WO2003073515A1 - Thin-film solar cell and its production method - Google Patents

Thin-film solar cell and its production method Download PDF

Info

Publication number
WO2003073515A1
WO2003073515A1 PCT/JP2003/001999 JP0301999W WO03073515A1 WO 2003073515 A1 WO2003073515 A1 WO 2003073515A1 JP 0301999 W JP0301999 W JP 0301999W WO 03073515 A1 WO03073515 A1 WO 03073515A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
film solar
photoelectric conversion
thin
semiconductor layer
Prior art date
Application number
PCT/JP2003/001999
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Yamamoto
Yoshiyuki Nasuno
Takashi Hayakawa
Akihisa Matsuda
Michio Kondou
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology, Sharp Kabushiki Kaisha filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to AU2003211649A priority Critical patent/AU2003211649A1/en
Priority to JP2003572097A priority patent/JP3943080B2/en
Publication of WO2003073515A1 publication Critical patent/WO2003073515A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • H01L31/03685Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table including microcrystalline silicon, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to a microcrystalline silicon-based thin film solar cell and a method for manufacturing the same.
  • the present invention relates to a thin film solar cell having high photoelectric conversion efficiency and a method for manufacturing the same.
  • a solar cell uses a pn junction as a semiconductor photoelectric conversion layer that converts light energy into electric power, and silicon is generally used as a semiconductor material constituting the pn junction.
  • silicon is generally used as a semiconductor material constituting the pn junction.
  • it is preferable to use single crystal silicon in terms of photoelectric conversion efficiency.
  • an amorphous silicon material is photoelectrically used.
  • microcrystalline silicon like amorphous silicon
  • plasma CVD As a general method for forming thin film silicon by plasma CVD method, there is a method using a source gas obtained by diluting silane gas with hydrogen 10 times or more. When deposited using this source gas, a microcrystalline silicon film can be obtained, and the crystallization rate can be increased by increasing the hydrogen dilution rate.
  • microcrystalline silicon film is a thin film composed of a mixture of crystalline silicon and amorphous silicon.
  • the photoelectric conversion efficiency of current microcrystalline silicon solar cells is lower than the photoelectric conversion efficiency of single-crystal silicon solar cells, about 20%, and about 10%. It is about 7-8%, which is equivalent to the photoelectric conversion efficiency of amorphous silicon solar cells.
  • the substrate temperature at the time of film formation is set to 5500 ° C or less and the crystallization rate is A solar cell is disclosed in which a high photoelectric conversion efficiency can be obtained by setting 80% or more (I c / I a ⁇ 4).
  • the oxygen concentration in the i-type microcrystalline silicon layer is 2 X 1 0 1 8 cm one 3 From the above, it has been reported that when the substrate temperature is increased to 200 ° C or higher, the i-type microcrystalline silicon layer is activated to become n-type, and the characteristics of the thin-film solar cell deteriorate. Has been.
  • the conventional thin film solar cells disclosed in the above publications and literatures have only revealed a partial relationship such as the relationship between the substrate temperature and the crystallization rate, or the hydrogen dilution rate and the crystallization rate.
  • a microcrystalline silicon-based thin-film solar cell and an optimum manufacturing method thereof have not yet reached a practical level.
  • the film formation conditions such as the substrate temperature and the optimum hydrogen The dilution rate will vary depending on the deposition equipment. Therefore, as a method for producing a thin-film solar cell having high photoelectric conversion efficiency, the optimum formation conditions with universality have not been clarified yet.
  • the present invention has been made in view of the above problems. The purpose is to have high photoelectric conversion efficiency by identifying the optimum formation conditions with respect to the oxygen concentration in the silicon layer, the substrate temperature, the crystallization rate, etc. when forming the i-type silicon layer. . To provide a thin film solar cell and a method of manufacturing the same
  • a method for manufacturing a thin-film solar cell according to the present invention includes a photoelectric conversion unit on a substrate, and the thin-film solar cell that converts incident light into electrical energy in the photoelectric conversion unit.
  • an i-type semiconductor layer included in at least one layer in the photoelectric conversion portion is subjected to Raman scattering under a condition where the oxygen concentration in the i-type semiconductor layer is 4 ⁇ 10 18 cm _ 3 or less.
  • the peak intensity of the signal due to the crystal component of the i-type semiconductor layer is I c
  • the peak intensity of the signal due to the amorphous component is I a
  • the substrate temperature at the time of manufacturing the i-type semiconductor layer is T sub
  • a thin-film solar cell having high photoelectric conversion efficiency can be manufactured under the formation conditions where the oxygen concentration in the i-type semiconductor layer is 4 ⁇ 10 18 cm ⁇ 3 or less.
  • the substrate temperature and / or the crystallization rate is increased.
  • oxygen in the i-type silicon layer is activated and the i-type semiconductor layer becomes n-type, and hydrogen is desorbed and defects are increased.
  • the photoelectric conversion efficiency will decrease.
  • the above relational expression (1) is satisfied under the formation conditions in which the oxygen concentration in the i-type semiconductor layer is 4 ⁇ 10 18 cm ⁇ 3 or less.
  • the silicon layer was irradiated with an argon ion laser (5 14.5 nm) at about 10 mW, and the Raman scattering spectrum was measured.
  • the crystallization rate can be evaluated by obtaining the peak intensity ratio I c / I a from the peak intensities I c and I a obtained by the measurement.
  • a method for manufacturing a thin-film solar cell according to the present invention includes a photoelectric conversion unit on a substrate, and the thin-film solar cell that converts incident light into electrical energy in the photoelectric conversion unit.
  • the i-type semiconductor layer included in at least one layer in the photoelectric conversion portion is subjected to Raman scattering measurement under the formation conditions where the substrate temperature of the substrate is 25 ° C. or lower.
  • I c is the peak intensity of the signal due to the crystalline component
  • I a is the peak intensity of the signal due to the amorphous component
  • T sub is the substrate temperature at the time of fabrication of the i-type semiconductor layer.
  • a thin-film solar cell having high photoelectric conversion efficiency can be manufactured under a forming condition of a substrate temperature of 2550 ° C. or lower, that is, formed by a plasma CVD method or the like.
  • the crystal grain size increases as the substrate temperature rises, and the quality of the crystal part improves.
  • oxygen contained in the i-type semiconductor layer is activated and the i-type semiconductor layer becomes n- type, and hydrogen is desorbed and defects increase.
  • the substrate temperature is 2500 ° C.
  • high photoelectric conversion efficiency can be achieved by forming the i-type semiconductor layer under the formation conditions that satisfy the above relational expression (1) without accompanying the above-described decrease in photoelectric conversion efficiency. It is possible to manufacture a thin film solar cell.
  • the thin-film solar cell manufactured by the above-described method for manufacturing a thin-film solar cell wherein the crystallization rate is high when forming the film on an amorphous substrate in the initial stage of forming the i-type semiconductor layer. More preferably, the i-type semiconductor layer is formed, and the crystallization rate satisfies the relational expression (1) in the entire region in the film thickness direction.
  • the crystallization rate tends to increase as the film thickness increases, so a semiconductor layer with a very thin film thickness is formed. In this case, the increase in the crystallization rate does not reach the saturation state, and the crystallization rate becomes low at the initial stage of film formation in the i-type semiconductor layer.
  • the conditions for increasing the crystallization rate are, for example, the conditions for a high hydrogen dilution rate and the high input power. It is possible to prevent the crystallization rate from being lowered in the portion formed in the initial stage of film formation by forming the film according to the conditions, etc., and appropriately changing the film formation conditions as the film thickness increases.
  • the thin film solar cell of the present invention is a thin film solar cell manufactured by the method for manufacturing a thin film solar cell, wherein the i-type half-cell Integrated intensity of the (2 2 0) X-ray diffraction peak of the conductor layer I 2 2 . , (1 1 1) X-ray diffraction peak integrated intensity I i ⁇ ⁇ , these ratios I 2 2 . / I i is the relation I 2 2 . It is characterized by satisfying / I i ⁇ 5 (2).
  • the thin film solar cell which has a stably high photoelectric conversion efficiency is specified by specifying the formation conditions according to the oxygen concentration in the said i-type semiconductor layer, a substrate temperature, a crystallization rate, etc.
  • the thin-film solar battery of the present invention that can be manufactured and can obtain a thin-film solar battery with high photoelectric conversion efficiency more reliably among the thin-film solar batteries,
  • an i-type semiconductor layer included in the photoelectric conversion unit is included in the i-type semiconductor layer.
  • the peak intensity of the signal due to the crystalline component of the i-type semiconductor layer is determined by Raman scattering measurement as I c, and the peak intensity of the signal due to the amorphous component I a, the i
  • the substrate temperature at the time of fabrication of the type semiconductor layer is T sub, it is formed under the formation conditions satisfying the following relational expression (1)
  • the oxygen concentration in the i-type semiconductor layer is in 4 X 1 0 1 8 c ⁇ - 3 following formation conditions, to provide a thin film solar cell having high photoelectric conversion efficiency.
  • the substrate temperature or the crystallization rate is low. Under such conditions, A photoelectric conversion efficiency will fall.
  • the product of the substrate temperature T sub and the crystallization rate I c / I a is larger than 1600, the substrate temperature and Z or the crystallization rate are increased. In particular, when the substrate temperature rises, oxygen in the i-type silicon layer is activated and the i-type semiconductor layer becomes n-type, and hydrogen is desorbed and defects are increased. The photoelectric conversion efficiency will decrease.
  • the thin film solar cell of the present invention has a formation condition that satisfies the above relational expression (1) under the formation condition where the oxygen concentration in the i-type semiconductor layer is 4 ⁇ 10 18 cm ⁇ 3 or less,
  • the i-type semiconductor layer by changing the crystallization rate in accordance with the substrate temperature, it is possible to prevent the occurrence of the above-described problem of a decrease in photoelectric conversion efficiency regardless of the substrate temperature.
  • the thin film solar cell of the present invention has a photoelectric conversion unit on a substrate, and the photoelectric conversion unit converts incident light into electric energy in the photoelectric conversion unit.
  • At least one i-type semiconductor layer is included under the conditions where the substrate temperature of the substrate is 25 ° C. or lower.
  • the peak intensity of the signal due to the crystalline component of the i-type semiconductor layer measured by Raman scattering is I c
  • the peak intensity of the signal due to the amorphous component is I a
  • the substrate temperature at the time of fabrication of the i-type semiconductor layer is T sub
  • the thin film solar cell which has high photoelectric conversion efficiency can be provided on the formation conditions whose board
  • an i-type semiconductor layer formed by a plasma CVD method or the like increases the crystal grain size and improves the quality of the crystal part when the substrate temperature rises.
  • oxygen contained in the i-type semiconductor layer is activated and the i-type semiconductor layer becomes n-type, and hydrogen is desorbed and defects are increased. Efficiency will decrease.
  • the above relational expression (1) can be obtained without causing a decrease in the photoelectric conversion efficiency as described above under the formation conditions where the substrate temperature is 2550 ° C. or less.
  • the crystallization rate satisfies the relational expression (1) in the entire region in the film thickness direction of the i-type semiconductor layer.
  • the crystallization rate tends to increase as the film thickness increases, so a semiconductor layer with a very thin film thickness is formed. In this case, the increase in the crystallization rate does not reach the saturation state, and the crystallization rate is lowered at the initial stage of film formation in the i-type semiconductor layer.
  • the conditions for increasing the crystallization rate are, for example, the conditions for a high hydrogen dilution rate and the high input power.
  • the film is formed according to the conditions, etc. It is possible to prevent the crystallization rate from being lowered.
  • the thin-film solar cell wherein the integrated intensity I 22 of the (2 2 0) X-ray diffraction peak of the i-type semiconductor layer.
  • I I the integrated intensity of the X-ray diffraction peak
  • ZI satisfies the following relational expression (2). I s soZ liii ⁇ S (2)
  • the photoelectric conversion layer includes a layer containing microcrystalline silicon.
  • a layer containing microcrystalline silicon and a layer containing amorphous silicon are mixed.
  • FIG. 1 is a cross-sectional view showing the structure of a microcrystalline silicon-based thin film solar cell according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the crystallization rate dependency of the photoelectric conversion rate when the oxygen concentration in the i-type microcrystalline silicon layer is low.
  • Figure 3 shows the photoelectric at high oxygen concentration in the i-type microcrystalline silicon layer. It is a graph which shows the crystallization rate dependence of conversion efficiency.
  • Fig. 4 is a graph showing the change in crystallization rate in the thickness direction of a microcrystalline silicon thin film solar cell fabricated on a glass substrate.
  • FIG. 5 is a flow chart showing the manufacturing process of the microcrystalline silicon solar cell of the present invention. Best Mode for Carrying Out the Invention
  • the thin film solar cell 20 of the present embodiment is a thin film solar cell 20 having a super-straight structure that performs photoelectric conversion by light incident from the substrate 11a side.
  • a battery substrate (substrate) 1 1, a photoelectric conversion layer 1 7, and a back electrode 16 are provided on the solar cell substrate 1 1.
  • a back surface reflective layer 15 may be provided between the photoelectric conversion layer 17 and the back electrode 16.
  • a substrate type structure in which a back electrode, a photoelectric conversion layer, a light receiving surface electrode, and a collecting electrode are sequentially laminated on a substrate may be used.
  • the solar cell substrate 11 includes a substrate 11a and a transparent conductive layer 11b formed on the substrate 11a.
  • the substrate 11a is formed with a thickness of about 0.1 to 30 mm, for example, with appropriate strength and weight.
  • the substrate 11 a may have irregularities formed on the surface according to the usage mode of the substrate, and may further include an insulating film, a conductive film, a buffer layer, or the like, or these The composite layer which combined these may be laminated
  • the substrate of the thin film solar cell of the present invention is not particularly limited as long as it supports and reinforces the entire solar cell, but has a heat resistance of about 200 ° C., for example.
  • those that can be used for super-straight type solar cells are preferable.
  • glass, polyimide, ⁇ ⁇ ⁇ , PEN * PES 'heat-resistant polymer film such as Teflon (registered trademark), stainless steel (SUS), aluminum and other metals, ceramics, etc. Can be used in a stacked manner.
  • the transparent conductive layer l i b is 0. I n n! In order to improve plasma resistance, it is more preferable to have a layer containing zinc oxide (ZnO) at least on the surface.
  • the transparent conductive layer 1 1 b is formed by a sputtering method in order to easily control the transmittance and resistivity.
  • the transparent conductive layer 11 b may contain impurities in order to reduce the resistivity.
  • impurity there is a group III element such as gallium or aluminum, and its concentration is, for example, 5 X 10 2 . ⁇ 5 X 1 0 2 1 / cm 3
  • the present invention is not limited to this.
  • the present invention is not limited to this.
  • vacuum deposition method instead of the sputtering method, vacuum deposition method, EB deposition method, atmospheric pressure C VD method, reduced pressure C It can be formed using a VD method, a sol-gel method, an electrodeposition method, or the like.
  • Photoelectric conversion layer 17 consists of p-type microcrystalline silicon layer 1 2, i-type microcrystalline silicon layer 1 3, and n-type microcrystalline silicon layer 1 4 formed by plasma CVD for solar cells. It is configured by laminating on the substrate 11 in this order.
  • the photoelectric conversion layer 17 is usually formed by such a pin junction, and may be a layer containing microcrystalline silicon or a layer containing amorphous silicon.
  • a layer containing microcrystalline silicon and a layer containing amorphous silicon may be stacked, and all photoelectric conversions
  • the element does not have to be a layer containing microcrystalline silicon or a layer containing amorphous silicon.
  • the photoelectric conversion layer 17 includes microcrystalline silicon from the viewpoint of photoelectric conversion efficiency and the like. Preferably it comprises a layer.
  • a layer containing microcrystalline silicon and a layer containing amorphous silicon are preferably mixed from the viewpoint of photoelectric conversion efficiency and the like.
  • all of the pin junction p-type microcrystalline silicon layer 12, i-type microcrystalline silicon layer 13, and n-type microcrystalline silicon layer 14 constituting the photoelectric conversion layer 17 are micro It is made of crystalline silicon.
  • the present invention is not limited to this, and the transparent conductive layer of the p-type microcrystalline silicon layer 12, the i-type microcrystalline silicon layer 13, and the n-type microcrystalline silicon layer 14 is used. Only the silicon layer in contact with the layer 1 1 b may be microcrystalline silicon.
  • Microcrystalline silicon also includes alloyed silicon, for example, Si XC ⁇ _ ⁇ with carbon added, Si XG ei — x with germanium added, Or silicon with other impurities added is included.
  • the P-type microcrystalline silicon layer 12 is a layer containing a group III element such as boron, aluminum, germanium, indium, titanium, etc., and the group III element concentration is 0.01 to 8 atomic%.
  • the layer thickness is about 1 to 200 nm.
  • the p-type microcrystalline silicon layer 12 may be a single layer, or may be formed of a composite layer composed of a plurality of layers having different I I I group element concentrations or gradually changing.
  • the p-type microcrystalline silicon layer 1 2 is formed by forming the p-type microcrystalline silicon layer 1 2 with the C VD method using the RF to UHF frequency band, the ECR plasma C VD method, or these It is formed using the C VD method combining the above.
  • the conditions are as follows: frequency about 10 to 200 MHz, power number W to about several kW, chamber internal pressure about 0.1 to 20 Torr, The substrate temperature is from room temperature to about 600 ° C., etc.
  • the formation of the p-type microcrystalline silicon layer 12 is made from RF.
  • the present invention is not limited to this. Any method can be used as long as the silicon layer can be formed to have a p-type conductivity.
  • the formation of the silicon layer can be performed by normal pressure C VD, reduced pressure C VD, plasma C VD, ECR plasma CVD, high temperature C VD, low temperature C VD, microwave C VD, catalyst C VD, sputtering method, etc. Any of these may be used.
  • the silicon-containing gas used at this time is, for example, SiH 4 , Examples include Si 2 He , Si F 4 , Si H 2 Cl 2 , and Si Cl 4 , which are used together with H 2 gas as a dilution gas.
  • the mixing ratio of the silicon-containing gas and the dilution gas may be constant or may be formed while being changed. For example, the volume ratio is about 1: 1 to 1: 100.
  • the doping gas is a gas that optionally contains a group III element. For example, B 2 H 6 or the like can be used.
  • the mixing ratio between the silicon-containing gas and the group III element-containing gas is appropriately adjusted according to the size of the film forming apparatus such as CVD and the concentration of the group III element to be obtained. It may be constant or may be formed while being changed. For example, the capacity ratio may be about 1: 0.0 0 1 to 1: 1.
  • the group III element may be doped at the same time as the formation of the microcrystalline silicon layer. However, after the silicon film is formed, ion implantation, surface treatment of the microcrystalline silicon layer, or solid layer diffusion is performed. May be used.
  • fluorine gas such as F 2 , Si F 4 , Si H 2 F 2, etc. may be optionally added to the silicon-containing gas. The amount of fluorine gas in this case is, for example, H 2 used as a dilution gas for the silicon-containing gas.
  • the silicon-containing gas used at this time is not limited to H 2 gas.
  • An inert gas such as A r, He, N e, and X e can be used as a dilution gas.
  • the i-type microcrystalline silicon layer 13 is made of microcrystalline silicon, and its film thickness is about 0.1 to 10 ⁇ . Moreover, i-type microcrystalline silicon layer 1 3, during formation, except not using a gas containing a Group III element, in the same manner as P-type microcrystalline silicon layer 1 2, for example, S i H 4 and It can be formed by decomposing H 2 gas mixture by plasma CVD.
  • the i-type microcrystalline silicon layer 13 is an intrinsic semiconductor that does not exhibit p-type and n-type conductivity, but has a very weak p-type or n-type conductivity as long as the photoelectric conversion function is not impaired. It may be shown.
  • this i-type microcrystalline silicon layer 13 The formation conditions of this i-type microcrystalline silicon layer 13 will be described in detail later.
  • the n-type microcrystalline silicon layer 14 is an n-type conductivity type silicon layer having a thickness of about 10 to 100 nm.
  • the n-type microcrystalline silicon layer 14 is the above-described p-type microcrystalline silicon layer 12 and i-type except that a gas containing a group V element such as PH 3 is used as a dopant gas. It can be formed in the same manner as the microcrystalline silicon layer 1 3.
  • the donor impurity include phosphorus, arsenic, and antimony, and the impurity concentration is about 10 18 to 10 2 Q cm ⁇ 3 .
  • a transparent conductive film made of Sn 0 2 , In 2 2 0 3 , Zn 0, IT 0, etc. is formed with a thickness of about 50 nm by a magnet opening sputtering method.
  • the back reflective layer 15 is formed.
  • the back electrode 16 is made of a metal film using materials such as Ag, A1, Cu, Au, Ni, Cr, W, Ti, Pt, Fe, Mo, etc. A single layer or a plurality of metal films are stacked, and the thickness is 10 0 ⁇ ⁇ ! ⁇ 1 ⁇ m.
  • the thin film solar cell 20 of the present embodiment constitutes a super straight type thin film solar cell 20 by drawing out the electrode 21 from the transparent conductive layer 11 b and the back electrode 16. With the configuration described above, incident light is converted into electrical energy using the light confinement effect in the photoelectric conversion layer 17. be able to.
  • the formation conditions of the i-type microcrystalline silicon layer 13 which is the main part of the thin film solar cell 20 of the present invention will be described in more detail.
  • the thin-film solar cell 20 of the present embodiment changes the crystallization rate in accordance with the substrate temperature of the solar cell substrate 11 1 and the hydrogen dilution rate, and the optimum formation conditions for the i-type microcrystalline silicon layer 1 3
  • the i-type microcrystalline silicon layer 13 was formed under the following forming conditions. It is formed.
  • the i-type microcrystalline silicon layer 13 is formed under the formation conditions satisfying 1600 (1).
  • the crystallization rate of thin film solar cells increases the crystallization rate as the substrate temperature rises.
  • the photoelectric conversion efficiency of thin film solar cells does not necessarily improve. This is thought to be because oxygen contained in the i-type semiconductor layer is activated to make the i-type semiconductor layer n-type, and hydrogen is released to increase defects. Therefore, i-type fine at high temperatures
  • the crystallization rate is lowered and the amorphous silicon is inserted into the grain boundaries. It is necessary to inactivate interface states and impurity levels.
  • the i-type microcrystalline silicon layer 13 is formed under the formation conditions satisfying the relational expression (1) above, so that it is possible to adapt to such conditions. And a thin film solar cell having high photoelectric conversion efficiency can be obtained.
  • the film forming apparatus in addition to the case where the substrate temperature and the hydrogen dilution rate are changed as described above, the film forming apparatus is opened to the atmosphere, and the i-type microcrystalline silicon layer 13 is formed.
  • the oxygen concentration remaining in the deposition chamber due to the moisture adsorbed on the inner wall is increased to about 2 to 3 X 10 0 19 cm _ 3 by changing the ultimate vacuum during film deposition
  • the formation conditions of the i-type microcrystalline silicon layer 13 that can achieve high photoelectric conversion efficiency were investigated.
  • the substrate temperature is 2550 ° C. or lower.
  • the oxygen concentration is 4 ⁇ 10 18 cm ⁇ 3 or less, or when the substrate temperature is 200 ° C. or less.
  • the i-type microcrystalline silicon layer 13 By forming the i-type microcrystalline silicon layer 13 under the formation conditions that satisfy the above relational expression (1), it has a relatively high photoelectric conversion efficiency.
  • a thin film solar cell can be provided.
  • the Raman scattering measurement used to determine the crystallization rate was performed by irradiating the silicon layer with an argon ion laser (5 14.5 nm) at about 10 mW and applying the Raman scattering spectrum. This is a measurement method in which the peak intensities I c and I a are obtained by measurement.
  • the peak intensity I c of the signal due to the crystal component appears at a position centered at about 5 20 cm- 1
  • the peak intensity I a of the signal due to the amorphous component is Appears at a position centered on approximately 4 80 cm— 1 . Therefore, the crystallization rate can be evaluated by obtaining the peak intensity ratio I c / I a.
  • the crystallization rate tends to increase as the film thickness increases.
  • the p-type microcrystalline silicon layer 12 is very thin, a few tens of nanometers. Therefore, the increase in the crystallization rate does not reach saturation, and the i-type microcrystalline silicon layer It is expected that the crystallization rate will be low at the initial stage of film formation of the con layer 13.
  • the thin film solar cell satisfying the relational expression (1) regarding the crystallization rate and the substrate temperature described above was The solar cell was polished from the n-type microcrystalline silicon layer 14 side, and the film thickness dependence of the crystallization rate of the i-type microcrystalline silicon layer 13 was measured. As a result, it was found that the crystallization rate was small in the region of several hundred nm from the p-type microcrystalline silicon layer 12 and did not satisfy the relational expression (1) regarding the crystallization rate and the substrate temperature. .
  • the thin-film solar cell of this embodiment obtained by the manufacturing method as described above has the integrated intensity I 2 2 of the (2 2 0) X-ray diffraction peak of the i-type microcrystalline silicon layer 1 3. .
  • the super-straight type thin film solar cell 20 as shown in FIG. 1 has been described as an example, but the present invention is not limited to this.
  • a substrate type thin film solar cell in which light is incident from each silicon layer side to perform photoelectric conversion may be used.
  • the thin film solar cell of the present invention is at least a metal substrate or a substrate coated with metal on the surface, a transparent conductive layer having surface irregularities on the surface, It is configured to include a photoelectric conversion layer.
  • the transparent conductive layer functions as a light scattering layer reflected by the metal surface.
  • Example 1 a method for manufacturing a single-junction thin-film solar cell with a super-straight structure will be described according to the flow chart shown in FIG. 5 corresponding to the above-described embodiment.
  • members having the same functions as those explained in the above embodiment are given the same reference numerals and explanation thereof is omitted.
  • a thin film solar cell 20 according to Example 1 was formed as follows.
  • a transparent conductive layer 1 1 b is formed on a substrate 11 1 a having a smooth surface, and zinc oxide is formed with a thickness of 800 nm by a magnetron sputtering method. . Thereafter, the surface of the transparent conductive layer 11 b was etched with an acetic acid aqueous solution to form irregularities, thereby forming the solar cell substrate 11.
  • a p-type having a thickness of 2 O nm on the transparent conductive layer 1 1 b with an input power of 30 W on the solar cell substrate 11 1 by a high-frequency plasma CVD method Photoelectric conversion is achieved by laminating a microcrystalline silicon layer 1 2, an i-type microcrystalline silicon layer 1 3 with a thickness of 2 ⁇ m, and an n-type microcrystalline silicon layer 1 4 with a thickness of 30 nm in this order. Layer 1 7 was created.
  • a p-type microcrystalline silicon co emission layer 1 2 used a material obtained by diluting Ri by a S i H 4 gas to 1 0 0 ⁇ H 2 gas at a flow rate ratio as raw material gases
  • B 2 H 6 gas was further added by 0.1% with respect to the Si H 4 gas flow rate.
  • the i-type microcrystalline silicon layer 13 was formed using a material gas obtained by diluting Si H 4 gas with H 2 gas.
  • the i-type microcrystalline silicon layer 1 is fixed at a substrate temperature of 100 ° C, the hydrogen dilution rate H 2 ZS i H 4 is increased 35 times, and the i-type microcrystalline silicon layer 1 is fixed.
  • a thin film solar cell 20 with 3 was formed.
  • the i-type microcrystalline silicon layer 13 made of S S Back pressure at the time of l X 1 0 _ 7 Torr, and the oxygen atom concentration contained in the formed i-type microcrystalline silicon layer 1 3 When measured by MS, it was about 3 X 10 18 cm- 3 , although it varied depending on the substrate temperature and crystallization rate.
  • a transparent conductive film having a thickness of 50 n Hi was formed using zinc oxide as the back surface reflecting layer 15 by a magnetron sputtering method.
  • the back electrode 16 is formed with a thickness of 500 nm using silver by electron beam evaporation, and light is incident from the substrate 11 a side.
  • a single-junction thin-film solar cell with a structure of 20 was manufactured.
  • the crystallization rate differs in the same manner as in Example 1 except that the film formation conditions (substrate temperature, hydrogen dilution rate, oxygen concentration) of the i-type microcrystalline silicon layer 1 3 are different.
  • a thin-film solar cell with a type microcrystalline silicon layer 1 3 was formed.
  • the film formation conditions for the i-type microcrystalline silicon layer 1 3 substrate temperature
  • a thin-film solar cell having an i-type microcrystalline silicon layer 13 having a different crystallization rate was formed in the same manner as in Example 1, except for the degree of hydrogen, the hydrogen dilution rate, and the oxygen concentration.
  • Examples 10 to 13 As the back pressure when forming microcrystalline silicon when forming the i-type microcrystalline silicon layer 1 3, 1 to: L 0 X 1 0 _ 5 Torr
  • the oxygen concentration contained in the i-type microcrystalline silicon layer 13 is set to the above example:!
  • the properties differ depending on the production methods similar to those in Examples 1 to 9 and Comparative Examples 1 to 4 except that 6 XI 0 1 8 to 2 X 10 1 9 cm 3 , which is higher than the formation conditions of ⁇ 9 etc.
  • a thin-film solar cell having an i-type microcrystalline silicon layer 13 having a thickness of 13 was formed.
  • Comparative Example 5, 6 a Back Pressure when that form the microcrystalline silicon during the film of i-type silicon layer, 1 to the 1 0 X 1 0- 5 T orr , i -type silicon
  • the oxygen concentration contained in the con layer was set to 7 X 10 1 8 to 3 X 10 1 9 cm 3 , which was higher than the formation conditions of Examples 1 to 9 and the like.
  • a thin film solar cell having i-type microcrystalline silicon layer 13 having different properties was formed by the same manufacturing method as in Comparative Examples 1 to 4.
  • the film forming conditions, the crystallization rate, the crystal orientation, and the oxygen concentration contained in the i-type microcrystalline silicon layer Table 1 shows the photoelectric conversion efficiency of the solar cell under the AM 1.5 (100 mW / cm 2 ) irradiation condition.
  • Example 2 200 200 3.5 700 2.7 2xl0 18 7.0
  • Example 3 200 40 6 1200 3.5 2xl0 18 8.2
  • Example 4 200 50 8 1600 2.9 2xl0 18 7.4
  • Example 5 250 45 4 1000 5.0 2xl0 18 8.4
  • Example 6 300 45 2.5 750 4.0 4xl0 18 8.0
  • Example 7 300 50 3.5 1050 6.5 4xl0 18 8.4
  • Example 8 300 70 5 1500 4.5 3xl0 18 7.8
  • Example 9 350 60 3 1050 7.5 4xl0 18 8.3
  • Example 10 200 40 6 1200 3.5 6xl0 18 8.2
  • Example 11 200 40 6 1200 3.5 2xl0 19 8.0
  • Example 12 250 45 4 1000 5.0 6xl0 18 7.9
  • Comparative Example 2 200 65 8.8 1760 2.0 4xl0 18 6.5
  • a microcrystalline silicon-based thin-film solar cell can be realized even if an inexpensive resin material that is not excellent in heat resistance is used as a substrate. Furthermore, from the results of Examples 1 to 9 shown in Table 1, although the crystallization rate for obtaining high photoelectric conversion efficiency differs depending on the substrate temperature, the i-type microcrystalline silicon layer 13 is in the oxygen concentration is 4 X 1 0 1 8 C m_ 3 following formation conditions included, irrespective of the substrate temperature T sub, the product of the substrate temperature T sub and sintering crystallization rate I c / I a is, equation ( 1) If the i-type microcrystalline silicon layer 1 3 is formed so as to satisfy (7 0 0 ⁇ T sub XI c Z la ⁇ 1 6 0 0), a thin film solar that can achieve relatively high photoelectric conversion efficiency It can be seen that the battery could be fabricated.
  • the oxygen concentration contained in the i-type microcrystalline silicon layer 1 3 is 4 X 1 10 18 cm- 3 or less. Then, it was found that a thin film solar cell having a high photoelectric conversion efficiency of 7.0% or more can be produced under the formation conditions satisfying the relational expression (1).
  • the high photoelectric conversion efficiency was maintained even when the substrate temperature was high because the i-type microcrystalline silicon layer 13 formed by the plasma CVD method was free from defects caused by an increase in the substrate temperature. This is probably because the amorphous silicon was inserted into the grain boundaries with the crystallization rate lowered, and the interface states and impurity levels were deactivated.
  • Examples 1 to 5 manufactured under the formation conditions where the substrate temperature is 2500 ° C or less, For 1 0-1 3 the oxygen concentration is 2-3 XI 0 1 8 cm 3 Examples 1-5 are also higher, 6 X 1 0 1 8-2 X 1 0 1 9 cm— 3 Certain examples 10 to 13 also satisfy the condition of the above relational expression (1), and 7.0 to 8.
  • Comparative Examples 1 to 4 which were also manufactured at a substrate temperature of 25 ° C. or lower, the condition of the above relational expression (1) was not satisfied, and the photoelectric conversion efficiency was 4.8 to 6.5. % Is getting lower.
  • the oxygen concentration contained in the i-type microcrystalline silicon layer 1 3 is higher than 4 X 1 0 18 cm— 3 6 X 1 0 If the formation of the thin film solar cell in 1 8 ⁇ 3 X 1 0 1 9 c m- 3 formation conditions, as compared with the case of the oxygen concentration 2 ⁇ 4 x 1 0 1 8 cm- 3, the substrate temperature In Example 1 0 ⁇ 11 at a temperature of 200 ° C., a relatively high photoelectric conversion efficiency equivalent to that in Example 3 was obtained. Also, in Examples 1 2 and 13 at a substrate temperature of 2500 ° C, although the photoelectric conversion efficiency is lower than that in Example 5, 7.
  • a high photoelectric conversion efficiency of 5 to 7.9% is obtained.
  • the oxygen concentration contained in the i-type microcrystalline silicon layer 1 3 is higher than that of 4 X 1 0 18 c ni— 3. Even in this case, it can be seen that high photoelectric conversion efficiency can be maintained.
  • Comparative Examples 5 and 6 have a photoelectric conversion efficiency of 8.4% ⁇ compared to Example 7 formed at the same crystallization rate and substrate temperature. 6. Decreased significantly from 3 to 6.9%.
  • the crystal orientation I 2 2 further under the formation conditions satisfying the above relational expression (1) or (2). It was found that a thin-film solar cell with a higher level of photoelectric conversion efficiency can be obtained if it is a thin-film solar cell that satisfies the condition that ZI is 5 or more.
  • Example 7 A thin film solar cell was manufactured under the same conditions as in manufacturing at a hydrogen dilution rate of 50 times.
  • Example 15 was carried out except that the first 50 nm thickness of the i-type microcrystalline silicon layer 13 in the initial stage of film formation was formed under the condition of input power of 60 W. Film was formed under the same conditions as in Example 7 (manufactured with an input power of 30 W). A thin film solar cell was manufactured.
  • Table 2 shows the photoelectric conversion efficiency of the thin-film solar cell according to Examples 14 and 15 under AM 1.5 (lOO mW / cm 2 ) irradiation conditions.
  • the distribution of the crystallization rate in the film thickness direction is the size of the irregularities. As a result, it is only averaged and an accurate value cannot be measured. Therefore, the p-type microcrystalline silicon layer 1 2, the i-type microcrystalline silicon layer 1 3, and the n-type microcrystalline silicon layer on the glass substrate under the same conditions as in Examples 4 and 14-15. 14 was laminated in order, and the crystallization rate was measured while polishing from the n-type microcrystalline silicon layer 14 side.
  • Figure 4 shows the measurement results.
  • Table 2 shows that the current-voltage characteristics of the thin-film solar cell according to Example 1 4 * 1 5 are improved compared to Example 7.
  • the crystallization rate is the same level when measured from the vicinity of the n-type microcrystalline silicon layer 14.
  • the crystallization rate tends to increase as the film thickness increases, so the p-type microcrystalline silicon layer 1 2 and the i-type silicon layer Near the interface with the microcrystalline silicon layer 1 3, the crystallization rate decreases. Therefore, in Examples 1 4 and 1 5, when forming the interface portion between the p-type microcrystalline silicon layer 1 2 and the i-type microcrystalline silicon layer 1 3, the hydrogen dilution rate or the input power is set to The film is formed at a higher temperature than normal formation conditions.
  • the crystallization rate in the vicinity of the interface between the p-type microcrystalline silicon layer 12 and the i-type microcrystalline silicon layer 1 3 is not reduced.
  • the p-type microcrystalline silicon layer 1 2 to 200 nm or more of the underlying layer has a crystallinity of about 3.5 in the entire thickness direction in the thickness direction.
  • T sub XI c / la 10 0 5 0).
  • the value of T su b X I c / I a is included in the range of 7 0 0 ⁇ T su b X I c / I a ⁇ l 6 0 0 shown by the relational expression (1).
  • an electric field is applied to the entire photoelectric conversion layer, and the photoelectric conversion efficiency of the thin-film solar cell can be more reliably maintained at a high level.
  • the method for producing a thin-film solar cell according to the present invention includes an i-type semiconductor layer included in at least one photoelectric conversion portion, and an oxygen concentration in the i-type semiconductor layer is 4 ⁇ 10 10 18 cm.
  • the peak intensity of the signal due to the crystal component of the i-type semiconductor layer by Raman scattering measurement is I c
  • the peak intensity of the signal due to the amorphous component is I a
  • the i-type If the substrate temperature during the fabrication of the semiconductor layer is T sub, it can be formed under the formation conditions satisfying the relational expression 7 0 0 ⁇ T sub XI c / I a ⁇ 1 6 0 0 (1).
  • a thin-film solar cell having high photoelectric conversion efficiency can be manufactured under a forming condition where the oxygen concentration in the i-type semiconductor layer is 4 ⁇ 10 18 cm ⁇ 3 or less. That is, when the product of the substrate temperature T sub and the crystallization rate I c / I a is smaller than 700, the substrate temperature or the crystallization rate is low, and under such formation conditions, The photoelectric conversion efficiency will decrease.
  • the substrate temperature and / or the crystallization rate is increased.
  • oxygen in the i-type silicon layer is activated and the i-type semiconductor layer becomes n- type, and the photoelectric conversion efficiency decreases as described above.
  • the above relational expression (1) is satisfied under the formation conditions in which the oxygen concentration in the i-type semiconductor layer is 4 ⁇ 10 18 cm ⁇ 3 or less.
  • the method for producing a thin-film solar cell according to the present invention includes forming an i-type semiconductor layer contained in at least one layer in a photoelectric conversion portion under a forming condition in which the substrate temperature of the substrate is 250 ° C. or less.
  • T sub is the relation 7 0 0 ⁇ T sub XI c / I a ⁇ 1 6 0 0
  • the i-type semiconductor layer formed by the plasma C VD method or the like increases the crystal grain size and the quality of the crystal part as the substrate temperature rises.
  • oxygen contained in the i-type semiconductor layer is activated and the i-type semiconductor layer becomes n-type, and hydrogen is desorbed and defects are increased, so that the photoelectric conversion efficiency of the thin-film solar cell decreases. End up.
  • the i-type semiconductor layer is formed under the formation conditions satisfying the relational expression (1) under the formation conditions where the substrate temperature is 2550 ° C. or less.
  • the thin-film solar cell manufactured by the above-described method for manufacturing a thin-film solar cell wherein the crystallization rate is high when forming the film on an amorphous substrate in the initial stage of forming the i-type semiconductor layer. More preferably, the i-type semiconductor layer is formed, and the crystallization rate satisfies the relational expression (1) in the entire region in the film thickness direction.
  • the crystallization rate tends to increase as the film thickness increases, so a semiconductor layer with a very thin film thickness is formed. In this case, the increase in the crystallization rate does not reach the saturation state, and the crystallization rate is lowered at the initial stage of film formation in the i-type semiconductor layer.
  • the conditions for increasing the crystallization rate are, for example, the conditions for high hydrogen dilution rate and the high input power It is possible to prevent the crystallization rate from being lowered in the portion formed in the initial stage of film formation by forming the film according to conditions, etc., and appropriately changing the film formation conditions as the film thickness increases.
  • the thin film solar cell of the present invention is a thin film solar cell manufactured by the method for manufacturing a thin film solar cell as described above, and has a (2 2 0) X-ray diffraction peak of the i-type semiconductor layer.
  • Integrated intensity I 2 2 . , (1 1 1) X-ray diffraction peak integrated bow angle I ⁇ , these ratios I 2 2 . / I ii is the relation I 2 2 0 / I! ! ! ⁇ 5 (2).
  • the method for manufacturing a thin-film solar cell of the present invention high photoelectric conversion efficiency is obtained under the formation conditions in which the oxygen concentration in the i-type semiconductor layer is 4 ⁇ 10 18 cm ⁇ 3 or less. It is possible to manufacture a thin film solar cell having
  • the substrate temperature and / or the crystallization rate is increased.
  • oxygen in the i-type silicon layer is activated and the i-type semiconductor layer becomes n- type, and hydrogen is desorbed and defects are increased. Conversion efficiency will decrease.
  • the above relational expression (1) is satisfied under the formation conditions in which the oxygen concentration in the i-type semiconductor layer is 4 ⁇ 10 18 cm ⁇ 3 or less.
  • a thin-film solar cell having high photoelectric conversion efficiency can be produced under the formation conditions where the substrate temperature is 2550 ° C. or less.
  • the crystal grain size increases and the quality of the crystal part improves as the substrate temperature rises.
  • oxygen contained in the i-type semiconductor layer is activated and the i-type semiconductor layer becomes n-type, and hydrogen is desorbed and defects increase.
  • the photoelectric conversion efficiency of the thin film solar cell will decrease.
  • the above relational expression (1) can be obtained without the above-described decrease in photoelectric conversion efficiency under the formation conditions where the substrate temperature is 2550 ° C. or less.
  • the crystallization rate tends to increase as the film thickness increases, so a semiconductor layer with a very thin film thickness is formed. In this case, the increase in the crystallization rate does not reach the saturation state, and the crystallization rate is lowered at the initial stage of film formation in the i-type semiconductor layer.
  • conditions for increasing the crystallization rate include, for example, a condition with a high hydrogen dilution rate and a condition with a high input power.
  • the method for manufacturing a thin-film Kiyo battery of the present invention by specifying the formation conditions according to the oxygen concentration, substrate temperature, crystallization rate, etc. in the i-type semiconductor layer, stable and high photoelectric conversion is achieved.
  • a thin film solar cell having high efficiency can be manufactured, and among the above thin film solar cells, a thin film solar cell with high photoelectric conversion efficiency can be obtained more reliably.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A thin-film solar cell (20) comprises an i-type microcrystalline silicon layer (13) that is formed in the production process under the condition that the oxygen concentration in the i-type microcrystalline silicon layer (13) is 4 × 1018 cm-3 and under the condition satisfying the following relation (1) 700 ≤ Tsub × Ic/Ia ≤ 1600 (1) where Ic is the peak intensity of a signal attributed to the crystal component, Ia is the peak intensity of a sign attributed to the amorphous component, and Tsub is the substrate temperature when they are measured by a Raman scattering measuring method. By specifying the best suited formation conditions of the oxygen concentration, substrate temperature, and crystallinity in the silicon layer when the i-type silicon layer is formed, a thin-film solar cell having a high photoelectric conversion efficiency and its production method can be provided.

Description

薄膜太陽電池およびその製造方法 Thin film solar cell and manufacturing method thereof
技術分野 本発明は、 微結晶シリ コン系の薄膜太陽電池およびその製造方法に関 明 TECHNICAL FIELD The present invention relates to a microcrystalline silicon-based thin film solar cell and a method for manufacturing the same.
するものであり、 特に、 高い光電変換効率を有する薄膜太陽電池および その製造方法に関するものである。 田 In particular, the present invention relates to a thin film solar cell having high photoelectric conversion efficiency and a method for manufacturing the same. Rice field
背景技術 現在、 主要なエネルギー源として使用されている石油等の化石燃料は 、 将来の需給が懸念され、 かつ地球温暖化現象の原因となる二酸化炭素 排出の問題を有している。 そこで、 この石油等の化石燃料の代替となる エネルギー源と して太陽電池が注目 されている。 太陽電池は、 光エネルギーを電力に変換する半導体光電変換層と して p n接合を用いており、 この p n接合を構成する半導体材料と して、 一 般的にシリ コンが用いられる。 このシリ コンを用いた薄膜太陽電池では、 光電変換効率の面では、 単 結晶シリ コンを用いることが好ましいが、 より大面積化、 低コス ト化を 実現するために、 アモルファスシリ コン材料を光電変換層と した薄膜太 陽電池も一部実用化されている。 一方、 さらなる特性の安定化や高効率 化のために、 微結晶シリ コン材料を光電変換層として適用した薄膜太陽 電池が検討されてきている。 この微結晶シリ コンは、 アモルファスシリ コン同様、 プラズマ C V D法による薄膜形成が可能である。 薄膜シリ コンのプラズマ C VD法による一般的な形成方法としては、 シランガスを水素で 1 0倍以上に希釈した原料ガスを使用して形成する 方法がある。 この原料ガスを用いて堆積していく と、 微結晶シリ コン膜 が得られ、 水素希釈率を増加させることで結晶化率を増加させることが できる。 BACKGROUND ART At present, fossil fuels such as oil, which are used as a major energy source, have a problem of carbon dioxide emission, which is concerned about future supply and demand and causes global warming. Therefore, solar cells are attracting attention as an energy source that can replace fossil fuels such as petroleum. A solar cell uses a pn junction as a semiconductor photoelectric conversion layer that converts light energy into electric power, and silicon is generally used as a semiconductor material constituting the pn junction. In the thin film solar cell using silicon, it is preferable to use single crystal silicon in terms of photoelectric conversion efficiency. However, in order to realize a larger area and a lower cost, an amorphous silicon material is photoelectrically used. Some thin-film solar cells as conversion layers have also been put into practical use. On the other hand, thin film solar cells using microcrystalline silicon materials as photoelectric conversion layers have been studied for further stabilization of characteristics and higher efficiency. This microcrystalline silicon, like amorphous silicon, can be formed into a thin film by plasma CVD. As a general method for forming thin film silicon by plasma CVD method, there is a method using a source gas obtained by diluting silane gas with hydrogen 10 times or more. When deposited using this source gas, a microcrystalline silicon film can be obtained, and the crystallization rate can be increased by increasing the hydrogen dilution rate.
なお、 微結晶シリ コン膜とは、 結晶シリ コンとアモルファスシリ コン とが混在して構成された薄膜である。  Note that the microcrystalline silicon film is a thin film composed of a mixture of crystalline silicon and amorphous silicon.
現状の微結晶シリ コン太陽電池の光電変換効率は、 単結晶シリ コン太 陽電池の光電変換効率 2 0 %より も低く、 1 0 %程度であり、 程 度の薄膜微結晶シリ コン太陽電池ではァモルファスシリ コン太陽電池の 光電変換効率と同等レベルの 7〜 8 %程度である。  The photoelectric conversion efficiency of current microcrystalline silicon solar cells is lower than the photoelectric conversion efficiency of single-crystal silicon solar cells, about 20%, and about 10%. It is about 7-8%, which is equivalent to the photoelectric conversion efficiency of amorphous silicon solar cells.
特開平 1 1 — 1 4 5 4 9 8号公報 (公開日 1 9 9 9年 5月 2 8 日) に は、 製膜時の基板温度を 5 5 0 °C以下と し、 かつ結晶化率を 8 0 %以上 ( I c / I a ≥ 4 ) にすることにより、 高い光電変換効率が得られる太 陽電池が開示されている。  In Japanese Patent Application Laid-Open No. 1 1-1 4 5 4 9 8 (release date 1 May 9 9 May 28), the substrate temperature at the time of film formation is set to 5500 ° C or less and the crystallization rate is A solar cell is disclosed in which a high photoelectric conversion efficiency can be obtained by setting 80% or more (I c / I a ≥4).
また、 T. Repmann et al. 28th IEEE PVSC proceedings, 2000 P912-915では、 光電変換層を形成する際の水素希釈率を変化させて太陽 電池を形成することにより、 低い水素希釈率、 すなわち結晶化率の低い 微結晶シリ コン層が形成されると思われる条件で高い光電変換効率を得 られる薄膜太陽電池について報告されている。 In T. Repmann et al. 28 th IEEE PVSC proceedings, 2000 P912-915, by forming a solar cell by changing the hydrogen dilution rate when forming the photoelectric conversion layer, a low hydrogen dilution rate, ie, a crystal A thin-film solar cell has been reported that can achieve high photoelectric conversion efficiency under conditions where a microcrystalline silicon layer with a low conversion rate is expected to be formed.
さ らに、 J. Meier et al. MRS Symp. Proc. vol. 420, pp.3-14, 1996では、 i型微結晶シリ コン層に含まれる酸素濃度が 2 X 1 0 1 8 c m一3以上では、 基板温度を 2 0 0 °C以上にすると、 i型微結晶シリ コ ン層が活性化して n型化し、 薄膜太陽電池の特性が悪化することが報告 されている。 Is found in, J. Meier et al. MRS Symp . Proc. Vol. 420, pp.3-14, in 1996, the oxygen concentration in the i-type microcrystalline silicon layer is 2 X 1 0 1 8 cm one 3 From the above, it has been reported that when the substrate temperature is increased to 200 ° C or higher, the i-type microcrystalline silicon layer is activated to become n-type, and the characteristics of the thin-film solar cell deteriorate. Has been.
しかしながら、 上記公報や文献に開示された従来の薄膜太陽電池は、 基板温度と結晶化率との関係、 あるいは水素希釈率と結晶化率など、 部 分的な関連性のみが明らかにされているに過ぎず、 微結晶シリ コン系の 薄膜太陽電池およびその最適な製造方法について、 実用化可能な技術レ ベルにまで到っていない。  However, the conventional thin film solar cells disclosed in the above publications and literatures have only revealed a partial relationship such as the relationship between the substrate temperature and the crystallization rate, or the hydrogen dilution rate and the crystallization rate. However, a microcrystalline silicon-based thin-film solar cell and an optimum manufacturing method thereof have not yet reached a practical level.
すなわち、 微結晶シリ コン薄膜太陽電池の光電変換層に、 製膜に適し た水素希釈率が存在していることが実験的に示されているものの、 基板 温度等の製膜条件、 最適な水素希釈率は製膜装置に応じて変化してしま う。 よって、 高い光電変換効率を有する薄膜太陽電池の製造方法と して 、 普遍性を伴う最適な形成条件については、 未だ明らかにされていない 本発明は、 上記の問題点に鑑みてなされたものであり、 その目的は、 i型シリ コン層の形成時におけるシリ コン層中の酸素濃度、 基板温度、 結晶化率等に関して最適な形成条件を特定することによ り、 高い光電変 換効率を有する.薄膜太陽電池およびその製造方法を提供することにある  In other words, although it has been experimentally shown that the hydrogen conversion rate suitable for film formation exists in the photoelectric conversion layer of the microcrystalline silicon thin film solar cell, the film formation conditions such as the substrate temperature and the optimum hydrogen The dilution rate will vary depending on the deposition equipment. Therefore, as a method for producing a thin-film solar cell having high photoelectric conversion efficiency, the optimum formation conditions with universality have not been clarified yet. The present invention has been made in view of the above problems. The purpose is to have high photoelectric conversion efficiency by identifying the optimum formation conditions with respect to the oxygen concentration in the silicon layer, the substrate temperature, the crystallization rate, etc. when forming the i-type silicon layer. . To provide a thin film solar cell and a method of manufacturing the same
発明の開示 Disclosure of the invention
本発明の薄膜太陽電池の製造方法は、 上記の課題を解決するために、 基板上に光電変換部を有し、 該光電変換部において入射光を電気工ネル ギ一に変換する薄膜太陽電池の製造方法において、 上記光電変換部に少 なく とも 1層含まれる i型半導体層を、 該 i型半導体層中の酸素濃度が 4 X 1 0 1 8 c m _ 3以下の条件下においては、 ラマン散乱測定による上 記 i型半導体層の結晶成分に起因する信号のピーク強度を I c、 ァモル ファス成分に起因する信号のピーク強度を I a、 該 i型半導体層の作製 時の基板温度を T s u b とすると、 関係式 7 0 0≤ T s u b X I c / I a ≤ 1 6 0 0 ( 1 ) を満たす形成条件下で形成することを 特徴と している。 In order to solve the above-described problem, a method for manufacturing a thin-film solar cell according to the present invention includes a photoelectric conversion unit on a substrate, and the thin-film solar cell that converts incident light into electrical energy in the photoelectric conversion unit. In the manufacturing method, an i-type semiconductor layer included in at least one layer in the photoelectric conversion portion is subjected to Raman scattering under a condition where the oxygen concentration in the i-type semiconductor layer is 4 × 10 18 cm _ 3 or less. By measurement When the peak intensity of the signal due to the crystal component of the i-type semiconductor layer is I c, the peak intensity of the signal due to the amorphous component is I a, and the substrate temperature at the time of manufacturing the i-type semiconductor layer is T sub, It is characterized by being formed under the formation conditions satisfying the relational expression 7 0 0 ≤ T sub XI c / I a ≤ 1 6 0 0 (1).
上記の製造方法によれば、 i型半導体層中の酸素濃度が 4 X 1 0 1 8 c m— 3以下の形成条件下において、 高い光電変換効率を有する薄膜太 陽電池を製造することができる。 According to the above manufacturing method, a thin-film solar cell having high photoelectric conversion efficiency can be manufactured under the formation conditions where the oxygen concentration in the i-type semiconductor layer is 4 × 10 18 cm −3 or less.
すなわち、 基板温度 T s u b と結晶化率 I c / I a との積が 7 0 0よ り小さい場合には、 基板温度あるいは結晶化率が小さく なつており、 こ のよ うな形成条件下においては、 光電変換効率が低下してしま う。  That is, when the product of the substrate temperature T sub and the crystallization rate I c / I a is smaller than 700, the substrate temperature or the crystallization rate is low, and under such formation conditions, The photoelectric conversion efficiency will decrease.
一方、 基板温度 T s u b と結晶化率 I c / I a との積が 1 6 0 0より 大きい場合には、 基板温度および/または結晶化率が大きくなっており 、 このよ うな形成条件、 特に、 基板温度が上昇した場合においては、 i 型シリ コン層中の酸素が活性化して i型半導体層が n型化し、 また、 水 素が脱離して欠陥が増大するため、 上記と同様に、 光電変換効率が低下 してしまう。  On the other hand, when the product of the substrate temperature T sub and the crystallization rate I c / I a is larger than 1600, the substrate temperature and / or the crystallization rate is increased. When the substrate temperature rises, oxygen in the i-type silicon layer is activated and the i-type semiconductor layer becomes n-type, and hydrogen is desorbed and defects are increased. The photoelectric conversion efficiency will decrease.
そこで、 本発明の薄膜太陽電池の製造方法によれば、 i型半導体層中 の酸素濃度が 4 X 1 0 1 8 c m— 3以下の形成条件下においては、 上記関 係式 ( 1 ) を満たすような形成条件、 つまり、 基板温度に応じて結晶化 率を変化させて、 i型半導体層を形成することにより、 基板温度の高低 に関わらず、 以上のような光電変換効率の低下という不具合の発生を防 止して、 高い光電変換効率を得られる薄膜太陽電池を製造することがで きる。 なお、 結晶化率を求めるために用いたラマン散乱測定は、 シリ コ ン層 にアルゴンイオンレーザ ( 5 1 4. 5 n m) を約 1 0 mWで照射し、 そ のラマン散乱スぺク トルを測定して得られた上記ピーク強度 I cおよび I aから、 そのピーク強度比 I c / I aを求めることで、 結晶化率を評 価することができるという測定方法である。 Therefore, according to the method for manufacturing a thin-film solar cell of the present invention, the above relational expression (1) is satisfied under the formation conditions in which the oxygen concentration in the i-type semiconductor layer is 4 × 10 18 cm− 3 or less. By forming the i-type semiconductor layer by changing the crystallization rate in accordance with the formation conditions, i.e., the substrate temperature, the above-described problem of a decrease in photoelectric conversion efficiency can be achieved regardless of the substrate temperature. It is possible to produce a thin film solar cell that can prevent generation and obtain high photoelectric conversion efficiency. In the Raman scattering measurement used to determine the crystallization rate, the silicon layer was irradiated with an argon ion laser (5 14.5 nm) at about 10 mW, and the Raman scattering spectrum was measured. In this measurement method, the crystallization rate can be evaluated by obtaining the peak intensity ratio I c / I a from the peak intensities I c and I a obtained by the measurement.
本発明の薄膜太陽電池の製造方法は、 上記の課題を解決するために、 基板上に光電変換部を有し、 該光電変換部において入射光を電気工ネル ギ一に変換する薄膜太陽電池の製造方法において、 上記光電変換部に少 なく とも 1層含まれる i型半導体層を、 上記基板の基板温度が 2 5 0 °C 以下の形成条件下においては、 ラマン散乱測定による上記 i型半導体層 の結晶成分に起因する信号のピーク強度を I c、 アモルファス成分に起 因する信号のピーク強度を I a、 該 i型半導体層の作製時の基板温度を T s u b とすると、 関係式 7 0 0≤ T s u b X I c / I a ≤ 1 6 0 0  In order to solve the above-described problem, a method for manufacturing a thin-film solar cell according to the present invention includes a photoelectric conversion unit on a substrate, and the thin-film solar cell that converts incident light into electrical energy in the photoelectric conversion unit. In the manufacturing method, the i-type semiconductor layer included in at least one layer in the photoelectric conversion portion is subjected to Raman scattering measurement under the formation conditions where the substrate temperature of the substrate is 25 ° C. or lower. Where I c is the peak intensity of the signal due to the crystalline component, I a is the peak intensity of the signal due to the amorphous component, and T sub is the substrate temperature at the time of fabrication of the i-type semiconductor layer. ≤ T sub XI c / I a ≤ 1 6 0 0
( 1 ) を満たす形成条件下で形成することを特徴と している 。  It is characterized by being formed under conditions that satisfy (1).
上記の製造方法によれば、 基板温度が 2 5 0 °C以下の形成条件下にお いて、 高い光電変換効率を有する薄膜太陽電池を製造することができる すなわち、 プラズマ CVD法等により形成された i型半導体層は、 基 板温度が上昇すると結晶粒径が増大し、 結晶部分の品質は向上する。 し かし、 基板温度が高くなると、 i型半導体層に含まれる酸素が活性化し て i型半導体層が n型化し、 また、 水素が脱離して欠陥が増大するためAccording to the above manufacturing method, a thin-film solar cell having high photoelectric conversion efficiency can be manufactured under a forming condition of a substrate temperature of 2550 ° C. or lower, that is, formed by a plasma CVD method or the like. In the i-type semiconductor layer, the crystal grain size increases as the substrate temperature rises, and the quality of the crystal part improves. However, when the substrate temperature rises, oxygen contained in the i-type semiconductor layer is activated and the i-type semiconductor layer becomes n- type, and hydrogen is desorbed and defects increase.
、 薄膜太陽電池の光電変換効率は低下してしま う。 The photoelectric conversion efficiency of thin-film solar cells will decrease.
そこで、 本発明の薄膜太陽電池の製造方法では、 基板温度が 2 5 0 °C 以下の形成条件下においては、 上記のような光電変換効率の低下を伴う ことなく、 上記関係式 ( 1 ) を満たすような形成条件で i型半導体層を 形成することで、 高い光電変換効率を有する薄膜太陽電池を製造するこ とができる。 Therefore, in the method for manufacturing a thin-film solar cell of the present invention, the substrate temperature is 2500 ° C. Under the following formation conditions, high photoelectric conversion efficiency can be achieved by forming the i-type semiconductor layer under the formation conditions that satisfy the above relational expression (1) without accompanying the above-described decrease in photoelectric conversion efficiency. It is possible to manufacture a thin film solar cell.
また、 上記薄膜太陽電池の製造方法により製造された薄膜太陽電池で あって、 上記 i型半導体層の製膜初期段階において、 非晶質基板上で製 膜する際に結晶化率が高くなる条件で該 i型半導体層が形成されており 、 結晶化率が膜厚方向の全領域で上記関係式 ( 1 ) を満たすことがよ り 好ましい。  The thin-film solar cell manufactured by the above-described method for manufacturing a thin-film solar cell, wherein the crystallization rate is high when forming the film on an amorphous substrate in the initial stage of forming the i-type semiconductor layer. More preferably, the i-type semiconductor layer is formed, and the crystallization rate satisfies the relational expression (1) in the entire region in the film thickness direction.
これにより、 i型半導体層の厚さ方向の全領域で、 上記関係式 ( 1 ) を満たすことができ、 厚さ方向で内部電界の偏りのない薄膜太陽電池を 製造することができる。  Thereby, the above-mentioned relational expression (1) can be satisfied in the entire region in the thickness direction of the i-type semiconductor layer, and a thin-film solar cell free from bias of the internal electric field in the thickness direction can be manufactured.
すなわち、 一般に、 微結晶シリ コン層を非晶質基板上に形成した場合 には、 膜厚の増加に伴って結晶化率が増加する傾向があるため、 非常に 膜厚が薄い半導体層を形成した場合には、 結晶化率の増加が飽和状態ま で達しておらず、 i型半導体層中の製膜初期段階においては結晶化率が 低く なつてしまう。  That is, in general, when a microcrystalline silicon layer is formed on an amorphous substrate, the crystallization rate tends to increase as the film thickness increases, so a semiconductor layer with a very thin film thickness is formed. In this case, the increase in the crystallization rate does not reach the saturation state, and the crystallization rate becomes low at the initial stage of film formation in the i-type semiconductor layer.
そこで、 本実施形態の薄膜太陽電池の製造方法では、 i型半導体層の 製膜初期段階には、 結晶化率が高く なる条件と して、 例えば、 水素希釈 率が高い条件、 投入電力の高い条件等で製膜し、 膜厚の増加に伴って製 膜条件を適宜変更することで、 製膜初期段階に形成された部分において 結晶化率が低下してしまうことを防止できる。  Therefore, in the method for manufacturing a thin-film solar cell of the present embodiment, in the initial stage of film formation of the i-type semiconductor layer, for example, the conditions for increasing the crystallization rate are, for example, the conditions for a high hydrogen dilution rate and the high input power. It is possible to prevent the crystallization rate from being lowered in the portion formed in the initial stage of film formation by forming the film according to the conditions, etc., and appropriately changing the film formation conditions as the film thickness increases.
本発明の薄膜太陽電池は、 上記の課題を解決するために、 上記薄膜太 陽電池の製造方法によ り製造された薄膜太陽電池であって、 上記 i型半 導体層の ( 2 2 0 ) X線回折ピークの積分強度 I 2 2 。 、 ( 1 1 1 ) X線 回折ピークの積分強度 I i丄 丄とすると、 これらの比 I 2 2。 / I i は、 関係式 I 2 2 。 / I i≥ 5 ( 2 ) を満たしているこ とを特 徴と している。 In order to solve the above problems, the thin film solar cell of the present invention is a thin film solar cell manufactured by the method for manufacturing a thin film solar cell, wherein the i-type half-cell Integrated intensity of the (2 2 0) X-ray diffraction peak of the conductor layer I 2 2 . , (1 1 1) X-ray diffraction peak integrated intensity I i 、 、, these ratios I 2 2 . / I i is the relation I 2 2 . It is characterized by satisfying / I i ≥ 5 (2).
上記の構成によれば、 上記 i型半導体層中の酸素濃度、 基板温度、 結 晶化率等に応じた形成条件を特定することで、 安定して高い光電変換効 率を有する薄膜太陽電池を製造することができ、 上記薄膜太陽電池の中 でも、 より確実に光電変換効率の高い薄膜太陽電池を得ることができる 本発明の薄膜太陽電池は、 上記の課題を解決するために、 基板上に光 電変換部を有し、 該光電変換部において入射光を電気エネルギーに変換 する薄膜太陽電池において、 上記光電変換部に少なく とも 1層含まれる i型半導体層を、 該 i型半導体層中の酸素濃度が 4 X I 0 1 8 c m 3以 下の条件下においては、 ラマン散乱測定による上記 i型半導体層の結晶 成分に起因する信号のピーク強度を I c 、 アモルファス成分に起因する 信号のピーク強度を I a、 該 i型半導体層の作製時の基板温度を T s u b とすると、 下記の関係式 ( 1 ) を満たす形成条件下で形成されているAccording to said structure, the thin film solar cell which has a stably high photoelectric conversion efficiency is specified by specifying the formation conditions according to the oxygen concentration in the said i-type semiconductor layer, a substrate temperature, a crystallization rate, etc. The thin-film solar battery of the present invention that can be manufactured and can obtain a thin-film solar battery with high photoelectric conversion efficiency more reliably among the thin-film solar batteries, In a thin-film solar cell that has a photoelectric conversion unit and converts incident light into electrical energy in the photoelectric conversion unit, an i-type semiconductor layer included in the photoelectric conversion unit is included in the i-type semiconductor layer. Under conditions where the oxygen concentration is 4 XI 0 18 cm 3 or less, the peak intensity of the signal due to the crystalline component of the i-type semiconductor layer is determined by Raman scattering measurement as I c, and the peak intensity of the signal due to the amorphous component I a, the i When the substrate temperature at the time of fabrication of the type semiconductor layer is T sub, it is formed under the formation conditions satisfying the following relational expression (1)
。 7 0 0 ≤ T s u b X I c Z l a ^ l 6 0 0 ( 1 ) . 7 0 0 ≤ T s u b X I c Z l a ^ l 6 0 0 (1)
上記の構成によれば、 i型半導体層中の酸素濃度が 4 X 1 0 1 8 c πι— 3以下の形成条件下において、 高い光電変換効率を有する薄膜太陽電池 を提供することができる。 According to the arrangement, it is the oxygen concentration in the i-type semiconductor layer is in 4 X 1 0 1 8 c πι- 3 following formation conditions, to provide a thin film solar cell having high photoelectric conversion efficiency.
すなわち、 基板温度 T s u b と結晶化率 I c Z l a との積が 7 0 0 よ り小さい場合には、 基板温度あるいは結晶化率が小さくなつており、 こ のよ うな形成条件下においては、 光電変換効率が低下してしまう。 一方、 基板温度 T s u b と結晶化率 I c / I a との積が 1 6 0 0 よ り 大きい場合には、 基板温度および Zまたは結晶化率が大きくなつており 、 このような形成条件、 特に、 基板温度が上昇した場合においては、 i 型シリ コン層中の酸素が活性化して i型半導体層が n型化し、 また、 水 素が脱離して欠陥が増大するため、 上記と同様に、 光電変換効率が低下 してしまう。 That is, when the product of the substrate temperature T sub and the crystallization rate I c Z la is smaller than 700, the substrate temperature or the crystallization rate is low. Under such conditions, A photoelectric conversion efficiency will fall. On the other hand, when the product of the substrate temperature T sub and the crystallization rate I c / I a is larger than 1600, the substrate temperature and Z or the crystallization rate are increased. In particular, when the substrate temperature rises, oxygen in the i-type silicon layer is activated and the i-type semiconductor layer becomes n-type, and hydrogen is desorbed and defects are increased. The photoelectric conversion efficiency will decrease.
そこで、 本発明の薄膜太陽電池は、 i型半導体層中の酸素濃度が 4 X 1 0 1 8 c m— 3以下の形成条件下においては、 上記関係式 ( 1 ) を満た すような形成条件、 つま り、 基板温度に応じて結晶化率を変化させて、 i型半導体層を形成することにより、 基板温度の高低に関わらず、 以上 のような光電変換効率の低下という不具合の発生を防止して、 高い光電 変換効率を得られる薄膜太陽電池を提供することができる。 Therefore, the thin film solar cell of the present invention has a formation condition that satisfies the above relational expression (1) under the formation condition where the oxygen concentration in the i-type semiconductor layer is 4 × 10 18 cm− 3 or less, In other words, by forming the i-type semiconductor layer by changing the crystallization rate in accordance with the substrate temperature, it is possible to prevent the occurrence of the above-described problem of a decrease in photoelectric conversion efficiency regardless of the substrate temperature. Thus, it is possible to provide a thin film solar cell that can obtain high photoelectric conversion efficiency.
本発明の薄膜太陽電池は、 上記の課題を解決するために、 基板上に光 電変換部を有し、 該光電変換部において入射光を電気エネルギーに変換 する薄膜太陽電池において、 上記光電変換部に少なく とも 1層含まれる i型半導体層を、 上記基板の基板温度が 2 5 0 °C以下の形成条件下にお いては、  In order to solve the above problems, the thin film solar cell of the present invention has a photoelectric conversion unit on a substrate, and the photoelectric conversion unit converts incident light into electric energy in the photoelectric conversion unit. At least one i-type semiconductor layer is included under the conditions where the substrate temperature of the substrate is 25 ° C. or lower.
ラマン散乱測定による上記 i型半導体層の結晶成分に起因する信号の ピーク強度を I c、 アモルファス成分に起因する信号のピーク強度を I a、 該 i型半導体層の作製時の基板温度を T s u b とすると、 下記の関 係式 ( 1 ) を満たす形成条件下で形成されている。 7 0 0≤ T s u b X The peak intensity of the signal due to the crystalline component of the i-type semiconductor layer measured by Raman scattering is I c, the peak intensity of the signal due to the amorphous component is I a, and the substrate temperature at the time of fabrication of the i-type semiconductor layer is T sub Then, it is formed under the formation conditions that satisfy the following relational expression (1). 7 0 0≤ T s u b X
I c / I a ≤ 1 6 0 0 ( 1 ) I c / I a ≤ 1 6 0 0 (1)
上記の構成によれば、 基板温度が 2 5 0 °C以下の形成条件下において 、 高い光電変換効率を有する薄膜太陽電池を提供することができる。 すなわち、 プラズマ C V D法等により形成された i型半導体層は、 基 板温度が上昇すると結晶粒径が増大し、 結晶部分の品質は向上する。 し かし、 基板温度が高く なると、 i型半導体層に含まれる酸素が活性化し て i型半導体層が n型化し、 また、 水素が脱離して欠陥が増大するため 、 薄膜太陽電池の光電変換効率は低下してしまう。 According to said structure, the thin film solar cell which has high photoelectric conversion efficiency can be provided on the formation conditions whose board | substrate temperature is 2550 degrees C or less. In other words, an i-type semiconductor layer formed by a plasma CVD method or the like increases the crystal grain size and improves the quality of the crystal part when the substrate temperature rises. However, when the substrate temperature rises, oxygen contained in the i-type semiconductor layer is activated and the i-type semiconductor layer becomes n-type, and hydrogen is desorbed and defects are increased. Efficiency will decrease.
そこで、 本発明の薄膜太陽電池の製造方法では、 基板温度が 2 5 0 °C 以下の形成条件下においては、 上記のよ うな光電変換効率の低下を伴う ことなく、 上記関係式 ( 1 ) を満たすような形成条件で i型半導体層を 形成することで、 高い光電変換効率を有する薄膜太陽電池を提供するこ とができる。  Therefore, in the method for producing a thin-film solar cell of the present invention, the above relational expression (1) can be obtained without causing a decrease in the photoelectric conversion efficiency as described above under the formation conditions where the substrate temperature is 2550 ° C. or less. By forming the i-type semiconductor layer under satisfying formation conditions, a thin film solar cell having high photoelectric conversion efficiency can be provided.
上記の薄膜太陽電池であって、 結晶化率が、 該 i型半導体層の膜厚方 向の全領域で上記関係式 ( 1 ) を満たすことがよ り好ましい。  In the above thin film solar cell, it is more preferable that the crystallization rate satisfies the relational expression (1) in the entire region in the film thickness direction of the i-type semiconductor layer.
これにより、 i型半導体層の厚さ方向の全領域で、 上記関係式 ( 1 ) を満たすことができ、 厚さ方向で内部電界の偏りのない薄膜太陽電池を 製造することができる。  Thereby, the above-mentioned relational expression (1) can be satisfied in the entire region in the thickness direction of the i-type semiconductor layer, and a thin-film solar cell free from bias of the internal electric field in the thickness direction can be manufactured.
すなわち、 一般に、 微結晶シリ コン層を非晶質基板上に形成した場合 には、 膜厚の増加に伴って結晶化率が増加する傾向があるため、 非常に 膜厚が薄い半導体層を形成した場合には、 上記結晶化率の増加が飽和状 態まで達しておらず、 i型半導体層中の製膜初期段階においては結晶化 率が低くなつてしま う。  That is, in general, when a microcrystalline silicon layer is formed on an amorphous substrate, the crystallization rate tends to increase as the film thickness increases, so a semiconductor layer with a very thin film thickness is formed. In this case, the increase in the crystallization rate does not reach the saturation state, and the crystallization rate is lowered at the initial stage of film formation in the i-type semiconductor layer.
そこで、 本実施形態の薄膜太陽電池の製造方法では、 i型半導体層の 製膜初期段階には、 結晶化率が高くなる条件と して、 例えば、 水素希釈 率が高い条件、 投入電力の高い条件等で製膜し、 膜厚の増加に伴って製 膜条件を適宜変更することで、 製膜初期段階に形成された部分において 結晶化率が低下してしま う ことを防止できる。 Therefore, in the method for manufacturing a thin-film solar cell according to the present embodiment, in the initial stage of forming the i-type semiconductor layer, the conditions for increasing the crystallization rate are, for example, the conditions for a high hydrogen dilution rate and the high input power. In the part formed in the initial stage of film formation, the film is formed according to the conditions, etc. It is possible to prevent the crystallization rate from being lowered.
上記薄膜太陽電池であって、 上記 i型半導体層の ( 2 2 0 ) X線回折 ピークの積分強度 I 22。、 ( 1 1 1 ) X線回折ピークの積分強度 I 丄 とすると、 これらの比 I 22。Z I は、 以下の関係式 ( 2 ) を満たし ていることがよ り好ましい。 I s soZ l i i i ^ S ( 2 ) これによ り、 上記 i型半導体層中の酸素濃度、 基板温度、 結晶化率等 に応じた形成条件を特定することで、 安定して高い光電変換効率を有す る薄膜太陽電池を提供することができ、 上記薄膜太陽電池の中でも、 よ り確実に光電変換効率の高い薄膜太陽電池を得ることができる。 The thin-film solar cell, wherein the integrated intensity I 22 of the (2 2 0) X-ray diffraction peak of the i-type semiconductor layer. (1 1 1) If the integrated intensity of the X-ray diffraction peak is I I, these ratios are I 22 . More preferably, ZI satisfies the following relational expression (2). I s soZ liii ^ S (2) By this, by specifying the formation conditions according to the oxygen concentration, substrate temperature, crystallization rate, etc. in the i-type semiconductor layer, stable and high photoelectric conversion efficiency can be achieved. A thin film solar cell having high photoelectric conversion efficiency can be obtained more reliably among the above thin film solar cells.
単接合型の薄膜太陽電池である場合には、 上記光電変換層に微結晶シ リ コンを含む層を備えていることがより好ましい。  In the case of a single-junction thin film solar cell, it is more preferable that the photoelectric conversion layer includes a layer containing microcrystalline silicon.
また、 多接合型の薄膜太陽電池である場合には、 微結晶シリ コンを含 む層と非晶質シリ コンを含む層とが混在していることがより好ましい。  In the case of a multi-junction thin film solar cell, it is more preferable that a layer containing microcrystalline silicon and a layer containing amorphous silicon are mixed.
これによ り、 光電変換効率を高めることができる。  Thereby, the photoelectric conversion efficiency can be increased.
本発明のさらに他の目的、 特徴、 および優れた点は、 以下に示す記載 によって十分わかるであろう。 また、 本発明の利益は、 添付図面を参照 した次の説明で明白になるであろう。 図面の簡単な説明  Other objects, features and advantages of the present invention will be fully understood from the following description. The benefits of the present invention will become apparent from the following description with reference to the accompanying drawings. Brief Description of Drawings
図 1は、 本発明の一実施形態にかかる微結晶シリ コン系の薄膜太陽電 池の構造を示す断面図である。  FIG. 1 is a cross-sectional view showing the structure of a microcrystalline silicon-based thin film solar cell according to an embodiment of the present invention.
図 2は、 i型微結晶シリ コン層中の酸素濃度が低い場合における光電 変換 ¾率の結晶化率依存性を示すグラフである。  FIG. 2 is a graph showing the crystallization rate dependency of the photoelectric conversion rate when the oxygen concentration in the i-type microcrystalline silicon layer is low.
図 3は、 i型微結晶シリ コン層中の酸素濃度が高い場合における光電 変換効率の結晶化率依存性を示すグラフである。 Figure 3 shows the photoelectric at high oxygen concentration in the i-type microcrystalline silicon layer. It is a graph which shows the crystallization rate dependence of conversion efficiency.
図 4は、 ガラス基板上に作製した微結晶シリ コン系の薄膜太陽電池の 厚さ方向における結晶化率の変化を示すグラフである。  Fig. 4 is a graph showing the change in crystallization rate in the thickness direction of a microcrystalline silicon thin film solar cell fabricated on a glass substrate.
図 5は、 本発明の微結晶シリ コン太陽電池の製造工程を示すフローチ ヤー トである。 発明を実施する最良の形態  FIG. 5 is a flow chart showing the manufacturing process of the microcrystalline silicon solar cell of the present invention. Best Mode for Carrying Out the Invention
以下、 実施例および比較例により、 本発明をさらに詳細に説明するが 、 本発明はこれらにより何ら限定されるものではない。  EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited at all by these.
本発明の薄膜太陽電池およびその製造方法に関する一実施形態につい て、 図 1〜図 5に基づいて説明すれば、 以下のとおりである。  One embodiment of the thin film solar cell and the method for producing the same of the present invention will be described below with reference to FIGS.
本実施形態の薄膜太陽電池 2 0は、 図 1に示すよ うに、 基板 1 1 a側 から入射する光によって、 光電変換を行うスーパース ト レート型構造の 薄膜太陽電池 2 0であって、 太陽電池用基板 (基板) 1 1 と、 該太陽電 池用基板 1 1上に光電変換層 1 7 と、 裏面電極 1 6 とを備えている。 上 記光電変換層 1 7 と上記裏面電極 1 6 との間に裏面反射層 1 5を備える 構成と してもよい。 あるいは、 基板上に、 裏面電極、 光電変換層、 受光 面電極、 集電極を順次積層したサブス ト レート型構造と してもよい。 太陽電池用基板 1 1は、 基板 1 1 a と該基板 1 1 a上に形成された透 明導電層 1 1 b とを含んで構成されている。  As shown in FIG. 1, the thin film solar cell 20 of the present embodiment is a thin film solar cell 20 having a super-straight structure that performs photoelectric conversion by light incident from the substrate 11a side. A battery substrate (substrate) 1 1, a photoelectric conversion layer 1 7, and a back electrode 16 are provided on the solar cell substrate 1 1. A back surface reflective layer 15 may be provided between the photoelectric conversion layer 17 and the back electrode 16. Alternatively, a substrate type structure in which a back electrode, a photoelectric conversion layer, a light receiving surface electrode, and a collecting electrode are sequentially laminated on a substrate may be used. The solar cell substrate 11 includes a substrate 11a and a transparent conductive layer 11b formed on the substrate 11a.
基板 1 1 a は、 適当な強度および重量等を備えた、 例えば、 0 . 1〜 3 0 m m程度の厚さで形成されている。 また、 基板 1 1 aは、 基板の利 用態様に応じて、 表面に凹凸が形成されていてもよいし、 さらに、 絶縁 膜、 導電膜、 バッファ層等が積層されていてもよいし、 あるいはこれら を組み合わせた複合層が積層されていてもよい。 The substrate 11a is formed with a thickness of about 0.1 to 30 mm, for example, with appropriate strength and weight. In addition, the substrate 11 a may have irregularities formed on the surface according to the usage mode of the substrate, and may further include an insulating film, a conductive film, a buffer layer, or the like, or these The composite layer which combined these may be laminated | stacked.
なお、 本発明の薄膜太陽電池の基板は、 太陽電池全体を支持、 補強す るものであれば特に限定されるものではないが、 例えば、 2 0 0 °C程度 の耐熱性を有するものであること、 あるいはスーパース トレート型の太 陽電池に使用できるものが好ましい。 例えば、 ガラス、 ポリイ ミ ド · Ρ Ε Τ · P E N * P E S ' テフロン (登録商標) 等の耐熱性の高分子フィ ルム、 ステンレス鋼 ( S U S ) · アルミニウム等の金属、 セラミ ックス 等を単独または複数枚を積層して用いることができる。  The substrate of the thin film solar cell of the present invention is not particularly limited as long as it supports and reinforces the entire solar cell, but has a heat resistance of about 200 ° C., for example. Alternatively, those that can be used for super-straight type solar cells are preferable. For example, glass, polyimide, Ρ Ε Τ, PEN * PES 'heat-resistant polymer film such as Teflon (registered trademark), stainless steel (SUS), aluminum and other metals, ceramics, etc. Can be used in a stacked manner.
透明導電層 l i bは、 0. I n n!〜 2. 0 m程度の厚さで形成され ており、 耐プラズマ性を向上させるために、 少なく とも表面に酸化亜鉛 (Z n O) を含有する層を有することがより好ましい。 上記透明導電層 1 1 bは、 透過率や抵抗率を制御し易くするためにスパッタ法によ り形 成される。  The transparent conductive layer l i b is 0. I n n! In order to improve plasma resistance, it is more preferable to have a layer containing zinc oxide (ZnO) at least on the surface. The transparent conductive layer 1 1 b is formed by a sputtering method in order to easily control the transmittance and resistivity.
また、 透明導電層 1 1 bは、 抵抗率を低減するために、 不純物を含有 していてもよい。 この不純物と しては、 ガリ ゥムゃアルミニウム等の I I I族元素等があり、 その濃度は、 例えば、 5 X 1 0 2。〜 5 X 1 0 2 1 / c m 3でめる。 Further, the transparent conductive layer 11 b may contain impurities in order to reduce the resistivity. As this impurity, there is a group III element such as gallium or aluminum, and its concentration is, for example, 5 X 10 2 . ~ 5 X 1 0 2 1 / cm 3
なお、 本実施形態では、 透明導電層 1 1 b と して酸化亜鉛 (Z n O) を用いた例を挙げて説明したが、 これに限定されるものではない。 例え ば、 S n〇 2、 I n 23、 I T O等の透明導電材等の単層またはこれら の複合層により形成することも可能である。 In the present embodiment, the example in which zinc oxide (ZnO) is used as the transparent conductive layer 11b has been described. However, the present invention is not limited to this. For example, it is also possible to form the S N_〇 2, I n 23, a single layer such as a transparent conductive material such as ITO or a composite layer thereof.
さらに、 本実施形態では、 透明導電層 1 1 b をスパッタ法により形成 した例を挙げて説明したがこれに限定されるものではない。 例えば、 ス パッタ法の替わりに、 真空蒸着法、 E B蒸着法、 常圧 C VD法、 減圧 C V D法、 ゾルゲル法、 電析法等を用いて形成することができる。 Furthermore, in the present embodiment, the example in which the transparent conductive layer 1 1 b is formed by the sputtering method has been described, but the present invention is not limited to this. For example, instead of the sputtering method, vacuum deposition method, EB deposition method, atmospheric pressure C VD method, reduced pressure C It can be formed using a VD method, a sol-gel method, an electrodeposition method, or the like.
光電変換層 1 7は、 プラズマ C V D法によりそれぞれ製膜された p型 微結晶シリ コン層 1 2、 i型微結晶シリ コン層 1 3、 n型微結晶シリ コ ン層 1 4を太陽電池用基板 1 1上にこの順に積層して構成されている。 光電変換層 1 7は、 通常、 このよ うな p i n接合で形成されており、 微結晶シリ コンを含む層であってもよいし、 非晶質シリ コンを含む層で あってもよレヽ。  Photoelectric conversion layer 17 consists of p-type microcrystalline silicon layer 1 2, i-type microcrystalline silicon layer 1 3, and n-type microcrystalline silicon layer 1 4 formed by plasma CVD for solar cells. It is configured by laminating on the substrate 11 in this order. The photoelectric conversion layer 17 is usually formed by such a pin junction, and may be a layer containing microcrystalline silicon or a layer containing amorphous silicon.
特に、 複数の p i n接合を有する多接合型の薄膜太陽電池では、 例え ば、 微結晶シリ コ ンを含む層と非晶質シリ コンを含む層とが積層されて いてもよく、 全ての光電変換素子が微結晶シリ コ ンを含む層または非晶 質シリ コンを含む層でなくてもよい。  In particular, in a multi-junction thin film solar cell having a plurality of pin junctions, for example, a layer containing microcrystalline silicon and a layer containing amorphous silicon may be stacked, and all photoelectric conversions The element does not have to be a layer containing microcrystalline silicon or a layer containing amorphous silicon.
ただし、 本実施形態の薄膜太陽電池 2 0のように、 図 1に示す単接合 型の薄膜太陽電池 2 0では、 光電変換効率等の面から、 光電変換層 1 7 が微結晶シリ コンを含む層を備えていることが好ましい。 また、 多接合 型の薄膜太陽電池では、 光電変換効率等の面から、 微結晶シリ コンを含 む層と非晶質シリ コンを含む層とが混在していることが好ましい。  However, in the single-junction thin-film solar cell 20 shown in FIG. 1 like the thin-film solar cell 20 of this embodiment, the photoelectric conversion layer 17 includes microcrystalline silicon from the viewpoint of photoelectric conversion efficiency and the like. Preferably it comprises a layer. In a multi-junction thin film solar cell, a layer containing microcrystalline silicon and a layer containing amorphous silicon are preferably mixed from the viewpoint of photoelectric conversion efficiency and the like.
さらに、 光電変換層 1 7を構成する p i n接合の p型微結晶シリ コン 層 1 2、 i型微結晶シリ コン層 1 3、 n型微結晶シリ コ ン層 1 4 の全て の層が、 微結晶シリ コンで形成されている。 ただし、 本発明はこれに限 定されるものではなく、 p型微結晶シリ コン層 1 2、 i型微結晶シリ コ ン層 1 3および n型微結晶シリ コン層 1 4のうち、 透明導電層 1 1 bに 接する側のシリ コン層のみが微結晶シリ コンであってもよい。  Further, all of the pin junction p-type microcrystalline silicon layer 12, i-type microcrystalline silicon layer 13, and n-type microcrystalline silicon layer 14 constituting the photoelectric conversion layer 17 are micro It is made of crystalline silicon. However, the present invention is not limited to this, and the transparent conductive layer of the p-type microcrystalline silicon layer 12, the i-type microcrystalline silicon layer 13, and the n-type microcrystalline silicon layer 14 is used. Only the silicon layer in contact with the layer 1 1 b may be microcrystalline silicon.
また、 微結晶シリ コンには、 合金化されたシリ コン、 例えば、 炭素が 添加された S i X C χ _ χ , ゲルマニウムが添加された S i X G e ix、 またはその他の不純物等が添加されたシリ コンが含まれる。 Microcrystalline silicon also includes alloyed silicon, for example, Si XC χ _ χ with carbon added, Si XG eix with germanium added, Or silicon with other impurities added is included.
P型微結晶シリ コン層 1 2は、 例えば、 ボロン、 アルミニウム、 ゲル マニウム、 インジウム、 チタン等の I I I族元素が含有された層であつ て、 I I I族元素濃度が 0. 0 1〜 8原子%程度であり、 その層厚が 1 〜 2 0 0 n m程度で形成されている。 この p型微結晶シリ コン層 1 2は 、 単層であってもよいし、 I I I族元素濃度が異なる、 あるいは徐々に 変化する複数の層からなる複合層から形成されていてもよい。  The P-type microcrystalline silicon layer 12 is a layer containing a group III element such as boron, aluminum, germanium, indium, titanium, etc., and the group III element concentration is 0.01 to 8 atomic%. The layer thickness is about 1 to 200 nm. The p-type microcrystalline silicon layer 12 may be a single layer, or may be formed of a composite layer composed of a plurality of layers having different I I I group element concentrations or gradually changing.
また、 p型微結晶シリ コン層 1 2は、 p型微結晶シリ コン層 1 2の形 成を R Fから UH Fの周波数帯の高周波による C VD法や、 E C Rプラ ズマ C VD法、 あるいはこれらを組み合わせた C VD法を用いて形成さ れる。 例えば、 プラズマ C VD法を用いる場合には、 その条件は、 周波 数 1 0〜2 0 0 MH z程度、 パワー数 W〜数 kW程度、 チャンバ一内圧 力 0. l〜2 0 T o r r程度、 基板温度は室温〜 6 0 0 °C程度等である なお、 本実施形態では、 p型微結晶シリ コン層 1 2の形成を R Fから In addition, the p-type microcrystalline silicon layer 1 2 is formed by forming the p-type microcrystalline silicon layer 1 2 with the C VD method using the RF to UHF frequency band, the ECR plasma C VD method, or these It is formed using the C VD method combining the above. For example, when using the plasma C VD method, the conditions are as follows: frequency about 10 to 200 MHz, power number W to about several kW, chamber internal pressure about 0.1 to 20 Torr, The substrate temperature is from room temperature to about 600 ° C., etc. In this embodiment, the formation of the p-type microcrystalline silicon layer 12 is made from RF.
UH Fの周波数帯の高周波による C V D法や、 E C Rプラズマ C V D法 、 あるいはこれらを組み合わせた C V D法を用いて形成される例を挙げ て説明したが、 本発明はこれに限定されるものではなく、 シリ コン層を p型の導電型を有するように形成することができる方法であれば、 どの よ うな方法によっても形成することができる。 例えば、 シリ コン層の形 成を、 常圧 C VD、 減圧 C VD、 プラズマ C VD、 E C RプラズマC V D、 高温 C VD、 低温 C VD、 マイクロ波 C VD、 触媒 C VD、 スパッ タ リ ング法等の何れを用いてもよい。 Although an example of formation using a CVD method using a high frequency in the UHF frequency band, an ECR plasma CVD method, or a CVD method combining these has been described, the present invention is not limited to this. Any method can be used as long as the silicon layer can be formed to have a p-type conductivity. For example, the formation of the silicon layer can be performed by normal pressure C VD, reduced pressure C VD, plasma C VD, ECR plasma CVD, high temperature C VD, low temperature C VD, microwave C VD, catalyst C VD, sputtering method, etc. Any of these may be used.
また、 この際に使用されるシリ コン含有ガスは、 例えば、 S i H4、 S i 2He、 S i F 4、 S i H2 C l 2、 S i C l 4等が挙げられ、 希釈ガ スである H 2ガスと ともに用いられる。 シリ コン含有ガスと希釈ガスと の混合比は、 一定であってもよいし、 あるいは変化させながら形成して もよく 、 例えば、 容量比で 1 : 1 〜 1 : 1 0 0程度とする。 なお、 ドー ビングガスと しては、 任意に I I I族元素を含有するガスであって、 例 えば、 B 2H 6等を用いることができる。 The silicon-containing gas used at this time is, for example, SiH 4 , Examples include Si 2 He , Si F 4 , Si H 2 Cl 2 , and Si Cl 4 , which are used together with H 2 gas as a dilution gas. The mixing ratio of the silicon-containing gas and the dilution gas may be constant or may be formed while being changed. For example, the volume ratio is about 1: 1 to 1: 100. The doping gas is a gas that optionally contains a group III element. For example, B 2 H 6 or the like can be used.
さ らに、 シリ コン含有ガスと I I I 族元素を含有するガスとの混合比 は、 C VD等の製膜装置の大きさ、 得よ う とする I I I族元素濃度等に 応じて適宜調整するこ とができ、 一定であってもよいし、 あるいは変化 させながら形成してもよく 、 例えば、 容量比で 1 : 0. 0 0 1〜 1 : 1 程度とすることができる。 I I I族元素の ドーピングは、 微結晶シリ コ ン層の製膜と同時に行ってもよいが、 シリ コン膜を形成した後、 イオン 注入や、 微結晶シリ コン層の表面処理または固層拡散等を用いて行って もよい。 さ らに、 任意に、 シリ コ ン含有ガスに対して、 例えば、 F 2、 S i F 4、 S i H 2 F 2等のフッ素ガスを添加してもよレ、。 この場合のフ ッ素ガスの量は、 例えば、 シリ コン含有ガスの希釈ガスと して用いる HFurthermore, the mixing ratio between the silicon-containing gas and the group III element-containing gas is appropriately adjusted according to the size of the film forming apparatus such as CVD and the concentration of the group III element to be obtained. It may be constant or may be formed while being changed. For example, the capacity ratio may be about 1: 0.0 0 1 to 1: 1. The group III element may be doped at the same time as the formation of the microcrystalline silicon layer. However, after the silicon film is formed, ion implantation, surface treatment of the microcrystalline silicon layer, or solid layer diffusion is performed. May be used. In addition, fluorine gas such as F 2 , Si F 4 , Si H 2 F 2, etc. may be optionally added to the silicon-containing gas. The amount of fluorine gas in this case is, for example, H 2 used as a dilution gas for the silicon-containing gas.
2ガスの 0. 0 1〜 1 0倍程度であればよい。 It may be about 0.0 1 to 10 times that of the two gases.
なお、 この際に使用されるシリ コン含有ガスは、 H 2ガス以外にも、The silicon-containing gas used at this time is not limited to H 2 gas.
A r 、 H e、 N e、 X e等の不活性ガスを希釈ガスと して使用すること が可能である。 An inert gas such as A r, He, N e, and X e can be used as a dilution gas.
i型微結晶シリ コン層 1 3は、 微結晶シリ コンから形成されており、 その膜厚は、 0. 1〜 1 0 μ πι程度である。 また、 i型微結晶シリ コン 層 1 3 は、 形成時に、 I I I族元素を含有するガスを使用しない点以外 は、 P型微結晶シリ コン層 1 2 と同様にして、 例えば、 S i H4および H 2の混合ガスをプラズマ C V D法によ り分解することで形成すること ができる。 また、 i型微結晶シリ コン層 1 3は、 p型および n型の導電 型を示さない真性半導体であるが、 光電変換機能を損なわない限り、 非 常に弱い p型または n型の導電型を示すものであってもよい。 The i-type microcrystalline silicon layer 13 is made of microcrystalline silicon, and its film thickness is about 0.1 to 10 μππι. Moreover, i-type microcrystalline silicon layer 1 3, during formation, except not using a gas containing a Group III element, in the same manner as P-type microcrystalline silicon layer 1 2, for example, S i H 4 and It can be formed by decomposing H 2 gas mixture by plasma CVD. The i-type microcrystalline silicon layer 13 is an intrinsic semiconductor that does not exhibit p-type and n-type conductivity, but has a very weak p-type or n-type conductivity as long as the photoelectric conversion function is not impaired. It may be shown.
なお、 この i型微結晶シリ コン層 1 3の形成条件については後段にて 詳述する。  The formation conditions of this i-type microcrystalline silicon layer 13 will be described in detail later.
n型微結晶シリ コン層 1 4は、 n型の導電型を示す、 厚さが 1 0〜 1 0 0 n m程度のシリ コン層である。 この n型微結晶シリ コン層 1 4は、 ドーパントガスと して、 例えば、 P H 3等の V族元素を含むガスを使用 する以外は、 上述した p型微結晶シリ コン層 1 2および i型微結晶シリ コン層 1 3 と同様に形成することができる。 ドナーとなる不純物と して は、 例えば、 リ ン、 砒素、 アンチモン等があり、 不純物濃度は 1 0 1 8 〜 1 0 2 Q c m— 3程度である。 The n-type microcrystalline silicon layer 14 is an n-type conductivity type silicon layer having a thickness of about 10 to 100 nm. The n-type microcrystalline silicon layer 14 is the above-described p-type microcrystalline silicon layer 12 and i-type except that a gas containing a group V element such as PH 3 is used as a dopant gas. It can be formed in the same manner as the microcrystalline silicon layer 1 3. Examples of the donor impurity include phosphorus, arsenic, and antimony, and the impurity concentration is about 10 18 to 10 2 Q cm −3 .
そして、 光電変換層 1 7上に、 マグネ ト口ンスパッタ リング法により 、 S n 02、 I n 23、 Z n O、 I T〇等からなる透明導電膜を 5 0 n m程度の厚さで形成し、 裏面反射層 1 5 とする。 Then, on the photoelectric conversion layer 17, a transparent conductive film made of Sn 0 2 , In 2 2 0 3 , Zn 0, IT 0, etc. is formed with a thickness of about 50 nm by a magnet opening sputtering method. The back reflective layer 15 is formed.
最後に、 裏面電極 1 6を、 A g、 A l 、 C u、 A u、 N i 、 C r 、 W 、 T i 、 P t 、 F e、 M o等の材料を用いて、 金属膜の単層、 あるいは 複数の金属膜を積層して、 スパッタ法ゃ真空蒸着法等により、 厚さ数 1 0 0 η π!〜 1 μ m程度で形成する。  Finally, the back electrode 16 is made of a metal film using materials such as Ag, A1, Cu, Au, Ni, Cr, W, Ti, Pt, Fe, Mo, etc. A single layer or a plurality of metal films are stacked, and the thickness is 10 0 η π! ~ 1 μm.
本実施形態の薄膜太陽電池 2 0は、 透明導電層 1 1 bおよび裏面電極 1 6からそれぞれ電極 2 1 を引き出して、 スーパース トレート型の薄膜 太陽電池 2 0を構成している。 以上のような構成により、 光電変換層 1 7における光閉込効果を利用して、 入射光を.電気エネルギーに変換する ことができる。 The thin film solar cell 20 of the present embodiment constitutes a super straight type thin film solar cell 20 by drawing out the electrode 21 from the transparent conductive layer 11 b and the back electrode 16. With the configuration described above, incident light is converted into electrical energy using the light confinement effect in the photoelectric conversion layer 17. be able to.
ここで、 本発明の薄膜太陽電池 2 0の主要部である i型微結晶シリ コ ン層 1 3に関し、 その形成条件についてさらに詳しく説明する。  Here, the formation conditions of the i-type microcrystalline silicon layer 13 which is the main part of the thin film solar cell 20 of the present invention will be described in more detail.
本実施形態の薄膜太陽電池 2 0は、 太陽電池用基板 1 1の基板温度お よび水素希釈率に応じて結晶化率を変化させ、 i型微結晶シリ コン層 1 3の最適な形成条件について検討した結果、 実施例 1〜 1 3および比較 例 1〜 6 と して後段にて説明する実験結果に基づいて、 以下のような形 成条件によ り i型微結晶シリ コン層 1 3が形成される。  The thin-film solar cell 20 of the present embodiment changes the crystallization rate in accordance with the substrate temperature of the solar cell substrate 11 1 and the hydrogen dilution rate, and the optimum formation conditions for the i-type microcrystalline silicon layer 1 3 As a result of the examination, based on the experimental results described later in Examples 1 to 13 and Comparative Examples 1 to 6, the i-type microcrystalline silicon layer 13 was formed under the following forming conditions. It is formed.
これにより、 比較的高い光電変換効率が得られる薄膜太陽電池を得る ことができる。  As a result, a thin film solar cell with a relatively high photoelectric conversion efficiency can be obtained.
すなわち、 本実施形態の薄膜太陽電池の製造方法では、 i型微結晶シ リ コン層 1 3中に含まれる酸素濃度が 2〜 4 X 1 0 1 8 c m— 3程度であ る場合には、 ラマン散乱測定法における結晶成分に起因する信号のピー ク強度を I c、 アモルファス成分に起因する信号のピーク強度を I a、 基板温度を T s u b とすると、 関係式 7 0 0≤ T s u b X I c / I a ≤That is, in the method for manufacturing a thin-film solar cell of this embodiment, when the oxygen concentration contained in the i-type microcrystalline silicon layer 13 is about 2 to 4 X 10 18 cm− 3 , If the peak intensity of the signal due to the crystal component in the Raman scattering measurement method is I c, the peak intensity of the signal due to the amorphous component is I a, and the substrate temperature is T sub, then the relation 7 0 0 ≤ T sub XI c / I a ≤
1 6 0 0 ( 1 ) を満たす形成条件で、 i型微結晶シリ コン 層 1 3を形成している。 The i-type microcrystalline silicon layer 13 is formed under the formation conditions satisfying 1600 (1).
これによ り、 比較的高い光電変換効率を有する薄膜太陽電池を得るこ とができる。  Thereby, a thin film solar cell having a relatively high photoelectric conversion efficiency can be obtained.
すなわち、 プラズマ C V D法により形成された i型微結晶シリ コン層 That is, i-type microcrystalline silicon layer formed by plasma C V D method
1 3は、 基板温度が上昇すると結晶化率が増大する。 しかし、 薄膜太陽 電池の光電変換効率は必ずしも向上しない。 これは、 i型半導体層に含 まれる酸素が活性化して i型半導体層が n型化し、 また、 水素が離脱し て欠陥が増大するためであると考えられている。 よって、 高温で i型微 結晶シリ コン層 1 3を形成する場合に、 高い光電変換効率を得るために は、 図 2のグラフに示すように、 結晶化率を低下させてアモルファスシ リ コンを粒界に揷入し、 界面準位や不純物準位を不活性化してやる必要 がある。 1 3 increases the crystallization rate as the substrate temperature rises. However, the photoelectric conversion efficiency of thin film solar cells does not necessarily improve. This is thought to be because oxygen contained in the i-type semiconductor layer is activated to make the i-type semiconductor layer n-type, and hydrogen is released to increase defects. Therefore, i-type fine at high temperatures In order to obtain high photoelectric conversion efficiency when forming the crystalline silicon layer 1 3, as shown in the graph of FIG. 2, the crystallization rate is lowered and the amorphous silicon is inserted into the grain boundaries. It is necessary to inactivate interface states and impurity levels.
本実施形態の薄膜太陽電池の製造方法では、 上記関係式 ( 1 ) を満た すような形成条件で i型微結晶シリ コン層 1 3を形成することで、 この ような条件に適応することができ、 高い光電変換効率を有する薄膜太陽 電池を得ることができる。  In the thin-film solar cell manufacturing method of the present embodiment, the i-type microcrystalline silicon layer 13 is formed under the formation conditions satisfying the relational expression (1) above, so that it is possible to adapt to such conditions. And a thin film solar cell having high photoelectric conversion efficiency can be obtained.
一方、 本実施形態の薄膜太陽電池の製造方法では、 上記のように基板 温度および水素希釈率を変化させる場合に加えて、 製膜装置を大気開放 し、 i型微結晶シリ コン層 1 3の製膜時における到達真空度を変化させ ることにより、 内壁に吸着した水分に起因する製膜室に残留する酸素濃 度を 2〜 3 X 1 0 1 9 c m _ 3程度に上昇させた場合についても、 高い光電 変換効率が得られる i型微結晶シリ コン層 1 3の形成条件について検討 した。 On the other hand, in the method for manufacturing a thin-film solar cell of this embodiment, in addition to the case where the substrate temperature and the hydrogen dilution rate are changed as described above, the film forming apparatus is opened to the atmosphere, and the i-type microcrystalline silicon layer 13 is formed. When the oxygen concentration remaining in the deposition chamber due to the moisture adsorbed on the inner wall is increased to about 2 to 3 X 10 0 19 cm _ 3 by changing the ultimate vacuum during film deposition In addition, the formation conditions of the i-type microcrystalline silicon layer 13 that can achieve high photoelectric conversion efficiency were investigated.
この結果、 図 3のグラフに示すように、 図 2のグラフと比較して、 光 電変換効率が低下しやすい酸素濃度が高い形成条件下においても、 基板 温度 2 5 0 °C以下の条件においては、 上記の関係式( 1 )を満たすよ うな 形成条件で薄膜太陽電池を形成することで、 同様にして光電変換効率の 高い薄膜太陽電池を製造することができる。  As a result, as shown in the graph of FIG. 3, compared with the graph of FIG. 2, even under the formation conditions where the oxygen concentration is likely to decrease, the substrate temperature is 2550 ° C. or lower. By forming a thin film solar cell under the formation conditions that satisfy the above relational expression (1), a thin film solar cell with high photoelectric conversion efficiency can be produced in the same manner.
以上のように、 本実施形態の薄膜太陽電池の製造方法では、 酸素濃度 が 4 X 1 0 1 8 c m— 3以下である場合、 あるいは基板温度が 2 0 0 °C以 下である場合には、 上記関係式 ( 1 ) を満たすよ うな形成条件で i型微 結晶シリ コン層 1 3を形成することで、 比較的高い光電変換効率を有す る薄膜太陽電池を提供することができる。 As described above, in the method for manufacturing a thin-film solar cell of this embodiment, when the oxygen concentration is 4 × 10 18 cm− 3 or less, or when the substrate temperature is 200 ° C. or less. By forming the i-type microcrystalline silicon layer 13 under the formation conditions that satisfy the above relational expression (1), it has a relatively high photoelectric conversion efficiency. A thin film solar cell can be provided.
なお、 結晶化率を求めるために用いたラマン散乱測定は、 シリ コン層 にアルゴンイオンレーザ ( 5 1 4 . 5 n m ) を約 1 0 m Wで照射し、 そ のラマン散乱スぺク トルを測定して、 上記ピーク強度 I cおよび I aを 求めるという測定方法である。 このラマン散乱スペク トルにおいて、 結 晶成分に起因する信号のピーク強度 I cは、 約 5 2 0 c m— 1を中心と し た位置に現れ、 アモルファス成分に起因する信号のピーク強度 I aは、 約 4 8 0 c m— 1を中心と した位置に現れる。 このため、 そのピーク強度 比 I c / I a を求めることで、 結晶化率を評価することができる。 The Raman scattering measurement used to determine the crystallization rate was performed by irradiating the silicon layer with an argon ion laser (5 14.5 nm) at about 10 mW and applying the Raman scattering spectrum. This is a measurement method in which the peak intensities I c and I a are obtained by measurement. In this Raman scattering spectrum, the peak intensity I c of the signal due to the crystal component appears at a position centered at about 5 20 cm- 1 , and the peak intensity I a of the signal due to the amorphous component is Appears at a position centered on approximately 4 80 cm— 1 . Therefore, the crystallization rate can be evaluated by obtaining the peak intensity ratio I c / I a.
ところで、 一般に、 微結晶シリ コン層を非晶質基板上に形成した場合 には、 膜厚の増加に伴って結晶化率が増加する傾向があることが知られ ている。 太陽電池を形成する場合、 例えば、 p型微結晶シリ コン層 1 2 は数 1 0 n mと非常に薄いため、 上記結晶化率の増加が飽和状態まで達 しておらず、 i型微結晶シリ コン層 1 3の製膜初期段階では結晶化率が 低くなることが予想される。  Incidentally, it is generally known that when a microcrystalline silicon layer is formed on an amorphous substrate, the crystallization rate tends to increase as the film thickness increases. When forming a solar cell, for example, the p-type microcrystalline silicon layer 12 is very thin, a few tens of nanometers. Therefore, the increase in the crystallization rate does not reach saturation, and the i-type microcrystalline silicon layer It is expected that the crystallization rate will be low at the initial stage of film formation of the con layer 13.
実際に、 n型微結晶シリ コン層 1 4形成後の結晶化率を測定した際に 、 上述した結晶化率と基板温度とに関する上記関係式 ( 1 ) を満たす薄 膜太陽電池に対して、 n型微結晶シリ コン層 1 4側から太陽電池を研磨 して i型微結晶シリ コン層 1 3の結晶化率の膜厚依存性を測定した。 そ の結果、 p型微結晶シリ コン層 1 2から数百 n m程度の領域においては 結晶化率が小さく、 結晶化率と基板温度とに関する上記関係式 ( 1 ) を 満たしていないことがわかった。  Actually, when the crystallization rate after the formation of the n-type microcrystalline silicon layer 14 was measured, the thin film solar cell satisfying the relational expression (1) regarding the crystallization rate and the substrate temperature described above was The solar cell was polished from the n-type microcrystalline silicon layer 14 side, and the film thickness dependence of the crystallization rate of the i-type microcrystalline silicon layer 13 was measured. As a result, it was found that the crystallization rate was small in the region of several hundred nm from the p-type microcrystalline silicon layer 12 and did not satisfy the relational expression (1) regarding the crystallization rate and the substrate temperature. .
そこで、 本実施形態の薄膜太陽電池の製造方法では、 i型微結晶シリ コン層 1 3の製膜初期段階には、 結晶化率が高くなる条件、 例えば、 水 素希釈率が高い条件、 投入電力の高い条件等で製膜し、 膜厚の増加に伴 つて製膜条件を変更している。 Therefore, in the method for manufacturing a thin-film solar cell of this embodiment, in the initial stage of forming the i-type microcrystalline silicon layer 13, conditions for increasing the crystallization rate, for example, water Film formation is performed under conditions where the element dilution rate is high and input power is high, and the film formation conditions are changed as the film thickness increases.
これによ り、 i型微結晶シリ コン層 1 3の厚さ方向の全域において、 結晶化率 I c / I a と基板温度 T s u b とが上記関係式 ( 1 ) を満たす 薄膜太陽電池を形成することができ、 良好な太陽電池特性を備えた薄膜 太陽電池を得ることができる。  As a result, a thin film solar cell in which the crystallization rate I c / I a and the substrate temperature T sub satisfy the above relational expression (1) is formed in the entire thickness direction of the i-type microcrystalline silicon layer 13. A thin film solar cell having good solar cell characteristics can be obtained.
また、 以上のよ うな製造方法によ り得られた本実施形態の薄膜太陽電 池は、 i型微結晶シリ コン層 1 3の ( 2 2 0 ) X線回折ピークの積分強 度 I 2 2。と ( 1 1 1 ) X線回折ピークの積分強度 I iェとの比で表わさ れる結晶配向性 I 2 2。/ I i i 力 s 5以上になるよ うに形成されている。 これにより、 非常に欠陥の少ない活性層が形成され、 よ り良好な太陽電 池特性を得ることができる。 Further, the thin-film solar cell of this embodiment obtained by the manufacturing method as described above has the integrated intensity I 2 2 of the (2 2 0) X-ray diffraction peak of the i-type microcrystalline silicon layer 1 3. . And (1 1 1) Crystal orientation I 2 2 expressed as a ratio to the integrated intensity I i of the X-ray diffraction peak. / I ii Forces s 5 or more. As a result, an active layer with very few defects is formed, and better solar cell characteristics can be obtained.
なお、 本実施形態では、 図 1に示すよ うなスーパース ト レー ト型の薄 膜太陽電池 2 0を例にあげて説明したが、 本発明はこれに限定されるも のではない。 例えば、 各シリ コン層側から光が入射して光電変換を行う サブス トレート型薄膜太陽電池であってもよい。  In the present embodiment, the super-straight type thin film solar cell 20 as shown in FIG. 1 has been described as an example, but the present invention is not limited to this. For example, a substrate type thin film solar cell in which light is incident from each silicon layer side to perform photoelectric conversion may be used.
サブス ト レート型の薄膜太陽電池である場合には、 本発明の薄膜太陽 電池は少なく とも、 金属基板あるいは表面に金属が被覆された基板、 表 面に穴おょぴ凹凸を有する透明導電層、 光電変換層を含んで構成されて いる。 上記透明導電層は金属面により反射された光の散乱層と して機能 する。 これによ り、 上記で説明したスーパース ト レー ト型薄膜太陽電池 と同様の効果を得ることができる。  In the case of a substrate type thin film solar cell, the thin film solar cell of the present invention is at least a metal substrate or a substrate coated with metal on the surface, a transparent conductive layer having surface irregularities on the surface, It is configured to include a photoelectric conversion layer. The transparent conductive layer functions as a light scattering layer reflected by the metal surface. As a result, the same effect as that of the super-straight type thin film solar cell described above can be obtained.
以下、 本発明の薄膜太陽電池に関する上記関係式 ( 1 ) を導く実施例 について具体的に説明するが、 これらによって本発明は限定されるもの ではない。 Examples of deriving the above relational expression (1) relating to the thin film solar cell of the present invention will be specifically described below, but the present invention is limited by these examples. is not.
〔実施例 1〕  Example 1
本実施例 1では、 上述した実施形態に対応して、 図 5に示すフローチ ヤートに従って、 スーパース トレー ト型構造で単接合型の薄膜太陽電池 の製造方法について説明する。 なお、 説明の便宜上、 上記実施形態で説 明した部材と同じ機能を有する部材については、 同じ符号を付し、 その 説明を省略する。  In Example 1, a method for manufacturing a single-junction thin-film solar cell with a super-straight structure will be described according to the flow chart shown in FIG. 5 corresponding to the above-described embodiment. For convenience of explanation, members having the same functions as those explained in the above embodiment are given the same reference numerals and explanation thereof is omitted.
本実施例 1 に係る薄膜太陽電池 2 0を以下のように形成した。  A thin film solar cell 20 according to Example 1 was formed as follows.
先ず、 ステップ (以下、 S と示す) 1 において、 透明導電層 1 1 bを 、 表面が平滑な基板 1 1 aにマグネ ト ロ ンスパッタ リ ング法により酸化 亜鉛を厚さ 8 0 0 n mで形成した。 その後、 透明導電層 1 1 bの表面を 酢酸水溶液でエッチングして凹凸を形成して、 太陽電池用基板 1 1 を形 成した。  First, in step (hereinafter referred to as S) 1, a transparent conductive layer 1 1 b is formed on a substrate 11 1 a having a smooth surface, and zinc oxide is formed with a thickness of 800 nm by a magnetron sputtering method. . Thereafter, the surface of the transparent conductive layer 11 b was etched with an acetic acid aqueous solution to form irregularities, thereby forming the solar cell substrate 11.
次いで、 S 2〜 S 4において、 太陽電池用基板 1 1上に、 高周波プラ ズマ C V D法によ り投入電力 3 0 Wで、 透明導電層 1 1 bの上に厚さ 2 O n mの p型微結晶シリ コン層 1 2、 厚さ 2 ^ mの i型微結晶シリ コン 層 1 3、 厚さ 3 0 n mの n型微結晶シリ コン層 1 4をこの順に積層する こ とで、 光電変換層 1 7を作成した。  Next, in S 2 to S 4, a p-type having a thickness of 2 O nm on the transparent conductive layer 1 1 b with an input power of 30 W on the solar cell substrate 11 1 by a high-frequency plasma CVD method. Photoelectric conversion is achieved by laminating a microcrystalline silicon layer 1 2, an i-type microcrystalline silicon layer 1 3 with a thickness of 2 ^ m, and an n-type microcrystalline silicon layer 1 4 with a thickness of 30 nm in this order. Layer 1 7 was created.
この とき、 S 2においては、 p型微結晶シリ コ ン層 1 2を、 S i H4 ガスを流量比で 1 0 0倍の H 2ガスによ り希釈したものを原料ガスと し て用いるとともに、 さらに B 2H6ガスを S i H4ガス流量に対して 0. 1 %添加して形成した。 At this time, in the S 2, a p-type microcrystalline silicon co emission layer 1 2, used a material obtained by diluting Ri by a S i H 4 gas to 1 0 0 × H 2 gas at a flow rate ratio as raw material gases At the same time, B 2 H 6 gas was further added by 0.1% with respect to the Si H 4 gas flow rate.
そして、 S 4においては、 n型微結晶シリ コン層 1 4を、 3 1 ^14ガ スを流量比で 1 0 0倍の H 2ガスにより希釈したものを原料ガスと して 用レヽると ともに、 さ らに P H 3ガスを S i H4ガス流量に対して 0. 0 1 %添加して形成した。 Then, in S 4, the n-type microcrystalline silicon layer 1 4, 3 1 ^ 1 4 those diluted with raw material gas by 1 0 0 × H 2 gas to gas at a flow ratio It was formed by adding 0.01% of PH 3 gas to the Si H 4 gas flow rate.
また、 S 3においては、 i型微結晶シリ コ ン層 1 3を、 S i H4ガス を H 2ガスにより希釈したものを原料ガスと して用いて形成した。 In S 3, the i-type microcrystalline silicon layer 13 was formed using a material gas obtained by diluting Si H 4 gas with H 2 gas.
この とき、 p型微結晶シリ コン層 1 2および n型微結晶シリ コン層 1 At this time, p-type microcrystalline silicon layer 1 2 and n-type microcrystalline silicon layer 1
4の形成条件を固定し、 i型微結晶シリ コン層 1 3の基板温度 1 0 0 °C 、 水素希釈率 H 2Z S i H4を 3 5倍にして、 i型微結晶シリ コン層 1 3を持つ薄膜太陽電池 2 0を形成した。 なお、 i型微結晶シリ コン層 1 3製 S莫時の Back Pressureは l X 1 0 _ 7 T o r rであり、 形成された i 型微結晶シリ コン層 1 3に含まれる酸素原子濃度を S I MSで測定した ところ、 基板温度や結晶化率によ りばらつきはあるものの、 3 X 1 0 1 8 c m— 3程度であった。 The i-type microcrystalline silicon layer 1 is fixed at a substrate temperature of 100 ° C, the hydrogen dilution rate H 2 ZS i H 4 is increased 35 times, and the i-type microcrystalline silicon layer 1 is fixed. A thin film solar cell 20 with 3 was formed. The i-type microcrystalline silicon layer 13 made of S S Back pressure at the time of l X 1 0 _ 7 Torr, and the oxygen atom concentration contained in the formed i-type microcrystalline silicon layer 1 3 When measured by MS, it was about 3 X 10 18 cm- 3 , although it varied depending on the substrate temperature and crystallization rate.
その後、 S 5において、 裏面反射層 1 5 と して、 マグネ トロ ンスパッ タリ ング法により、 酸化亜鉛を用いて厚さ 5 0 n Hiで透明導電膜を形成 した。 続いて、 S 6において、 裏面電極 1 6を、 電子ビーム蒸着法によ り、 銀を用いて厚さ 5 0 0 n mで形成し、 基板 1 1 a側から光を入射す るスーパース トレート型構造で単接合型の薄膜太陽電池 2 0を製造した  Thereafter, in S 5, a transparent conductive film having a thickness of 50 n Hi was formed using zinc oxide as the back surface reflecting layer 15 by a magnetron sputtering method. Subsequently, in S 6, the back electrode 16 is formed with a thickness of 500 nm using silver by electron beam evaporation, and light is incident from the substrate 11 a side. A single-junction thin-film solar cell with a structure of 20 was manufactured.
〔実施例 2〜 9〕 (Examples 2 to 9)
実施例 2〜 9 と して、 i型微結晶シリ コン層 1 3の製膜条件 (基板温 度、 水素希釈率、 酸素濃度) 以外は実施例 1 と同様にして、 結晶化率が 異なる i型微結晶シリ コン層 1 3を持つ薄膜太陽電池を形成した。  As in Examples 2 to 9, the crystallization rate differs in the same manner as in Example 1 except that the film formation conditions (substrate temperature, hydrogen dilution rate, oxygen concentration) of the i-type microcrystalline silicon layer 1 3 are different. A thin-film solar cell with a type microcrystalline silicon layer 1 3 was formed.
〔比較例 1〜 4〕  [Comparative Examples 1 to 4]
比較例 1〜 4 と して、 i型微結晶シリ コン層 1 3の製膜条件 (基板温 度、 水素希釈率、 酸素濃度) 以外は実施例 1 と同様にして、 結晶化率が 異なる i型微結晶シリ コン層 1 3を持つ薄膜太陽電池を形成した。 As Comparative Examples 1 to 4, the film formation conditions for the i-type microcrystalline silicon layer 1 3 (substrate temperature A thin-film solar cell having an i-type microcrystalline silicon layer 13 having a different crystallization rate was formed in the same manner as in Example 1, except for the degree of hydrogen, the hydrogen dilution rate, and the oxygen concentration.
〔実施例 1 0〜: 1 3〕  [Example 1 0 to: 1 3]
実施例 1 0〜 1 3 と して、 i型微結晶シリ コン層 1 3の製膜時に微結 晶シリ コンを形成するときの Back Pressureを、 1〜: L 0 X 1 0 _ 5 T o r r と して、 i型微結晶シリ コン層 1 3に含まれる酸素濃度を上記実施 例:!〜 9等の形成条件より も高い 6 X I 0 1 8〜 2 X 1 0 1 9 c m 3にし たこと以外は、 上記実施例 1〜 9および比較例 1〜 4 と同様の製造方法 により、 異なる性質を有する i型微結晶シリ コン層 1 3を持つ薄膜太陽 電池を形成した。 Examples 10 to 13 As the back pressure when forming microcrystalline silicon when forming the i-type microcrystalline silicon layer 1 3, 1 to: L 0 X 1 0 _ 5 Torr The oxygen concentration contained in the i-type microcrystalline silicon layer 13 is set to the above example:! The properties differ depending on the production methods similar to those in Examples 1 to 9 and Comparative Examples 1 to 4 except that 6 XI 0 1 8 to 2 X 10 1 9 cm 3 , which is higher than the formation conditions of ~ 9 etc. A thin-film solar cell having an i-type microcrystalline silicon layer 13 having a thickness of 13 was formed.
〔比較例 5 * 6〕  [Comparative Example 5 * 6]
比較例 5 · 6 と して、 i型シリ コン層の製膜時に微結晶シリ コンを形 成するときの Back Pressureを、 1〜 1 0 X 1 0— 5 T o r r と して、 i 型シリ コン層に含まれる酸素濃度を上記実施例 1〜 9等の形成条件よ り も高い 7 X 1 0 1 8〜 3 X 1 0 1 9 c m 3にしたこと以外は、 上記実施例 :! 〜 9および比較例 1〜 4 と同様の製造方法により、 異なる性質を有す る i型微結晶シリ コン層 1 3を持つ薄膜太陽電池を形成した。 And Comparative Example 5, 6, a Back Pressure when that form the microcrystalline silicon during the film of i-type silicon layer, 1 to the 1 0 X 1 0- 5 T orr , i -type silicon The above examples:! To 9 except that the oxygen concentration contained in the con layer was set to 7 X 10 1 8 to 3 X 10 1 9 cm 3 , which was higher than the formation conditions of Examples 1 to 9 and the like. A thin film solar cell having i-type microcrystalline silicon layer 13 having different properties was formed by the same manufacturing method as in Comparative Examples 1 to 4.
以上のよ うな実施例 1〜 1 3および比較例 1〜 6に係る薄膜太陽電池 に関して、 その製膜条件と結晶化率、 結晶配向性、 i型微結晶シリ コン 層に含まれる酸素濃度おょぴ太陽電池の AM 1. 5 ( 1 0 0 mW/ c m 2) 照射条件下における光電変換効率を表 1に示す。 Regarding the thin film solar cells according to Examples 1 to 13 and Comparative Examples 1 to 6 as described above, the film forming conditions, the crystallization rate, the crystal orientation, and the oxygen concentration contained in the i-type microcrystalline silicon layer Table 1 shows the photoelectric conversion efficiency of the solar cell under the AM 1.5 (100 mW / cm 2 ) irradiation condition.
【表 1 】 基板温度水素希釈結晶化率 Tsub X 結晶配向性酸素濃度光電変換 【table 1 】 Substrate temperature Hydrogen dilution Crystallization rate Tsub X Crystal orientation Oxygen concentration Photoelectric conversion
(°C) Tsub 率 , Ic/Ia Ic/Ia (cm ) 効率 (%) 実施例 1 100 35 10 1000 2.5 3xl018 7.0 (° C) Tsub ratio, Ic / Ia Ic / Ia (cm) Efficiency (%) Example 1 100 35 10 1000 2.5 3xl0 18 7.0
実施例 2 •200 30 3.5 700 2.7 2xl018 7.0 Example 2 200 200 3.5 700 2.7 2xl0 18 7.0
実施例 3 200 40 6 1200 3.5 2xl018 8.2 Example 3 200 40 6 1200 3.5 2xl0 18 8.2
実施例 4 200 50 8 1600 2.9 2xl018 7.4 Example 4 200 50 8 1600 2.9 2xl0 18 7.4
実施例 5 250 45 4 1000 5.0 2xl018 8.4 Example 5 250 45 4 1000 5.0 2xl0 18 8.4
実施例 6 300 45 2.5 750 4.0 4xl018 8.0 Example 6 300 45 2.5 750 4.0 4xl0 18 8.0
実施例 7 300 50 3.5 1050 6.5 4xl018 8.4 Example 7 300 50 3.5 1050 6.5 4xl0 18 8.4
実施例 8 300 70 5 1500 4.5 3xl018 7.8 Example 8 300 70 5 1500 4.5 3xl0 18 7.8
実施例 9 350 60 3 1050 7.5 4xl018 8.3 Example 9 350 60 3 1050 7.5 4xl0 18 8.3
実施例 10 200 40 6 1200 3.5 6xl018 8.2 Example 10 200 40 6 1200 3.5 6xl0 18 8.2
実施例 11 200 40 6 1200 3.5 2xl019 8.0 Example 11 200 40 6 1200 3.5 2xl0 19 8.0
実施例 12 250 45 4 1000 5.0 6xl018 7.9 Example 12 250 45 4 1000 5.0 6xl0 18 7.9
実施例 13 250 45 4 1000 5.0 2xl019 7.5 Example 13 250 45 4 1000 5.0 2xl0 19 7.5
比較例 1 200 25 2.7 540 1.9 2xl018 4.8 Comparative Example 1 200 25 2.7 540 1.9 2xl0 18 4.8
比較例 2 200 65 8.8 1760 2.0 4xl018 6.5 Comparative Example 2 200 65 8.8 1760 2.0 4xl0 18 6.5
比較例 3 300 40 1.7 510 1.8 2xl018 6.0 Comparative Example 3 300 40 1.7 510 1.8 2xl0 18 6.0
比較例 4 300 150 7 2100 3.7 4xl018 5.5 Comparative Example 4 300 150 7 2100 3.7 4xl0 18 5.5
比較例 5 300 50 3.5 1050 6.5 7xl018 6.9 Comparative Example 5 300 50 3.5 1050 6.5 7xl0 18 6.9
比較例 6 300 50 3.5 1050 6.5 3xl019 6.3 表 1 に示す実施例 1 の結果から、 基板温度 1 0 0 °cにおいても、 光電 変換層形成時の水素希釈率を選択し、 結晶化率 I c / I a = 1 0 とする ことにより、 実用化が可能な光電変換効率 7 %台を越える微結晶シリ コ ン系の薄膜太陽電池を作製することが可能であることがわかった。 Comparative Example 6 300 50 3.5 1050 6.5 3xl0 19 6.3 From the results of Example 1 shown in Table 1, even when the substrate temperature was 100 ° C, the hydrogen dilution rate during the formation of the photoelectric conversion layer was selected, and the crystallization rate I c It was found that by setting / I a = 10, it was possible to fabricate microcrystalline silicon-based thin-film solar cells with a photoelectric conversion efficiency exceeding the 7% range that could be put to practical use.
このよ うに、 本発明の薄膜太陽電池によれば、 耐熱性に優れていない 安価な樹脂材料を基板と して用いても、 微結晶シリ コン系の薄膜太陽電 池を実現できる。 さらに、 表 1に示す実施例 1〜 9の結果から、 基板温度に応じて、 高 い光電変換効率を得るための結晶化率が異なっているものの、 i型微結 晶シリ コン層 1 3に含まれる酸素濃度が 4 X 1 0 1 8 C m_3以下の形成 条件下において、 基板温度 T s u bに関わらず、 基板温度 T s u b と結 晶化率 I c / I a の積が、 関係式( 1 ) ( 7 0 0≤ T s u b X I c Z l a ≤ 1 6 0 0 ) を満たすように i型微結晶シリ コン層 1 3が形成されてい れば、 比較的高い光電変換効率を得られる薄膜太陽電池を作製すること ができたことがわかる。 Thus, according to the thin-film solar cell of the present invention, a microcrystalline silicon-based thin-film solar cell can be realized even if an inexpensive resin material that is not excellent in heat resistance is used as a substrate. Furthermore, from the results of Examples 1 to 9 shown in Table 1, although the crystallization rate for obtaining high photoelectric conversion efficiency differs depending on the substrate temperature, the i-type microcrystalline silicon layer 13 is in the oxygen concentration is 4 X 1 0 1 8 C m_ 3 following formation conditions included, irrespective of the substrate temperature T sub, the product of the substrate temperature T sub and sintering crystallization rate I c / I a is, equation ( 1) If the i-type microcrystalline silicon layer 1 3 is formed so as to satisfy (7 0 0 ≤ T sub XI c Z la ≤ 1 6 0 0), a thin film solar that can achieve relatively high photoelectric conversion efficiency It can be seen that the battery could be fabricated.
これに対して、 比較例 1〜 4では、 i型微結晶シリ コ ン層 1 3が上記 実施例 1〜 9 と同じ酸素濃度の条件下で形成されているにもかかわらず 、 基板温度 T s u b と結晶化率 I c Z I a との積が、 何れも上記関係式 ( 1 ) を満たしていないため、 光電変換効率も 4. 8〜 6. 5 %と低く なっている。  On the other hand, in Comparative Examples 1 to 4, although the i-type microcrystalline silicon layer 13 is formed under the same oxygen concentration conditions as in Examples 1 to 9, the substrate temperature T sub And the crystallization rate I c ZI a do not satisfy the above relational expression (1), so the photoelectric conversion efficiency is also low at 4.8 to 6.5%.
このよ う に、 実施例 1〜 9および比較例 1〜 4の結果から、 i型微結 晶シリ コン層 1 3に含まれる酸素濃度が 4 X 1 0 1 8 c m— 3以下の形成 条件下では、 さらに上記関係式 ( 1 ) を満たす形成条件下であれば、 7 . 0 %以上の高い光電変換効率を有する薄膜太陽電池を製造することが できることが分かった。 Thus, based on the results of Examples 1 to 9 and Comparative Examples 1 to 4, the oxygen concentration contained in the i-type microcrystalline silicon layer 1 3 is 4 X 1 10 18 cm- 3 or less. Then, it was found that a thin film solar cell having a high photoelectric conversion efficiency of 7.0% or more can be produced under the formation conditions satisfying the relational expression (1).
なお、 基板温度が高い場合でも高い光電変換効率を維持できたのは、 プラズマ C V D法により形成された i型微結晶シリ コン層 1 3は、 基板 温度が上昇することにより発生した欠陥に対して、 結晶化率を低下させ てアモルファスシリ コンを粒界に挿入し、 界面準位や不純物準位を不活 性化したためであると考えられる。  Note that the high photoelectric conversion efficiency was maintained even when the substrate temperature was high because the i-type microcrystalline silicon layer 13 formed by the plasma CVD method was free from defects caused by an increase in the substrate temperature. This is probably because the amorphous silicon was inserted into the grain boundaries with the crystallization rate lowered, and the interface states and impurity levels were deactivated.
また、 基板温度が 2 5 0 °C以下の形成条件で製造した実施例 1〜 5、 1 0〜 1 3については、 酸素濃度が 2〜 3 X I 0 1 8 c m 3である実施 例 1〜 5も、 それよ り高い 6 X 1 0 1 8〜 2 X 1 0 1 9 c m— 3である実施 例 1 0〜 1 3も、 上記関係式( 1 )の条件を満たしており、 7. 0〜 8.In addition, Examples 1 to 5 manufactured under the formation conditions where the substrate temperature is 2500 ° C or less, For 1 0-1 3 the oxygen concentration is 2-3 XI 0 1 8 cm 3 Examples 1-5 are also higher, 6 X 1 0 1 8-2 X 1 0 1 9 cm— 3 Certain examples 10 to 13 also satisfy the condition of the above relational expression (1), and 7.0 to 8.
2 %と高い光電変換効率を有する薄膜太陽電池を製造することができる 0 0 capable of producing thin-film solar cells with 2% and high photoelectric conversion efficiency
これに対して、 同じく基板温度 2 5 0 °C以下で製造された比較例 1〜 4では、 上記関係式(1 )の条件を満たしておらず、 光電変換効率も 4. 8〜 6. 5 %と低くなつている。  On the other hand, in Comparative Examples 1 to 4, which were also manufactured at a substrate temperature of 25 ° C. or lower, the condition of the above relational expression (1) was not satisfied, and the photoelectric conversion efficiency was 4.8 to 6.5. % Is getting lower.
このよ う に、 実施例 1〜 5、 1 0〜 1 3およぴ比較例 1〜 4の結果か ら、 基板温度が 2 5 0 °C以下の形成条件下においては、 酸素濃度の高低 に関わらず、 上記関係式 ( 1 ) を満たす形成条件により製造されていれ ば、 7. 0 %以上の高い光電変換効率を有する薄膜太陽電池を製造する ことができることが分かった。  Thus, from the results of Examples 1 to 5, 10 to 13 and Comparative Examples 1 to 4, the oxygen concentration was increased or decreased under the formation conditions where the substrate temperature was 2550 ° C. or lower. Regardless, it was found that a thin-film solar cell having a high photoelectric conversion efficiency of 7.0% or more can be produced if it is produced under the formation conditions satisfying the relational expression (1).
さらに、 実施例 1 0〜 1 3および比較例 5 · 6のよ うに、 i型微結晶 シリ コン層 1 3に含まれる酸素濃度が 4 X 1 0 1 8 c m— 3よ り も高い 6 X 1 0 1 8〜 3 X 1 0 1 9 c m- 3の形成条件で薄膜太陽電池を形成した場 合には、 酸素濃度 2〜 4 x 1 0 1 8 c m— 3の場合と比較すると、 基板温 度 2 0 0 °Cの実施例 1 0 · 1 1では、 実施例 3 と同等の比較的高い光電 変換効率が得られている。 また、 基板温度 2 5 0 °Cの実施例 1 2 · 1 3 では、 実施例 5 と比較すると光電変換効率は低下しているものの、 7 .Furthermore, as in Examples 10 to 13 and Comparative Examples 5 and 6, the oxygen concentration contained in the i-type microcrystalline silicon layer 1 3 is higher than 4 X 1 0 18 cm— 3 6 X 1 0 If the formation of the thin film solar cell in 1 8 ~ 3 X 1 0 1 9 c m- 3 formation conditions, as compared with the case of the oxygen concentration 2~ 4 x 1 0 1 8 cm- 3, the substrate temperature In Example 1 0 · 11 at a temperature of 200 ° C., a relatively high photoelectric conversion efficiency equivalent to that in Example 3 was obtained. Also, in Examples 1 2 and 13 at a substrate temperature of 2500 ° C, although the photoelectric conversion efficiency is lower than that in Example 5, 7.
5〜 7. 9 %の高い光電変換効率が得られている。 これによ り、 基板温 度が 2 5 ◦ °C以下である場合には、 たとえ i型微結晶シリ コン層 1 3に 含まれる酸素濃度が 4 X 1 0 1 8 c ni— 3より も高く なった場合でも、 高 い光電変換効率を維持することができることがわかる。 一方、 基板温度が 3 0 0 °Cの場合には、 比較例 5 · 6は、 同じ結晶化 率、 基板温度で形成された実施例 7 と比較して、 光電変換効率が 8. 4 %→ 6. 3〜 6. 9 %と大きく低下している。 A high photoelectric conversion efficiency of 5 to 7.9% is obtained. As a result, when the substrate temperature is 25 ° C or lower, the oxygen concentration contained in the i-type microcrystalline silicon layer 1 3 is higher than that of 4 X 1 0 18 c ni— 3. Even in this case, it can be seen that high photoelectric conversion efficiency can be maintained. On the other hand, when the substrate temperature is 300 ° C., Comparative Examples 5 and 6 have a photoelectric conversion efficiency of 8.4% → compared to Example 7 formed at the same crystallization rate and substrate temperature. 6. Decreased significantly from 3 to 6.9%.
この結果から、 同じ結晶化率、 基板温度で形成された実施例 7 と比較 例 5 · 6 とにおいて、 光電変換効率に大きな差が見られたことから、 基 板温度が 2 5 0 °Cより高く、 かつ、 i型微結晶シリ コン層 1 3に含まれ る酸素濃度が 2〜 4 X 1 0 1 8 c m— 3よ り も高い形成条件下で薄膜太陽 電池を形成した場合には、 上記関係式 ( 1 ) を満たしている場合でも、 高い光電変換効率を得ることができないことがわかる。 From this result, there was a large difference in photoelectric conversion efficiency between Example 7 and Comparative Examples 5 and 6 formed at the same crystallization rate and substrate temperature. When a thin film solar cell is formed under the formation conditions that are high and the oxygen concentration contained in the i-type microcrystalline silicon layer 13 is higher than 2-4 X 10 18 cm- 3 It can be seen that even when the relational expression (1) is satisfied, high photoelectric conversion efficiency cannot be obtained.
また、 表 1 から、 結晶配向性 I 2 2。 Z I t が 5以上である実施例 5Also, from Table 1, crystal orientation I 2 2 . Example 5 in which ZI t is 5 or more
• 7 · 9は、 光電変換効率がそれぞれ 8. 4 %、 8. 4 %、 8. 3 %と 高いレベルであることがわかる。 • 7 and 9 indicate that the photoelectric conversion efficiencies are as high as 8.4%, 8.4%, and 8.3%, respectively.
よって、 上記関係式 ( 1 ) あるいは ( 2 ) を満たす形成条件下におい て、 さらに結晶配向性 I 2 2。Z I ェェェが 5以上となる条件を満たす薄膜 太陽電池であれば、 より高いレベルの光電変換効率を有する薄膜太陽電 池を得ることができることがわかった。 Therefore, the crystal orientation I 2 2 further under the formation conditions satisfying the above relational expression (1) or (2). It was found that a thin-film solar cell with a higher level of photoelectric conversion efficiency can be obtained if it is a thin-film solar cell that satisfies the condition that ZI is 5 or more.
〔実施例 1 4 * 1 5〕  (Example 1 4 * 1 5)
実施例 1 4 と して、 i型微結晶シリ コン層 1 3の製膜初期段階におけ る最初の 5 0 n m厚までを水素希釈率 8 0倍で製膜する以外は、 実施例 7 (水素希釈率 5 0倍で製造) と同様の条件で製膜を行い、 薄膜太陽電 池を製造した。  As Example 14 except that the first 50 nm thickness of the i-type microcrystalline silicon layer 13 in the initial stage of film formation was formed at a hydrogen dilution rate of 80 times, Example 7 ( A thin film solar cell was manufactured under the same conditions as in manufacturing at a hydrogen dilution rate of 50 times.
また、 実施例 1 5 と して、 i型微結晶シリ コン層 1 3の製膜初期段階 における最初の 5 0 n m厚までを、 投入電力 6 0 Wの条件下で製膜する 以外は、 実施例 7 (投入電力 3 0 Wで製造) と同様の条件で製膜を行い 、 薄膜太陽電池を製造した。 In addition, Example 15 was carried out except that the first 50 nm thickness of the i-type microcrystalline silicon layer 13 in the initial stage of film formation was formed under the condition of input power of 60 W. Film was formed under the same conditions as in Example 7 (manufactured with an input power of 30 W). A thin film solar cell was manufactured.
実施例 1 4 · 1 5に係る薄膜太陽電池の AM 1. 5 ( l O O mW/ c m2) 照射条件下における光電変換効率を表 2に示す。 Table 2 shows the photoelectric conversion efficiency of the thin-film solar cell according to Examples 14 and 15 under AM 1.5 (lOO mW / cm 2 ) irradiation conditions.
なお、 微結晶シリ コン太陽電池の透明導電層表面には光閉込効果を得 るために適した凹凸が形成されているため、 膜厚方向への結晶化率の分 布は凹凸の大きさだけ平均化されてしまい正確な値が測定できない。 そ こで、 実施例 4および実施例 1 4 · 1 5 と同一条件でガラス基板上に p 型微結晶シリ コン層 1 2、 i型微結晶シリ コン層 1 3、 n型微結晶シリ コン層 1 4を順に積層し、 n型微結晶シリ コン層 1 4側から研磨しなが ら結晶化率を測定した。 この測定結果を図 4に示す。  Since the surface of the transparent conductive layer of the microcrystalline silicon solar cell has irregularities suitable for obtaining the light confinement effect, the distribution of the crystallization rate in the film thickness direction is the size of the irregularities. As a result, it is only averaged and an accurate value cannot be measured. Therefore, the p-type microcrystalline silicon layer 1 2, the i-type microcrystalline silicon layer 1 3, and the n-type microcrystalline silicon layer on the glass substrate under the same conditions as in Examples 4 and 14-15. 14 was laminated in order, and the crystallization rate was measured while polishing from the n-type microcrystalline silicon layer 14 side. Figure 4 shows the measurement results.
【表 2】  [Table 2]
Figure imgf000030_0001
表 2 よ り実施例 1 4 * 1 5に係る薄膜太陽電池は、 実施例 7 と比較し て、 電流電圧特性が向上していることが分かる。
Figure imgf000030_0001
Table 2 shows that the current-voltage characteristics of the thin-film solar cell according to Example 1 4 * 1 5 are improved compared to Example 7.
これは、 以下の理由によるものであると考えられる。  This is thought to be due to the following reasons.
すなわち、 図 4に示すよ うに、 実施例 7および実施例 1 4 · 1 5 とも に、 n型微結晶シリ コ ン層 1 4の近傍からの測定では、 結晶化率は同レ ベルである。 しかし、 微結晶シリ コン層を非晶質基板上に形成した場合 には、 膜厚の増加に伴って結晶化率が増加する傾向があるため、 p型微 結晶シリ コン層 1 2 と i型微結晶シリ コン層 1 3 との界面付近では、 結 晶化率が低下しゃすい。 そこで、 実施例 1 4 · 1 5においては、 p型微結晶シリ コン層 1 2 と i型微結晶シリ コン層 1 3 との界面部分を製膜する際には、 水素希釈率 あるいは投入電力を通常の形成条件より も高く して製膜している。 この ため、 実施例 1 4 · 1 5に係る薄膜太陽電池では、 p型微結晶シリ コン 層 1 2 と i型微結晶シリ コン層 1 3 との界面付近の結晶化率を低下させ ることなく、 下地となる p型微結晶シリ コン層 1 2から 2 0 0 n m以上 製膜した i型微結晶シリ コン層 1 3における結晶化率が、 厚さ方向にお けるほぼ全域で 3. 5 (T s u b X I c / l a = 1 0 5 0 ) 程度に維持 することができる。 That is, as shown in FIG. 4, in both Example 7 and Examples 14 · 15, the crystallization rate is the same level when measured from the vicinity of the n-type microcrystalline silicon layer 14. However, when the microcrystalline silicon layer is formed on an amorphous substrate, the crystallization rate tends to increase as the film thickness increases, so the p-type microcrystalline silicon layer 1 2 and the i-type silicon layer Near the interface with the microcrystalline silicon layer 1 3, the crystallization rate decreases. Therefore, in Examples 1 4 and 1 5, when forming the interface portion between the p-type microcrystalline silicon layer 1 2 and the i-type microcrystalline silicon layer 1 3, the hydrogen dilution rate or the input power is set to The film is formed at a higher temperature than normal formation conditions. For this reason, in the thin film solar cell according to Examples 14 and 15, the crystallization rate in the vicinity of the interface between the p-type microcrystalline silicon layer 12 and the i-type microcrystalline silicon layer 1 3 is not reduced. The p-type microcrystalline silicon layer 1 2 to 200 nm or more of the underlying layer has a crystallinity of about 3.5 in the entire thickness direction in the thickness direction. T sub XI c / la = 10 0 5 0).
よって、 この場合は、 T s u b X I c / I aの数値が、 関係式( 1 )で 示す 7 0 0≤ T s u b X I c / I a ≤ l 6 0 0の範囲に含まれている。 これにより、 光電変換層全域に電界が印可され、 薄膜太陽電池の光電変 換効率をより確実に高いレベルで維持することができる。  Therefore, in this case, the value of T su b X I c / I a is included in the range of 7 0 0 ≤ T su b X I c / I a ≤ l 6 0 0 shown by the relational expression (1). As a result, an electric field is applied to the entire photoelectric conversion layer, and the photoelectric conversion efficiency of the thin-film solar cell can be more reliably maintained at a high level.
本発明の薄膜太陽電池の製造方法は、 以上のように、 光電変換部に少 なく とも 1層含まれる i型半導体層を、 該 i型半導体層中の酸素濃度が 4 X 1 0 1 8 c m— 3以下の条件下においては、 ラマン散乱測定による上 記 i型半導体層の結晶成分に起因する信号のピーク強度を I c、 ァモル ファス成分に起因する信号のピーク強度を I a、 該 i型半導体層の作製 時の基板温度を T s u b とすると、 関係式 7 0 0 ≤ T s u b X I c / I a ≤ 1 6 0 0 ( 1 ) を満たす形成条件下で形成する方法で める。 As described above, the method for producing a thin-film solar cell according to the present invention includes an i-type semiconductor layer included in at least one photoelectric conversion portion, and an oxygen concentration in the i-type semiconductor layer is 4 × 10 10 18 cm. — Under the conditions of 3 or less, the peak intensity of the signal due to the crystal component of the i-type semiconductor layer by Raman scattering measurement is I c, the peak intensity of the signal due to the amorphous component is I a, and the i-type If the substrate temperature during the fabrication of the semiconductor layer is T sub, it can be formed under the formation conditions satisfying the relational expression 7 0 0 ≤ T sub XI c / I a ≤ 1 6 0 0 (1).
それゆえ、 i型半導体層中の酸素濃度が 4 X 1 0 1 8 c m— 3以下の形 成条件下において、 高い光電変換効率を有する薄膜太陽電池を製造する ことができるという効果を奏する。 すなわち、 基板温度 T s u b と結晶化率 I c / I a との積が 7 0 0 よ り小さい場合には、 基板温度あるいは結晶化率が小さく なつており、 こ のよ うな形成条件下においては、 光電変換効率が低下してしまう。 Therefore, there is an effect that a thin-film solar cell having high photoelectric conversion efficiency can be manufactured under a forming condition where the oxygen concentration in the i-type semiconductor layer is 4 × 10 18 cm− 3 or less. That is, when the product of the substrate temperature T sub and the crystallization rate I c / I a is smaller than 700, the substrate temperature or the crystallization rate is low, and under such formation conditions, The photoelectric conversion efficiency will decrease.
一方、 基板温度 T s u b と結晶化率 I c I a との積が 1 6 0 0 より 大きい場合には、 基板温度および/または結晶化率が大きくなつており 、 このよ うな形成条件、 特に、 基板温度が上昇した場合においては、 i 型シリ コン層中の酸素が活性化して i型半導体層が n型化し、 上記と同 様に、 光電変換効率が低下してしまう。 On the other hand, when the product of the substrate temperature T sub and the crystallization rate I c I a is larger than 1600, the substrate temperature and / or the crystallization rate is increased. When the substrate temperature rises, oxygen in the i-type silicon layer is activated and the i-type semiconductor layer becomes n- type, and the photoelectric conversion efficiency decreases as described above.
そこで、 本発明の薄膜太陽電池の製造方法によれば、 i型半導体層中 の酸素濃度が 4 X 1 0 1 8 c m— 3以下の形成条件下においては、 上記関 係式 ( 1 ) を満たすような形成条件、 つまり、 基板温度に応じて結晶化 率を変化させて、 i型半導体層を形成することにより、 基板温度の高低 に関わらず、 以上のような光電変換効率の低下という不具合の発生を防 止して、 高い光電変換効率を得られる薄膜太陽電池を製造することがで きる。 Therefore, according to the method for manufacturing a thin-film solar cell of the present invention, the above relational expression (1) is satisfied under the formation conditions in which the oxygen concentration in the i-type semiconductor layer is 4 × 10 18 cm− 3 or less. By forming the i-type semiconductor layer by changing the crystallization rate in accordance with the formation conditions, i.e., the substrate temperature, the above-described problem of a decrease in photoelectric conversion efficiency can be achieved regardless of the substrate temperature. It is possible to produce a thin film solar cell that can prevent generation and obtain high photoelectric conversion efficiency.
本発明の薄膜太陽電池の製造方法は、 以上のように、 光電変換部に少 なく とも 1層含まれる i型半導体層を、 上記基板の基板温度が 2 5 0 °C 以下の形成条件下においては、 ラマン散乱測定による上記 i型半導体層 の結晶成分に起因する信号のビーク強度を I c 、 アモルファス成分に起 因する信号のピーク強度を I a、 該 i型半導体層の作製時の基板温度を T s u b とすると、 関係式 7 0 0≤ T s u b X I c / I a ≤ 1 6 0 0  As described above, the method for producing a thin-film solar cell according to the present invention includes forming an i-type semiconductor layer contained in at least one layer in a photoelectric conversion portion under a forming condition in which the substrate temperature of the substrate is 250 ° C. or less. Is the beak intensity of the signal due to the crystalline component of the i-type semiconductor layer measured by Raman scattering, I c, the peak intensity of the signal due to the amorphous component is I a, and the substrate temperature during the production of the i-type semiconductor layer Where T sub is the relation 7 0 0≤ T sub XI c / I a ≤ 1 6 0 0
( 1 ) を満たす形成条件下で形成する方法である。  It is a method of forming under the forming conditions satisfying (1).
それゆえ、 基板温度が 2 5 0 °C以下の形成条件下において、 高い光電 変換効率を有する薄膜太陽電池を製造することができるという効果を奏 する。 Therefore, there is an effect that a thin-film solar cell having high photoelectric conversion efficiency can be manufactured under the formation conditions where the substrate temperature is 2550 ° C. or less. To do.
すなわち、 プラズマ C V D法等により形成された i型半導体層は、 基 板温度が上昇すると結晶粒径が増大し、 結晶部分の品質は向上する。 し かし、 i型半導体層に含まれる酸素が活性化して i型半導体層が n型化 し、 また、 水素が脱離して欠陥が増大するため、 薄膜太陽電池の光電変 換効率は低下してしまう。  That is, the i-type semiconductor layer formed by the plasma C VD method or the like increases the crystal grain size and the quality of the crystal part as the substrate temperature rises. However, oxygen contained in the i-type semiconductor layer is activated and the i-type semiconductor layer becomes n-type, and hydrogen is desorbed and defects are increased, so that the photoelectric conversion efficiency of the thin-film solar cell decreases. End up.
そこで、 本発明の薄膜太陽電池の製造方法では、 基板温度が 2 5 0 °C 以下の形成条件下においては、 上記関係式 ( 1 ) を満たすような形成条 件で i型半導体層を形成することで、 上記のよ うな、 光電変換効率の低 下を伴うことなく、 高い光電変換効率を有する薄膜太陽電池を製造する ことができる。  Therefore, in the method for manufacturing a thin-film solar cell of the present invention, the i-type semiconductor layer is formed under the formation conditions satisfying the relational expression (1) under the formation conditions where the substrate temperature is 2550 ° C. or less. Thus, a thin film solar cell having a high photoelectric conversion efficiency can be produced without accompanying a decrease in the photoelectric conversion efficiency as described above.
また、 上記薄膜太陽電池の製造方法により製造された薄膜太陽電池で あって、 上記 i型半導体層の製膜初期段階において、 非晶質基板上で製 膜する際に結晶化率が高くなる条件で該 i型半導体層が形成されており 、 結晶化率が膜厚方向の全領域で上記関係式 ( 1 ) を満たすことがより 好ましい。  The thin-film solar cell manufactured by the above-described method for manufacturing a thin-film solar cell, wherein the crystallization rate is high when forming the film on an amorphous substrate in the initial stage of forming the i-type semiconductor layer. More preferably, the i-type semiconductor layer is formed, and the crystallization rate satisfies the relational expression (1) in the entire region in the film thickness direction.
それゆえ、 i型半導体層の厚さ方向の全領域で、 上記関係式 ( 1 ) を 満たすことができ、 厚さ方向で内部電界の偏りのない薄膜太陽電池を製 造することができるという効果を奏する。  Therefore, the above-mentioned relational expression (1) can be satisfied in the entire region of the i-type semiconductor layer in the thickness direction, and a thin film solar cell free from internal electric field bias in the thickness direction can be manufactured. Play.
すなわち、 一般に、 微結晶シリ コン層を非晶質基板上に形成した場合 には、 膜厚の増加に伴って結晶化率が増加する傾向があるため、 非常に 膜厚が薄い半導体層を形成した場合には、 結晶化率の増加が飽和状態ま で達しておらず、 i型半導体層中の製膜初期段階においては結晶化率が 低くなつてしまう。 そこで、 本実施形態の薄膜太陽電池の製造方法では、 i型半導体層の 製膜初期段階には、 結晶化率が高く なる条件と して、 例えば、 水素希釈 率が高い条件、 投入電力の高い条件等で製膜し、 膜厚の増加に伴って製 膜条件を適宜変更することで、 製膜初期段階に形成された部分において 結晶化率が低下してしま うことを防止できる。 That is, in general, when a microcrystalline silicon layer is formed on an amorphous substrate, the crystallization rate tends to increase as the film thickness increases, so a semiconductor layer with a very thin film thickness is formed. In this case, the increase in the crystallization rate does not reach the saturation state, and the crystallization rate is lowered at the initial stage of film formation in the i-type semiconductor layer. Therefore, in the method for manufacturing a thin-film solar cell of the present embodiment, in the initial stage of film formation of the i-type semiconductor layer, for example, the conditions for increasing the crystallization rate are, for example, the conditions for high hydrogen dilution rate and the high input power It is possible to prevent the crystallization rate from being lowered in the portion formed in the initial stage of film formation by forming the film according to conditions, etc., and appropriately changing the film formation conditions as the film thickness increases.
本発明の薄膜太陽電池は、 以上のように、 上記薄膜太陽電池の製造方 法によ り製造された薄膜太陽電池であって、 上記 i型半導体層の ( 2 2 0 ) X線回折ピークの積分強度 I 2 2 。 、 ( 1 1 1 ) X線回折ピークの積 分弓虽度 I 丄 とすると、 これらの比 I 2 2。 / I i i は、 関係式 I 2 2 0 / I !!!≥ 5 ( 2 ) を満たしている構成である。 The thin film solar cell of the present invention is a thin film solar cell manufactured by the method for manufacturing a thin film solar cell as described above, and has a (2 2 0) X-ray diffraction peak of the i-type semiconductor layer. Integrated intensity I 2 2 . , (1 1 1) X-ray diffraction peak integrated bow angle I 、, these ratios I 2 2 . / I ii is the relation I 2 2 0 / I! ! ! ≥ 5 (2).
それゆえ、 上記 i型半導体層中の酸素濃度、 基板温度、 結晶化率等に 応じた形成条件を特定することで、 安定して高い光電変換効率を有する 薄膜太陽電池を製造することができ、 上記薄膜太陽電池の中でも、 よ り 確実に光電変換効率の高い薄膜太陽電池を得ることができるという効果 を奏する。  Therefore, by specifying the formation conditions according to the oxygen concentration in the i-type semiconductor layer, the substrate temperature, the crystallization rate, etc., it is possible to manufacture a thin-film solar cell having a high photoelectric conversion efficiency stably, Among the above thin film solar cells, there is an effect that a thin film solar cell with high photoelectric conversion efficiency can be obtained more reliably.
尚、 発明を実施するための最良の形態の項においてなした具体的な実 施態様または実施例は、 あく までも、 本発明の技術内容を明らかにする ものであって、 そのような具体例にのみ限定して狭義に解釈されるべき ものではなく、 本発明の精神と次に記載する特許請求の範囲内で、 いろ いろと変更して実施することができるものである。 産業上の利用の可能性  It should be noted that the specific embodiments or examples made in the best mode for carrying out the invention are to clarify the technical contents of the present invention. The present invention should not be construed as narrowly limited to the above, but can be implemented with various modifications within the spirit of the present invention and the scope of the following claims. Industrial applicability
本発明の薄膜太陽電池の製造方法によれば、 i型半導体層中の酸素濃 度が 4 X 1 0 1 8 c m— 3以下の形成条件下において、 高い光電変換効率 を有する薄膜太陽電池を製造するこ とができる。 According to the method for manufacturing a thin-film solar cell of the present invention, high photoelectric conversion efficiency is obtained under the formation conditions in which the oxygen concentration in the i-type semiconductor layer is 4 × 10 18 cm− 3 or less. It is possible to manufacture a thin film solar cell having
すなわち、 基板温度 T s u b と結晶化率 I c / I a との積が 7 0 0 よ り小さい場合には、 基板温度あるいは結晶化率が小さくなつており、 こ のよ うな形成条件下においては、 光電変換効率が低下してしまう。 That is, when the product of the substrate temperature T sub and the crystallization rate I c / I a is smaller than 700, the substrate temperature or the crystallization rate is low, and under such formation conditions, The photoelectric conversion efficiency will decrease.
一方、 基板温度 T s u b と結晶化率 I c Z I a との積が 1 6 0 0より 大きい場合には、 基板温度および/または結晶化率が大きくなっており 、 このよ うな形成条件、 特に、 基板温度が上昇した場合においては、 i 型シリ コン層中の酸素が活性化して i型半導体層が n型化し、 また、 水 素が脱離して欠陥が増大するため、 上記と同様に、 光電変換効率が低下 してしま う。 On the other hand, when the product of the substrate temperature T sub and the crystallization rate I c ZI a is larger than 1600, the substrate temperature and / or the crystallization rate is increased. When the substrate temperature rises, oxygen in the i-type silicon layer is activated and the i-type semiconductor layer becomes n- type, and hydrogen is desorbed and defects are increased. Conversion efficiency will decrease.
そこで、 本発明の薄膜太陽電池の製造方法によれば、 i型半導体層中 の酸素濃度が 4 X 1 0 1 8 c m— 3以下の形成条件下においては、 上記関 係式 ( 1 ) を満たすような形成条件、 つまり、 基板温度に応じて結晶化 率を変化させて、 i型半導体層を形成することにより、 基板温度の高低 に関わらず、 以上のような光電変換効率の低下という不具合の発生を防 止して、 高い光電変換効率を得られる薄膜太陽電池を製造することがで きる。 Therefore, according to the method for manufacturing a thin-film solar cell of the present invention, the above relational expression (1) is satisfied under the formation conditions in which the oxygen concentration in the i-type semiconductor layer is 4 × 10 18 cm− 3 or less. By forming the i-type semiconductor layer by changing the crystallization rate in accordance with the formation conditions, i.e., the substrate temperature, the above-described problem of a decrease in photoelectric conversion efficiency can be achieved regardless of the substrate temperature. It is possible to produce a thin film solar cell that can prevent generation and obtain high photoelectric conversion efficiency.
本発明の薄膜太陽電池の製造方法によれば、 基板温度が 2 5 0 °C以下 の形成条件下において、 高い光電変換効率を有する薄膜太陽電池を製造 することができる。  According to the method for producing a thin-film solar cell of the present invention, a thin-film solar cell having high photoelectric conversion efficiency can be produced under the formation conditions where the substrate temperature is 2550 ° C. or less.
すなわち、 プラズマ C V D法等により形成された i型半導体層は、 '基 板温度が上昇すると結晶粒径が増大し、 結晶部分の品質は向上する。 し かし、 基板温度が高くなると、 i型半導体層に含まれる酸素が活性化し て i型半導体層が n型化し、 また、 水素が脱離して欠陥が増大するため 、 薄膜太陽電池の光電変換効率は低下してしまう。 In other words, in an i-type semiconductor layer formed by plasma CVD or the like, the crystal grain size increases and the quality of the crystal part improves as the substrate temperature rises. However, when the substrate temperature rises, oxygen contained in the i-type semiconductor layer is activated and the i-type semiconductor layer becomes n-type, and hydrogen is desorbed and defects increase. The photoelectric conversion efficiency of the thin film solar cell will decrease.
そこで、 本発明の薄膜太陽電池の製造方法では、 基板温度が 2 5 0 °C 以下の形成条件下においては、 上記のよ うな光電変換効率の低下を伴う. ことなく、 上記関係式 ( 1 ) を満たすような形成条件で i型半導体層を 形成することで、 高い光電変換効率を有する薄膜太陽電池を製造するこ とができる。  Therefore, in the method for manufacturing a thin-film solar cell of the present invention, the above relational expression (1) can be obtained without the above-described decrease in photoelectric conversion efficiency under the formation conditions where the substrate temperature is 2550 ° C. or less. By forming the i-type semiconductor layer under the formation conditions that satisfy the above conditions, a thin film solar cell having high photoelectric conversion efficiency can be manufactured.
これにより、 i型半導体層の厚さ方向の全領域で、 上記関係式 ( 1 ) を満たすことができ、 厚さ方向で内部電界の偏りのない薄膜太陽電池を 製造することができる。  Thereby, the above-mentioned relational expression (1) can be satisfied in the entire region in the thickness direction of the i-type semiconductor layer, and a thin-film solar cell free from bias of the internal electric field in the thickness direction can be manufactured.
すなわち、 一般に、 微結晶シリ コン層を非晶質基板上に形成した場合 には、 膜厚の増加に伴って結晶化率が増加する傾向があるため、 非常に 膜厚が薄い半導体層を形成した場合には、 結晶化率の増加が飽和状態ま で達しておらず、 i型半導体層中の製膜初期段階においては結晶化率が 低くなってしまう。  That is, in general, when a microcrystalline silicon layer is formed on an amorphous substrate, the crystallization rate tends to increase as the film thickness increases, so a semiconductor layer with a very thin film thickness is formed. In this case, the increase in the crystallization rate does not reach the saturation state, and the crystallization rate is lowered at the initial stage of film formation in the i-type semiconductor layer.
そこで、 本発明の薄膜太陽電池の製造方法では、 i型半導体層の製膜 初期段階には、 結晶化率が高くなる条件として、 例えば、 水素希釈率が 高い条件、 投入電力の高い条件等で製膜し、 膜厚の増加に伴って製膜条 件を適宜変更することで、 製膜初期段階に形成された部分において結晶 化率が低下してしまうことを防止できる。  Therefore, in the method for manufacturing a thin film solar cell of the present invention, in the initial stage of forming the i-type semiconductor layer, conditions for increasing the crystallization rate include, for example, a condition with a high hydrogen dilution rate and a condition with a high input power. By forming the film and appropriately changing the film forming conditions as the film thickness increases, it is possible to prevent the crystallization rate from being lowered in the portion formed in the initial stage of film formation.
本発明の薄膜木陽電池の製造方法によれば、 上記 i型半導体層中の酸 素濃度、 基板温度、 結晶化率等に応じた形成条件を特定することで、 安 定して高い光電変換効率を有する薄膜太陽電池を製造することができ、 上記薄膜太陽電池の中でも、 より確実に光電変換効率の高い薄膜太陽電 池を得ることができる。  According to the method for manufacturing a thin-film Kiyo battery of the present invention, by specifying the formation conditions according to the oxygen concentration, substrate temperature, crystallization rate, etc. in the i-type semiconductor layer, stable and high photoelectric conversion is achieved. A thin film solar cell having high efficiency can be manufactured, and among the above thin film solar cells, a thin film solar cell with high photoelectric conversion efficiency can be obtained more reliably.

Claims

WO 03/07351S PCT/JPO雇 999 35 請 求 の 範 囲 WO 03 / 07351S Hiring PCT / JPO 999 35 Scope of claim
1. 基板上に光電変換部を有し、 該光電変換部において入射光を電気工 ネルギ一に変換する薄膜太陽電池の製造方法において、 1. In a method for manufacturing a thin-film solar cell, which has a photoelectric conversion part on a substrate and converts incident light into electric energy in the photoelectric conversion part.
上記光電変換部に少なく とも 1層含まれる i型半導体層を、 該 i型半 導体層中の酸素濃度が 4 X 1 0 1 8 c m_3以下の条件下においては、 ラマン散乱測定による上記 i型半導体層の結晶成分に起因する信号の ピーク強度を I c、 アモルファス成分に起因する信号のピーク強度を I a、 該 i型半導体層の作製時の基板温度を T s u b とすると、 下記の関 係式 ( 1 ) を満たす形成条件下で形成することを特徴とする薄膜太陽電 池の製造方法。 The i-type semiconductor layer included one layer at least on the photoelectric converter, the oxygen concentration is 4 X 1 0 1 8 c m_ 3 under the following conditions of the i-type semi-conductor layer, the i by Raman scattering measurement If the peak intensity of the signal due to the crystal component of the n-type semiconductor layer is I c, the peak intensity of the signal due to the amorphous component is I a, and the substrate temperature at the time of fabrication of the i-type semiconductor layer is T sub, then A method for producing a thin-film solar cell, characterized in that the thin-film solar cell is formed under formation conditions satisfying the relational expression (1).
7 0 0≤ T s u b X I c / I a ≤ 1 6 0 0 ( 1 ) 7 0 0≤ T s u b X I c / I a ≤ 1 6 0 0 (1)
2. 基板上に光電変換部を有し、 該光電変換部において入射光を電気工 ネルギ一に変換する薄膜太陽電池の製造方法において、 2. In a method for manufacturing a thin-film solar cell, which has a photoelectric conversion part on a substrate and converts incident light into electric energy in the photoelectric conversion part.
上記光電変換部に少なく とも 1層含まれる i型半導体層を、 上記基板 の基板温度が 2 5 0 °C以下の形成条件下においては、  The i-type semiconductor layer included in at least one layer in the photoelectric conversion portion is subjected to a formation condition in which the substrate temperature of the substrate is 2500 ° C. or less.
ラマン散乱測定による上記 i型半導体層の結晶成分に起因する信号の ピーク強度を I c、 アモルファス成分に起因する信号のピーク強度を I a、 該 i型半導体層の作製時の基板温度を T s u b とすると、 下記の関 係式 ( 1 ) を満たす形成条件下で形成することを特徴とする薄膜太陽電 池の製造方法。  The peak intensity of the signal due to the crystalline component of the i-type semiconductor layer measured by Raman scattering is I c, the peak intensity of the signal due to the amorphous component is I a, and the substrate temperature when the i-type semiconductor layer is fabricated is T sub Then, a method for producing a thin-film solar cell, characterized in that the thin-film solar cell is formed under formation conditions that satisfy the following relational expression (1).
7 0 0 ≤ T s u b X I c / l a ≤ 1 6 0 0 ( 1 ) 7 0 0 ≤ T s u b X I c / l a ≤ 1 6 0 0 (1)
3. 請求の範囲第 1項または第 2項に記載の薄膜太陽電池の製造方法に より製造された薄膜太陽電池であって、 上記 i型半導体層の製膜初期段階において、 非晶質基板上で製膜する 際に結晶化率が高くなる条件で該 i型半導体層が形成されており、 結晶 化率が膜厚方向の全領域で上記関係式 ( 1 ) を満たすことを特徴とする 薄膜太陽電池。 3. A thin film solar cell manufactured by the method for manufacturing a thin film solar cell according to claim 1 or 2, In the initial stage of film formation of the i-type semiconductor layer, the i-type semiconductor layer is formed under the condition that the crystallization rate is high when the film is formed on the amorphous substrate. A thin-film solar cell characterized by satisfying the above relational expression (1) in all regions.
4. 請求の範囲第 1項または第 2項に記載の薄膜太陽電池の製造方法に より製造された薄膜太陽電池であって、 4. A thin film solar cell manufactured by the method for manufacturing a thin film solar cell according to claim 1 or 2,
上記 i型半導体層の ( 2 2 0 ) X線回折ピークの積分強度 I 2 2。、 ( 1 1 1 ) X線回折ピークの積分強度 Ι 1 1 とすると、 これらの比 1 2 2。 Z l ^ iは、 以下の関係式 ( 2 ) を満たしていることを特徴とする薄膜 太陽電池。 The integrated intensity I 2 2 of the (2 2 0) X-ray diffraction peak of the i-type semiconductor layer. (1 1 1) If the integrated intensity of the X-ray diffraction peak is Ι 1 1 , the ratio of these 1 2 2 . Z l ^ i is a thin film solar cell characterized by satisfying the following relational expression (2).
I 2 2 0 / I 1 1 1 = °  I 2 2 0 / I 1 1 1 = °
5. 基板上に光電変換部を有し、 該光電変換部において入射光を電気工 ネルギ一に変換する薄膜太陽電池において、  5. In a thin-film solar cell having a photoelectric conversion part on a substrate and converting incident light into electric energy in the photoelectric conversion part,
上記光電変換部に少なく とも 1層含まれる i型半導体層を、 該 i型半 導体層中の酸素濃度が 4 X 1 0 1 8 c m— 3以下の条件下においては、 ラマン散乱測定による上記 i型半導体層の結晶成分に起因する信号の ピーク強度を I c、 アモルファス成分に起因する信号のピーク強度を I a、 該 i型半導体層の作製時の基板温度を T s u b とすると、 下記の関 係式 ( 1 ) を満たす形成条件下で形成された薄膜太陽電池。 The i-type semiconductor layer included in at least one layer in the photoelectric conversion portion is subjected to Raman scattering measurement under the above-mentioned i-type semiconductor layer under the condition that the oxygen concentration in the i-type semiconductor layer is 4 × 10 18 cm− 3 or less. If the peak intensity of the signal due to the crystal component of the n-type semiconductor layer is I c, the peak intensity of the signal due to the amorphous component is I a, and the substrate temperature at the time of fabrication of the i-type semiconductor layer is T sub, then A thin film solar cell formed under the formation conditions satisfying the relational expression (1).
7 0 0 ≤ T s u b X I c / l a ≤ 1 6 0 0 ( 1 ) 7 0 0 ≤ T s u b X I c / l a ≤ 1 6 0 0 (1)
6. 基板上に光電変換部を有し、 該光電変換部において入射光を電気工 ネルギ一に変換する薄膜太陽電池において、 6. In a thin-film solar cell having a photoelectric conversion part on a substrate and converting incident light into electric energy in the photoelectric conversion part,
上記光電変換部に少なく とも 1層含まれる i型半導体層を、 上記基板 の基板温度が 2 5 0 °C以下の形成条件下においては、 ラマン散乱測定による上記 i型半導体層の結晶成分に起因する信号の ピーク強度を I c、 アモルファス成分に起因する信号のピーク強度を I a、 該 i型半導体層の作製時の基板温度を T s u b とすると、 下記の関 係式 ( 1 ) を満たす形成条件下で形成された薄膜太陽電池。 The i-type semiconductor layer included in at least one layer in the photoelectric conversion portion is subjected to a forming condition where the substrate temperature of the substrate is 2550 ° C. or lower. The peak intensity of the signal due to the crystalline component of the i-type semiconductor layer measured by Raman scattering is I c, the peak intensity of the signal due to the amorphous component is I a, and the substrate temperature at the time of fabrication of the i-type semiconductor layer is T sub Then, the thin film solar cell formed on the formation conditions which satisfy | fill the following relational expression (1).
7 0 0 ≤ T s u b X I c / l a ≤ 1 6 0 0 ( 1 ) 7 0 0 ≤ T s u b X I c / l a ≤ 1 6 0 0 (1)
7. 請求の範囲第 5項または第 6項に記載の薄膜太陽電池であって、 結晶化率が、 該 i型半導体層の膜厚方向の全領域で上記関係式 ( 1 ) を満たすことを特徴とする薄膜太陽電池。 7. The thin film solar cell according to claim 5 or 6, wherein the crystallization rate satisfies the relational expression (1) in the entire region in the film thickness direction of the i-type semiconductor layer. A thin film solar cell characterized.
8. 請求の範囲第 5項または第 6項に記載の薄膜太陽電池であって、 上記 i型半導体層の ( 2 2 0 ) X線回折ピークの積分強度 I 2 2。、 (8. The thin-film solar cell according to claim 5 or 6, wherein the integrated intensity I 2 2 of the (2 2 0) X-ray diffraction peak of the i-type semiconductor layer. , (
1 1 1 ) X線回折ピークの積分強度 とすると、 これらの比 1 2 21 1 1) If the integrated intensity of the X-ray diffraction peak, then the ratio of these 1 2 2 .
I i tェは、 以下の関係式 ( 2 ) を満たしていることを特徴とする薄膜 太陽電池。 I i t is a thin film solar cell that satisfies the following relational expression (2).
I 2 2 o / I 1 1 1≥ 5 ( 2 )  I 2 2 o / I 1 1 1≥ 5 (2)
9. 単接合型の薄膜太陽電池である場合には、 上記光電変換層に微結晶 シリ コンを含む層を備えている請求の範囲第 5項〜第 8項の何れか 1項 に記載の薄膜太陽電池。  9. The thin film according to any one of claims 5 to 8, wherein in the case of a single-junction thin film solar cell, the photoelectric conversion layer includes a layer containing microcrystalline silicon. Solar cell.
1 0. 多接合型の薄膜太陽電池である場合には、 微結晶シリ コンを含む 層と非晶質シリ コンを含む層とが混在している請求の範囲第 5項〜第 8 項の何れか 1項に記載の薄膜太陽電池。  10. In the case of a multi-junction thin film solar cell, any one of claims 5 to 8 wherein a layer containing microcrystalline silicon and a layer containing amorphous silicon are mixed. 2. The thin film solar cell according to item 1.
PCT/JP2003/001999 2002-02-28 2003-02-24 Thin-film solar cell and its production method WO2003073515A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003211649A AU2003211649A1 (en) 2002-02-28 2003-02-24 Thin-film solar cell and its production method
JP2003572097A JP3943080B2 (en) 2002-02-28 2003-02-24 Method for manufacturing thin film solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002054721 2002-02-28
JP2002-54721 2002-02-28

Publications (1)

Publication Number Publication Date
WO2003073515A1 true WO2003073515A1 (en) 2003-09-04

Family

ID=27764409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001999 WO2003073515A1 (en) 2002-02-28 2003-02-24 Thin-film solar cell and its production method

Country Status (3)

Country Link
JP (1) JP3943080B2 (en)
AU (1) AU2003211649A1 (en)
WO (1) WO2003073515A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181768A (en) * 2010-03-02 2011-09-15 National Institute Of Advanced Industrial Science & Technology Method for manufacturing photoelectric conversion device
WO2011125251A1 (en) * 2010-04-09 2011-10-13 三菱電機株式会社 Method and apparatus for manufacturing thin film silicon solar cell
CN102473757A (en) * 2009-12-11 2012-05-23 三菱重工业株式会社 Process for production of photoelectric conversion device
WO2012117602A1 (en) * 2011-03-03 2012-09-07 大日本スクリーン製造株式会社 Crystallization-index acquisition device and crystallization-index acquisition method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5330723B2 (en) 2008-03-28 2013-10-30 三菱重工業株式会社 Photoelectric conversion device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232235A (en) * 1995-02-24 1997-09-05 Mitsui Toatsu Chem Inc Photoelectric conversion element
JPH11145498A (en) * 1997-11-10 1999-05-28 Kanegafuchi Chem Ind Co Ltd Silicon thin-film photoelectric converting device
JPH11233803A (en) * 1998-02-17 1999-08-27 Canon Inc Photovoltaic device and its manufacture
JPH11274527A (en) * 1998-03-24 1999-10-08 Sanyo Electric Co Ltd Photovoltaic device
JP2000349321A (en) * 1999-06-09 2000-12-15 Fuji Electric Co Ltd Thin-film solar battery and its manufacture
JP2001156311A (en) * 1999-11-30 2001-06-08 Sharp Corp Thin-film solar battery and its manufacturing method
JP2001237446A (en) * 2000-02-23 2001-08-31 Mitsubishi Heavy Ind Ltd Thin-film polycrystalline silicon, silicon-based photoelectric conversion element and its manufacturing method
JP2001267611A (en) * 2000-01-13 2001-09-28 Sharp Corp Thin-film solar battery and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232235A (en) * 1995-02-24 1997-09-05 Mitsui Toatsu Chem Inc Photoelectric conversion element
JPH11145498A (en) * 1997-11-10 1999-05-28 Kanegafuchi Chem Ind Co Ltd Silicon thin-film photoelectric converting device
JPH11233803A (en) * 1998-02-17 1999-08-27 Canon Inc Photovoltaic device and its manufacture
JPH11274527A (en) * 1998-03-24 1999-10-08 Sanyo Electric Co Ltd Photovoltaic device
JP2000349321A (en) * 1999-06-09 2000-12-15 Fuji Electric Co Ltd Thin-film solar battery and its manufacture
JP2001156311A (en) * 1999-11-30 2001-06-08 Sharp Corp Thin-film solar battery and its manufacturing method
JP2001267611A (en) * 2000-01-13 2001-09-28 Sharp Corp Thin-film solar battery and its manufacturing method
JP2001237446A (en) * 2000-02-23 2001-08-31 Mitsubishi Heavy Ind Ltd Thin-film polycrystalline silicon, silicon-based photoelectric conversion element and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102473757A (en) * 2009-12-11 2012-05-23 三菱重工业株式会社 Process for production of photoelectric conversion device
JP2011181768A (en) * 2010-03-02 2011-09-15 National Institute Of Advanced Industrial Science & Technology Method for manufacturing photoelectric conversion device
WO2011125251A1 (en) * 2010-04-09 2011-10-13 三菱電機株式会社 Method and apparatus for manufacturing thin film silicon solar cell
JP5220239B2 (en) * 2010-04-09 2013-06-26 三菱電機株式会社 Thin-film silicon solar cell manufacturing method and manufacturing apparatus
WO2012117602A1 (en) * 2011-03-03 2012-09-07 大日本スクリーン製造株式会社 Crystallization-index acquisition device and crystallization-index acquisition method
JP2012181165A (en) * 2011-03-03 2012-09-20 Dainippon Screen Mfg Co Ltd Crystallization index acquisition apparatus and crystallization index acquisition method

Also Published As

Publication number Publication date
JP3943080B2 (en) 2007-07-11
AU2003211649A1 (en) 2003-09-09
JPWO2003073515A1 (en) 2005-06-23

Similar Documents

Publication Publication Date Title
US7030313B2 (en) Thin film solar cell and method of manufacturing the same
Tsakalakos et al. Silicon nanowire solar cells
JP5285651B2 (en) Manufacturing method of solar cell
CN102447013A (en) Thin-film solar cell fabrication process, deposition method for solar cell precursor layer stack, and solar cell precursor layer stack
JP4193962B2 (en) Solar cell substrate and thin film solar cell
Shaban et al. Electrical and photovoltaic properties of n-type nanocrystalline-FeSi2/p-type Si heterojunctions prepared by facing-targets direct-current sputtering at room temperature
Li et al. Nanocrystalline germanium nip solar cells with spectral sensitivities extending into 1450 nm
CN106887483A (en) Silicon substrate heterojunction solar cell and preparation method thereof
JP4248793B2 (en) Method for manufacturing thin film solar cell
JP2001028453A (en) Photovoltaic device, manufacture thereof, building material and power generating device
Sarker et al. Preparation and characterization of n-type microcrystalline hydrogenated silicon oxide films
JP4780931B2 (en) Photoelectric conversion device and photovoltaic power generation device
WO2003073515A1 (en) Thin-film solar cell and its production method
JP5419160B2 (en) Photovoltaic power generation apparatus and manufacturing method thereof
JPH11233803A (en) Photovoltaic device and its manufacture
JP3792376B2 (en) Silicon-based thin film photoelectric conversion device
JP2004119491A (en) Method for manufacturing thin film solar battery, and thin film solar battery manufactured thereby
CN109037392A (en) A kind of production technology of graphene/silicon structure solar battery
JP2005142358A (en) Solar battery
JP2002280590A (en) Multi-junction type thin-film solar battery and method for manufacturing the same
Li et al. Influence of boron doping amount on properties of ZnO: B films grown by LPCVD technique and its correlation to a-Si: H/μc-Si: H tandem solar cells
JP2005159320A (en) Solar cell and manufacturing method for the same
Xiao-Yong et al. Characterized microstructure and electrical properties of hydrogenated nanocrystalline silicon films by Raman and electrical conductivity spectra
CN116093179B (en) Solar cell, preparation method thereof and electric equipment
CN117766640B (en) Flexible silicon heterojunction solar cell with high photoelectric conversion efficiency and manufacturing method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003572097

Country of ref document: JP

122 Ep: pct application non-entry in european phase