 1 represents the diagram of the liquid-gel (solid lines) and gel-liquid (dotted line) transition temperatures of N-lauroyl L-alanine methyl ester (AML) in the presence of benzyl benzoate (circles) or a Benzyl benzoate / 5% benzyl alcohol mixture (triangles).
  • FIG. 2 shows the diagram of the liquid-gel transition temperatures (solid lines) and liquid-Gel (dotted lines) of LAM in the presence of soybean oil (diamonds) or Labrafac ® CC (squares).
  • Figure 3 shows the diagram of the liquid-gel (solid lines) and gel-liquid (dashed lines) transition temperatures of N-lauroyl L-alanine ethyl ester (LAE) (triangles) in the presence of soybean oil.
  • LAE N-lauroyl L-alanine ethyl ester
  • FIG. 4 represents the diagram of the liquid-gel (solid lines) and gel-liquid (dotted line) transition temperatures of the AML (squares) and of the N-stearoyl L-alanine methyl ester (SAM) (diamonds) in the presence of ethyl oleate.
  • Figure 5 shows the diagram of gel-liquid transition temperatures of LAM (squares), LAE (triangles), SAM (circles), N-stearoyl L-alanine ethyl ester (SAE) (cross) and N-lauroyl L-alanine acid (LA) (diamonds) in corn oil.
  • Figures 6 and 7 show the diagrams of the gel-liquid transition temperatures of LAM (squares), LAE (triangles), SAM (circles), SAE (cross) and LA (diamonds) in safflower oil and Crodamol® GTCC-PN (triglycerides) respectively.
  • Figure 9 shows the photograph of an implant according to Example 5 at the injection site.
  • hydrophobic organic solvent soybean oil and ethanol are used as the hydrophilic organic solvent according to the invention.
  • the organogelling substance chosen is AML (N-lauroyl L-alanine methyl ester).
  • the organogelling agent is dissolved in ethanol. Then we add to this mixture the soybean oil. The mixture thus obtained is stirred and heated until complete homogenization. This mixture remains stable and liquid at room temperature.
  • composition thus obtained is then subcutaneously injected.
  • the injection is performed at the dorsal level, using a conventional syringe for subcutaneous injection. After 2 hours the animal is sacrificed and a gel is extracted from the injection site, demonstrating the in vivo formation of the organogel.
  • soybean oil and ethanol are used as the hydrophilic organic solvent according to the invention.
  • the organogelling substance chosen is AML (N-lauroyl, L-alanine methyl ester) The proportions used are summarized in the following table
  • the injection method is identical to that of Example 1, as is the appearance of an organogel 2:30 post-injection.
  • Example 3 Manufacture of a Composition According to the Invention Containing FITC-Dextran
  • This composition makes it possible to measure in vitro the gradual release of an active substance contained in a preformed organogel.
  • FITC-dextran is used as the active ingredient, which will make it possible to measure, by assaying the associated fluorescence, the amount of dextran released by the organogel according to the invention.
  • the exposed gel surface was 0.64 mm 2 .
  • the hot dissolution of the AML in soybean oil is carried out.
  • the FITC-dextran is then hot-dispersed in the organic phase formed after having previously ground it with a mortar until a homogeneous liquid composition is obtained.
  • This liquid mixture is then introduced gelled by cooling in a test tube.
  • a saline aqueous solution of phosphate buffered saline is added to the gel.
  • Samples of the liquid surrounding the organogel according to the invention are then taken over a period of 20 days. We can then measure the fluorescence emitted by these samples and thus note the prolonged release of FITC-Dextran into the surrounding environment. Assuming that such a gel would be administered in vivo and in accordance with the present invention, an organic solvent of the ethanol type should be added so as to inhibit the gelling process before injection.
  • Example 4 In vivo demonstration of the hysteretic properties of an organogel according to the invention. Gelification example without hydrophilic solvent.
  • the organogelling solution is prepared from the following constituents:
  • the hysteretic properties of this organogel have previously been determined so that the liquid / gel transition temperature is less than 30 ° C. and the gel / liquid transition temperature is greater than 37 ° C.
  • the organogelling solution is first brought to the liquid state by heating, then a volume of 180 ⁇ L of this solution returned to room temperature is injected subcutaneously into the rat. Once the injection is complete, a compress at 4 ° C is affixed to the injection site for 3 minutes, in order to lower the temperature and cause gelling.
  • the animal is sacrificed 2h30 after the injection and a visual observation of the shape of the implant is performed. Then the implant is removed from the injection site and weighed.
  • Hydrophobic organic solvents according to the invention are used: soybean oil and ethyl oleate and ethanol as hydrophilic solvent.
  • the organogelling substance chosen is AML (N-lauroyl L-alanine methyl ester).
  • the bioactive substance chosen is leuprolide acetate.
  • An aqueous solution of 0.67% w / v Leuprolide acetate is initially prepared.
  • the organogelator is first dissolved in the mixture of soybean oil and ethyl oleate. Then we add the ethanol to this mixture. The mixture thus obtained is stirred and heated until complete homogenization. This mixture remains stable and liquid at room temperature. Leuprolide acetate is dissolved in distilled water and then added to the liquid mixture. This mixture is stirred and then emulsified with ultrasound for two minutes. The composition thus obtained is then subcutaneously injected. Injection is performed dorsally in rats using a conventional syringe for subcutaneous injection. After 2 hours, the animal is sacrificed and a gel is extracted from the injection site, demonstrating the in vivo formation of the organogel consisting of a mixture of hydrophobic organic solvents.
  • FIG. 9 shows the shape of the implant, obtained according to the composition described in this example, at the injection site.
  • Example 6 Formation of an emulsion containing a bioactive substance to be included in the composition according to the invention
  • the bioactive substance chosen is leuprolide acetate. It is dissolved in water in a proportion of 7.62% w / v.
  • the emulsion is stabilized by two surfactants, polysorbate 20 (Tween 20) and sorbitan trioleate (Span 85), the proportion of each of which is adjusted according to the hydrophilic / hydrophobic balance of the emulsion to be designed.
  • the proportions used are summarized in the following table:
  • a 10% w / v solution of Span 85 in soybean oil and a 10% w / v solution of Tween 20 in water are prepared.
  • the different phases are then collected and the mixture is stirred and heated until complete homogenization.
  • This mixture remains stable and liquid at room temperature and can be added directly to a mixture of oils, organogelator and N, N-dimethylacetamide (DMAc) (see Example 7).
  • Example 7 Formation of an organogel in vitro from a composition containing an emulsion and a hydrophilic organic solvent other than ethanol
  • soybean oil and N, N-dimethylacetamide (DMAc) are used as the hydrophilic organic solvent.
  • the organogelling substance chosen is AML (N-lauroyl L-alanine methyl ester).
  • the organogelator in soybean oil is dissolved in the hot state. Then we add the DMAc to this mixture. The mixture thus obtained is stirred and heated and the emulsion is added and the mixture is stirred until complete homogenization. This mixture remains stable, and is viscous at room temperature (similar to a cream) and can be injected as such using a conventional subcutaneous syringe. The gel is formed following the injection of this viscous preparation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Engineering & Computer Science (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Endocrinology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

La présente invention concerne une composition thermosensible sous forme liquide contenant un liquide organique hydrophobe, une substance organogélatrice dont les molécules ont la capacité de se lier entre elles par liaisons de faible énergie, et une substance bioactive, qui passe sous forme d'organogel lorsqu'elle entre en contact avec un liquide physiologique, lors de son administration à un corps animal, en particulier l'homme.

Description

COMPOSITION A PROPRIETES GELIFIANTES DESTINEE A LA DELIVRANCE PROLONGEE DE SUBSTANCES BIO-ACTIVES.
La présente invention concerne une composition chimique thermosensible comportant un solvant organique hydrophobe, une substance dite organogélatrice, et une substance bioactive, ladite composition étant destinée à être administrée à un organisme vivant, pour la délivrance prolongée de substances bioactives.
Ladite composition a la capacité de former un organogel de façon spontanée ou par refroidissement, une fois mise au contact d'un milieu aqueux, et notamment, un liquide physiologique. Ledit organogel formé sert de support à la libération prolongée de substances bioactives par diffusion et/ou par érosion et/ou biodégradation progressive dudit organogel dans l'organisme.
La présente invention s'étend également aux utilisations qui peuvent être faites de cette composition dans le domaine thérapeutique et plus particulièrement dans le domaine de la délivrance prolongée de substances bioactives.
On entend par composition thermosensible, toute composition capable de passer de l'état liquide à l'état gel en fonction de la température et par organogel tout gel dont la phase liquide est composée par un solvant organique.
Par ailleurs, on entend par substance bioactive, toute substance ayant la capacité d'agir sur un organisme vivant ou son fonctionnement de façon à prévenir, guérir, soulager ou améliorer l'état dudit organisme. On entend par liquide organique hydrophobe, un solvant ou un mélange de solvants organique(s) dont les molécules ou les parties de molécules présentent une certaine répulsion vis-à-vis des molécules d'eau. On entend par solvant hydrophile, un solvant dont les molécules établissent des interactions d'attraction avec les molécules d'eau. Les gels sont depuis longtemps utilisés dans le domaine de l'industrie pour les propriétés que leur confère leur structure physique particulière. En effet, ils correspondent à un état intermédiaire de la matière car ils sont composés à la fois d'éléments sous forme solide et d'éléments sous forme liquide. Les éléments solides formant une structure tridimensionnelle ou matrice, organisée en réseau de molécules interconnectées entre elles, ce réseau immobilisant les éléments présents sous forme liquide.
On peut classer les gels en fonction du type de liaisons qui relient entre elles les molécules de la phase solide ou en fonction du type de solvant, organique ou aqueux qui compose la phase liquide.
On appelle hydrogels, les gels dont la phase liquide est une phase aqueuse, pour les différencier des organogels dont la phase liquide est une phase organique.
Les gels dont la matrice est constituée de molécules liées entre elles par des liaisons covalentes sont généralement dans un état stable et irréversible une fois formés. A l'inverse, les gels dont la matrice solide est obtenue par des liaisons de faible énergie (type liaisons hydrogène ou liaisons de Van der Waals notamment), sont généralement des gels réversibles c'est-à-dire pouvant passer de l'état gel à l'état liquide en fonction des conditions environnantes (pH, température, force ionique etc.).
Dans le cas des gels thermosensibles, la température à laquelle est observé le changement d'état est appelée température de transition. Dans le cas particulier des systèmes présentant un comportement d'hystérèse, la température de transition gel/liquide est différente de la température de transition liquide/gel.
Ainsi, les gels sont notamment utilisés dans l'industrie pharmaceutique, pour leur capacité de rétention vis-à-vis de molécules bioactives, notamment dans le cadre d'une administration de substances actives par voie transcutanée.
Cette propriété de rétention a par ailleurs été exploitée pour une utilisation des gels comme vecteurs de délivrance prolongée de médicaments. Ainsi, le brevet US N° 3,932,624 décrit l'utilisation d'un hydrogel destiné à la délivrance retard de saralasine. Dans ce brevet, le gel est réalisé à base de gélatine, qui, diluée dans une solution de sérum physiologique contenant la substance bioactive va s'en imprégner pour former une structure gélifiée qui pourra être implantée dans l'organisme par voie chirurgicale au niveau sous cutané. Le gel implanté libère de façon progressive la substance active qu'il contient par érosion progressive dudit gel. Cependant, ce type d'utilisation nécessite d'implanter in situ par voie chirurgicale, un gel préalablement formé. Cette opération reste donc à la fois coûteuse et contraignante pour le patient.
Pour pallier cet inconvénient, des hydrogels se formant in situ ont été développés. Ainsi, récemment, la demande de brevet US N° 20010007673 décrit l'utilisation d'un hydrogel se formant in vivo destiné à la délivrance retard de molécules bioactives, notamment de protéines. Une composition à base de polymère hydrophile incluant Palginate, d'un ion métallique polyvalent et de la substance active désirée, est injectée sous forme liquide et passe sous forme gel une fois placée dans l'organisme. De plus, de par la nature trixotrope de la composition à l'état gel, il est possible d'injecter la composition à l'état gel, par exemple à partir d'une seringue par application d'une certaine pression, après quoi la composition retourne à l'état de gel dans l'organisme. Cet hydrogel permet une diffusion retardée de la substance bioactive dans les liquides de l'organisme.
Par ailleurs, le brevet US n° 5 575 815 décrit l'administration intra- cavitale, i.e. intra-artérielle ou intraveineuse, d'une composition liquide aqueuse qui se transforme ou se viscosifie en hydrogel in vivo. L'utilisation de ce gel pour l'incorporation de substances actives est prévue, notamment pour l'angioplastie. Les hydrogels utilisés sont constitués de polymères polyethers.
Le brevet US n°6 344488 décrit la formation d'un gel contrôlé par la température et dépendant du pH, comprenant un mélange aqueux chitosan/ sel d'organophosphate. L'addition d'un sel mono-phosphate dibasique de polyol ou de sucre à des solutions aqueuses de chitosan conduit à une gélification contrôlée par la température et dépend du pH. Les médicaments sont incorporés audit gel avant la gélification. Les solutions de chitosan/sel d'organophosphate sont stockées à basses températures sous forme de solution et gélifient in situ après injection sous cutanée, intrapéritonéale ou intramusculaire suite à une augmentation de la température. L'hydrogel ainsi formé peut être utilisé pour la libération de principes actifs.
La demande de brevet WO 97/15287 décrit un système et une méthode pour l'administration parentérale (intramusculaire, intrapéritonéale, subcutanée) de médicament dans une matrice polymère biodégradable à un animal à sang chaud sous forme de liquide résultant en la formation d'un dépôt de gel, pour la libération contrôlée du médicament. Le liquide est une solution aqueuse dans laquelle est dissoute ou dispersée une quantité efficace de médicament contenu dans une matrice de bloc copolymere biodégradable. Le copolymere a une température de gélification inverse inférieure à la température du corps de l'animal auquel il est administré et est fait d'un bloc polymère hydrophobe et d'un bloc polymère hydrophile.
D'autres solutions aqueuses thermogélifiantes sont décrites dans la littérature. Parmi celles-ci, on retrouve les solutions de poloxamers (Johnston, T.P. et al., Inulin disposition following intramuscular administration of an inulin/poloxamer gel matrix, J. Parent. Sci. Technol., vol. 43, 279, 1989 ; Johnston, T.P. et al., Sustained delivery of interleukin-2 from a poloxamer 407 gel matrix following intraperitoneal injection in mice, Pharm. Res. 9, 425, 1992; Pec et al., Biological activity of urease formulated in poloxamer 407 after intraperitoneal injection in the rat, J. Pharm. Sci. Vol .81 , 626, 1992) et les solutions de xyloglucan (Miyazaki, S. et al., Thermally réversible xyloglucan gels as vehicles for rectal drug delivery., J. Controlled Release, vol 56, 75, 1998). Cependant, le principal inconvénient de ces hydrogels réside dans leur faible efficacité relative à la délivrance sur de longues périodes de temps de substances bioactives hydrophiles. Cela est dû notamment à leur importante proportion en eau qui leur confère une forte porosité, conduisant les substances bioactives hydrophiles présentes dans de tels gels à être relativement vite éliminées dans la circulation. Ce phénomène de diffusion est particulièrement important pour des molécules de petite taille très hydrophiles telles que certains médicaments hydrophiles ou certains peptides hydrophiles par exemple. L'efficacité de la libération prolongée de ces substances s'en trouve donc réduite.
L'objet de la présente invention est de fournir une nouvelle composition pharmaceutique ayant la capacité de former un organogel permettant la libération sur de longues périodes de temps de substances actives.
De plus, l'objet de la présente invention est également de fournir un tel support de libération retardée à la fois biocompatible et biodégradable permettant en outre d'être administré sous forme liquide, c'est-à-dire de façon aisée, rapide et peu coûteuse. Les organogels ont déjà été utilisés comme support permettant la libération retardée de principe actif.
La présente invention a pour objet un organogel hydrophobe généré in vivo après avoir été appliqué sous forme liquide. De tels gels ont déjà été décrits dans l'art antérieur. La demande de brevet n° WO 94/08623 divulgue un organogel hydrophobe contenant de la lécithine et un solvant de la lécithine hydrophobe utilisé pour la libération retardée de protéine. Le gel se forme in vivo, à partir d'une solution injectée en intramusculaire ou en sous cutané, par absorption d'eau à partir du milieu interstitiel lors de l'injection. Au contraire, l'organogel hydrophobe de la présente invention ne se forme pas par absorption de l'eau environnante.
La présente invention concerne une composition liquide thermosensible à propriétés gélifiantes comprenant un liquide organique hydrophobe, une substance dite organogélatrice, et une substance bioactive. La substance organogélatrice est constituée de molécules capables de se lier entre elles par des liaisons de faible énergie si bien que l'auto- assemblage de ces molécules est avantageusement thermoréversible.
La composition thermosensible sous forme liquide selon l'invention contient un liquide organique hydrophobe, une substance organogélatrice dont les molécules ont la capacité de se lier entre elles par liaisons de faible énergie, et une substance bioactive. Elle passe sous forme d'organogel lorsqu'elle entre en contact avec un liquide physiologique, lors de son administration à un corps animal, en particulier l'Homme, en particulier lors de l'injection dans l'organisme, par exemple à l'aide d'une seringue conventionnelle, par voie parentérale extra vasculaire, ou intramusculaire sous cutanée.
On entend par voie parentérale extra vasculaire toute voie de pénétration dans l'organisme autre que la voie digestive et la voie vasculaire (veines, artères et vaisseaux sanguins).
La composition de l'invention peut également être administrée par voie intra-oculaire, par voie intracavitale ou sur des prothèses préalablement à leur application, par voie vaginale, sur une plaie ouverte ou lors d'une intervention chirurgicale.
De nombreux documents décrivent des compositions pour usage topique contenant des organogels à base de lécithines (voir par exemple US N° 6 306 383). La lécithine est un mélange de phospholipides de faible poids moléculaire. Les lécithines sont amphotères, elles sont solubles dans l'alcool et elles forment une emulsion avec l'eau. Les organogels de lécithine ont été décrits comme véhicules utiles pour faciliter la pénétration des molécules à faible poids moléculaire (Willimann, H., et autres, " Organogel lécithine comme matrice pour le transport transdermique des médicaments", J. Pharm. Sci., vol. 81, 1992). Les organogels de lécithine sont obtenus en ajoutant un peu d'eau à une solution de lécithine dans des solvants organiques tel que le palmitate d'isopropyle ou le cyclooctane. Dans ces documents, l'eau est ajoutée pour former le gel désiré si bien que l'organogel est formé avant son application sur la peau.
Au contraire, les organogels de la présente invention sont sous forme liquide quand on les administre à un organisme vivant et prennent la forme de gel une fois qu'ils entrent en contact avec un liquide physiologique. Par ailleurs, les lécithines ne constituent pas des substances organogélatrices telles que définies dans le cadre de la présente invention.
On entend par liquide physiologique, tout liquide circulant dans un corps animal, tel que par exemple le liquide lymphatique, le liquide lacrymal, le liquide céphalo-rachidien, le liquide amniotique, le liquide parentéral et le sang. L'organogel formé à partir de la composition selon l'invention possède des capacités de rétention de molécules bioactives et plus particulièrement de molécules d'un poids inférieur à 100 000 dalton présentant un caractère hydrophile, permettant d'envisager une libération desdites molécules dans l'organisme sur des périodes supérieures à 3 jours.
Enfin, ledit organogel formé dans l'organisme à partir de la composition selon l'invention a la capacité de s'éliminer lentement par érosion et ou biodégradation progressive, sans toxicité pour l'organisme où il est implanté.
Cette propriété de gélification in situ conforme à l'invention est obtenue par l'utilisation d'un liquide organique hydrophobe, constituant la phase organique dudit organogel et par une substance organogélatrice (ou organogélateur), constituant la matrice solide dudit organogel.
Les molécules constituant cette substance organogélatrice, sont du type notamment des dérivés esters d'acides gras d'acides aminés qui ont la capacité de s'auto-assembler spontanément pour former une matrice immobilisant ledit liquide organique hydrophobe. Cet auto-assemblage moléculaire peut se réaliser par des liaisons hydrogène s'établissant entre les groupements de type alcool (-OH), acide (-COOH), aminé (-NH ou NH2) portés par les molécules organogélatrices. Si nécessaire, la gélification de la composition liquide est induite par refroidissement du site d'application de la composition ou par diffusion d'un solvant organique hydrophile ajouté à la composition de l'invention.
La demanderesse a sélectionné des solvants organiques hydrophiles capables de créer des liaisons faibles (ex. : ponts hydrogène) avec les molécules de substance organogélatrice, et capables de diffuser dans les milieux aqueux pour réaliser la composition selon l'invention.
Ainsi, le solvant organique hydrophile, introduit dans le mélange formant la composition selon l'invention va entrer en compétition avec les molécules de substance organogélatrice, en créant avec lesdites molécules des liaisons faibles (ex. : ponts hydrogène) empêchant les dites molécules de s'auto- assembler en un réseau dense et uni. La composition selon l'invention restera donc sous forme liquide tant que les molécules dudit solvant organique hydrophile resteront liées aux molécules de l'organogélateur.
L'utilisation selon la présente invention de la réversibilité des liaisons faibles va avantageusement permettre à la matrice organogélatrice de se ré- assembler dès lors que ledit solvant organique hydrophile aura diffusé dans le milieu environnant.
Ainsi, dès son entrée en contact avec une solution aqueuse et plus particulièrement avec les liquides physiologiques tels que le liquide interstitiel, la lymphe ou le liquide intra péritonéal par exemple, ledit solvant organique hydrophile présent dans la composition conforme à l'invention va diffuser dans ledit liquide environnant du fait de son hydrophilie.
La diffusion dudit solvant organique hydrophile va alors permettre l'auto- assemblage des molécules de ladite substance organogélatrice. Cet autoassemblage, en créant un réseau structuré, va permettre la rétention dudit liquide organique hydrophobe, faisant passer ladite composition de l'état liquide à l'état gel.
La présente invention offre donc un système simple de gélification in situ spontanée, et d'administration aisée.
Par ailleurs, la présente invention repose sur les propriétés d'hystérèse observées par la demanderesse sur des organogels à base de substances organogélatrices conformes à l'invention. On entend par hystérèse le phénomène physique observé notamment pour les compositions gélifiables, représentant l'écart existant entre la température de transition gel/liquide et la température de transition liquide/gel. Ces propriétés permettent en effet de concevoir une composition conforme à l'invention qui soit liquide, donc facilement injectable, à température ambiante (ou à une température avoisinant la température ambiante). De plus, ces propriétés permettent également de réaliser un organogel selon l'invention qui, une fois formé in vivo, va rester sous forme gel à la température corporelle de l'organisme considéré. En effet, un tel organogel, qu'il soit formé par diffusion ou simple refroidissement, possède une température de transition gel/liquide supérieure à la température du site d'injection ou d'application. De ce fait, il est parfaitement stable dans ledit organisme.
Enfin, la présente invention a l'avantage de fournir un support de libération prolongée de médicaments ou d'autres substances actives. En effet, l'organogel formé dans l'organisme et conforme à la présente invention comporte une véritable structure matricielle organisée qui a peu d'affinité pour le milieu aqueux environnant et permet donc une libération lente de la substance active par diffusion, érosion ou biodégradation progressive dudit organogel. La présente invention fournit donc un support simple, efficace et facile d'administration permettant une libération prolongée dans l'organisme, d'une période au moins égale à 1 jour, de substances telles que des substances bioactives et plus particulièrement de molécules à caractère hydrophile d'un poids inférieur à 100 000 dalton. En outre, la composition selon la présente invention a l'avantage d'être extrêmement peu coûteuse, tant sur le plan de la fabrication comme cela est décrit plus loin, que sur le plan du conditionnement et de l'administration.
Les substances organogélatrices conformes à l'invention sont des substances dont les molécules ont la capacité de se lier entre elles par liaisons de faible énergie, et notamment par liaisons hydrogène, permettant la formation d'une matrice thermosensible. Ces molécules sont notamment des molécules de faible poids moléculaire présentant des extrémités acide (-COOH) ou alcool (-OH) ou encore aminé (-NH2 ou -NH) par exemple.
Par ailleurs ces substances sont préférentiellement biocompatibles et ne donnent pas lieu à des métabolites toxiques ou dangereux pour l'organisme lors de leur dégradation par ce dernier.
On utilisera préférentiellement des dérivés d'acides aminés ou dérivés esters d'acides gras d'acides aminés tels que l'alanine, présentant à la fois une bonne biocompatibilité et un pouvoir organogélateur satisfaisant et surtout conférant au système gélifié des propriétés d'hystérèse. Ces propriétés se traduisent par un passage de l'état liquide à l'état gel à une température différente de celle observée lors du passage de la forme gel à la forme liquide de ladite composition. La demanderesse a le mérite d'avoir remarqué que l'écart entre ces deux températures de transition est variable en fonction du type de liquide organique hydrophobe utilisé, et de la quantité de substance organogélatrice utilisée. Ainsi, la demanderesse a réalisé des compositions conformes à l'invention dont les températures de transition et les écarts entre ces températures sont ajustables par simple modification de ces deux paramètres. Les résultats traduisant ces variations sont représentés sur les figures 1 à 7.
Préférentiellement, l'écart entre ces deux températures de transition est choisi pour que la température de transition liquide/gel soit inférieure à la température corporelle de l'organisme vivant considéré dans le cas où l'organogel est administré sans solvant organique hydrophile et que la température de transition gel/liquide soit supérieure à la susdite température.
Ainsi, on utilisera préférentiellement des dérivés d'alanine tels que le N- lauroyl L-alanine acide (LA) ou des dérivés esters de l'alanine tels que le N- lauroyl L-alanine méthyle ester (LAM), ou le N-lauroyl L-alanine éthyle ester (LAE), le N-stéaroyl L-alanine méthyle ester (LAM) ou le N-stéaroyl L-alanine éthyle ester (SAE) comme substance organogélatrice conforme à l'invention.
La quantité de substance organogélatrice est fonction du type de liquide organique hydrophobe employé et de la température de transition qu'on souhaite choisir pour l'organogel conforme à l'invention.
Cependant, la proportion de cette substance est avantageusement choisie entre 0,5 et 50 % en poids du poids total de ladite composition.
La demanderesse a constaté que l'utilisation comme substance organogélatrice du N-lauroyl L-alanine méthyle ester permet à ladite composition de passer à l'état gélifié par simple refroidissement sous le seuil de transition liquide/gel et de demeurer à l'état gel à une température dépassant la température de transition liquide/gel en particulier la température de l'organisme vivant. En effet, la demanderesse a remarqué que ledit organogel formé par refroidissement est stable dans l'intervalle de températures comprises entre la température de transition liquide/gel et la température de transition gel/liquide. L'ensemble de ces constatations a conduit la demanderesse à élaborer une composition thermosensible à propriétés gélifiantes ayant la capacité de passer sous forme gélifiée par simple refroidissement local et de conserver cet état gélifié à la température corporelle. Dans ce cas particulier de l'invention, la quantité de solvant organique hydrophile peut être extrêmement réduite, voire nulle puisque la gélification s'opère par un refroidissement de ladite composition et non plus par diffusion dudit solvant organique hydrophile.
Ce mode de réalisation est particulièrement avantageux puisqu'il permet de s'affranchir de la présence du solvant organique hydrophile et donc de simplifier encore le procédé de préparation de la composition selon l'invention et également de diminuer son coût de revient.
Ainsi, selon un mode de réalisation particulier, la composition thermosensible selon l'invention contient une proportion de N-lauroyl L-alanine méthyle ester suffisante pour permettre le passage de ladite composition de l'état liquide à l'état d'organogel par simple refroidissement de ladite composition au contact de son site d'injection dans l'organisme.
Un tel refroidissement doit être suffisant pour faire passer ladite composition, appliquée sous forme liquide, à sa forme gélifiée. Ce refroidissement qui peut être opéré par apposition externe d'un objet froid tel qu'un pain de glace ou une compresse froide ou tout autre moyen refroidissant autour du site d'injection, doit permettre un abaissement local, sous la température de transition liquide/gel de ladite composition.
La composition selon l'invention est donc préférentiellement sous forme liquide à la température du site d'application, possède une température de transition gel/liquide supérieure à la température corporelle et une température de transition liquide/gel inférieure à la température de l'organisme considéré ou de la zone d'implantation du gel. En effet, la température cutanée peut être inférieure de quelques degrés à la température générale de l'organisme.
Dans un mode de réalisation préféré, la proportion en N-lauroyl L-alanine méthyle ester de ladite composition est suffisante pour que la température de transition liquide/gel soit inférieure à la température corporelle (37°C en général) et que la température de transition gel/liquide, soit supérieure à la température corporelle (37 °C en général).
D'une manière encore plus préférentielle, la composition selon l'invention doit comporter une température de transition liquide/gel inférieure à 30°C et une température de transition gel/liquide supérieure à + 35°C.
Ainsi, la composition selon l'invention est préférentiellement une composition dont l'intervalle entre la température de transition liquide/gel et la température de transition gel/liquide est avantageusement d'au moins 20°C, la température de transition liquide/gel étant préférentiellement comprise entre +5°C et + 36°C.
Le liquide organique hydrophobe de la composition selon la présente invention est un solvant organique hydrophobe ou un mélange de différents solvants organiques hydrophobes.
Les mélanges de différents solvants organiques hydrophobes présentent l'avantage de modifier le profil de gélification ou encore de faciliter la solubilisation de certaines substances bioactives.
Les solvants organiques hydrophobes utilisables pour la réalisation de la composition selon la présente invention appartiennent au groupe des solvants organiques non miscibles à l'eau capables de créer une structure de type organogel, en présence d'une quantité suffisante de substance dite organogélatrice telle que décrite ci-dessus.
Ces solvants sont préférentiellement biocompatibles, c'est-à-dire tolérés par l'organisme hôte, ne déclenchant pas ou peu de réaction immunitaire, de type inflammatoire ou allergique par exemple. Enfin, on notera qu'il est préférable d'utiliser des solvants organiques hydrophobes liquides à température ambiante ce qui simplifie le procédé de fabrication et d'administration de la composition conforme à l'invention.
On utilisera préférentiellement des solvants organiques pouvant être dégradés de manière lente, c'est-à-dire, non rapidement métabolisés par les enzymes présentes sur le site d'injection, et notamment par les lipases.
Ainsi, les solvants organiques hydrophobes conformes à l'invention appartiennent au groupe comprenant les huiles végétales, les huiles semi- synthétiques et certains esters d'acides gras, notamment du glycérol (en particulier biglycérides et triglycérides).
On peut ainsi envisager l'utilisation d'huiles végétales biocompatibles telles que l'huile de soja, l'huile de maïs, l'huile de coton, l'huile d'arachide, l'huile d'olive, l'huile de ricin, l'huile de sésame, l'huile d'amande, ou l'huile de carthame par exemple.
De façon préférentielle, on utilisera comme solvant organique hydrophobe une huile végétale telle que l'huile de soja présentant un comportement de gélification adéquat, une biodégradabilité lente et une excellente biocompatibilité.
Parmi les esters d'acides gras utilisables à titre de solvants organiques hydrophobes conformes à l'invention, on peut citer par exemple l'oléate d'éthyle ou le myristate d'isopropyle notamment.
Plus préférentiellement, on utilisera des esters d'acides gras du glycérol, notamment les triglycérides. Encore plus préférentiellement, on utilisera les triglycérides à chaîne moyenne (inférieure à 18 atomes de carbone) tels que le Labrafac CC® comportant deux acides gras de 8 et 10 atomes de carbone.
Parmi les solvants synthétiques ou semi-synthétiques utilisables comme solvants organiques hydrophobes conformément à la présente invention, on peut citer notamment le squalène, le benzoate de benzyle, le chlorure de benzyle, et les mélanges benzoate de benzyle/alcool benzylique ou le
Crodamol® GTCC-PN.
On peut aussi combiner huiles et solvants organiques hydrophobes synthétiques. On entend par solvant organique hydrophile selon l'invention, un solvant ayant une affinité importante pour les milieux aqueux, c'est-à-dire miscible à l'eau.
Le type de solvant organique hydrophile susceptible d'être utilisé dans la présente invention, est avantageusement un solvant capable d'agir comme agent de déstabilisation de l'organogel, c'est-à-dire susceptible de créer des liaisons faibles avec les molécules d'organogélateur. Un tel solvant est par ailleurs avantageusement biocompatible, c'est-à-dire toléré par l'organisme, de telle sorte que sa diffusion n'entraîne pas ou peu de réaction immunitaire de type inflammatoire ou allergique. On utilisera donc de manière préférentielle pour la réalisation de la présente invention, un solvant ayant fait l'objet d'une approbation pour usage parentéral. Ledit solvant organique hydrophile conforme à l'invention sera utilisé avantageusement dans des proportions inférieures à 60 % en poids de ladite composition, et plus préférentiellement inférieures à 20 %.
On peut citer parmi les solvants hydrophiles les solvants tels que les alcools comme l'éthanol, le glycérol, le propylène glycol, le poly(éthylène) glycol de faible poids moléculaire, l'alcool benzylique ou le chlorobutanol et leurs mélanges. Par ailleurs d'autres solvants miscibles à l'eau peuvent être envisagés, tels que le diméthyle sulfoxide (DMSO), le N-méthyl-pyrrolidone, le N-N-Diméthylacétamide, le furfural, le glycérol formai, l'isopropylidene glycérol, le lactate d'éthyle, l'acide acétique ou l'acide lactique et leurs mélanges. Ces exemples ne sont pas limitatifs et on peut tout à fait concevoir de réaliser l'invention à partir d'autres composés organiques hydrophiles qui auraient des propriétés déstabilisatrices de gel, c'est-à-dire la capacité de créer des liaisons faibles avec la substance organogélatrice conforme à l'invention.
Les substances bioactives susceptibles d'être libérées dans l'organisme à partir de l'organogel conforme à la présente invention sont avantageusement des substances difficilement conditionnables pour une libération de façon prolongée telles que les molécules de faible poids moléculaire à caractère hydrophile ou très hydrophile. Avantageusement, ladite substance bioactive sera utilisée dans des proportions de 0,5 à 70 % en poids de la composition selon l'invention.
Ainsi, la demanderesse a testé le relargage à partir d'un organogel préformé de molécules de dextran marquées avec une molécule fluorescente : le FITC (Fluoro-lso Thio Cyanate).
Le profil de libération du dextran a été suivi in vitro sur 20 jours par dosage de la fluorescence comme le montre la figure N° 8. La fluorescence a été mesurée par des prélèvements réguliers d'une solution aqueuse de tampon phosphate salin. Ainsi, on peut concevoir la libération sur des périodes supérieures à 3 jours de protéines notamment d'intérêt thérapeutique telles que l'interféron α, l'interféron β, la somatostatine, la calcitonine, l'héparine, les interleukines ou Perythropoïetine, de peptides, d'acides aminés ou de vitamines. Ces exemples ne sont en aucun cas limitatifs et d'autres types de molécules, en particulier d'autres protéines peuvent tout à fait être envisagées pour une telle libération prolongée à partir d'un organogel conforme à l'invention.
On peut envisager le relargage dans l'organisme à partir de l'organogel selon l'invention, de molécules telles que certaines hormones et notamment certaines hormones peptidiques telles que l'hormone de croissance humaine, ©y l'hormone thyréotrope ou le leuprolide.
Ainsi, on peut prévoir d'utiliser la présente invention pour la libération prolongée dans l'organisme d'acides nucléiques, d'oligonucléotides ou de dérivés d'acides nucléiques notamment.
De même, on peut tout à fait concevoir de réaliser la présente invention dans le but de solubiliser puis de libérer de façon prolongée des substances bioactives hydrophobes, c'est-à-dire présentant une forte affinité pour l'organogel et une faible affinité pour le milieu aqueux environnant. La présente invention est donc utilisable pour un grand nombre de substances à intérêt thérapeutique ou médical pour lesquelles on souhaite une libération prolongée dans l'organisme.
A titre d'exemple, la composition selon la présente invention peut être préparée de la manière suivante.
Cas d'un système de gélification par diffusion
On procède tout d'abord à la dissolution spontanée ou par chauffage et/ou agitation de l'organogélateur dans le solvant organique hydrophile.
Puis on incorpore la substance active et le (les) solvant(s) organique(s) hydrophobe(s) à ce mélange, deux cas peuvent alors se présenter :
a) Soit la substance active est soluble dans la phase organique ainsi formée : Dans ce cas, on solubilise la substance active dans la phase organique formée. La solubilisation s'opère spontanément ou par chauffage, avec ou sans agitation.
On peut également prévoir dans ce cas la dissolution de ladite substance active directement dans le liquide organique hydrophobe.
b) Soit la substance active est peu ou pas soluble dans la phase organique :
Dans ce cas, on procède tout d'abord au "mouillage" de la substance active en la dispersant dans la phase organique formée par le solvant organique hydrophile et la substance organogélatrice. Après agitation, il se forme alors une suspension de substance active dans le mélange. Cette suspension pourra alors être ajoutée aux autres constituants de la composition selon la présente invention.
Il est aussi possible de dissoudre la substance active dans une quantité juste suffisante d'eau. Cette solution aqueuse de substance active va être ajoutée à la phase organique formée par le solvant organique hydrophile et la substance organogélatrice. On procède ensuite à l'émulsion de cette phase aqueuse dans la phase organique par agitation vive. Plus vive est l'agitation, plus petite est la taille des particules aqueuses formées dans la suspension organique et plus stable est l'émulsion. Cette emulsion va ensuite pouvoir être utilisée pour la préparation d'une composition conforme à l'invention.
Il est à noter, toutefois, que cette technique utilisant une emulsion, a l'avantage de conserver les molécules complexes de substance active dans un micro environnement aqueux, ce qui limite beaucoup les perturbations dont elles peuvent faire l'objet lorsqu'elles sont soumises au changement d'environnement, en particulier les possibilités de dénaturation de la substance. On ajoute ensuite au mélange précédemment obtenu le liquide organique hydrophobe, éventuellement sous agitation et/ou chauffage modéré jusqu'à obtenir un mélange homogène. Ce mélange homogène selon l'invention peut alors être injecté dans un organisme vivant par voie parentérale extra vasculaire à l'aide d'une seringue conventionnelle pour injections sous cutanées. Après un temps de latence qui dépend de la formulation choisie, on assiste à la formation d'un durcissement sur le site d'injection, preuve de la formation in vivo de l'organogel selon l'invention.
S'il n'est pas extrait de manière chirurgicale, ledit organogel va, suivant sa taille et la nature des composants qui le constituent, être biodégradé et/ou s'éroder progressivement à plus ou moins longue échéance dans l'organisme.
Cette biodégradation progressive va entraîner le relargage de la substance active éventuellement contenue dans l'organogel selon l'invention.
On choisira préférentiellement de réaliser de tels organogels dont la biodégradation sera comprise sur des périodes supérieures à 3 jours.
Cas d'un système de gélification par refroidissement
Dans ce cas, on mélange tout d'abord la substance organogélatrice dotée de propriétés d'hystérèse avec le liquide organique hydrophobe. Puis on procède à l'incorporation de la substance active dans ce mélange. Si la substance active est organosoluble, elle sera dissoute dans le mélange directement ou par faible agitation. Dans le cas où la substance active est peu ou pas organosoluble, on procède comme précédemment à la dispersion de cette dernière dans la phase organique ou à la réalisation d'une emulsion stable de substance active préalablement dissoute dans l'eau, dans la phase organique formée.
La composition ainsi formée est stable et préférentiellement liquide à la température ambiante. Elle est injectée par exemple par voie parentérale extravasculaire. Immédiatement après l'injection, un objet froid (ou tout autre système de refroidissement) est maintenu au contact du site d'injection pendant une durée suffisante pour permettre la gélification in situ de la composition selon la présente invention.
Lorsque la gélification est accomplie, le système de refroidissement est retiré. Le site d'injection regagne alors la température corporelle, l'organogel selon l'invention restant stable à ladite température. La composition thermosensible à propriétés gélifiantes conforme à l'invention peut être utilisée par exemple à la délivrance retard de substances bioactives sur de longues périodes, c'est-à-dire sur des périodes d'au moins un jour jusqu'à une semaine, généralement supérieures à 3 jours. Cette composition peut donc servir de support à la délivrance retard de tout type de substances, notamment de substances à intérêt thérapeutique ou médical.
On peut ainsi prévoir l'utilisation de la composition thermosensible conforme à l'invention pour la délivrance retard de médicaments nécessitant d'être maintenu à un taux sanguin constant. Cette invention se révèle donc particulièrement intéressante pour les médicaments administrés ordinairement par plusieurs prises quotidiennes destinées à maintenir un taux thérapeutique efficace dans l'organisme.
On peut ainsi envisager l'utilisation de l'invention pour des substances thérapeutiques telles que la morphine ou les médicaments agissant comme régulateurs du système cardio-vasculaire ou du système nerveux.
De même, on peut concevoir l'utilisation de la composition selon l'invention dans le but de pallier certaines carences de l'organisme, notamment en vitamines ou en hormones. Ainsi, la présente invention peut servir de support à la délivrance prolongée d'hormones nécessitant une prise quotidienne, et encore aujourd'hui administrées par injection, mode d'administration douloureux et contraignant. Un tel support de libération par organogel, de par son administration aisée, son innocuité et son faible coût permettrait de s'affranchir de ces contraintes pour le patient.
Cette composition peut également être utilisée pour la fabrication d'un médicament destiné à être injecté dans l'organisme par voie parentérale extravasculaire et notamment par voie sous cutanée, intradermique, intrapéritonéale ou intramusculaire, par voie intra-oculaire ou intravasculaire, par voie vaginale, sur une plaie ouverte ou lors d'une intervention chirurgicale.
Elle peut par ailleurs permettre la fabrication d'un médicament destiné à être utilisé comme vecteur de libération prolongée de substance(s) bioactive(s) dans l'organisme. FIGURES
La figure 1 représente le diagramme des températures de transition Liquide-gel (lignes pleines) et Gel-liquide (lignes pointillées) du N-lauroyl L- Alanine Méthyle ester (LAM) en présence de benzoate de benzyle (cercles) ou d'un mélange benzoate de benzyle/ alcool benzylique à 5 % (triangles).
La figure 2 représente le diagramme des températures de transition Liquide-gel (lignes pleines) et Gel-liquide (lignes pointillées) du LAM en présence d'huile de soja (losanges) ou de Labrafac® CC (carrés).
La figure 3 représente le diagramme des températures de transition Liquide-gel (lignes pleines) et Gel-liquide (lignes pointillées) du N-lauroyl L- alanine éthyle ester (LAE) (triangles) en présence d'huile de soja.
La figure 4 représente le diagramme des températures de transition Liquide-gel (lignes pleines) et Gel-liquide (lignes pointillées) du LAM (carrés) et du N-stéaroyl L-alanine méthyle ester (SAM) (losanges) en présence d'oléate d'éthyle.
La figure 5 représente le diagramme des températures de transition Gel- liquide du LAM (carrés), LAE (triangles), SAM (cercles), N-stéaroyl L-alanine éthyle ester (SAE) (croix) et N-lauroyl L-alanine acide (LA) (losanges) dans l'huile de maïs. Les figures 6 et 7 représentent les diagrammes des températures de transition Gel-liquide du LAM (carrés), LAE (triangles), SAM (cercles), SAE (croix) et LA (losanges) dans l'huile de carthame et le Crodamol® GTCC-PN (triglycérides) respectivement.
La figure 8 représente le suivi sur 20 jours du profil de libération in vitro du FITC-dextran (Poids moléculaire = 9500) à partir d'un gel constitué d'huile de soja et de 30 % de LAM dans le PBS à 37°C.
La figure 9 représente la photographie d'un implant conforme à l'exemple 5 au site d'injection.
Exemple 1 : Formation d'un organogel in vivo à partir d'une composition conforme à l'invention. Dans cet exemple, on cherche à vérifier que la composition conforme à l'invention est bien capable de gélifier in vivo. Les essais sont réalisés sur le rat.
On utilise comme solvant organique hydrophobe conforme à l'invention, l'huile de soja et l'éthanol comme solvant organique hydrophile selon l'invention.
La substance organogélatrice choisie est le LAM (N-lauroyl L-alanine méthyle ester).
Les proportions utilisées sont récapitulées dans le tableau suivant :
Figure imgf000021_0001
On procède tout d'abord à la dissolution de l'organogélateur dans l'éthanol. Puis on rajoute à ce mélange l'huile de soja. Le mélange ainsi obtenu est agité et chauffé jusqu'à homogénéisation complète. Ce mélange reste stable et liquide à température ambiante.
On procède ensuite à l'injection sous cutanée de la composition ainsi obtenue. L'injection est pratiquée au niveau dorsal, à l'aide d'une seringue conventionnelle pour l'injection en sous cutané. Après 2 heures l'animal est sacrifié et un gel est extrait du site d'injection, démontrant la formation in vivo de l'organogel.
Exemple 2 : Formation d'un organogel in vivo à partir d'une composition conforme à l'invention.
On utilise comme solvant organique hydrophobe conforme à l'invention, l'huile de soja et l'éthanol comme solvant organique hydrophile selon l'invention. La substance organogélatrice choisie est le LAM (N-lauroyl, L-alanine méthyle ester) Les proportions utilisées sont récapitulées dans le tableau suivant
Figure imgf000022_0001
Le procédé d'injection est identique à celui de l'exemple 1 , de même que l'apparition d'un organogel 2h30 post-injection.
Exemple 3 : Fabrication d'une composition selon l'invention contenant du FITC-Dextran
Cette composition permet de mesurer in vitro le relargage progressif d'une substance active contenue dans un organogel préformé.
On utilise comme principe actif le FITC-dextran qui va permettre de mesurer par dosage de la fluorescence associée, la quantité de dextran libérée par l'organogel conforme à l'invention.
Voir la figure 8.
Chaque point représente la valeur moyenne +/-sd (n=3). La surface du gel exposé était de 0.64 mm2.
Figure imgf000022_0002
On procède tout d'abord à la dissolution à chaud du LAM dans l'huile de soja. Puis on disperse à chaud le FITC-dextran dans la phase organique formée après l'avoir préalablement broyé au mortier, jusqu'à l'obtention d'une composition liquide homogène.
Ce mélange liquide est ensuite introduit gélifié par refroidissement dans un tube à essai. On ajoute sur le gel une solution aqueuse saline de tampon phosphate salin. On prélève ensuite sur une période de 20 jours, des échantillons du liquide environnant l'organogel conforme à l'invention. On peut alors doser la fluorescence émise par ces échantillons et ainsi constater la libération prolongée du FITC-Dextran dans le milieu environnant. Dans l'hypothèse où un tel gel serait administré in vivo et conformément à la présente invention, un solvant organique du type éthanol devrait être rajouté de façon à inhiber le processus de gélification avant l'injection.
Les résultats de ce dosage sont récapitulés sur la figure N° 8.
Exemple 4 : Mise en évidence in vivo des propriétés hysteretiques d'un organogel conforme à l'invention. Exemple de gélification sans solvant hydrophile.
La solution organogélifiante est préparée à partir des constituants suivants :
Figure imgf000023_0001
Les propriétés hysteretiques de cet organogel ont préalablement été déterminées pour que la température de transition liquide/gel soit inférieure à 30°C et que la température de transition gel/liquide soit supérieure à 37°C.
La solution organogélifiante est tout d'abord amenée à l'état liquide par chauffage, puis un volume de 180 μL de cette solution revenue à température ambiante est injecté en sous cutané chez le rat. Une fois l'injection terminée, une compresse à 4°C est apposée sur le site d'injection pendant 3 minutes, afin d'y abaisser la température et de provoquer la gélification.
L'animal est sacrifié 2h30 après l'injection et une observation visuelle de la forme de l'implant est effectuée. Puis l'implant est extrait du site d'injection et pesé.
Dans cette expérimentation, l'implant avait une forme discoïdale d'environ 1 cm de diamètre et un poids de 130 mg. Exemple 5 : Formation d'un organogel in vivo à partir d'une matrice constituée d'un mélange de solvants organiques hydrophobes
Dans cet exemple, on souhaite vérifier la capacité de l'organogélateur à gélifier in vivo un organogel constitué d'un mélange de solvants organiques hydrophobes. Les essais sont réalisés chez le rat.
On utilise comme solvants organiques hydrophobes conformes à l'invention : l'huile de soja et l'oléate d'éthyle et l'éthanol comme solvant hydrophile.
La substance organogélatrice choisie est le LAM (N-lauroyl L-alanine méthyle ester).
La substance bioactive choisie est l'acétate de leuprolide. Une solution aqueuse d'acétate de Leuprolide à 0.67 %p/v est réalisée dans un premier temps.
Les proportions utilisées sont résumées dans le tableau suivant :
Figure imgf000024_0001
On procède tout d'abord à la dissolution à chaud de l'organogélateur dans le mélange d'huile de soja et d'oléate d'éthyle. Puis on rajoute l'éthanol à ce mélange. Le mélange ainsi obtenu est agité et chauffé jusqu'à homogénéisation complète. Ce mélange reste stable et liquide à température ambiante. L'acétate de leuprolide est dissous dans l'eau distillée puis ajouté au mélange liquide. Ce mélange est agité puis émulsifié aux ultrasons pendant deux minutes. On procède ensuite à l'injection sous cutanée de la composition ainsi obtenue. L'injection est pratiquée au niveau dorsal chez le rat à l'aide d'une seringue conventionnelle pour l'injection en sous cutané. Après 2 heures, l'animal est sacrifié et un gel est extrait du site d'injection, démontrant la formation in vivo de l'organogel constitué d'un mélange de solvants organiques hydrophobes. La figure 9 présente la forme de l'implant, obtenu selon la composition décrite dans cet exemple, au site d'injection.
Exemple 6 : Formation d'une emulsion contenant une substance bioactive à inclure dans la composition conforme à l'invention
On cherche à concevoir une emulsion stable d'eau dans l'huile (E/H) qui renferme une substance bioactive hydrophile telle l'acétate de leuprolide en solution dans la phase aqueuse (phase dispersée).
La substance bioactive choisie est l'acétate de leuprolide. Elle est dissoute dans l'eau dans une proportion de 7.62% p/v.
L'émulsion est stabilisée par deux tensioactifs, le polysorbate 20 (Tween 20) et le trioléate de sorbitan (Span 85), dont la proportion de chacun est ajustée en fonction de la balance hydrophile/hydrophobe de l'émulsion à concevoir. Les proportions utilisées sont récapitulées dans le tableau suivant :
Figure imgf000025_0001
On prépare une solution à 10% p/v de Span 85 dans l'huile de soja et une solution de 10 %p/v de Tween 20 dans l'eau. Les différentes phases sont ensuite rassemblées et le mélange est agité et chauffé jusqu'à homogénéisation complète. Ce mélange reste stable et liquide à température ambiante et peut être ajouté directement à un mélange d'huiles, d'organogélateur et de N,N-diméthylacétamide (DMAc) (voir exemple 7).
Exemple 7 : Formation d'un organogel in vitro à partir d'une composition contenant une emulsion et un solvant organique hydrophile autre que l'éthanol
Dans cet exemple, on cherche à vérifier la capacité d'un solvant organique hydrophile autre que l'éthanol à inhiber la gélification de l'organogel à température ambiante.
On utilise comme solvant organique hydrophobe l'huile de soja et le N,N- diméthylacétamide (DMAc) comme solvant organique hydrophile.
La substance organogélatrice choisie est le LAM (N-lauroyl L-alanine méthyle ester).
Les proportions utilisées sont récapitulées dans le tableau suivant :
Figure imgf000026_0001
On procède tout d'abord à la dissolution à chaud de l'organogélateur dans l'huile de soja. Puis on rajoute le DMAc à ce mélange. Le mélange ainsi obtenu est agité et chauffé puis l'émulsion est ajoutée et le mélange est agité jusqu'à homogénéisation complète. Ce mélange reste stable, et est visqueux à température ambiante (semblable à une crème) et peut être injecté comme tel à l'aide d'une seringue conventionnelle en sous cutané. Le gel se forme suite à l'injection de cette préparation visqueuse.

Claims

Revendications
1. Composition thermosensible sous forme liquide contenant
- un liquide organique hydrophobe, - une substance organogélatrice dont les molécules ont la capacité de se lier entre elles par liaisons de faible énergie, et
- une substance bioactive, qui passe sous forme d'organogel lorsqu'elle entre en contact avec un liquide physiologique, lors de son administration à un corps animal, en particulier l'homme.
2. Composition selon la revendication 1 , caractérisée en ce que la formation de l'organogel se fait par refroidissement du site d'application de ladite composition.
3. Composition selon la revendication 1 ou 2, caractérisée en ce qu'elle contient en outre un solvant organique hydrophile capable de créer des liaisons faibles avec la substance organogélatrice, et que la formation de l'organogel se fait par diffusion dudit solvant organique hydrophile vers le milieu aqueux.
4. Composition selon la revendication 1 ou 2, caractérisée en ce que ledit organogel possède une température de transition de l'état liquide à l'état gel inférieure à la température du site d'application dans le cas où l'organogel est administré sans solvant organique hydrophile et une température de transition de l'état gel à l'état liquide supérieure à la température corporelle.
5. Composition selon la revendication 4, caractérisée en ce que ledit organogel possède une température de transition de l'état liquide à l'état gel inférieure à 30 °C et une température de transition de l'état gel à l'état liquide supérieure à + 35°C.
6. Composition selon l'une des revendications 3 à 5 caractérisée en ce que la proportion du solvant organique hydrophile est inférieure à 60 %, et préférentiellement inférieure à 20 % en poids de ladite composition.
7. Composition selon l'une des revendications 3 à 6 caractérisée en ce que ledit solvant organique hydrophile appartient au groupe comprenant l'éthanol, le glycérol, l'alcool benzylique, le propylène glycol, le N-méthylpyrrolidone et le diméthylsulfoxide (DMSO), le poly(éthylène) glycol de faible poids moléculaire, le chlorobutanol, le furfural, le N-N-diméthyacétamide, le glycérol formai, l'isopropylidène glycérol, le lactate d'éthyle, l'acide acétique et l'acide lactique.
8. Composition selon la revendication 7, caractérisée en ce que ledit solvant organique hydrophile est l'éthanol.
9. Composition selon l'une des revendications précédentes, caractérisée en ce que ledit liquide organique, hydrophobe appartient au groupe comprenant les huiles végétales, les triglycérides, les huiles semi-synthétiques, et les solvants organiques non miscibles à l'eau.
10. Composition selon la revendication 9, caractérisée en ce que ledit liquide organique hydrophobe comprend l'huile de soja, le squalène, le benzoate de benzyle, un triglycéride, ou un mélange de benzoate de benzyle et d'alcool benzylique.
11. Composition selon la revendication 9 ou 10, caractérisée en ce que ledit liquide organique hydrophobe est un mélange de différents solvants organiques hydrophobes.
12. Composition selon la revendication 11 caractérisée en ce que ledit mélange est un mélange d'huile de soja et d'oléate d'éthyle.
13. Composition selon l'une des revendications précédentes, caractérisée en ce que ladite substance biologiquement active appartient au groupe comprenant les protéines, les peptides, les acides aminés, les vitamines, les acides nucléiques et les oligonucléotides.
14. Composition selon la revendication 13, caractérisée en ce que ladite substance biologiquement active est choisie parmi la morphine, l'interféron α, l'interféron β, la somatostatine, l'héparine, les interieukines, l'érythropoïetine, la calcitonine, l'hormone de croissance humaine, l'hormone thyréotrope, le leuprolide.
15. Composition selon l'une des revendications précédentes, caractérisée en ce que la substance organogélatrice représente entre 0,5 et 50 % en poids du poids total de ladite composition.
16. Composition selon l'une des revendications précédentes, caractérisée en ce que la substance organogélatrice est une molécule de faible poids moléculaire présentant des extrémités acide, alcool ou aminé, notamment un dérivé d'acides aminés.
17. Composition selon la revendication 16, caractérisée en ce que la substance organogélatrice appartient au groupe des dérivés esters de l'alanine.
18. Composition selon la revendication 17, caractérisée en ce que ladite substance organogélatrice est le N-lauroyl L-alanine méthyle ester ou N-lauroyl L-alanine éthyle ester.
19. Composition selon la revendication 17, caractérisée en ce que ladite substance organogélatrice est le N-stéaroyl L-alanine méthyle ester ou le N- stéaroyl L-alanine éthyle ester.
20. Organogel obtenu à partir de la composition selon l'une des revendications 1 à 18, caractérisé en ce qu'il reste sous forme gélifiée stable entre la température d'application et la température de transition gel/liquide de ladite composition. 21. Utilisation d'une composition selon l'une des revendications 1 à 20 pour la fabrication d'un médicament destiné à être injecté dans l'organisme par voie parentérale extravasculaire et notamment par voie sous cutanée, intradermique, intrapéritonéale ou intramusculaire, ou destiné à être administré par voie intra-oculaire ou par voie vaginale, sur une plaie ouverte ou lors d'une intervention chirurgicale.
22. Utilisation d'une composition selon l'une des revendications 1 à 20 pour la fabrication d'un médicament destiné à être utilisé comme vecteur de libération prolongée de substance(s) bioactive(s) dans l'organisme.
21. Procédé de préparation d'une composition selon la revendication 1 , caractérisé en ce que la substance bioactive, éventuellement en solution aqueuse, est ajoutée au mélange constitué de la substance organogélatrice et du liquide organique hydrophobe.
22. Procédé de préparation d'une composition selon la revendication 3 qui consiste à - dissoudre la substance organogélatrice dans le solvant organique hydrophile, puis à incorporer la substance bioactive et le liquide organique hydrophobe.
23. Procédé selon la revendication 22, caractérisé en ce que lorsque la substance bioactive est peu soluble ou pas soluble dans la phase organique, une solution aqueuse de ladite substance est dispersée sous agitation dans la phase organique constituée de la substance organogélatrice et du solvant organique hydrophile.
PCT/FR2003/000797 2002-03-12 2003-03-12 Composition a proprietes gelifiantes destinee a la delivrance prolongee de substances bio-actives WO2003075885A1 (fr)

Priority Applications (14)

Application Number Priority Date Filing Date Title
ES03725281.4T ES2607980T3 (es) 2002-03-12 2003-03-12 Composición con propiedades gelificantes destinada al suministro prolongado de sustancias bioactivas
US10/507,281 US7691408B2 (en) 2002-03-12 2003-03-12 Composition having gelling properties for the prolonged delivery of bioactive substances
MXPA04008906A MXPA04008906A (es) 2002-03-12 2003-03-12 Composicion que tiene propiedades gelificantes para el suministro prolongado de sustancias bioactivas.
NZ535270A NZ535270A (en) 2002-03-12 2003-03-12 Composition having gelling properties for the sustained delivery of bioactive substances
BRPI0308360A BRPI0308360B8 (pt) 2002-03-12 2003-03-12 composição termossensível sob forma liquida compreendendo substância organogelificante, utilização de uma composição e processo de preparação de uma composição
AU2003227827A AU2003227827B2 (en) 2002-03-12 2003-03-12 Composition having gelling properties for the prolonged delivery of bioactive substances
IL16403103A IL164031A0 (en) 2002-03-12 2003-03-12 Composition having gelling properaties for the prolonged delivery of bioactive substances
CA2478825A CA2478825C (fr) 2002-03-12 2003-03-12 Composition a proprietes gelifiantes destinee a la delivrance prolongee de substances bio-actives
EP03725281.4A EP1485066B1 (fr) 2002-03-12 2003-03-12 Composition a proprietes gelifiantes destinee a la delivrance prolongee de substances bio-actives
JP2003574161A JP2005528352A (ja) 2002-03-12 2003-03-12 生体活性物質の持続的放出に用いるためのゲル化特性を有する組成物
US10/647,243 US20050031650A1 (en) 2002-08-26 2003-08-26 Composition with gelling properties for the sustained delivery of bioactive substances
IL164031A IL164031A (en) 2002-03-12 2004-09-12 Compositiion having gelling properaties for the prolonged delivery of bioactive substances
NO20044310A NO339426B1 (no) 2002-03-12 2004-10-12 Sammensetning som har gelerende egenskaper til forsinket levering av bioaktive stoffer
HK05104957.8A HK1071704A1 (zh) 2002-03-12 2005-06-14 有關生物活性物質 拖延分娩 的具有膠凝特性的組分

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0203059A FR2837099B1 (fr) 2002-03-12 2002-03-12 Composition a proprietes gelifiantes destinee a la delivrance prolongee de substances bio-actives
FR02/03059 2002-03-12
US40572002P 2002-08-26 2002-08-26
US60/405,720 2002-08-26

Publications (1)

Publication Number Publication Date
WO2003075885A1 true WO2003075885A1 (fr) 2003-09-18

Family

ID=27806677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/000797 WO2003075885A1 (fr) 2002-03-12 2003-03-12 Composition a proprietes gelifiantes destinee a la delivrance prolongee de substances bio-actives

Country Status (13)

Country Link
US (1) US7691408B2 (fr)
EP (1) EP1485066B1 (fr)
JP (1) JP2005528352A (fr)
CN (1) CN100584314C (fr)
AU (1) AU2003227827B2 (fr)
BR (1) BRPI0308360B8 (fr)
CA (1) CA2478825C (fr)
HK (1) HK1071704A1 (fr)
IL (1) IL164031A (fr)
MX (1) MXPA04008906A (fr)
NO (1) NO339426B1 (fr)
NZ (1) NZ535270A (fr)
WO (1) WO2003075885A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530128A (ja) * 2005-02-09 2008-08-07 マクサイト, インコーポレイテッド 疾患または状態を処置するための液体処方物
WO2009095485A1 (fr) * 2008-01-31 2009-08-06 Ethypharm Composition pharmaceutique présentant des propriétés de gélification, contenant un dérivé de tyrosine
US7691408B2 (en) 2002-03-12 2010-04-06 Ethypharm Composition having gelling properties for the prolonged delivery of bioactive substances
JP2013209406A (ja) * 2005-06-23 2013-10-10 Alza Corp 金属イオンとポリペプチドとの錯化
US8663639B2 (en) 2005-02-09 2014-03-04 Santen Pharmaceutical Co., Ltd. Formulations for treating ocular diseases and conditions
CN108479649A (zh) * 2018-05-10 2018-09-04 哈尔滨工业大学 一种有机凝胶的制备方法与应用

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8852638B2 (en) 2005-09-30 2014-10-07 Durect Corporation Sustained release small molecule drug formulation
ATE553659T1 (de) * 2006-07-24 2012-05-15 Unilever Nv Ausgangsstoff für ein getränk
CN101801415B (zh) 2007-05-25 2015-09-23 Rb医药品有限公司 利培酮化合物的持续递送制剂
US20110223208A1 (en) * 2010-03-09 2011-09-15 Beth Hill Non-Aqueous High Concentration Reduced Viscosity Suspension Formulations
US9072668B2 (en) 2010-03-09 2015-07-07 Janssen Biotech, Inc. Non-aqueous high concentration reduced viscosity suspension formulations of antibodies
US9272044B2 (en) 2010-06-08 2016-03-01 Indivior Uk Limited Injectable flowable composition buprenorphine
GB2481017B (en) 2010-06-08 2015-01-07 Rb Pharmaceuticals Ltd Microparticle buprenorphine suspension
PT2425814E (pt) * 2010-09-03 2013-09-02 Novagali Pharma Sa Emulsão de tipo água em óleo para tratamento de uma doença ocular
US9107822B2 (en) 2010-09-03 2015-08-18 Santen Sas Water-in oil type emulsion for treating a disease of the eye
MX2013002115A (es) * 2010-09-03 2013-06-28 Novagali Pharma Sa Una emulsion del tipo de agua en aceite para tratar una enfermedad de los ojos.
US9849160B2 (en) 2013-03-13 2017-12-26 Transdermal Biotechnology, Inc. Methods and systems for treating or preventing cancer
US9393265B2 (en) 2013-03-13 2016-07-19 Transdermal Biotechnology, Inc. Wound healing using topical systems and methods
US9295637B2 (en) 2013-03-13 2016-03-29 Transdermal Biotechnology, Inc. Compositions and methods for affecting mood states
US9314423B2 (en) 2013-03-13 2016-04-19 Transdermal Biotechnology, Inc. Hair treatment systems and methods using peptides and other compositions
US9393264B2 (en) 2013-03-13 2016-07-19 Transdermal Biotechnology, Inc. Immune modulation using peptides and other compositions
US9320758B2 (en) 2013-03-13 2016-04-26 Transdermal Biotechnology, Inc. Brain and neural treatments comprising peptides and other compositions
US9314422B2 (en) 2013-03-13 2016-04-19 Transdermal Biotechnology, Inc. Peptide systems and methods for metabolic conditions
US9314433B2 (en) 2013-03-13 2016-04-19 Transdermal Biotechnology, Inc. Methods and systems for treating or preventing cancer
US20140271731A1 (en) 2013-03-13 2014-09-18 Transdermal Biotechnology, Inc. Cardiovascular disease treatment and prevention
US9387159B2 (en) 2013-03-13 2016-07-12 Transdermal Biotechnology, Inc. Treatment of skin, including aging skin, to improve appearance
US9295636B2 (en) 2013-03-13 2016-03-29 Transdermal Biotechnology, Inc. Wound healing using topical systems and methods
US9314417B2 (en) 2013-03-13 2016-04-19 Transdermal Biotechnology, Inc. Treatment of skin, including aging skin, to improve appearance
US9241899B2 (en) 2013-03-13 2016-01-26 Transdermal Biotechnology, Inc. Topical systems and methods for treating sexual dysfunction
US9724419B2 (en) 2013-03-13 2017-08-08 Transdermal Biotechnology, Inc. Peptide systems and methods for metabolic conditions
US9339457B2 (en) 2013-03-13 2016-05-17 Transdermal Biotechnology, Inc. Cardiovascular disease treatment and prevention
US9320706B2 (en) 2013-03-13 2016-04-26 Transdermal Biotechnology, Inc. Immune modulation using peptides and other compositions
US20140271938A1 (en) 2013-03-13 2014-09-18 Transdermal Biotechnology, Inc. Systems and methods for delivery of peptides
US9687520B2 (en) 2013-03-13 2017-06-27 Transdermal Biotechnology, Inc. Memory or learning improvement using peptide and other compositions
US9750787B2 (en) 2013-03-13 2017-09-05 Transdermal Biotechnology, Inc. Memory or learning improvement using peptide and other compositions
US20140271937A1 (en) 2013-03-13 2014-09-18 Transdermal Biotechnology, Inc. Brain and neural treatments comprising peptides and other compositions
US9295647B2 (en) 2013-03-13 2016-03-29 Transdermal Biotechnology, Inc. Systems and methods for delivery of peptides
GB201404139D0 (en) 2014-03-10 2014-04-23 Rb Pharmaceuticals Ltd Sustained release buprenorphine solution formulations
JP6992057B2 (ja) 2016-06-10 2022-01-13 クラリティ コスメティックス インコーポレイテッド 非面皰形成性の毛髪および頭皮ケア製剤ならびにその使用方法
WO2023116517A1 (fr) * 2021-12-24 2023-06-29 四川科伦药物研究院有限公司 Préparation d'administration continue pouvant être libérée de manière stable et procédé de préparation associé

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2281162A1 (fr) 1974-08-07 1976-03-05 Ajinomoto Kk Aminoacides n-acyles et derives d'acides amines n-acyles comme agents gelifiants
WO1994008623A1 (fr) 1992-10-14 1994-04-28 F. Hoffmann-La Roche Ag Gel de lecithine injectable
WO1997015287A1 (fr) 1995-10-25 1997-05-01 Macromed, Inc. Polymeres biodegradables thermosensible a base de copolymeres a sequence poly(ether-ester)
WO1999013913A2 (fr) 1997-09-15 1999-03-25 Southern Biosystems, Inc. Systeme d'administration regulee d'un liquide de haute viscosite utilise comme dispositif
WO1999056725A1 (fr) 1998-04-30 1999-11-11 Ucb, S.A. Compositions pharmaceutiques gelifiables
EP1063007A1 (fr) * 1999-06-21 2000-12-27 L'oreal Organogels et leurs utilisations notamment cosmétique
EP1063077A1 (fr) 1999-06-24 2000-12-27 Société technologique de Précision mécanique Procédé de fabrication d'articles de conditionnement et machine de fabrication correspondante

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932624A (en) 1974-06-17 1976-01-13 Morton-Norwich Products, Inc. Method for prolonging the inhibitory effect of saralasin on angiotensin II
JPS5119139A (ja) * 1974-08-07 1976-02-16 Ajinomoto Kk Gerujokeshoryososeibutsu
US5575815A (en) 1988-08-24 1996-11-19 Endoluminal Therapeutics, Inc. Local polymeric gel therapy
CA2173104C (fr) * 1993-10-18 1999-08-24 Magda El-Nokaly Rouges a levres non exsudants
US20010007673A1 (en) 1999-11-12 2001-07-12 Merrill Seymour Goldenberg Sustained-release delayed gels
CA2212300A1 (fr) 1997-08-04 1999-02-04 Abdellatif Chenite Gelification in vitro ou in vivo du chitosane et utilisations therapeutiques du chitosane
US6306383B1 (en) 1998-09-16 2001-10-23 Wilson T Crandall Method for topical treatment of scars with protein kinase C inhibitors
JP2005528352A (ja) 2002-03-12 2005-09-22 エチファルム 生体活性物質の持続的放出に用いるためのゲル化特性を有する組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2281162A1 (fr) 1974-08-07 1976-03-05 Ajinomoto Kk Aminoacides n-acyles et derives d'acides amines n-acyles comme agents gelifiants
WO1994008623A1 (fr) 1992-10-14 1994-04-28 F. Hoffmann-La Roche Ag Gel de lecithine injectable
WO1997015287A1 (fr) 1995-10-25 1997-05-01 Macromed, Inc. Polymeres biodegradables thermosensible a base de copolymeres a sequence poly(ether-ester)
WO1999013913A2 (fr) 1997-09-15 1999-03-25 Southern Biosystems, Inc. Systeme d'administration regulee d'un liquide de haute viscosite utilise comme dispositif
WO1999056725A1 (fr) 1998-04-30 1999-11-11 Ucb, S.A. Compositions pharmaceutiques gelifiables
EP1063007A1 (fr) * 1999-06-21 2000-12-27 L'oreal Organogels et leurs utilisations notamment cosmétique
EP1063077A1 (fr) 1999-06-24 2000-12-27 Société technologique de Précision mécanique Procédé de fabrication d'articles de conditionnement et machine de fabrication correspondante

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHEMICAL COMMUNICATIONS, 2001
HANABUSA ET AL., JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1997
MURDAN ET AL., JOURNAL OF PHARMACEUTICAL SCIENCES, 1999
MURDAN S ET AL: "NOVEL SORBITAN MONOSTEARATE ORGANOGELS", JOURNAL OF PHARMACEUTICAL SCIENCES, AMERICAN PHARMACEUTICAL ASSOCIATION. WASHINGTON, US, vol. 88, no. 6, June 1999 (1999-06-01), pages 608 - 614, XP000825429, ISSN: 0022-3549 *
S. BHATTACHARYA ET AL.: "First report of phase selective gelation of oil from oil/water mixtures. Possible implications toward containing oil spills", CHEMICAL COMMUNICATIONS, vol. 2001, no. 2, 21 January 2001 (2001-01-21), Royal society of chemistry (GB), pages 185 - 186, XP002220131 *
X. LUO ET AL.: "Self-assembled organogels formed by mono-chain L-alanine derivatives", CHEMICAL COMMUNICATIONS, vol. 2001, no. 17, 7 September 2001 (2001-09-07), Cambridge (GB), pages 1556 - 1557, XP002220130 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7691408B2 (en) 2002-03-12 2010-04-06 Ethypharm Composition having gelling properties for the prolonged delivery of bioactive substances
US8927005B2 (en) 2005-02-09 2015-01-06 Santen Pharmaceutical Co., Ltd. Liquid formulations for treatment of diseases or conditions
US9387165B2 (en) 2005-02-09 2016-07-12 Santen Pharmaceutical Co., Ltd. Rapamycin formulations and methods of their use
US9381153B2 (en) 2005-02-09 2016-07-05 Santen Pharmaceutical Co., Ltd. Liquid formulations for treatment of diseases or conditions
US8367097B2 (en) 2005-02-09 2013-02-05 Santen Pharmaceutical Co., Ltd. Liquid formulations for treatment of diseases or conditions
JP2008530128A (ja) * 2005-02-09 2008-08-07 マクサイト, インコーポレイテッド 疾患または状態を処置するための液体処方物
US8637070B2 (en) 2005-02-09 2014-01-28 Santen Pharmaceutical Co., Ltd. Rapamycin formulations and methods of their use
US8663639B2 (en) 2005-02-09 2014-03-04 Santen Pharmaceutical Co., Ltd. Formulations for treating ocular diseases and conditions
JP2013209406A (ja) * 2005-06-23 2013-10-10 Alza Corp 金属イオンとポリペプチドとの錯化
AU2009209546B2 (en) * 2008-01-31 2013-12-19 Ethypharm Pharmaceutical composition with gelling properties containing a tyrosine derivative
US8815944B2 (en) 2008-01-31 2014-08-26 Ethypharm Pharmaceutical composition with gelling properties containing a tyrosine derivative
FR2926996A1 (fr) * 2008-01-31 2009-08-07 Ethypharm Sa Composition pharmaceutique a proprietes gelifiantes contenant un derive de tyrosine
WO2009095485A1 (fr) * 2008-01-31 2009-08-06 Ethypharm Composition pharmaceutique présentant des propriétés de gélification, contenant un dérivé de tyrosine
CN108479649A (zh) * 2018-05-10 2018-09-04 哈尔滨工业大学 一种有机凝胶的制备方法与应用

Also Published As

Publication number Publication date
CN1649567A (zh) 2005-08-03
HK1071704A1 (zh) 2005-07-29
BR0308360B1 (pt) 2017-11-14
US7691408B2 (en) 2010-04-06
MXPA04008906A (es) 2005-09-08
IL164031A (en) 2010-11-30
AU2003227827B2 (en) 2008-09-25
BR0308360A (pt) 2005-01-25
EP1485066B1 (fr) 2016-09-21
US20060121115A1 (en) 2006-06-08
NO339426B1 (no) 2016-12-12
NZ535270A (en) 2006-11-30
CA2478825A1 (fr) 2003-09-18
AU2003227827A1 (en) 2003-09-22
EP1485066A1 (fr) 2004-12-15
JP2005528352A (ja) 2005-09-22
NO20044310L (no) 2004-10-12
CA2478825C (fr) 2012-01-24
BRPI0308360B8 (pt) 2021-05-25
CN100584314C (zh) 2010-01-27

Similar Documents

Publication Publication Date Title
EP1485066B1 (fr) Composition a proprietes gelifiantes destinee a la delivrance prolongee de substances bio-actives
Zhang et al. Long-acting hydrogel/microsphere composite sequentially releases dexmedetomidine and bupivacaine for prolonged synergistic analgesia
Kempe et al. In situ forming implants—an attractive formulation principle for parenteral depot formulations
US20220110863A1 (en) Polymer composite for controlled release of an agent
WO2007128923A2 (fr) Procede de preparation d'un gel biocompatible a libération contrôlée d'un ou de plusieurs principes actifs peu solubles dans l'eau, gels ainsi obtenus et leur utilisation
FR2926996A1 (fr) Composition pharmaceutique a proprietes gelifiantes contenant un derive de tyrosine
Dube et al. Effect of alkyl length of peptide–polymer amphiphile on cargo encapsulation stability and pharmacokinetics of 3-helix micelles
WO2008025425A1 (fr) Microparticules a base de copolymere amphiphile et de principe(s) actif(s) a liberation modifiee et formulations pharmaceutiques en contenant
EP3030225B1 (fr) Compositions à libération continue à base d'acide hyaluronique, et leurs applications thérapeutiques
Li et al. Injectable thermosensitive lipo-hydrogels loaded with ropivacaine for prolonging local anesthesia
Patel et al. Subcutaneous delivery of albumin: impact of thermosensitive hydrogels
US20170035895A1 (en) Dehydrated hydrogel inclusion complex
US20050031650A1 (en) Composition with gelling properties for the sustained delivery of bioactive substances
US20160045439A1 (en) Compositions for inhibiting inflammation in a subject with a spinal cord injury and methods of using the same
Biswas et al. Gel based formulations in oral controlled release drug delivery
US20040219175A1 (en) Thermogelling emulsions for sustained release of bioactive substances
KR100906547B1 (ko) 생활성 물질의 지속적 전달을 위한 겔화 특성을 갖는 조성물
FR2837099A1 (fr) Composition a proprietes gelifiantes destinee a la delivrance prolongee de substances bio-actives
Yi et al. Visually controlled pulsatile release of insulin from chitosan poly-acrylic acid nanobubbles triggered by focused ultrasound
Volpatti Development and evaluation of glucose-responsive biomaterials as self-regulated insulin delivery systems
Dhayani et al. An Amphiphilic Double‐Brush Polymer Hydrogel for Sustained Release of Small Molecules and Biologics: Insulin Delivering‐Hydrogel to Control Hyperglycemia
John An Overview of Polymeric Hydrogels for Drug Delivery Applications
KR102037405B1 (ko) 저분자 메틸셀룰로오스 기반의 비경구 생리활성물질 전달용 조성물
Patel Stimuli-Responsive Hydrogels for Parenteral Drug Delivery
US20160151286A1 (en) Hydrophilic Microparticles, Drug-Delivery Material, Method For Manufacturing Thereof And Methods For Delivery of A Drug-Delivery Composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2478825

Country of ref document: CA

Ref document number: 535270

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 164031

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2004/07316

Country of ref document: ZA

Ref document number: 2690/DELNP/2004

Country of ref document: IN

Ref document number: 1020047014388

Country of ref document: KR

Ref document number: 2003574161

Country of ref document: JP

Ref document number: 200407316

Country of ref document: ZA

Ref document number: PA/A/2004/008906

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2003227827

Country of ref document: AU

REEP Request for entry into the european phase

Ref document number: 2003725281

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003725281

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003810055X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003725281

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047014388

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006121115

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10507281

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10507281

Country of ref document: US