JP5419160B2 - Photovoltaic power generation apparatus and manufacturing method thereof - Google Patents
Photovoltaic power generation apparatus and manufacturing method thereof Download PDFInfo
- Publication number
- JP5419160B2 JP5419160B2 JP2009295595A JP2009295595A JP5419160B2 JP 5419160 B2 JP5419160 B2 JP 5419160B2 JP 2009295595 A JP2009295595 A JP 2009295595A JP 2009295595 A JP2009295595 A JP 2009295595A JP 5419160 B2 JP5419160 B2 JP 5419160B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- photoelectric conversion
- alloy
- oriented
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/541—CuInSe2 material PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/546—Polycrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Description
本発明は、太陽電池等に好適な光発電装置及びその製造方法に関する。 The present invention relates to a photovoltaic device suitable for a solar cell or the like and a method for manufacturing the photovoltaic device.
太陽電池の一種として、薄膜シリコン太陽電池とよばれるものがある。図5は、従来の薄膜シリコン太陽電池の構造を示す断面図である。 One type of solar cell is called a thin film silicon solar cell. FIG. 5 is a cross-sectional view showing the structure of a conventional thin film silicon solar cell.
この従来の薄膜シリコン太陽電池では、ガラス基板101上に透明電極102が形成され、その上にn型アモルファスSi薄膜103及びp型アモルファスSi薄膜104がこの順で形成されている。更に、p型アモルファスSi薄膜104上に透明電極105及び金属電極106が形成され、金属電極106上に保護層107が形成されている。 In this conventional thin film silicon solar cell, a transparent electrode 102 is formed on a glass substrate 101, and an n-type amorphous Si thin film 103 and a p-type amorphous Si thin film 104 are formed on the transparent electrode 102 in this order. Further, a transparent electrode 105 and a metal electrode 106 are formed on the p-type amorphous Si thin film 104, and a protective layer 107 is formed on the metal electrode 106.
このような薄膜シリコン太陽電池では、n型アモルファスSi薄膜103及びp型アモルファスSi薄膜104が光電変換層として機能し、太陽光等の光から発電を行う。 In such a thin film silicon solar cell, the n-type amorphous Si thin film 103 and the p-type amorphous Si thin film 104 function as a photoelectric conversion layer and generate power from light such as sunlight.
しかしながら、十分な発電効率を得ることができず、発電効率の向上が望まれている。 However, sufficient power generation efficiency cannot be obtained, and improvement of power generation efficiency is desired.
本発明は、安価な材料を用いても高い発電効率を得ることができる光発電装置及びその製造方法を提供することを目的とする。 An object of this invention is to provide the photovoltaic device which can obtain high power generation efficiency, even if it uses an inexpensive material, and its manufacturing method.
本願発明者は、前記課題を解決すべく鋭意検討を重ねた結果、以下に示す発明の諸態様に想到した。 As a result of intensive studies to solve the above problems, the present inventor has come up with various aspects of the invention described below.
本発明に係る第1の光発電装置の製造方法は、表面の結晶方位のずれが5度以内の金属基板上に、ニッケル、ニッケル合金、アルミニウム又はアルミニウム合金から構成された金属電極を形成する工程と、前記金属電極上に、多結晶シリコンから構成された光電変換層を前記金属電極と接するように光電変換層を形成する工程と、を有することを特徴とする。 In the first method for producing a photovoltaic device according to the present invention, a step of forming a metal electrode made of nickel, nickel alloy, aluminum, or aluminum alloy on a metal substrate whose surface crystal orientation shift is within 5 degrees. And a step of forming a photoelectric conversion layer made of polycrystalline silicon on the metal electrode so as to be in contact with the metal electrode .
本発明に係る第1の光発電装置は、表面の結晶方位のずれが5度以内の金属基板と、前記金属基板上に形成され、ニッケル、ニッケル合金、アルミニウム又はアルミニウム合金から構成された金属電極と、前記金属電極上に前記金属電極と接するように形成され、多結晶シリコンから構成された光電変換層と、を有することを特徴とする。 A first photovoltaic power generation apparatus according to the present invention includes a metal substrate having a crystal orientation deviation within 5 degrees on the surface , and a metal electrode formed on the metal substrate and made of nickel, nickel alloy, aluminum, or aluminum alloy And a photoelectric conversion layer formed on the metal electrode so as to be in contact with the metal electrode and made of polycrystalline silicon .
本発明に係る第2の光発電装置は、{100}<001>集合組織を有し、鉄、鉄合金、銅、若しくは銅合金からなる配向金属テープ、又は{110}<001>集合組織を有し、鉄合金からなる配向金属テープと、前記配向金属テープ上に形成され、ニッケル、ニッケル合金、アルミニウム又はアルミニウム合金から構成された配向金属電極と、前記配向金属電極上に形成された導電性酸化物層と、前記導電性酸化物層上に形成された半導体を含む光電変換層と、前記光電変換層上に形成された透明導電性物質層と、前記透明導電性物質層上に形成された表面集電電極と、を有し、前記導電性酸化物層は、(In 1-X1 Sn X1 ) 2 O 3+X1 (0≦X1≦0.2)、(Ti 1-X2 Nb X2 )O 2+X2/2 (0≦X2≦0.3)、Sr(Ti 1-X3 Nb X3 )O 3+X3/2 (0≦X3≦0.3)、(Sr 1-Y1 Ca Y1 )(Ti 1-X4 Nb X4 )O 3+X4/2 (0≦X4≦0.3、0≦Y1≦1)、及び(La X5 Sr Y2 Ca Z )(Ti A Cr B Mn C Fe D Co E Ni F Cu G )O 3+H (X5+Y2+Z=1、0≦X5≦1、0≦Y2≦1、0≦Z≦1、A+B+C+D+E+F+G=1、0≦A≦1、0≦B≦1、0≦C≦1、0≦D≦1、0≦E≦1、0≦F≦1、0≦G≦1、−0.1≦H≦0.1)からなる群から選択された少なくとも1種を含有することを特徴とする。 The second photovoltaic device according to the present invention has a {100} <001> texture, an oriented metal tape made of iron, iron alloy, copper, or copper alloy, or {110} <001> texture. And an oriented metal tape made of an iron alloy, an oriented metal electrode formed on the oriented metal tape and made of nickel, a nickel alloy, aluminum or an aluminum alloy, and a conductive material formed on the oriented metal electrode An oxide layer, a photoelectric conversion layer including a semiconductor formed on the conductive oxide layer, a transparent conductive material layer formed on the photoelectric conversion layer, and formed on the transparent conductive material layer and a surface collector electrodes, have a, the conductive oxide layer, (in 1-X1 Sn X1 ) 2 O 3 + X1 (0 ≦ X1 ≦ 0.2), (Ti 1-X2 Nb X2) O 2 + X2 / 2 (0 ≦ X2 ≦ 0.3), Sr (Ti 1-X3 Nb X3) 3 + X3 / 2 (0 ≦ X3 ≦ 0.3), (Sr 1-Y1 Ca Y1) (Ti 1-X4 Nb X4) O 3 + X4 / 2 (0 ≦ X4 ≦ 0.3,0 ≦ Y1 ≦ 1), and (La X5 Sr Y2 Ca Z) (Ti A Cr B Mn C Fe D Co E Ni F Cu G) O 3 + H (X5 + Y2 + Z = 1,0 ≦ X5 ≦ 1,0 ≦ Y2 ≦ 1,0 ≦ Z ≦ 1, A + B + C + D + E + F + G = 1, 0 ≦ A ≦ 1, 0 ≦ B ≦ 1, 0 ≦ C ≦ 1, 0 ≦ D ≦ 1, 0 ≦ E ≦ 1, 0 ≦ F ≦ 1, 0 ≦ G ≦ 1 , −0.1 ≦ H ≦ 0.1), at least one selected from the group consisting of:
本発明に係る第2の光発電装置の製造方法は、{100}<001>集合組織を有し、鉄、鉄合金、銅、若しくは銅合金からなる配向金属テープ上、又は{110}<001>集合組織を有し、鉄合金からなる配向金属テープ上に、ニッケル、ニッケル合金、アルミニウム又はアルミニウム合金から構成された金属電極層を形成する工程と、前記金属電極層上に導電性酸化物層を形成する工程と、前記導電性酸化物層上に半導体を含む光電変換層を形成する工程と、前記光電変換層上に透明導電性物質層を形成する工程と、前記透明導電性物質層上に表面集電電極を形成する工程と、を有し、前記導電性酸化物層は、(In 1-X1 Sn X1 ) 2 O 3+X1 (0≦X1≦0.2)、(Ti 1-X2 Nb X2 )O 2+X2/2 (0≦X2≦0.3)、Sr(Ti 1-X3 Nb X3 )O 3+X3/2 (0≦X3≦0.3)、(Sr 1-Y1 Ca Y1 )(Ti 1-X4 Nb X4 )O 3+X4/2 (0≦X4≦0.3、0≦Y1≦1)、及び(La X5 Sr Y2 Ca Z )(Ti A Cr B Mn C Fe D Co E Ni F Cu G )O 3+H (X5+Y2+Z=1、0≦X5≦1、0≦Y2≦1、0≦Z≦1、A+B+C+D+E+F+G=1、0≦A≦1、0≦B≦1、0≦C≦1、0≦D≦1、0≦E≦1、0≦F≦1、0≦G≦1、−0.1≦H≦0.1)からなる群から選択された少なくとも1種を含有することを特徴とする。 The manufacturing method of the 2nd photovoltaic device which concerns on this invention has {100} <001> texture, on the orientation metal tape which consists of iron, an iron alloy, copper, or a copper alloy, or {110} <001 > A step of forming a metal electrode layer made of nickel, nickel alloy, aluminum or aluminum alloy on an oriented metal tape having a texture and made of an iron alloy, and a conductive oxide layer on the metal electrode layer Forming a photoelectric conversion layer including a semiconductor on the conductive oxide layer, forming a transparent conductive material layer on the photoelectric conversion layer, and on the transparent conductive material layer possess a step, the forming surface collector electrode, the conductive oxide layer, (in 1-X1 Sn X1 ) 2 O 3 + X1 (0 ≦ X1 ≦ 0.2), (Ti 1- X2 Nb X2) O 2 + X2 / 2 (0 ≦ X2 ≦ 0.3), Sr (Ti 1-X3 N b X3 ) O 3 + X3 / 2 (0 ≦ X3 ≦ 0.3), (Sr 1−Y1 Ca Y1 ) (Ti 1−X4 Nb X4 ) O 3 + X4 / 2 (0 ≦ X4 ≦ 0.3, 0 ≦ Y1 ≦ 1), and (La X5 Sr Y2 Ca Z) (Ti A Cr B Mn C Fe D Co E Ni F Cu G) O 3 + H (X5 + Y2 + Z = 1,0 ≦ X5 ≦ 1,0 ≦ Y2 ≦ 1, 0 ≦ Z ≦ 1, A + B + C + D + E + F + G = 1, 0 ≦ A ≦ 1, 0 ≦ B ≦ 1, 0 ≦ C ≦ 1, 0 ≦ D ≦ 1, 0 ≦ E ≦ 1, 0 ≦ F ≦ 1, 0 ≦ G ≦ 1, −0.1 ≦ H ≦ 0.1). At least one selected from the group consisting of:
本発明によれば、安価な金属基板等を用いたとしても、光電変換層の結晶性を良好なものとすることができるため、高い発電効率を得ることができる。 According to the present invention, even if an inexpensive metal substrate or the like is used, since the crystallinity of the photoelectric conversion layer can be improved, high power generation efficiency can be obtained.
以下、本発明の実施形態について添付の図面を参照して具体的に説明する。 Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings.
(第1の実施形態)
先ず、本発明の第1の実施形態について説明する。図1は、本発明の第1の実施形態に係る薄膜シリコン太陽電池(光発電装置)の構造及び製造方法を示す断面図である。
(First embodiment)
First, a first embodiment of the present invention will be described. FIG. 1 is a cross-sectional view showing the structure and manufacturing method of a thin-film silicon solar cell (photovoltaic power generation device) according to the first embodiment of the present invention.
本実施形態に係る薄膜シリコン太陽電池では、金属基板1上に金属電極2が形成され、その上にn型多結晶Si薄膜3及びp型多結晶Si薄膜4がこの順で形成されている。更に、p型多結晶Si薄膜4上に透明電極5が形成され、その上に保護層6が形成されている。 In the thin film silicon solar cell according to this embodiment, a metal electrode 2 is formed on a metal substrate 1, and an n-type polycrystalline Si thin film 3 and a p-type polycrystalline Si thin film 4 are formed in this order. Further, a transparent electrode 5 is formed on the p-type polycrystalline Si thin film 4, and a protective layer 6 is formed thereon.
金属基板1は、例えば圧延再結晶集合組織を有する銅若しくは銅合金基板、又は鉄又は鉄合金基板である。この銅若しくは銅合金基板、又は鉄又は鉄合金基板では、数十μmの大きさの複数の単結晶が、その表面の結晶方位を揃えて並んでいる。このような金属基板1としては、例えば結晶方位が2軸方向とも所定の範囲内、例えば5度以内で揃った2軸配向金属テープを用いることができる。 The metal substrate 1 is, for example, a copper or copper alloy substrate having a rolled recrystallization texture, or an iron or iron alloy substrate. In this copper or copper alloy substrate, or iron or iron alloy substrate, a plurality of single crystals having a size of several tens of μm are arranged with their crystal orientations aligned. As such a metal substrate 1, for example, a biaxially oriented metal tape whose crystal orientation is aligned within a predetermined range in both biaxial directions, for example, within 5 degrees can be used.
金属電極2は、例えばニッケル膜、ニッケル合金膜、アルミニウム膜又はアルミニウム合金膜である。この金属電極2は、めっき法により金属電極1上に形成する。金属電極2の厚さは、例えば100nm乃至500nmである。金属電極2を構成する結晶粒は、金属基板1を構成する結晶粒の方位を引き継いでいる。従って、金属電極2は2軸配向めっき層となっている。 The metal electrode 2 is, for example, a nickel film, a nickel alloy film, an aluminum film, or an aluminum alloy film. The metal electrode 2 is formed on the metal electrode 1 by a plating method. The thickness of the metal electrode 2 is, for example, 100 nm to 500 nm. The crystal grains constituting the metal electrode 2 inherit the orientation of the crystal grains constituting the metal substrate 1. Therefore, the metal electrode 2 is a biaxially oriented plating layer.
n型多結晶Si薄膜3及びp型多結晶Si薄膜4は、エピタキシャル成長法により金属電極2上に形成する。n型多結晶Si薄膜3及びp型多結晶Si薄膜4の厚さは、例えばいずれも50nm乃至1000nmである。n型多結晶Si薄膜3及びp型多結晶Si薄膜4を構成する複数の単結晶体は、金属電極2を構成する結晶粒の方位を引き継いでいる。つまり、n型多結晶Si薄膜3及びp型多結晶Si薄膜4を構成する複数の単結晶体は、金属基板1を構成する結晶粒の方位を引き継いでいる。従って、n型多結晶Si薄膜3及びp型多結晶Si薄膜4は2軸配向多結晶シリコン膜となっている。金属基板1の表面における結晶方位のずれが5度以内であるため、n型多結晶Si薄膜3及びp型多結晶Si薄膜4の結晶方位のずれも極めて小さくなる。なお、金属電極2がニッケル膜又はニッケル合金膜である場合、n型多結晶Si薄膜3の形成の際に、一旦シリサイドが生成された後に、このシリサイドが分解されるため、比較的低温の熱処理で良質の薄膜を得ることができる。 The n-type polycrystalline Si thin film 3 and the p-type polycrystalline Si thin film 4 are formed on the metal electrode 2 by an epitaxial growth method. Each of the n-type polycrystalline Si thin film 3 and the p-type polycrystalline Si thin film 4 has a thickness of, for example, 50 nm to 1000 nm. The plurality of single crystals constituting the n-type polycrystalline Si thin film 3 and the p-type polycrystalline Si thin film 4 inherit the orientation of crystal grains constituting the metal electrode 2. That is, the plurality of single crystals constituting the n-type polycrystalline Si thin film 3 and the p-type polycrystalline Si thin film 4 inherit the orientation of the crystal grains constituting the metal substrate 1. Therefore, the n-type polycrystalline Si thin film 3 and the p-type polycrystalline Si thin film 4 are biaxially oriented polycrystalline silicon films. Since the deviation of the crystal orientation on the surface of the metal substrate 1 is within 5 degrees, the deviation of the crystal orientation of the n-type polycrystalline Si thin film 3 and the p-type polycrystalline Si thin film 4 is extremely small. When the metal electrode 2 is a nickel film or a nickel alloy film, the silicide is decomposed after the silicide is once generated when the n-type polycrystalline Si thin film 3 is formed. A good quality thin film can be obtained.
透明電極5は、例えばSn0.95Sb0.05O2からなる。透明電極5の厚さは、例えば100nm乃至1000nmであるが、特に限定されない。なお、透明電極5の材料として、酸化インジウムスズ(ITO)、又はAlがドーピングされたZnOを用いてもよい。 The transparent electrode 5 is made of, for example, Sn 0.95 Sb 0.05 O 2 . The thickness of the transparent electrode 5 is, for example, 100 nm to 1000 nm, but is not particularly limited. As a material for the transparent electrode 5, indium tin oxide (ITO) or ZnO doped with Al may be used.
保護層6の厚さは、例えば窒化珪素からなり、その厚さは200nm程度である。保護膜6の形成では、例えば、透明電極5の表面を化学エッチングしてテクスチャ構造を形成した後、この上に室温で反応性スパッタリング法により窒化珪素膜を形成する。 The thickness of the protective layer 6 is made of, for example, silicon nitride, and the thickness is about 200 nm. In the formation of the protective film 6, for example, the surface of the transparent electrode 5 is chemically etched to form a texture structure, and then a silicon nitride film is formed thereon by a reactive sputtering method at room temperature.
このように構成された太陽電池では、n型多結晶Si薄膜3及びp型多結晶Si薄膜4が光電変換層として機能し、光起電力を得ることができる。また、n型多結晶Si薄膜3及びp型多結晶Si薄膜4の結晶方位のずれが極めて小さく、結晶性が良好であるため、キャリアの再結合が生じにくく、高い発電効率を得ることができる。 In the solar cell thus configured, the n-type polycrystalline Si thin film 3 and the p-type polycrystalline Si thin film 4 function as a photoelectric conversion layer, and a photovoltaic power can be obtained. Further, since the crystal orientation deviation of the n-type polycrystalline Si thin film 3 and the p-type polycrystalline Si thin film 4 is extremely small and the crystallinity is good, carrier recombination hardly occurs and high power generation efficiency can be obtained. .
(第2の実施形態)
次に、本発明の第2の実施形態について説明する。図2は、本発明の第2の実施形態に係る薄膜シリコン太陽電池(光発電装置)の構造及び製造方法を示す断面図である。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. FIG. 2: is sectional drawing which shows the structure and manufacturing method of the thin film silicon solar cell (photovoltaic device) which concern on the 2nd Embodiment of this invention.
第2の実施形態では、第1の実施形態におけるn型多結晶Si薄膜3及びp型多結晶Si薄膜4の間に、i型多結晶Si薄膜7が形成されている。i型多結晶Si薄膜7の厚さは、例えば100nm乃至10000nmであり、好ましくは1000nm乃至2000nmである。i型多結晶Si薄膜7を構成する複数の単結晶体は、金属電極2を構成する結晶粒の方位を引き継いでいる。つまり、i型多結晶Si薄膜7を構成する複数の単結晶体は、金属基板1を構成する結晶粒の方位を引き継いでいる。従って、i型多結晶Si薄膜7は2軸配向多結晶シリコン膜となっている。金属基板1の表面における結晶方位のずれが5度以内であるため、i型多結晶Si薄膜7の結晶方位のずれも極めて小さくなる。他の構成は第1の実施形態と同様である。 In the second embodiment, an i-type polycrystalline Si thin film 7 is formed between the n-type polycrystalline Si thin film 3 and the p-type polycrystalline Si thin film 4 in the first embodiment. The thickness of the i-type polycrystalline Si thin film 7 is, for example, 100 nm to 10000 nm, preferably 1000 nm to 2000 nm. The plurality of single crystals constituting the i-type polycrystalline Si thin film 7 inherits the orientation of the crystal grains constituting the metal electrode 2. In other words, the plurality of single crystals constituting the i-type polycrystalline Si thin film 7 inherits the orientation of the crystal grains constituting the metal substrate 1. Therefore, the i-type polycrystalline Si thin film 7 is a biaxially oriented polycrystalline silicon film. Since the deviation of the crystal orientation on the surface of the metal substrate 1 is within 5 degrees, the deviation of the crystal orientation of the i-type polycrystalline Si thin film 7 is extremely small. Other configurations are the same as those of the first embodiment.
このように構成された太陽電池では、n型多結晶Si薄膜3、i型多結晶Si薄膜7及びp型多結晶Si薄膜4が光電変換層として機能し、光起電力を得ることができる。また、n型多結晶Si薄膜3、i型多結晶Si薄膜7及びp型多結晶Si薄膜4の結晶方位のずれが極めて小さく、結晶性が良好であるため、キャリアの再結合が生じにくく、高い発電効率を得ることができる。 In the solar cell thus configured, the n-type polycrystalline Si thin film 3, the i-type polycrystalline Si thin film 7 and the p-type polycrystalline Si thin film 4 function as a photoelectric conversion layer, and a photovoltaic power can be obtained. Further, since the crystal orientation deviation of the n-type polycrystalline Si thin film 3, the i-type polycrystalline Si thin film 7 and the p-type polycrystalline Si thin film 4 is extremely small and the crystallinity is good, carrier recombination hardly occurs. High power generation efficiency can be obtained.
(第3の実施形態)
次に、本発明の第3の実施形態について説明する。図3は、本発明の第3の実施形態に係る薄膜シリコン太陽電池(光発電装置)の構造及び製造方法を示す断面図である。
(Third embodiment)
Next, a third embodiment of the present invention will be described. FIG. 3: is sectional drawing which shows the structure and manufacturing method of the thin film silicon solar cell (photovoltaic device) concerning the 3rd Embodiment of this invention.
第3の実施形態では、第2の実施形態における金属電極2に代えて導電性酸化物層12が形成されている。導電性酸化物層12の厚さは、例えば10nm乃至1000nmであり、好ましくは10nm乃至50nmである。導電性酸化物層12の材料としては、例えば、(In1-XSnX)2O3+X(0≦X≦0.2)、(Ti1-XNbX)O2+X/2(0≦X≦0.3)、Sr(Ti1-XNbX)O3+X/2(0≦X≦0.3)、(Sr1-YCaY)(Ti1-XNbX)O3+X/2(0≦X≦0.3、0≦Y≦1)、及び(LaXSrYCaZ)(TiACrBMnCFeDCoENiFCuG)O3+H(X+Y+Z=1、0≦X≦1、0≦Y≦1、0≦Z≦1、A+B+C+D+E+F+G=1、0≦A≦1、0≦B≦1、0≦C≦1、0≦D≦1、0≦E≦1、0≦F≦1、0≦G≦1、−0.1≦H≦0.1)等が挙げられる。導電性酸化物層12は、金属基板1を構成する結晶粒の方位を引き継いでいる。従って、金属基板1の表面における結晶方位のずれが5度以内であるため、導電性酸化物層12の結晶方位のずれも極めて小さくなる。このため、n型多結晶Si薄膜3、i型多結晶Si薄膜7及びp型多結晶Si薄膜4の結晶方位のずれも極めて小さくなる。他の構成は第2の実施形態と同様である。 In the third embodiment, a conductive oxide layer 12 is formed in place of the metal electrode 2 in the second embodiment. The thickness of the conductive oxide layer 12 is, for example, 10 nm to 1000 nm, and preferably 10 nm to 50 nm. Examples of the material of the conductive oxide layer 12 include (In 1−X Sn X ) 2 O 3 + X (0 ≦ X ≦ 0.2), (Ti 1−X Nb X ) O 2 + X / 2. (0 ≦ X ≦ 0.3), Sr (Ti 1−X Nb X ) O 3 + X / 2 (0 ≦ X ≦ 0.3), (Sr 1−Y Ca Y ) (Ti 1−X Nb X ) O 3 + X / 2 ( 0 ≦ X ≦ 0.3,0 ≦ Y ≦ 1), and (La X Sr Y Ca Z) (Ti A Cr B Mn C Fe D Co E Ni F Cu G) O 3 + H (X + Y + Z = 1, 0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1, A + B + C + D + E + F + G = 1, 0 ≦ A ≦ 1, 0 ≦ B ≦ 1, 0 ≦ C ≦ 1, 0 ≦ D ≦ 1, 0 ≦ E ≦ 1, 0 ≦ F ≦ 1, 0 ≦ G ≦ 1, −0.1 ≦ H ≦ 0.1) and the like. The conductive oxide layer 12 inherits the orientation of crystal grains constituting the metal substrate 1. Therefore, since the deviation of the crystal orientation on the surface of the metal substrate 1 is within 5 degrees, the deviation of the crystal orientation of the conductive oxide layer 12 is extremely small. For this reason, the deviation of the crystal orientation of the n-type polycrystalline Si thin film 3, the i-type polycrystalline Si thin film 7 and the p-type polycrystalline Si thin film 4 is extremely small. Other configurations are the same as those of the second embodiment.
このような第3の実施形態によっても第2の実施形態と同様の作用及び効果を得ることができる。 Also according to the third embodiment, the same operation and effect as those of the second embodiment can be obtained.
(第4の実施形態)
次に、本発明の第4の実施形態について説明する。図4は、本発明の第4の実施形態に係る薄膜シリコン太陽電池(光発電装置)の構造及び製造方法を示す断面図である。
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described. FIG. 4: is sectional drawing which shows the structure and manufacturing method of the thin film silicon solar cell (photovoltaic device) which concern on the 4th Embodiment of this invention.
第4の実施形態では、第2の実施形態における金属電極2とn型多結晶Si薄膜3との間に導電性酸化物層12が形成されている。他の構成は第2の実施形態と同様である。 In the fourth embodiment, a conductive oxide layer 12 is formed between the metal electrode 2 and the n-type polycrystalline Si thin film 3 in the second embodiment. Other configurations are the same as those of the second embodiment.
このような第4の実施形態によっても第2の実施形態と同様の作用及び効果を得ることができる。 Also according to the fourth embodiment, the same operations and effects as those of the second embodiment can be obtained.
なお、金属基板1の表面は完全に揃っている必要はないが、その結晶方位のずれは、結晶のx軸方向、y軸方向及びz軸方向のいずれの方向においても、5度以内であることが好ましい。これは、20%以上の高い発電効率を得るためであり、ずれが5度を超えると、発電効率が10%程度まで低下することがある。 The surfaces of the metal substrate 1 do not have to be perfectly aligned, but the crystal orientation deviation is within 5 degrees in any of the x-axis direction, the y-axis direction, and the z-axis direction of the crystal. It is preferable. This is for obtaining a high power generation efficiency of 20% or more. If the deviation exceeds 5 degrees, the power generation efficiency may be reduced to about 10%.
また、光電変換層の材料として、Siに代えて、Cu(In,Ga)Se2、Cu(In,Ga)(Se,S)2、又はCuInS2を用いてもよい。 Further, as a material for the photoelectric conversion layer, Cu (In, Ga) Se 2 , Cu (In, Ga) (Se, S) 2 , or CuInS 2 may be used instead of Si.
また、これらの実施形態における金属電極2及び導電性酸化物層12の双方が設けられていなくてもよい。 Moreover, both the metal electrode 2 and the conductive oxide layer 12 in these embodiments may not be provided.
次に、本願発明者が実際に行った種々の実験について説明する。 Next, various experiments actually performed by the inventor will be described.
[実験1]
純度が99質量%のFeの単結晶を、{100}面が上下面に、長手方向に[001]方向が平行となるように切り出し、25℃において、中間焼鈍なしで85%の圧延加工を施して、厚さが0.1mmの圧延テープを作製した。次いで、この圧延テープを還元雰囲気中、1000℃で20時間熱処理して、{100}<001>集合組織を有する配向鉄テープ(試料No.1)を得た。
[Experiment 1]
A single crystal of 99% by mass of Fe is cut out so that the {100} plane is the upper and lower surfaces and the [001] direction is parallel to the longitudinal direction, and at 25 ° C., 85% rolling without intermediate annealing is performed. To produce a rolled tape having a thickness of 0.1 mm. Next, this rolled tape was heat-treated at 1000 ° C. for 20 hours in a reducing atmosphere to obtain an oriented iron tape (sample No. 1) having a {100} <001> texture.
Fe:97質量%−Si:3質量%合金の単結晶を、{100}面が上下面に、長手方向に[001]方向が平行となるように板状に切り出し、25℃において、中間焼鈍なしで85%の圧延加工を施して、厚さが0.1mmの圧延テープを作製した。次いで、この圧延テープを還元雰囲気中、1000℃で20時間熱処理して、{100}<001>集合組織を有する配向鉄合金テープ(試料No.2)を得た。 A single crystal of an alloy of Fe: 97% by mass-Si: 3% by mass is cut into a plate shape so that the {100} plane is the upper and lower surfaces and the [001] direction is parallel to the longitudinal direction. A rolled tape having a thickness of 0.1 mm was produced by performing a rolling process of 85% without using the tape. Next, this rolled tape was heat-treated at 1000 ° C. for 20 hours in a reducing atmosphere to obtain an oriented iron alloy tape (Sample No. 2) having a {100} <001> texture.
Fe:97%−Si:3%合金の単結晶を、{110}面が上下面に、長手方向に[001]方向が平行となるように板状に切り出し、25℃において、中間焼鈍なしで85%の圧延加工を施して、厚さが0.1mmの圧延テープを作製した。次いで、この圧延テープを還元雰囲気中、950℃で20時間熱処理して、{110}<001>集合組織を有する配向鉄合金テープ(試料No.3)を得た。 A single crystal of Fe: 97% -Si: 3% alloy was cut into a plate shape with the {110} plane being the upper and lower surfaces and the [001] direction being parallel to the longitudinal direction, and at 25 ° C. without intermediate annealing. A rolling tape having a thickness of 0.1 mm was produced by performing a rolling process of 85%. Next, this rolled tape was heat-treated in a reducing atmosphere at 950 ° C. for 20 hours to obtain an oriented iron alloy tape (Sample No. 3) having a {110} <001> texture.
純度が99.9質量%のCuの板を、25℃において、中間焼鈍なしで97%の圧延加工を施して、厚さが0.1mmの圧延テープを作製した。次いで、この圧延テープを還元雰囲気中、700℃で5時間熱処理して、{100}<001>集合組織を有する配向銅テープ(試料No.4)を得た。 A Cu plate having a purity of 99.9% by mass was subjected to a rolling process of 97% at 25 ° C. without intermediate annealing to produce a rolled tape having a thickness of 0.1 mm. Next, this rolled tape was heat-treated in a reducing atmosphere at 700 ° C. for 5 hours to obtain an oriented copper tape (Sample No. 4) having a {100} <001> texture.
Cu:90質量%−Ni:10質量%合金の板を、100℃において、中間焼鈍なしで97%の圧延加工を施して、厚さが0.1mmの圧延テープを作製した。次いで、この圧延テープを還元雰囲気中、800℃で5時間熱処理して、{100}<001>集合組織を有する配向銅合金テープ(試料No.5)を得た。 A plate of Cu: 90% by mass—Ni: 10% by mass was subjected to a rolling process of 97% without intermediate annealing at 100 ° C. to produce a rolled tape having a thickness of 0.1 mm. Next, this rolled tape was heat-treated at 800 ° C. for 5 hours in a reducing atmosphere to obtain an oriented copper alloy tape (Sample No. 5) having a {100} <001> texture.
その後、このようにして得られた試料No.1〜5上に、プラズマ化学気相成長(CVD:chemical vapor deposition)法により、厚さが約1μmの非ドープシリコン膜を形成した。このときの形成条件としては、SiH4/H2流量比を1/20とし、配向金属テープの温度(成膜温度)を25℃、100℃、200℃、300℃、400℃、500℃、600℃、700℃、800℃、900℃、又は1000℃とし、パワー密度を0.5W/cm2とし、圧力を0.3Torrとした。 Thereafter, the sample No. obtained in this way. An undoped silicon film having a thickness of about 1 μm was formed on 1 to 5 by a plasma chemical vapor deposition (CVD) method. As formation conditions at this time, the SiH 4 / H 2 flow rate ratio is 1/20, and the temperature (film formation temperature) of the oriented metal tape is 25 ° C., 100 ° C., 200 ° C., 300 ° C., 400 ° C., 500 ° C., The temperature was 600 ° C., 700 ° C., 800 ° C., 900 ° C., or 1000 ° C., the power density was 0.5 W / cm 2 , and the pressure was 0.3 Torr.
形成されたシリコン膜の観察を行ったところ、成膜温度を25℃、100℃、又は200℃として形成したシリコン膜は、試料の種類に拘わらず、ほとんど結晶化しておらず、アモルファス状態となっていた。成膜温度を300℃、400℃、又は500℃として形成したシリコン膜は、試料の種類に拘わらず、多結晶シリコン膜となっていた。多結晶シリコンの構成要素である単結晶体は、下地となる配向金属テープの結晶方位に少し影響を受けていた。即ち、試料No.1〜3を用いた場合には、鉄又は鉄合金の結晶の{110}面に対して、50%以上のシリコン結晶粒の{100}面が平行となるような方向に多結晶シリコンが配向していた(以下、このような結晶配向状態を1軸配向と呼ぶことがある)。また、試料No.4及び5を用いた場合には、銅又は銅合金の結晶の{100}面に対して、50%以上のシリコン結晶粒の{100}面が平行となるような方向に多結晶シリコンが配向していた。 When the formed silicon film was observed, the silicon film formed at a film formation temperature of 25 ° C., 100 ° C., or 200 ° C. was hardly crystallized regardless of the type of the sample, and became an amorphous state. It was. A silicon film formed at a film formation temperature of 300 ° C., 400 ° C., or 500 ° C. was a polycrystalline silicon film regardless of the type of the sample. The single crystal, which is a constituent element of polycrystalline silicon, was slightly affected by the crystal orientation of the oriented metal tape as a base. That is, sample no. When 1 to 3 are used, the polycrystalline silicon is oriented in such a direction that the {100} plane of 50% or more of the silicon crystal grains is parallel to the {110} plane of the iron or iron alloy crystal. (Hereinafter, such a crystal orientation state may be referred to as uniaxial orientation). Sample No. When 4 and 5 are used, the polycrystalline silicon is oriented in such a direction that the {100} plane of 50% or more of the silicon crystal grains is parallel to the {100} plane of the copper or copper alloy crystal. Was.
その一方で、配向金属テープの長手方向に対して、シリコン結晶粒の方向が揃ってはいないことが、X線回折法の一種であるX線ポールフィギュア法により確認できた。また、成膜温度を600℃以上とした試料では、シリコン膜が鉄又は銅と反応したことも確認できた。 On the other hand, it was confirmed by the X-ray pole figure method which is a kind of X-ray diffraction method that the direction of the silicon crystal grains is not aligned with respect to the longitudinal direction of the oriented metal tape. Further, it was also confirmed that the silicon film reacted with iron or copper in the sample having a film formation temperature of 600 ° C. or higher.
これらの実験結果から、配向金属テープ上に直接、シリコン膜を形成した場合には、単結晶のように結晶方位が2軸とも揃った多結晶シリコン膜は得られないことが分かる。 From these experimental results, it can be seen that when a silicon film is formed directly on an oriented metal tape, a polycrystalline silicon film having a crystal orientation of both two axes like a single crystal cannot be obtained.
また、成膜温度を25℃、100℃、200℃、300℃、400℃、又は500℃として形成したアモルファス状のシリコン膜の表面に、波長が248nmの紫外線レーザ光をその照射面を移動させながら照射した。この結果、全てのシリコン膜が結晶化したが、得られたシリコン膜は1軸配向しているのみで、2軸配向はしていなかった。 In addition, an ultraviolet laser beam having a wavelength of 248 nm is moved on the surface of an amorphous silicon film formed at a film formation temperature of 25 ° C., 100 ° C., 200 ° C., 300 ° C., 400 ° C., or 500 ° C. Irradiated while. As a result, all the silicon films were crystallized, but the obtained silicon film was only uniaxially oriented and not biaxially oriented.
[実験2]
実験1で作製した試料No.1〜5(配向金属テープ)上に、厚さが1μmのNi層を鍍金して5種類のNi鍍金配向金属テープを得た。試料No.1〜5から得たNi鍍金配向金属テープを、順に試料No.6〜10とする。鍍金液にはワット溶液を使用した。得られたNi鍍金層は下地の配向金属テープからエピタキシャル成長していて、95%以上のNi結晶が同じ方向を向いて揃っていることが確認できた。
[Experiment 2]
Sample No. produced in Experiment 1 On 1 to 5 (oriented metal tape), a Ni layer having a thickness of 1 μm was plated to obtain five types of Ni-plated oriented metal tapes. Sample No. The Ni-plated metal tapes obtained from Nos. 1 to 5 were sample No. 6-10. A Watt solution was used as the plating solution. The obtained Ni plating layer was epitaxially grown from the underlying oriented metal tape, and it was confirmed that 95% or more of Ni crystals were aligned in the same direction.
その後、このようにして得られた試料No.5〜10上に、プラズマCVD法により、厚さが約1μmの非ドープシリコン膜を形成した。このときの形成条件としては、SiH4/H2流量比を1/20とし、Ni鍍金配向金属テープの温度(成膜温度)を25℃、100℃、200℃、300℃、400℃、500℃、600℃、700℃、800℃、900℃、又は1000℃とし、パワー密度を0.5W/cm2とし、圧力を0.3Torrとした。 Thereafter, the sample No. obtained in this way. An undoped silicon film having a thickness of about 1 μm was formed on 5-10 by plasma CVD. As formation conditions at this time, the SiH 4 / H 2 flow rate ratio is 1/20, and the temperature (film formation temperature) of the Ni-plated metal tape is 25 ° C., 100 ° C., 200 ° C., 300 ° C., 400 ° C., 500 ℃, 600 ℃, 700 ℃, 800 ℃, 900 ℃, or the 1000 ° C., the power density was 0.5 W / cm 2, was 0.3Torr pressure.
形成されたシリコン膜の観察を行ったところ、成膜温度を25℃、100℃、又は200℃として形成したシリコン膜は、試料の種類に拘わらず、ほとんど結晶化しておらず、アモルファス状態となっていた。成膜温度を300℃、400℃、又は500℃として形成したシリコン膜は、試料の種類に拘わらず、多結晶シリコン膜となっていた。多結晶シリコンの構成要素である単結晶体は、下地となるNi鍍金配向金属テープの結晶方位に少し影響を受けていた。即ち、Ni鍍金層のNi結晶の{100}面に対して、50%以上のシリコン結晶粒の{100}面が平行となるような方向に多結晶シリコンが配向していた。 When the formed silicon film was observed, the silicon film formed at a film formation temperature of 25 ° C., 100 ° C., or 200 ° C. was hardly crystallized regardless of the type of the sample, and became an amorphous state. It was. A silicon film formed at a film formation temperature of 300 ° C., 400 ° C., or 500 ° C. was a polycrystalline silicon film regardless of the type of the sample. The single crystal, which is a constituent element of polycrystalline silicon, was slightly influenced by the crystal orientation of the Ni-plated metal tape serving as a base. That is, the polycrystalline silicon was oriented in such a direction that the {100} plane of 50% or more of the silicon crystal grains was parallel to the {100} plane of the Ni crystal of the Ni plating layer.
その一方で、Ni鍍金配向金属テープの長手方向に対して、シリコン結晶の方向が揃ってはいないことが、X線ポールフィギュア法により確認できた。また、成膜温度を600℃として形成したシリコン膜の結晶粒は2軸配向していることが確認され、95%以上のシリコン結晶粒の方位が5度以内に揃っていることが確認できた。つまり、Ni鍍金配向金属テープの{100}面と95%以上のシリコン結晶粒の{100}面が平行で、かつテープ長手方向に対して95%以上のシリコン結晶粒の[001]方向が平行に揃っていた。Ni鍍金配向金属テープの温度を700℃以上としてシリコン膜を形成した試料では、シリコン膜がNi又は鉄若しくは銅と反応したことも確認できた。 On the other hand, it was confirmed by the X-ray pole figure method that the direction of the silicon crystal was not aligned with the longitudinal direction of the Ni-plated metal tape. Further, it was confirmed that the crystal grains of the silicon film formed at a film forming temperature of 600 ° C. were biaxially oriented, and the orientation of 95% or more of the silicon crystal grains was aligned within 5 degrees. . That is, the {100} plane of the Ni-plated metal tape is parallel to the {100} plane of 95% or more silicon crystal grains, and the [001] direction of 95% or more silicon crystal grains is parallel to the tape longitudinal direction. It was in line. In the sample in which the silicon film was formed with the temperature of the Ni-plated metal tape set to 700 ° C. or higher, it was also confirmed that the silicon film reacted with Ni, iron or copper.
これらの実験結果から、配向金属テープ上に金属鍍金層を形成し、その上にシリコン膜を形成した場合には、600℃の成膜温度以外では、単結晶のように結晶方位が2軸とも揃った多結晶シリコン層は得られないことが分かる。 From these experimental results, when a metal plating layer is formed on an oriented metal tape and a silicon film is formed thereon, the crystal orientation is biaxial like a single crystal except for the film formation temperature of 600 ° C. It can be seen that a uniform polycrystalline silicon layer cannot be obtained.
[実験3]
実験1において、配向金属テープの温度(成膜温度)を25℃〜500℃としてシリコン膜を形成した試料を、水素ガス雰囲気中で1時間、600℃に保持した。
[Experiment 3]
In Experiment 1, a sample on which a silicon film was formed by setting the temperature of the oriented metal tape (film formation temperature) to 25 ° C. to 500 ° C. was held at 600 ° C. for 1 hour in a hydrogen gas atmosphere.
その後に観察を行ったところ、いずれの試料においても、配向金属テープとシリコン膜とが反応したことが確認された。 When observation was performed after that, it was confirmed that the alignment metal tape and the silicon film reacted in any sample.
[実験4]
実験2において、Ni鍍金配向金属テープの温度(成膜温度)を25℃〜500℃としてシリコン膜を形成した試料を、水素ガス雰囲気中で1時間、600℃に保持した。
[Experiment 4]
In Experiment 2, a sample on which a silicon film was formed by setting the temperature (film formation temperature) of the Ni-plated metal tape to 25 ° C. to 500 ° C. was held at 600 ° C. for 1 hour in a hydrogen gas atmosphere.
その後に走査型電子顕微鏡で観察したところ、いずれの試料においても、シリコン膜を構成しているシリコン結晶粒の粒径が100nm〜10μmと大きく成長したことが確認できた。また、X線ポールフィギュア法により評価したところ、95%以上のシリコン結晶粒の向きが5度以内で、単結晶のように同一の方向を向いていることが確認できた。 Thereafter, when observed with a scanning electron microscope, it was confirmed that in all the samples, the silicon crystal grains constituting the silicon film grew as large as 100 nm to 10 μm. In addition, when evaluated by the X-ray pole figure method, it was confirmed that the orientation of silicon crystal grains of 95% or more was within 5 degrees and was oriented in the same direction as a single crystal.
[実験5]
実験1で得た5種類の試料(試料No.1〜5)及び実験2で得た5種類の試料(試料No.6〜10)上に、RFマグネトロンスパッタリング法により、厚さが30nmの(In1-XSnX)2O3+X層(X=0,0.1,0.2,0.3)を形成して40種類の(In1-XSnX)2O3+X層付き配向金属テープを得た。このとき、ターゲットとして、(In1-XSnX)2O3+X焼結体(X=0,0.1,0.2,0.3)を用いた。また、スパッタリングガスとして、アルゴン:97体積%及び水素:3体積%の混合ガスを用い、圧力を3Pa、パワー密度を15W/cm2、各試料の温度(成膜温度)を400℃とした。形成された(In1-XSnX)2O3+X層の組成を化学分析したところ、使用したターゲットと同一組成であることが確認できた。
[Experiment 5]
On the five types of samples obtained in Experiment 1 (Sample Nos. 1 to 5) and the five types of samples obtained in Experiment 2 (Sample Nos. 6 to 10), a thickness of 30 nm is obtained by RF magnetron sputtering ( In 1-X Sn X ) 2 O 3 + X layer (X = 0, 0.1, 0.2, 0.3) is formed, and 40 types of (In 1-X Sn X ) 2 O 3 + X are formed. A layered oriented metal tape was obtained. At this time, a (In 1-X Sn X ) 2 O 3 + X sintered body (X = 0, 0.1, 0.2, 0.3) was used as a target. Further, a mixed gas of argon: 97% by volume and hydrogen: 3% by volume was used as the sputtering gas, the pressure was 3 Pa, the power density was 15 W / cm 2 , and the temperature of each sample (film formation temperature) was 400 ° C. Chemical analysis of the composition of the formed (In 1-X Sn X ) 2 O 3 + X layer confirmed that the composition was the same as that of the target used.
その後、このようにして得られた40種類の試料上に、厚さが約1μmの非ドープシリコン膜を電子ビーム蒸着法により形成した。このとき、シリコン原料として、半導体グレードのノンドープシリコンウェハを粉砕したものを用いた。また、真空度を2×10-7Paの超高真空とし、(In1-XSnX)2O3+X層付き配向金属テープの温度(成膜温度)を25℃、100℃、200℃、300℃、400℃、500℃、600℃、700℃、800℃、900℃、又は1000℃とした。 Thereafter, an undoped silicon film having a thickness of about 1 μm was formed on the 40 types of samples thus obtained by electron beam evaporation. At this time, a crushed semiconductor grade non-doped silicon wafer was used as a silicon raw material. Further, the degree of vacuum was 2 × 10 −7 Pa, and the temperature (film formation temperature) of the oriented metal tape with the (In 1-X Sn X ) 2 O 3 + X layer was 25 ° C., 100 ° C., 200 The temperature was set to ℃, 300 ℃, 400 ℃, 500 ℃, 600 ℃, 700 ℃, 800 ℃, 900 ℃, or 1000 ℃.
形成されたシリコン膜の観察を行ったところ、成膜温度を25℃、100℃、200℃、300℃、又は400℃として形成したシリコン膜は、試料の種類に拘わらず、結晶化しておらず、アモルファス状態となっていた。成膜温度を500℃、600℃、又は700℃として形成したシリコン膜は結晶化していたものの、シリコン結晶粒は1軸配向のみしている状態であった。成膜温度を800℃、900℃、又は1000℃として形成したシリコン膜のシリコン結晶粒は2軸配向していることが確認され、95%以上のシリコン結晶粒の方位が5度以内に揃っていることが確認できた。つまり、(In1-XSnX)2O3+X層付き配向金属テープの{100}面と95%以上のシリコン結晶粒の{100}面が平行で、かつテープ長手方向に対して95%以上のシリコン結晶粒の[001]方向が平行に揃っていた。 When the formed silicon film was observed, the silicon film formed at a film formation temperature of 25 ° C., 100 ° C., 200 ° C., 300 ° C., or 400 ° C. was not crystallized regardless of the type of the sample. It was in an amorphous state. Although the silicon film formed at a film formation temperature of 500 ° C., 600 ° C., or 700 ° C. was crystallized, the silicon crystal grains were in a uniaxial orientation only. It was confirmed that the silicon crystal grains of the silicon film formed at a film formation temperature of 800 ° C., 900 ° C., or 1000 ° C. were biaxially oriented, and the orientation of 95% or more of the silicon crystal grains was aligned within 5 degrees. It was confirmed that That is, the {100} plane of the oriented metal tape with an (In 1-X Sn X ) 2 O 3 + X layer and the {100} plane of 95% or more silicon crystal grains are parallel and 95 with respect to the tape longitudinal direction. % Or more of silicon crystal grains were aligned in parallel in the [001] direction.
[実験6]
実験5において、(In1-XSnX)2O3+X層付き配向金属テープの温度(成膜温度)を25℃、100℃、200℃、300℃、又は400℃として形成したアモルファス状のシリコン膜の表面に、波長が248nmの紫外線レーザ光をその照射面を移動させながら照射した。この結果、全てのシリコン膜が結晶化し、シリコン結晶粒が2軸配向していることが確認され、95%以上のシリコン結晶粒の方位が5度以内に揃っていることが確認できた。
[Experiment 6]
In Experiment 5, the amorphous metal film formed with the temperature (film formation temperature) of the oriented metal tape with the (In 1-X Sn X ) 2 O 3 + X layer being 25 ° C., 100 ° C., 200 ° C., 300 ° C., or 400 ° C. The surface of the silicon film was irradiated with ultraviolet laser light having a wavelength of 248 nm while moving the irradiation surface. As a result, it was confirmed that all the silicon films were crystallized and the silicon crystal grains were biaxially oriented, and it was confirmed that the orientation of 95% or more of the silicon crystal grains was aligned within 5 degrees.
[実験7]
実験1で得た5種類の試料(試料No.1〜5)及び実験2で得た5種類の試料(試料No.6〜10)上に、RFマグネトロンスパッタリング法により、厚さが30nmの(Ti1-XNbX)O2+X/2層(X=0,0.1,0.2,0.3)を形成して40種類の(Ti1-XNbX)O2+X/2層付き配向金属テープを得た。このとき、ターゲットとして、(Ti1-XNbX)O2+X/2焼結体(X=0,0.1,0.2,0.3)を用いた。また、スパッタリングガスとして、アルゴン:97体積%及び水素:3体積%の混合ガスを用い、圧力を3Pa、パワー密度を15W/cm2、各試料の温度(成膜温度)を600℃とした。形成された(Ti1-XNbX)O2+X/2層の組成を化学分析したところ、使用したターゲットと同一組成であることが確認できた。
[Experiment 7]
On the five types of samples obtained in Experiment 1 (Sample Nos. 1 to 5) and the five types of samples obtained in Experiment 2 (Sample Nos. 6 to 10), a thickness of 30 nm is obtained by RF magnetron sputtering ( Ti 1-X Nb X ) O 2 + X / 2 layers (X = 0, 0.1, 0.2, 0.3) are formed to form 40 types of (Ti 1-X Nb X ) O 2 + X An oriented metal tape with 2 layers was obtained. At this time, a (Ti 1-X Nb X ) O 2 + X / 2 sintered body (X = 0, 0.1, 0.2, 0.3) was used as a target. Further, a mixed gas of argon: 97% by volume and hydrogen: 3% by volume was used as the sputtering gas, the pressure was 3 Pa, the power density was 15 W / cm 2 , and the temperature of each sample (film formation temperature) was 600 ° C. Chemical analysis of the composition of the formed (Ti 1-X Nb X ) O 2 + X / 2 layer confirmed that the composition was the same as the target used.
その後、このようにして得られた40種類の試料上に、厚さが約1μmの非ドープシリコン膜を電子ビーム蒸着法により形成した。このとき、シリコン原料として、半導体グレードのノンドープシリコンウェハを粉砕したものを用いた。また、真空度を2×10-7Paの超高真空とし、(Ti1-XNbX)O2+X/2層付き配向金属テープの温度(成膜温度)を25℃、100℃、200℃、300℃、400℃、500℃、600℃、700℃、800℃、900℃、又は1000℃とした。 Thereafter, an undoped silicon film having a thickness of about 1 μm was formed on the 40 types of samples thus obtained by electron beam evaporation. At this time, a crushed semiconductor grade non-doped silicon wafer was used as a silicon raw material. Further, the degree of vacuum was 2 × 10 −7 Pa, and the temperature (film formation temperature) of the (Ti 1-X Nb X ) O 2 + X / 2 layered metal tape was 25 ° C., 100 ° C., It was set as 200 degreeC, 300 degreeC, 400 degreeC, 500 degreeC, 600 degreeC, 700 degreeC, 800 degreeC, 900 degreeC, or 1000 degreeC.
形成されたシリコン膜の観察を行ったところ、成膜温度を25℃、100℃、200℃、300℃、又は400℃として形成したシリコン膜は、試料の種類に拘わらず、結晶化しておらず、アモルファス状態となっていた。成膜温度を500℃、600℃、又は700℃として形成したシリコン膜は結晶化していたものの、シリコン結晶粒は1軸配向のみしている状態であった。成膜温度を800℃、900℃、又は1000℃として形成したシリコン膜のシリコン結晶粒は2軸配向していることが確認され、95%以上のシリコン結晶粒の方位が5度以内に揃っていることが確認できた。つまり、(Ti1-XNbX)O2+X/2層付き配向金属テープの{100}面と95%以上のシリコン結晶粒の{100}面が平行で、かつテープ長手方向に対して95%以上のシリコン結晶粒の[001]方向が平行に揃っていた。 When the formed silicon film was observed, the silicon film formed at a film formation temperature of 25 ° C., 100 ° C., 200 ° C., 300 ° C., or 400 ° C. was not crystallized regardless of the type of the sample. It was in an amorphous state. Although the silicon film formed at a film formation temperature of 500 ° C., 600 ° C., or 700 ° C. was crystallized, the silicon crystal grains were in a uniaxial orientation only. It was confirmed that the silicon crystal grains of the silicon film formed at a film formation temperature of 800 ° C., 900 ° C., or 1000 ° C. were biaxially oriented, and the orientation of 95% or more of the silicon crystal grains was aligned within 5 degrees. It was confirmed that That, (Ti 1-X Nb X ) O 2 + X / 2 layer with textured metal {100} plane and more than 95% of the silicon grains {100} plane of the tape is parallel and relative to the longitudinal direction of the tape [001] directions of 95% or more of silicon crystal grains were aligned in parallel.
[実験8]
実験7において、(Ti1-XNbX)O2+X/2層付き配向金属テープの温度(成膜温度)を25℃、100℃、200℃、300℃、又は400℃として形成したアモルファス状のシリコン膜の表面に、波長が248nmの紫外線レーザ光をその照射面を移動させながら照射した。この結果、全てのシリコン膜が結晶化し、シリコン結晶粒が2軸配向していることが確認され、95%以上のシリコン結晶粒の方位が5度以内に揃っていることが確認できた。
[Experiment 8]
In Experiment 7, the amorphous (Ti 1 -X Nb X ) O 2 + X / 2 layered oriented metal tape formed at a temperature (film formation temperature) of 25 ° C., 100 ° C., 200 ° C., 300 ° C., or 400 ° C. The surface of the silicon film was irradiated with ultraviolet laser light having a wavelength of 248 nm while moving the irradiation surface. As a result, it was confirmed that all the silicon films were crystallized and the silicon crystal grains were biaxially oriented, and it was confirmed that the orientation of 95% or more of the silicon crystal grains was aligned within 5 degrees.
[実験9]
実験1で得た5種類の試料(試料No.1〜5)及び実験2で得た5種類の試料(試料No.6〜10)上に、RFマグネトロンスパッタリング法により、厚さが30nmのSr(Ti1-XNbX)O3+X/2層(X=0,0.1,0.2,0.3)を形成して40種類のSr(Ti1-XNbX)O3+X/2層付き配向金属テープを得た。このとき、ターゲットとして、Sr(Ti1-XNbX)O3+X/2焼結体(X=0,0.1,0.2,0.3)を用いた。また、スパッタリングガスとして、アルゴン:97体積%及び水素:3体積%の混合ガスを用い、圧力を3Pa、パワー密度を15W/cm2、各試料の温度(成膜温度)を750℃とした。形成されたSr(Ti1-XNbX)O3+X/2層の組成を化学分析したところ、使用したターゲットと同一組成であることが確認できた。
[Experiment 9]
On the five types of samples obtained in Experiment 1 (Sample Nos. 1 to 5) and the five types of samples obtained in Experiment 2 (Sample Nos. 6 to 10), an Sr having a thickness of 30 nm was formed by RF magnetron sputtering. (Ti 1-X Nb X ) O 3 + X / 2 layers (X = 0, 0.1, 0.2, 0.3) are formed to form 40 types of Sr (Ti 1-X Nb X ) O 3 An oriented metal tape with + X / 2 layers was obtained. At this time, as a target, using Sr (Ti 1-X Nb X ) O 3 + X / 2 sintered body (X = 0,0.1,0.2,0.3). Moreover, as sputtering gas, the mixed gas of argon: 97 volume% and hydrogen: 3 volume% was used, the pressure was 3 Pa, the power density was 15 W / cm < 2 >, and the temperature (film-forming temperature) of each sample was 750 degreeC. The composition of the formed Sr (Ti 1-X Nb X ) O 3 + X / 2 layer was chemically analyzed, it was confirmed that the same composition as the target used.
その後、このようにして得られた40種類の試料上に、厚さが約1μmの非ドープシリコン膜を電子ビーム蒸着法により形成した。このとき、シリコン原料として、半導体グレードのノンドープシリコンウェハを粉砕したものを用いた。また、真空度を2×10-7Paの超高真空とし、Sr(Ti1-XNbX)O3+X/2層付き配向金属テープの温度(成膜温度)を25℃、100℃、200℃、300℃、400℃、500℃、600℃、700℃、800℃、900℃、又は1000℃とした。 Thereafter, an undoped silicon film having a thickness of about 1 μm was formed on the 40 types of samples thus obtained by electron beam evaporation. At this time, a crushed semiconductor grade non-doped silicon wafer was used as a silicon raw material. Further, the degree of vacuum was 2 × 10 −7 Pa, and the temperature (film formation temperature) of the oriented metal tape with Sr (Ti 1−X Nb x ) O 3 + X / 2 layers was 25 ° C. and 100 ° C. 200 ° C, 300 ° C, 400 ° C, 500 ° C, 600 ° C, 700 ° C, 800 ° C, 900 ° C, or 1000 ° C.
形成されたシリコン膜の観察を行ったところ、成膜温度を25℃、100℃、200℃、300℃、又は400℃として形成したシリコン膜は、試料の種類に拘わらず、結晶化しておらず、アモルファス状態となっていた。成膜温度を500℃、600℃、又は700℃として形成したシリコン膜は結晶化していたものの、シリコン結晶粒は1軸配向のみしている状態であった。成膜温度を800℃、900℃、又は1000℃として形成したシリコン膜のシリコン結晶粒は2軸配向していることが確認され、95%以上のシリコン結晶粒の方位が5度以内に揃っていることが確認できた。つまり、Sr(Ti1-XNbX)O3+X/2層付き配向金属テープの{100}面と95%以上のシリコン結晶粒の{100}面が平行で、かつテープ長手方向に対して95%以上のシリコン結晶粒の[001]方向が平行に揃っていた。 When the formed silicon film was observed, the silicon film formed at a film formation temperature of 25 ° C., 100 ° C., 200 ° C., 300 ° C., or 400 ° C. was not crystallized regardless of the type of the sample. It was in an amorphous state. Although the silicon film formed at a film formation temperature of 500 ° C., 600 ° C., or 700 ° C. was crystallized, the silicon crystal grains were in a uniaxial orientation only. It was confirmed that the silicon crystal grains of the silicon film formed at a film formation temperature of 800 ° C., 900 ° C., or 1000 ° C. were biaxially oriented, and the orientation of 95% or more of the silicon crystal grains was aligned within 5 degrees. It was confirmed that That is, the {100} face of the oriented metal tape with Sr (Ti 1-X Nb x ) O 3 + X / 2 layer and the {100} face of 95% or more silicon crystal grains are parallel to the longitudinal direction of the tape. The [001] direction of 95% or more of silicon crystal grains was aligned in parallel.
[実験10]
実験9において、Sr(Ti1-XNbX)O3+X/2層付き配向金属テープの温度(成膜温度)を25℃、100℃、200℃、300℃、又は400℃として形成したアモルファス状のシリコン膜の表面に、波長が248nmの紫外線レーザ光をその照射面を移動させながら照射した。この結果、全てのシリコン膜が結晶化し、シリコン結晶粒が2軸配向していることが確認され、95%以上のシリコン結晶粒の方位が5度以内に揃っていることが確認できた。
[Experiment 10]
In Experiment 9, the alignment metal tape with Sr (Ti 1-X Nb X ) O 3 + X / 2 layer was formed at a temperature (film formation temperature) of 25 ° C., 100 ° C., 200 ° C., 300 ° C., or 400 ° C. The surface of the amorphous silicon film was irradiated with ultraviolet laser light having a wavelength of 248 nm while moving the irradiation surface. As a result, it was confirmed that all the silicon films were crystallized and the silicon crystal grains were biaxially oriented, and it was confirmed that the orientation of 95% or more of the silicon crystal grains was aligned within 5 degrees.
[実験11]
実験1で得た5種類の試料(試料No.1〜5)及び実験2で得た5種類の試料(試料No.6〜10)上に、RFマグネトロンスパッタリング法により、厚さが30nmの(Sr1-YCaY)(Ti1-XNbX)O3+X/2層(X=0,0.1,0.2,0.3、Y=0.2,0.4,0.6,0.8)を形成して160種類の(Sr1-YCaY)(Ti1-XNbX)O3+X/2層付き配向金属テープを得た。このとき、ターゲットとして、(Sr1-YCaY)(Ti1-XNbX)O3+X/2焼結体(X=0,0.1,0.2,0.3、Y=0.2,0.4,0.6,0.8)を用いた。また、スパッタリングガスとして、アルゴン:97体積%及び水素:3体積%の混合ガスを用い、圧力を3Pa、パワー密度を15W/cm2、各試料の温度(成膜温度)を700℃とした。形成された(Sr1-YCaY)(Ti1-XNbX)O3+X/2層の組成を化学分析したところ、使用したターゲットと同一組成であることが確認できた。
[Experiment 11]
On the five types of samples obtained in Experiment 1 (Sample Nos. 1 to 5) and the five types of samples obtained in Experiment 2 (Sample Nos. 6 to 10), a thickness of 30 nm is obtained by RF magnetron sputtering ( sr 1-Y Ca Y) ( Ti 1-X Nb X) O 3 + X / 2 layer (X = 0,0.1,0.2,0.3, Y = 0.2,0.4,0 .6,0.8), 160 kinds of (Sr 1 -Y Ca Y ) (Ti 1 -X Nb X ) O 3 + X / 2 layered oriented metal tapes were obtained. At this time, as a target, (Sr 1-Y Ca Y ) (Ti 1-X Nb X ) O 3 + X / 2 sintered body (X = 0, 0.1, 0.2, 0.3, Y = 0.2, 0.4, 0.6, 0.8) were used. Further, a mixed gas of argon: 97% by volume and hydrogen: 3% by volume was used as the sputtering gas, the pressure was 3 Pa, the power density was 15 W / cm 2 , and the temperature of each sample (film formation temperature) was 700 ° C. Formed (Sr 1-Y Ca Y) (Ti 1-X Nb X) The composition of the O 3 + X / 2 layer was chemically analyzed, it was confirmed that the same composition as the target used.
その後、このようにして得られた160種類の試料上に、厚さが約1μmの非ドープシリコン膜を電子ビーム蒸着法により形成した。このとき、シリコン原料として、半導体グレードのノンドープシリコンウェハを粉砕したものを用いた。また、真空度を2×10-7Paの超高真空とし、(Sr1-YCaY)(Ti1-XNbX)O3+X/2層付き配向金属テープの温度(成膜温度)を25℃、100℃、200℃、300℃、400℃、500℃、600℃、700℃、800℃、900℃、又は1000℃とした。 Thereafter, an undoped silicon film having a thickness of about 1 μm was formed on the 160 kinds of samples thus obtained by an electron beam evaporation method. At this time, a crushed semiconductor grade non-doped silicon wafer was used as a silicon raw material. The degree of vacuum was 2 × 10 −7 Pa, and the temperature of the oriented metal tape with (Sr 1−Y Ca Y ) (Ti 1−X Nb X ) O 3 + X / 2 layer (deposition temperature) ) At 25 ° C, 100 ° C, 200 ° C, 300 ° C, 400 ° C, 500 ° C, 600 ° C, 700 ° C, 800 ° C, 900 ° C, or 1000 ° C.
形成されたシリコン膜の観察を行ったところ、成膜温度を25℃、100℃、200℃、300℃、又は400℃として形成したシリコン膜は、試料の種類に拘わらず、結晶化しておらず、アモルファス状態となっていた。成膜温度を500℃、600℃、又は700℃として形成したシリコン膜は結晶化していたものの、シリコン結晶粒は1軸配向のみしている状態であった。成膜温度を800℃、900℃、又は1000℃として形成したシリコン膜のシリコン結晶粒は2軸配向していることが確認され、95%以上のシリコン結晶粒の方位が5度以内に揃っていることが確認できた。つまり、(Sr1-YCaY)(Ti1-XNbX)O3+X/2層付き配向金属テープの{100}面と95%以上のシリコン結晶粒の{100}面が平行で、かつテープ長手方向に対して95%以上のシリコン結晶粒の[001]方向が平行に揃っていた。 When the formed silicon film was observed, the silicon film formed at a film formation temperature of 25 ° C., 100 ° C., 200 ° C., 300 ° C., or 400 ° C. was not crystallized regardless of the type of the sample. It was in an amorphous state. Although the silicon film formed at a film formation temperature of 500 ° C., 600 ° C., or 700 ° C. was crystallized, the silicon crystal grains were in a uniaxial orientation only. It was confirmed that the silicon crystal grains of the silicon film formed at a film formation temperature of 800 ° C., 900 ° C., or 1000 ° C. were biaxially oriented, and the orientation of 95% or more of the silicon crystal grains was aligned within 5 degrees. It was confirmed that That is, the {100} plane of the (Sr 1-Y Ca Y ) (Ti 1-X Nb X ) O 3 + X / 2 layered metal tape and the {100} plane of 95% or more silicon crystal grains are parallel to each other. Further, the [001] direction of 95% or more of the silicon crystal grains was aligned in parallel to the longitudinal direction of the tape.
[実験12]
実験11において、(Sr1-YCaY)(Ti1-XNbX)O3+X/2層付き配向金属テープの温度(成膜温度)を25℃、100℃、200℃、300℃、又は400℃として形成したアモルファス状のシリコン膜の表面に、波長が248nmの紫外線レーザ光をその照射面を移動させながら照射した。この結果、全てのシリコン膜が結晶化し、シリコン結晶粒が2軸配向していることが確認され、95%以上のシリコン結晶粒の方位が5度以内に揃っていることが確認できた。
[Experiment 12]
In Experiment 11, (Sr 1-Y Ca Y) (Ti 1-X Nb X) O 3 + X / 2 layer with textured metal tape temperature (deposition temperature) 25 ℃, 100 ℃, 200 ℃, 300 ℃ Alternatively, the surface of an amorphous silicon film formed at 400 ° C. was irradiated with ultraviolet laser light having a wavelength of 248 nm while moving the irradiation surface. As a result, it was confirmed that all the silicon films were crystallized and the silicon crystal grains were biaxially oriented, and it was confirmed that the orientation of 95% or more of the silicon crystal grains was aligned within 5 degrees.
[実験13]
実験1で得た5種類の試料(試料No.1〜5)及び実験2で得た5種類の試料(試料No.6〜10)上に、RFマグネトロンスパッタリング法により、厚さが30nmの(LaXSrYCaZ)(TiACrBMnCFeDCoENiFCuG)O3+H層(X+Y+Z=1、0≦X≦1、0≦Y≦1、0≦Z≦1、A+B+C+D+E+F+G=1、0≦A≦1、0≦B≦1、0≦C≦1、0≦D≦1、0≦E≦1、0≦F≦1、0≦G≦1、−0.1≦H≦0.1)を形成して110種類の(LaXSrYCaZ)(TiACrBMnCFeDCoENiFCuG)O3+H付き配向金属テープを得た。このとき、ターゲットとして、(LaXSrYCaZ)(TiACrBMnCFeDCoENiFCuG)O3+H焼結体を用いた。表1に、この焼結体の11種類の組成を示す。また、スパッタリングガスとして、アルゴン:97体積%及び水素:3体積%の混合ガスを用い、圧力を3Pa、パワー密度を15W/cm2、各試料の温度(成膜温度)を700℃とした。形成された(LaXSrYCaZ)(TiACrBMnCFeDCoENiFCuG)O3+H層の組成を化学分析したところ、使用したターゲットと同一組成であることが確認できた。
[Experiment 13]
On the five types of samples obtained in Experiment 1 (Sample Nos. 1 to 5) and the five types of samples obtained in Experiment 2 (Sample Nos. 6 to 10), a thickness of 30 nm is obtained by RF magnetron sputtering ( la X Sr Y Ca Z) ( Ti A Cr B Mn C Fe D Co E Ni F Cu G) O 3 + H layer (X + Y + Z = 1,0 ≦ X ≦ 1,0 ≦ Y ≦ 1,0 ≦ Z ≦ 1 A + B + C + D + E + F + G = 1, 0 ≦ A ≦ 1, 0 ≦ B ≦ 1, 0 ≦ C ≦ 1, 0 ≦ D ≦ 1, 0 ≦ E ≦ 1, 0 ≦ F ≦ 1, 0 ≦ G ≦ 1, −0. 1 ≦ H ≦ 0.1) was formed by 110 type (La X Sr Y Ca Z) ( to give a Ti a Cr B Mn C Fe D Co E Ni F Cu G) oriented metal tape with O 3 + H . At this time, as a target, using (La X Sr Y Ca Z) (Ti A Cr B Mn C Fe D Co E Ni F Cu G) O 3 + H sintered body. Table 1 shows 11 compositions of this sintered body. Further, a mixed gas of argon: 97% by volume and hydrogen: 3% by volume was used as the sputtering gas, the pressure was 3 Pa, the power density was 15 W / cm 2 , and the temperature of each sample (film formation temperature) was 700 ° C. Formed (La X Sr Y Ca Z) (Ti A Cr B Mn C Fe D Co E Ni F Cu G) The composition of the O 3 + H layer Chemical analysis, to be the target of the same composition was used It could be confirmed.
その後、このようにして得られた110種類の試料上に、厚さが約1μmの非ドープシリコン膜を電子ビーム蒸着法により形成した。このとき、シリコン原料として、半導体グレードのノンドープシリコンウェハを粉砕したものを用いた。また、真空度を2×10-7Paの超高真空とし、(LaXSrYCaZ)(TiACrBMnCFeDCoENiFCuG)O3+H層付き配向金属テープの温度(成膜温度)を25℃、100℃、200℃、300℃、400℃、500℃、600℃、700℃、800℃、900℃、又は1000℃とした。 Thereafter, an undoped silicon film having a thickness of about 1 μm was formed on the 110 types of samples thus obtained by an electron beam evaporation method. At this time, a crushed semiconductor grade non-doped silicon wafer was used as a silicon raw material. Moreover, the vacuum degree was set to 2 × 10 −7 Pa ultrahigh vacuum, and (La X Sr Y Ca Z ) (Ti A Cr B Mn C Fe D Co E Ni F Cu G ) O 3 + H layer oriented metal tape The temperature (film formation temperature) was set to 25 ° C., 100 ° C., 200 ° C., 300 ° C., 400 ° C., 500 ° C., 600 ° C., 700 ° C., 800 ° C., 900 ° C., or 1000 ° C.
形成されたシリコン膜の観察を行ったところ、成膜温度を25℃、100℃、200℃、300℃、又は400℃として形成したシリコン膜は、試料の種類に拘わらず、結晶化しておらず、アモルファス状態となっていた。成膜温度を500℃、600℃、又は700℃として形成したシリコン膜は結晶化していたものの、シリコン結晶粒は1軸配向のみしている状態であった。成膜温度を800℃、900℃、又は1000℃として形成したシリコン膜のシリコン結晶粒は2軸配向していることが確認され、95%以上のシリコン結晶粒の方位が5度以内に揃っていることが確認できた。つまり、(LaXSrYCaZ)(TiACrBMnCFeDCoENiFCuG)O3+H層付き配向金属テープの{100}面と95%以上のシリコン結晶粒の{100}面が平行で、かつテープ長手方向に対して95%以上のシリコン結晶粒の[001]方向が平行に揃っていた。 When the formed silicon film was observed, the silicon film formed at a film formation temperature of 25 ° C., 100 ° C., 200 ° C., 300 ° C., or 400 ° C. was not crystallized regardless of the type of the sample. It was in an amorphous state. Although the silicon film formed at a film formation temperature of 500 ° C., 600 ° C., or 700 ° C. was crystallized, the silicon crystal grains were in a uniaxial orientation only. It was confirmed that the silicon crystal grains of the silicon film formed at a film formation temperature of 800 ° C., 900 ° C., or 1000 ° C. were biaxially oriented, and the orientation of 95% or more of the silicon crystal grains was aligned within 5 degrees. It was confirmed that That, (La X Sr Y Ca Z ) (Ti A Cr B Mn C Fe D Co E Ni F Cu G) O 3 + H layer with textured metal tape {100} plane 95% or more of silicon crystal grains of { The 100} planes were parallel, and the [001] directions of 95% or more of the silicon crystal grains were aligned in parallel to the tape longitudinal direction.
[実験14]
実験13において、(Sr1-YCaY)(Ti1-XNbX)O3+X/2層付き配向金属テープの温度(成膜温度)を25℃、100℃、200℃、300℃、又は400℃として形成したアモルファス状のシリコン膜の表面に、波長が248nmの紫外線レーザ光をその照射面を移動させながら照射した。この結果、全てのシリコン膜が結晶化し、シリコン結晶粒が2軸配向していることが確認され、95%以上のシリコン結晶粒の方位が5度以内に揃っていることが確認できた。
[Experiment 14]
In Experiment 13, the temperature (film forming temperature) of the oriented metal tape with (Sr 1-Y Ca Y ) (Ti 1-X Nb X ) O 3 + X / 2 layers was 25 ° C., 100 ° C., 200 ° C., 300 ° C. Alternatively, the surface of an amorphous silicon film formed at 400 ° C. was irradiated with ultraviolet laser light having a wavelength of 248 nm while moving the irradiation surface. As a result, it was confirmed that all the silicon films were crystallized and the silicon crystal grains were biaxially oriented, and it was confirmed that the orientation of 95% or more of the silicon crystal grains was aligned within 5 degrees.
[実験15(比較例1)]
図5に示す従来技術に沿ってpn型アモルファスシリコン太陽電池を作製した。ここでは、ガラス基板101として石英ガラス基板を用い、その上にRFスパッタリング法で透明電極102として厚さが6μmのSnO2膜を形成した。次いで、透明電極102上にプラズマ励起周波数を81.56MHzとしたプラズマCVD法によりn型アモルファスシリコン膜103及びp型アモルファスシリコン膜104をこの順で形成した。その後、p型アモルファスシリコン膜104上にRFスパッタリング法で金属電極105として厚さが1μmの結晶方位がランダムなNi層を形成した。続いて、電流取り出し用の金電極を形成し、次いで、厚さが0.5μmのSiO2膜を保護層106として形成した。
[Experiment 15 (Comparative Example 1)]
A pn-type amorphous silicon solar cell was fabricated according to the prior art shown in FIG. Here, a quartz glass substrate was used as the glass substrate 101, and a SnO 2 film having a thickness of 6 μm was formed thereon as the transparent electrode 102 by RF sputtering. Next, an n-type amorphous silicon film 103 and a p-type amorphous silicon film 104 were formed in this order on the transparent electrode 102 by plasma CVD using a plasma excitation frequency of 81.56 MHz. Thereafter, a Ni layer having a random crystal orientation and a thickness of 1 μm was formed as a metal electrode 105 on the p-type amorphous silicon film 104 by RF sputtering. Subsequently, a gold electrode for current extraction was formed, and then a SiO 2 film having a thickness of 0.5 μm was formed as the protective layer 106.
そして、n型アモルファスシリコン膜103及びp型アモルファスシリコン膜104を光電変換層として用いてpn型アモルファスシリコン太陽電池のAM1.5(100mW/cm2)照射条件下における電流−電圧特性を測定した。この結果、セル面積1cm2において、開放電圧が0.5V、光電変換効率が4.0%であった。 Then, using the n-type amorphous silicon film 103 and the p-type amorphous silicon film 104 as a photoelectric conversion layer, the current-voltage characteristics of the pn-type amorphous silicon solar cell under AM1.5 (100 mW / cm 2 ) irradiation conditions were measured. As a result, in the cell area of 1 cm 2 , the open circuit voltage was 0.5 V and the photoelectric conversion efficiency was 4.0%.
[実験16(比較例2)]
pin型多結晶シリコン太陽電池を作製した。ここでは、石英ガラス上にRFスパッタリング法で厚さが1μmの結晶方位がランダムなNi層を形成した。次いで、Ni層上にプラズマ励起周波数を81.56MHzとしたプラズマCVD法によりp型アモルファスシリコン膜を形成し、これをレーザアニール法によって結晶化させてp型多結晶シリコン膜を形成した。その後、p型多結晶シリコン膜上にプラズマCVD法によりi型アモルファスシリコン膜を形成し、これをレーザアニール法によって結晶化させてi型多結晶シリコン膜を形成した。続いて、i型多結晶シリコン膜上にプラズマCVD法によりn型アモルファスシリコン膜を形成し、これをレーザアニール法によって結晶化させてn型多結晶シリコン膜を形成した。次いで、n型多結晶シリコン膜上に透明電極として、厚さが6μmのSnO2膜を形成した。その後、電流取り出し用の金電極を形成し、次いで、厚さが0.5μmのSiO2膜を保護層として形成した。
[Experiment 16 (Comparative Example 2)]
A pin-type polycrystalline silicon solar cell was produced. Here, a Ni layer with a random crystal orientation of 1 μm in thickness was formed on quartz glass by RF sputtering. Next, a p-type amorphous silicon film was formed on the Ni layer by a plasma CVD method with a plasma excitation frequency of 81.56 MHz, and crystallized by a laser annealing method to form a p-type polycrystalline silicon film. Thereafter, an i-type amorphous silicon film was formed on the p-type polycrystalline silicon film by a plasma CVD method, and crystallized by a laser annealing method to form an i-type polycrystalline silicon film. Subsequently, an n-type amorphous silicon film was formed on the i-type polycrystalline silicon film by a plasma CVD method and crystallized by a laser annealing method to form an n-type polycrystalline silicon film. Next, an SnO 2 film having a thickness of 6 μm was formed as a transparent electrode on the n-type polycrystalline silicon film. Thereafter, a gold electrode for extracting current was formed, and then a SiO 2 film having a thickness of 0.5 μm was formed as a protective layer.
そして、p型多結晶シリコン膜、i型多結晶シリコン膜、及びn型多結晶シリコン膜を光電変換層として用いてpin型多結晶シリコン太陽電池のAM1.5(100mW/cm2)照射条件下における電流−電圧特性を測定した。この結果、セル面積1cm2において、開放電圧が0.47V、光電変換効率が4.5%であった。 Then, using a p-type polycrystalline silicon film, an i-type polycrystalline silicon film, and an n-type polycrystalline silicon film as a photoelectric conversion layer, AM1.5 (100 mW / cm 2 ) irradiation condition of a pin-type polycrystalline silicon solar cell The current-voltage characteristics at were measured. As a result, in the cell area of 1 cm 2 , the open circuit voltage was 0.47 V and the photoelectric conversion efficiency was 4.5%.
[実験17(比較例3)]
pin型多結晶シリコン太陽電池を作製した。ここでは、結晶方位がランダムとなっている厚さが0.1mmのNiテープの上に、プラズマ励起周波数を81.56MHzとしたプラズマCVD法によりp型アモルファスシリコン膜を形成し、これをレーザアニール法によって結晶化させてp型多結晶シリコン膜を形成した。次いで、p型多結晶シリコン膜上にプラズマCVD法によりi型アモルファスシリコン膜を形成し、これをレーザアニール法によって結晶化させてi型多結晶シリコン膜を形成した。その後、i型多結晶シリコン膜上にプラズマCVD法によりn型アモルファスシリコン膜を形成し、これをレーザアニール法によって結晶化させてn型多結晶シリコン膜を形成した。続いて、n型多結晶シリコン膜上に透明電極として、厚さが6μmのSnO2膜を形成した。次いで、電流取り出し用の金電極を形成し、その後、厚さが0.5μmのSiO2膜を保護層として形成した。
[Experiment 17 (Comparative Example 3)]
A pin-type polycrystalline silicon solar cell was produced. Here, a p-type amorphous silicon film is formed on a 0.1 mm thick Ni tape having a random crystal orientation by a plasma CVD method with a plasma excitation frequency of 81.56 MHz, and this is laser annealed. A p-type polycrystalline silicon film was formed by crystallization by the method. Next, an i-type amorphous silicon film was formed on the p-type polycrystalline silicon film by a plasma CVD method and crystallized by a laser annealing method to form an i-type polycrystalline silicon film. Thereafter, an n-type amorphous silicon film was formed on the i-type polycrystalline silicon film by a plasma CVD method and crystallized by a laser annealing method to form an n-type polycrystalline silicon film. Subsequently, an SnO 2 film having a thickness of 6 μm was formed as a transparent electrode on the n-type polycrystalline silicon film. Next, a gold electrode for extracting current was formed, and then a SiO 2 film having a thickness of 0.5 μm was formed as a protective layer.
そして、p型多結晶シリコン膜、i型多結晶シリコン膜、及びn型多結晶シリコン膜を光電変換層として用いてpin型多結晶シリコン太陽電池のAM1.5(100mW/cm2)照射条件下における電流−電圧特性を測定した。この結果、セル面積1cm2において、開放電圧が0.47V、光電変換効率が4.4%であった。 Then, using a p-type polycrystalline silicon film, an i-type polycrystalline silicon film, and an n-type polycrystalline silicon film as a photoelectric conversion layer, AM1.5 (100 mW / cm 2 ) irradiation condition of a pin-type polycrystalline silicon solar cell The current-voltage characteristics at were measured. As a result, in the cell area of 1 cm 2 , the open circuit voltage was 0.47 V and the photoelectric conversion efficiency was 4.4%.
[実験18(比較例4)]
pn型多結晶シリコン太陽電池を作製した。ここでは、結晶方位がランダムとなっている厚さが0.1mmのNiテープの上に、プラズマ励起周波数を81.56MHzとしたプラズマCVD法によりp型アモルファスシリコン膜を形成し、これをレーザアニール法によって結晶化させてp型多結晶シリコン膜を形成した。次いで、p型多結晶シリコン膜上にプラズマCVD法によりn型アモルファスシリコン膜を形成し、これをレーザアニール法によって結晶化させてn型多結晶シリコン膜を形成した。その後、n型多結晶シリコン膜上に透明電極として、厚さが6μmのSnO2膜を形成した。続いて、電流取り出し用の金電極を形成し、次いで、厚さが0.5μmのSiO2膜を保護層として形成した。
[Experiment 18 (Comparative Example 4)]
A pn-type polycrystalline silicon solar cell was produced. Here, a p-type amorphous silicon film is formed on a 0.1 mm thick Ni tape having a random crystal orientation by a plasma CVD method with a plasma excitation frequency of 81.56 MHz, and this is laser annealed. A p-type polycrystalline silicon film was formed by crystallization by the method. Next, an n-type amorphous silicon film was formed on the p-type polycrystalline silicon film by plasma CVD, and crystallized by laser annealing to form an n-type polycrystalline silicon film. Thereafter, a SnO 2 film having a thickness of 6 μm was formed as a transparent electrode on the n-type polycrystalline silicon film. Subsequently, a gold electrode for current extraction was formed, and then a SiO 2 film having a thickness of 0.5 μm was formed as a protective layer.
そして、p型多結晶シリコン膜及びn型多結晶シリコン膜を光電変換層として用いてpn型多結晶シリコン太陽電池のAM1.5(100mW/cm2)照射条件下における電流−電圧特性を測定した。この結果、セル面積1cm2において、開放電圧が0.45V、光電変換効率が4.2%であった。 Then, using the p-type polycrystalline silicon film and the n-type polycrystalline silicon film as the photoelectric conversion layer, the current-voltage characteristics of the pn-type polycrystalline silicon solar cell under the AM1.5 (100 mW / cm 2 ) irradiation condition were measured. . As a result, in a cell area of 1 cm 2 , the open circuit voltage was 0.45 V and the photoelectric conversion efficiency was 4.2%.
[実験19(実施例1)]
実験17(比較例3)のNiテープに代えて、実験1で得た5種類の試料(試料No.1〜5)を用い、これらの上に、実験17(比較例3)と同様の方法で、p型多結晶シリコン膜、i型多結晶シリコン膜、及びn型多結晶シリコン膜等を形成してpin型多結晶シリコン太陽電池を作製した。試料No.1〜5のいずれを用いた場合にも、p型多結晶シリコン膜、i型多結晶シリコン膜、及びn型多結晶シリコン膜は1軸配向であった。
[Experiment 19 (Example 1)]
In place of the Ni tape in Experiment 17 (Comparative Example 3), the five types of samples (Sample Nos. 1 to 5) obtained in Experiment 1 were used, and the same method as in Experiment 17 (Comparative Example 3) was formed on them. Thus, a p-type polycrystalline silicon solar cell was fabricated by forming a p-type polycrystalline silicon film, an i-type polycrystalline silicon film, an n-type polycrystalline silicon film, and the like. Sample No. When any one of 1 to 5 was used, the p-type polycrystalline silicon film, i-type polycrystalline silicon film, and n-type polycrystalline silicon film were uniaxially oriented.
そして、p型多結晶シリコン膜、i型多結晶シリコン膜、及びn型多結晶シリコン膜を光電変換層として用いて5種類のpin型多結晶シリコン太陽電池のAM1.5(100mW/cm2)照射条件下における電流−電圧特性を測定した。この結果、5種類のpin型多結晶シリコン太陽電池の光電変換効率は6.0%〜6.5%の範囲内にあった。 Then, AM1.5 (100 mW / cm 2 ) of five types of pin-type polycrystalline silicon solar cells using the p-type polycrystalline silicon film, the i-type polycrystalline silicon film, and the n-type polycrystalline silicon film as the photoelectric conversion layer. Current-voltage characteristics under irradiation conditions were measured. As a result, the photoelectric conversion efficiency of the five types of pin-type polycrystalline silicon solar cells was in the range of 6.0% to 6.5%.
[実験20(実施例2)]
実験17(比較例3)のNiテープに代えて、実験2で得た5種類の試料No.6〜10(Ni鍍金配向金属テープ)を用い、これらの上に、実験17(比較例3)と同様の方法で、p型多結晶シリコン膜、i型多結晶シリコン膜、及びn型多結晶シリコン膜等を形成してpin型多結晶シリコン太陽電池を作製した。試料No.6〜10のいずれを用いた場合にも、p型多結晶シリコン膜、i型多結晶シリコン膜、及びn型多結晶シリコン膜は2軸配向していることが確認できた。
[Experiment 20 (Example 2)]
Instead of the Ni tape of Experiment 17 (Comparative Example 3), the five sample Nos. Obtained in Experiment 2 were used. 6 to 10 (Ni-plated oriented metal tape) are used, and a p-type polycrystalline silicon film, an i-type polycrystalline silicon film, and an n-type polycrystalline film are formed on these in the same manner as in Experiment 17 (Comparative Example 3). A pin-type polycrystalline silicon solar cell was fabricated by forming a silicon film or the like. Sample No. When any of 6 to 10 was used, it was confirmed that the p-type polycrystalline silicon film, the i-type polycrystalline silicon film, and the n-type polycrystalline silicon film were biaxially oriented.
そして、p型多結晶シリコン膜、i型多結晶シリコン膜、及びn型多結晶シリコン膜を光電変換層として用いてpin型多結晶シリコン太陽電池のAM1.5(100mW/cm2)照射条件下における電流−電圧特性を測定した。この結果、5種類のpin型多結晶シリコン太陽電池の光電変換効率は9%〜10%の範囲内にあった。 Then, using a p-type polycrystalline silicon film, an i-type polycrystalline silicon film, and an n-type polycrystalline silicon film as a photoelectric conversion layer, AM1.5 (100 mW / cm 2 ) irradiation condition of a pin-type polycrystalline silicon solar cell The current-voltage characteristics at were measured. As a result, the photoelectric conversion efficiency of the five types of pin-type polycrystalline silicon solar cells was in the range of 9% to 10%.
[実験21(実施例3)]
実験18(比較例4)のNiテープに代えて、実験5で得た40種類の試料((In1-XSnX)2O3+X層付き配向金属テープ)を用い、これらの上に、実験18(比較例4)と同様の方法で、p型多結晶シリコン膜及びn型多結晶シリコン膜等を形成してpn型多結晶シリコン太陽電池を作製した。いずれの試料を用いた場合にも、p型多結晶シリコン膜及びn型多結晶シリコン膜は2軸配向していることが確認できた。
[Experiment 21 (Example 3)]
Instead of the Ni tape of Experiment 18 (Comparative Example 4), the 40 types of samples ((In 1-X Sn X ) 2 O 3 + X layered oriented metal tape) obtained in Experiment 5 were used. A p-type polycrystalline silicon solar cell was fabricated by forming a p-type polycrystalline silicon film and an n-type polycrystalline silicon film in the same manner as in Experiment 18 (Comparative Example 4). When any sample was used, it was confirmed that the p-type polycrystalline silicon film and the n-type polycrystalline silicon film were biaxially oriented.
そして、p型多結晶シリコン膜及びn型多結晶シリコン膜を光電変換層として用いてpn型多結晶シリコン太陽電池のAM1.5(100mW/cm2)照射条件下における電流−電圧特性を測定した。この結果、40種類のpn型多結晶シリコン太陽電池の光電変換効率は10%〜11%の範囲内にあった。 Then, using the p-type polycrystalline silicon film and the n-type polycrystalline silicon film as the photoelectric conversion layer, the current-voltage characteristics of the pn-type polycrystalline silicon solar cell under the AM1.5 (100 mW / cm 2 ) irradiation condition were measured. . As a result, the photoelectric conversion efficiency of 40 types of pn-type polycrystalline silicon solar cells was in the range of 10% to 11%.
[実験22(実施例4)]
実験17(比較例3)のNiテープに代えて、実験7で得た40種類の試料((Ti1-XNbX)O2+X/2層付き配向金属テープ)を用い、これらの上に、実験17(比較例3)と同様の方法で、p型多結晶シリコン膜、i型多結晶シリコン膜、及びn型多結晶シリコン膜等を形成してpin型多結晶シリコン太陽電池を作製した。いずれの試料を用いた場合にも、p型多結晶シリコン膜、i型多結晶シリコン膜、及びn型多結晶シリコン膜は2軸配向していることが確認できた。
[Experiment 22 (Example 4)]
Instead of the Ni tape of Experiment 17 (Comparative Example 3), the 40 types of samples ((Ti 1-X Nb X ) O 2 + X / 2 layered metal tape with layer) obtained in Experiment 7 were used. In addition, a p-type polycrystalline silicon solar cell is manufactured by forming a p-type polycrystalline silicon film, an i-type polycrystalline silicon film, an n-type polycrystalline silicon film, and the like in the same manner as in Experiment 17 (Comparative Example 3). did. When any sample was used, it was confirmed that the p-type polycrystalline silicon film, the i-type polycrystalline silicon film, and the n-type polycrystalline silicon film were biaxially oriented.
そして、p型多結晶シリコン膜、i型多結晶シリコン膜、及びn型多結晶シリコン膜を光電変換層として用いてpin型多結晶シリコン太陽電池のAM1.5(100mW/cm2)照射条件下における電流−電圧特性を測定した。この結果、40種類のpin型多結晶シリコン太陽電池の光電変換効率は10%〜11%の範囲内にあった。 Then, using a p-type polycrystalline silicon film, an i-type polycrystalline silicon film, and an n-type polycrystalline silicon film as a photoelectric conversion layer, AM1.5 (100 mW / cm 2 ) irradiation condition of a pin-type polycrystalline silicon solar cell The current-voltage characteristics at were measured. As a result, the photoelectric conversion efficiency of 40 types of pin-type polycrystalline silicon solar cells was in the range of 10% to 11%.
[実験23(実施例5)]
実験17(比較例3)のNiテープに代えて、実験9で得た40種類の試料(Sr(Ti1-XNbX)O3+X/2層付き配向金属テープ)を用い、これらの上に、実験17(比較例3)と同様の方法で、p型多結晶シリコン膜、i型多結晶シリコン膜、及びn型多結晶シリコン膜等を形成してpin型多結晶シリコン太陽電池を作製した。いずれの試料を用いた場合にも、p型多結晶シリコン膜、i型多結晶シリコン膜、及びn型多結晶シリコン膜は2軸配向していることが確認できた。
[Experiment 23 (Example 5)]
Instead of the Ni tape of Experiment 17 (Comparative Example 3), 40 samples (Sr (Ti 1−X Nb x ) O 3 + X / 2 layered metal tape with layer) obtained in Experiment 9 were used. A pin-type polycrystalline silicon solar cell is formed by forming a p-type polycrystalline silicon film, an i-type polycrystalline silicon film, an n-type polycrystalline silicon film, and the like by the same method as in Experiment 17 (Comparative Example 3). Produced. When any sample was used, it was confirmed that the p-type polycrystalline silicon film, the i-type polycrystalline silicon film, and the n-type polycrystalline silicon film were biaxially oriented.
そして、p型多結晶シリコン膜、i型多結晶シリコン膜、及びn型多結晶シリコン膜を光電変換層として用いてpin型多結晶シリコン太陽電池のAM1.5(100mW/cm2)照射条件下における電流−電圧特性を測定した。この結果、40種類のpin型多結晶シリコン太陽電池の光電変換効率は10%〜11%の範囲内にあった。 Then, using a p-type polycrystalline silicon film, an i-type polycrystalline silicon film, and an n-type polycrystalline silicon film as a photoelectric conversion layer, AM1.5 (100 mW / cm 2 ) irradiation condition of a pin-type polycrystalline silicon solar cell The current-voltage characteristics at were measured. As a result, the photoelectric conversion efficiency of 40 types of pin-type polycrystalline silicon solar cells was in the range of 10% to 11%.
[実験24(実施例6)]
実験17(比較例3)のNiテープに代えて、実験11で得た160種類の試料((Sr1-YCaY)(Ti1-XNbX)O3+X/2層付き配向金属テープ)を用い、これらの上に、実験17(比較例3)と同様の方法で、p型多結晶シリコン膜、i型多結晶シリコン膜、及びn型多結晶シリコン膜等を形成してpin型多結晶シリコン太陽電池を作製した。いずれの試料を用いた場合にも、p型多結晶シリコン膜、i型多結晶シリコン膜、及びn型多結晶シリコン膜は2軸配向していることが確認できた。
[Experiment 24 (Example 6)]
Instead of the Ni tape of Experiment 17 (Comparative Example 3), 160 kinds of samples obtained in Experiment 11 ((Sr 1 -Y Ca Y ) (Ti 1 -X Nb X ) O 3 + X / 2- layer oriented metal A p-type polycrystalline silicon film, an i-type polycrystalline silicon film, an n-type polycrystalline silicon film, and the like are formed on these by the same method as in Experiment 17 (Comparative Example 3). Type polycrystalline silicon solar cell was fabricated. When any sample was used, it was confirmed that the p-type polycrystalline silicon film, the i-type polycrystalline silicon film, and the n-type polycrystalline silicon film were biaxially oriented.
そして、p型多結晶シリコン膜、i型多結晶シリコン膜、及びn型多結晶シリコン膜を光電変換層として用いてpin型多結晶シリコン太陽電池のAM1.5(100mW/cm2)照射条件下における電流−電圧特性を測定した。この結果、40種類のpin型多結晶シリコン太陽電池の光電変換効率は10%〜11%の範囲内にあった。 Then, using a p-type polycrystalline silicon film, an i-type polycrystalline silicon film, and an n-type polycrystalline silicon film as a photoelectric conversion layer, AM1.5 (100 mW / cm 2 ) irradiation condition of a pin-type polycrystalline silicon solar cell The current-voltage characteristics at were measured. As a result, the photoelectric conversion efficiency of 40 types of pin-type polycrystalline silicon solar cells was in the range of 10% to 11%.
[実験25(実施例7)]
実験17(比較例3)のNiテープに代えて、実験13で得た110種類の試料((LaXSrYCaZ)(TiACrBMnCFeDCoENiFCuG)O3+H付き配向金属テープ)を用い、これらの上に、実験17(比較例3)と同様の方法で、p型多結晶シリコン膜、i型多結晶シリコン膜、及びn型多結晶シリコン膜等を形成してpin型多結晶シリコン太陽電池を作製した。いずれの試料を用いた場合にも、p型多結晶シリコン膜、i型多結晶シリコン膜、及びn型多結晶シリコン膜は2軸配向していることが確認できた。
[Experiment 25 (Example 7)]
Instead of the Ni tape experiment 17 (Comparative Example 3), 110 kinds of samples obtained in Experiment 13 ((La X Sr Y Ca Z) (Ti A Cr B Mn C Fe D Co E Ni F Cu G) O 3 + H -oriented metal tape), and a p-type polycrystalline silicon film, an i-type polycrystalline silicon film, an n-type polycrystalline silicon film, etc. on the same as in Experiment 17 (Comparative Example 3). To form a pin-type polycrystalline silicon solar cell. When any sample was used, it was confirmed that the p-type polycrystalline silicon film, the i-type polycrystalline silicon film, and the n-type polycrystalline silicon film were biaxially oriented.
そして、p型多結晶シリコン膜、i型多結晶シリコン膜、及びn型多結晶シリコン膜を光電変換層として用いてpin型多結晶シリコン太陽電池のAM1.5(100mW/cm2)照射条件下における電流−電圧特性を測定した。この結果、40種類のpin型多結晶シリコン太陽電池の光電変換効率は9%〜11%の範囲内にあった。 Then, using a p-type polycrystalline silicon film, an i-type polycrystalline silicon film, and an n-type polycrystalline silicon film as a photoelectric conversion layer, AM1.5 (100 mW / cm 2 ) irradiation condition of a pin-type polycrystalline silicon solar cell The current-voltage characteristics at were measured. As a result, the photoelectric conversion efficiency of 40 types of pin-type polycrystalline silicon solar cells was in the range of 9% to 11%.
これらの比較例1〜4及び実施例1〜7の結果から、1軸配向又は2軸配向したシリコン膜を光電変換層に有するシリコン太陽電池の光電変換効率は、アモルファスシリコン膜又は無配向多結晶シリコン膜を光電変換層に有する太陽電池より大幅に高いことが分かる。 From the results of these Comparative Examples 1 to 4 and Examples 1 to 7, the photoelectric conversion efficiency of a silicon solar cell having a uniaxially or biaxially oriented silicon film in the photoelectric conversion layer is an amorphous silicon film or non-oriented polycrystalline. It can be seen that it is significantly higher than a solar cell having a silicon film in the photoelectric conversion layer.
[実験26(実施例8)]
実験2で得た5種類の試料No.6〜10(Ni鍍金配向金属テープ)上に、Cu(In,Ga)Se2を含む光電変換層等を形成して太陽電池を作製した。そして、この太陽電池のAM1.5(100mW/cm2)照射条件下における電流−電圧特性を測定した。この結果、5種類の太陽電池の光電変換効率は10.5%〜11%の範囲内にあった。
[Experiment 26 (Example 8)]
Five sample Nos. Obtained in Experiment 2 were used. A photoelectric conversion layer containing Cu (In, Ga) Se 2 or the like was formed on 6 to 10 (Ni plated metal tape) to produce a solar cell. And the current-voltage characteristic of AM1.5 (100 mW / cm 2 ) irradiation condition of this solar cell was measured. As a result, the photoelectric conversion efficiency of the five types of solar cells was in the range of 10.5% to 11%.
[実験27(実施例9)]
実験2で得た5種類の試料No.6〜10(Ni鍍金配向金属テープ)上に、Cu(In,Ga)(Se,S)2を含む光電変換層等を形成して太陽電池を作製した。そして、この太陽電池のAM1.5(100mW/cm2)照射条件下における電流−電圧特性を測定した。この結果、5種類の太陽電池の光電変換効率は10.5%〜11%の範囲内にあった。
[Experiment 27 (Example 9)]
Five sample Nos. Obtained in Experiment 2 were used. A photoelectric conversion layer containing Cu (In, Ga) (Se, S) 2 or the like was formed on 6-10 (Ni-plated oriented metal tape) to produce a solar cell. And the current-voltage characteristic of AM1.5 (100 mW / cm 2 ) irradiation condition of this solar cell was measured. As a result, the photoelectric conversion efficiency of the five types of solar cells was in the range of 10.5% to 11%.
[実験28(実施例10)]
実験2で得た5種類の試料No.6〜10(Ni鍍金配向金属テープ)上に、CuInS2を含む光電変換層等を形成して太陽電池を作製した。そして、この太陽電池のAM1.5(100mW/cm2)照射条件下における電流−電圧特性を測定した。この結果、5種類の太陽電池の光電変換効率は9.5%〜10%の範囲内にあった。
[Experiment 28 (Example 10)]
Five sample Nos. Obtained in Experiment 2 were used. On 6-10 (Ni-plated metal-oriented metal tape), a photoelectric conversion layer containing CuInS 2 or the like was formed to produce a solar cell. And the current-voltage characteristic of AM1.5 (100 mW / cm 2 ) irradiation condition of this solar cell was measured. As a result, the photoelectric conversion efficiency of the five types of solar cells was in the range of 9.5% to 10%.
1:金属基板
2:金属電極
3:n型多結晶Si薄膜
4:p型多結晶Si薄膜
5:透明電極
6:保護層
7:i型多結晶Si薄膜
12:導電性酸化物層
1: metal substrate 2: metal electrode 3: n-type polycrystalline Si thin film 4: p-type polycrystalline Si thin film 5: transparent electrode 6: protective layer 7: i-type polycrystalline Si thin film 12: conductive oxide layer
Claims (21)
前記金属電極上に、多結晶シリコンから構成された光電変換層を前記金属電極と接するように形成する工程と、
を有することを特徴とする光発電装置の製造方法。 Forming a metal electrode composed of nickel, a nickel alloy, aluminum or an aluminum alloy on a metal substrate whose surface crystal orientation shift is within 5 degrees;
Forming a photoelectric conversion layer composed of polycrystalline silicon on the metal electrode so as to be in contact with the metal electrode ;
The manufacturing method of the photovoltaic device characterized by having.
前記金属基板上に形成され、ニッケル、ニッケル合金、アルミニウム又はアルミニウム合金から構成された金属電極と、
前記金属電極上に前記金属電極と接するように形成され、多結晶シリコンから構成された光電変換層と、
を有することを特徴とする光発電装置。 A metal substrate having a crystal orientation deviation of 5 degrees or less on the surface;
A metal electrode formed on the metal substrate and made of nickel, a nickel alloy, aluminum or an aluminum alloy ;
A photoelectric conversion layer formed on the metal electrode so as to be in contact with the metal electrode and made of polycrystalline silicon ;
A photovoltaic device characterized by comprising:
前記2軸配向金属テープ上に形成され、前記2軸配向金属テープの配向を引き継いだ結晶方位を有する2軸配向金属電極と、
前記2軸配向金属電極上に形成され、前記2軸配向金属テープの配向を引き継いだ結晶方位を有する複数の単結晶体から構成された2軸配向多結晶シリコン膜と、
を有し、
前記2軸配向金属テープを構成する金属結晶の結晶方位が5度以内に揃っていることを特徴とする薄膜太陽電池。 A biaxially oriented metal tape in which the crystal orientation is aligned within a predetermined range in both biaxial directions;
A biaxially oriented metal electrode formed on the biaxially oriented metal tape and having a crystal orientation that inherits the orientation of the biaxially oriented metal tape;
A biaxially oriented polycrystalline silicon film formed on the biaxially oriented metal electrode and composed of a plurality of single crystals having a crystal orientation that inherits the orientation of the biaxially oriented metal tape;
Have
A thin film solar cell, characterized in that the crystal orientations of metal crystals constituting the biaxially oriented metal tape are aligned within 5 degrees.
前記2軸配向金属テープ上にめっき法により形成された2軸配向めっき層と、
前記2軸配向めっき層上に形成された半導体層と、
を有し、
前記2軸配向めっき層を構成する結晶粒は、その直下に位置する前記2軸配向金属テープを構成する結晶粒と同一の方位を向いており、
前記半導体層を構成する結晶粒は、その直下に位置する前記2軸配向めっき層を構成する結晶粒と同一の配向を向いていることを特徴とする薄膜太陽電池。 A biaxially oriented metal tape in which the crystal orientation is aligned within a predetermined range in both biaxial directions;
A biaxially oriented plating layer formed by plating on the biaxially oriented metal tape;
A semiconductor layer formed on the biaxially oriented plating layer;
Have
The crystal grains constituting the biaxially oriented plating layer are oriented in the same orientation as the crystal grains constituting the biaxially oriented metal tape located immediately below the crystal grains.
The thin film solar cell, wherein the crystal grains constituting the semiconductor layer are oriented in the same orientation as the crystal grains constituting the biaxially oriented plating layer located immediately below the semiconductor layer.
前記配向金属テープ上に形成され、ニッケル、ニッケル合金、アルミニウム又はアルミニウム合金から構成された配向金属電極と、
前記配向金属電極上に形成された導電性酸化物層と、
前記導電性酸化物層上に形成された半導体を含む光電変換層と、
前記光電変換層上に形成された透明導電性物質層と、
前記透明導電性物質層上に形成された表面集電電極と、
を有し、
前記導電性酸化物層は、
(In 1-X1 Sn X1 ) 2 O 3+X1 (0≦X1≦0.2)、
(Ti 1-X2 Nb X2 )O 2+X2/2 (0≦X2≦0.3)、
Sr(Ti 1-X3 Nb X3 )O 3+X3/2 (0≦X3≦0.3)、
(Sr 1-Y1 Ca Y1 )(Ti 1-X4 Nb X4 )O 3+X4/2 (0≦X4≦0.3、0≦Y1≦1)、及び
(La X5 Sr Y2 Ca Z )(Ti A Cr B Mn C Fe D Co E Ni F Cu G )O 3+H (X5+Y2+Z=1、0≦X5≦1、0≦Y2≦1、0≦Z≦1、A+B+C+D+E+F+G=1、0≦A≦1、0≦B≦1、0≦C≦1、0≦D≦1、0≦E≦1、0≦F≦1、0≦G≦1、−0.1≦H≦0.1)
からなる群から選択された少なくとも1種を含有することを特徴とする光発電装置。 An oriented metal tape having a {100} <001> texture and made of iron, iron alloy, copper, or copper alloy;
An oriented metal electrode formed on the oriented metal tape and made of nickel, nickel alloy, aluminum or aluminum alloy ;
A conductive oxide layer formed on the oriented metal electrode;
A photoelectric conversion layer including a semiconductor formed on the conductive oxide layer;
A transparent conductive material layer formed on the photoelectric conversion layer;
A surface current collecting electrode formed on the transparent conductive material layer;
I have a,
The conductive oxide layer is
(In 1-X1 Sn X1 ) 2 O 3 + X1 (0 ≦ X1 ≦ 0.2),
(Ti 1-X2 Nb X2 ) O 2 + X2 / 2 (0 ≦ X2 ≦ 0.3),
Sr (Ti 1-X3 Nb X3 ) O 3 + X3 / 2 (0 ≦ X3 ≦ 0.3),
(Sr 1-Y1 Ca Y1) (Ti 1-X4 Nb X4) O 3 + X4 / 2 (0 ≦ X4 ≦ 0.3,0 ≦ Y1 ≦ 1), and
(La X5 Sr Y2 Ca Z) (Ti A Cr B Mn C Fe D Co E Ni F Cu G) O 3 + H (X5 + Y2 + Z = 1,0 ≦ X5 ≦ 1,0 ≦ Y2 ≦ 1,0 ≦ Z ≦ 1 A + B + C + D + E + F + G = 1, 0 ≦ A ≦ 1, 0 ≦ B ≦ 1, 0 ≦ C ≦ 1, 0 ≦ D ≦ 1, 0 ≦ E ≦ 1, 0 ≦ F ≦ 1, 0 ≦ G ≦ 1, −0. 1 ≦ H ≦ 0.1)
A photovoltaic device comprising at least one selected from the group consisting of:
前記配向金属テープ上に形成され、ニッケル、ニッケル合金、アルミニウム又はアルミニウム合金から構成された配向金属電極と、
前記配向金属電極上に形成された導電性酸化物層と、
前記導電性酸化物層上に形成された半導体を含む光電変換層と、
前記光電変換層上に形成された透明導電性物質層と、
前記透明導電性物質層上に形成された表面集電電極と、
を有し、
前記導電性酸化物層は、
(In 1-X1 Sn X1 ) 2 O 3+X1 (0≦X1≦0.2)、
(Ti 1-X2 Nb X2 )O 2+X2/2 (0≦X2≦0.3)、
Sr(Ti 1-X3 Nb X3 )O 3+X3/2 (0≦X3≦0.3)、
(Sr 1-Y1 Ca Y1 )(Ti 1-X4 Nb X4 )O 3+X4/2 (0≦X4≦0.3、0≦Y1≦1)、及び
(La X5 Sr Y2 Ca Z )(Ti A Cr B Mn C Fe D Co E Ni F Cu G )O 3+H (X5+Y2+Z=1、0≦X5≦1、0≦Y2≦1、0≦Z≦1、A+B+C+D+E+F+G=1、0≦A≦1、0≦B≦1、0≦C≦1、0≦D≦1、0≦E≦1、0≦F≦1、0≦G≦1、−0.1≦H≦0.1)
からなる群から選択された少なくとも1種を含有することを特徴とする光発電装置。 An oriented metal tape having a {110} <001> texture and made of an iron alloy;
An oriented metal electrode formed on the oriented metal tape and made of nickel, nickel alloy, aluminum or aluminum alloy ;
A conductive oxide layer formed on the oriented metal electrode;
A photoelectric conversion layer including a semiconductor formed on the conductive oxide layer;
A transparent conductive material layer formed on the photoelectric conversion layer;
A surface current collecting electrode formed on the transparent conductive material layer;
I have a,
The conductive oxide layer is
(In 1-X1 Sn X1 ) 2 O 3 + X1 (0 ≦ X1 ≦ 0.2),
(Ti 1-X2 Nb X2 ) O 2 + X2 / 2 (0 ≦ X2 ≦ 0.3),
Sr (Ti 1-X3 Nb X3 ) O 3 + X3 / 2 (0 ≦ X3 ≦ 0.3),
(Sr 1-Y1 Ca Y1) (Ti 1-X4 Nb X4) O 3 + X4 / 2 (0 ≦ X4 ≦ 0.3,0 ≦ Y1 ≦ 1), and
(La X5 Sr Y2 Ca Z) (Ti A Cr B Mn C Fe D Co E Ni F Cu G) O 3 + H (X5 + Y2 + Z = 1,0 ≦ X5 ≦ 1,0 ≦ Y2 ≦ 1,0 ≦ Z ≦ 1 A + B + C + D + E + F + G = 1, 0 ≦ A ≦ 1, 0 ≦ B ≦ 1, 0 ≦ C ≦ 1, 0 ≦ D ≦ 1, 0 ≦ E ≦ 1, 0 ≦ F ≦ 1, 0 ≦ G ≦ 1, −0. 1 ≦ H ≦ 0.1)
A photovoltaic device comprising at least one selected from the group consisting of:
前記金属電極層上に導電性酸化物層を形成する工程と、
前記導電性酸化物層上に半導体を含む光電変換層を形成する工程と、
前記光電変換層上に透明導電性物質層を形成する工程と、
前記透明導電性物質層上に表面集電電極を形成する工程と、
を有し、
前記導電性酸化物層は、
(In 1-X1 Sn X1 ) 2 O 3+X1 (0≦X1≦0.2)、
(Ti 1-X2 Nb X2 )O 2+X2/2 (0≦X2≦0.3)、
Sr(Ti 1-X3 Nb X3 )O 3+X3/2 (0≦X3≦0.3)、
(Sr 1-Y1 Ca Y1 )(Ti 1-X4 Nb X4 )O 3+X4/2 (0≦X4≦0.3、0≦Y1≦1)、及び
(La X5 Sr Y2 Ca Z )(Ti A Cr B Mn C Fe D Co E Ni F Cu G )O 3+H (X5+Y2+Z=1、0≦X5≦1、0≦Y2≦1、0≦Z≦1、A+B+C+D+E+F+G=1、0≦A≦1、0≦B≦1、0≦C≦1、0≦D≦1、0≦E≦1、0≦F≦1、0≦G≦1、−0.1≦H≦0.1)
からなる群から選択された少なくとも1種を含有することを特徴とする光発電装置の製造方法。 Forming a metal electrode layer made of nickel, nickel alloy, aluminum or aluminum alloy on an oriented metal tape having {100} <001> texture and made of iron, iron alloy, copper, or copper alloy When,
Forming a conductive oxide layer on the metal electrode layer;
Forming a photoelectric conversion layer containing a semiconductor on the conductive oxide layer;
Forming a transparent conductive material layer on the photoelectric conversion layer;
Forming a surface current collecting electrode on the transparent conductive material layer;
I have a,
The conductive oxide layer is
(In 1-X1 Sn X1 ) 2 O 3 + X1 (0 ≦ X1 ≦ 0.2),
(Ti 1-X2 Nb X2 ) O 2 + X2 / 2 (0 ≦ X2 ≦ 0.3),
Sr (Ti 1-X3 Nb X3 ) O 3 + X3 / 2 (0 ≦ X3 ≦ 0.3),
(Sr 1-Y1 Ca Y1) (Ti 1-X4 Nb X4) O 3 + X4 / 2 (0 ≦ X4 ≦ 0.3,0 ≦ Y1 ≦ 1), and
(La X5 Sr Y2 Ca Z) (Ti A Cr B Mn C Fe D Co E Ni F Cu G) O 3 + H (X5 + Y2 + Z = 1,0 ≦ X5 ≦ 1,0 ≦ Y2 ≦ 1,0 ≦ Z ≦ 1 A + B + C + D + E + F + G = 1, 0 ≦ A ≦ 1, 0 ≦ B ≦ 1, 0 ≦ C ≦ 1, 0 ≦ D ≦ 1, 0 ≦ E ≦ 1, 0 ≦ F ≦ 1, 0 ≦ G ≦ 1, −0. 1 ≦ H ≦ 0.1)
A method for manufacturing a photovoltaic device, comprising at least one selected from the group consisting of :
前記金属電極層上に導電性酸化物層を形成する工程と、
前記導電性酸化物層上に半導体を含む光電変換層を形成する工程と、
前記光電変換層上に透明導電性物質層を形成する工程と、
前記透明導電性物質層上に表面集電電極を形成する工程と、
を有し、
前記導電性酸化物層は、
(In 1-X1 Sn X1 ) 2 O 3+X1 (0≦X1≦0.2)、
(Ti 1-X2 Nb X2 )O 2+X2/2 (0≦X2≦0.3)、
Sr(Ti 1-X3 Nb X3 )O 3+X3/2 (0≦X3≦0.3)、
(Sr 1-Y1 Ca Y1 )(Ti 1-X4 Nb X4 )O 3+X4/2 (0≦X4≦0.3、0≦Y1≦1)、及び
(La X5 Sr Y2 Ca Z )(Ti A Cr B Mn C Fe D Co E Ni F Cu G )O 3+H (X5+Y2+Z=1、0≦X5≦1、0≦Y2≦1、0≦Z≦1、A+B+C+D+E+F+G=1、0≦A≦1、0≦B≦1、0≦C≦1、0≦D≦1、0≦E≦1、0≦F≦1、0≦G≦1、−0.1≦H≦0.1)
からなる群から選択された少なくとも1種を含有することを特徴とする光発電装置の製造方法。 Forming a metal electrode layer made of nickel, nickel alloy, aluminum or aluminum alloy on an oriented metal tape having a {110} <001> texture and made of an iron alloy;
Forming a conductive oxide layer on the metal electrode layer;
Forming a photoelectric conversion layer containing a semiconductor on the conductive oxide layer;
Forming a transparent conductive material layer on the photoelectric conversion layer;
Forming a surface current collecting electrode on the transparent conductive material layer;
I have a,
The conductive oxide layer is
(In 1-X1 Sn X1 ) 2 O 3 + X1 (0 ≦ X1 ≦ 0.2),
(Ti 1-X2 Nb X2 ) O 2 + X2 / 2 (0 ≦ X2 ≦ 0.3),
Sr (Ti 1-X3 Nb X3 ) O 3 + X3 / 2 (0 ≦ X3 ≦ 0.3),
(Sr 1-Y1 Ca Y1) (Ti 1-X4 Nb X4) O 3 + X4 / 2 (0 ≦ X4 ≦ 0.3,0 ≦ Y1 ≦ 1), and
(La X5 Sr Y2 Ca Z) (Ti A Cr B Mn C Fe D Co E Ni F Cu G) O 3 + H (X5 + Y2 + Z = 1,0 ≦ X5 ≦ 1,0 ≦ Y2 ≦ 1,0 ≦ Z ≦ 1 A + B + C + D + E + F + G = 1, 0 ≦ A ≦ 1, 0 ≦ B ≦ 1, 0 ≦ C ≦ 1, 0 ≦ D ≦ 1, 0 ≦ E ≦ 1, 0 ≦ F ≦ 1, 0 ≦ G ≦ 1, −0. 1 ≦ H ≦ 0.1)
A method for manufacturing a photovoltaic device, comprising at least one selected from the group consisting of :
前記配向金属テープ上に形成され、ニッケル、ニッケル合金、アルミニウム又はアルミニウム合金から構成された金属電極層と、
前記金属電極層上に前記金属電極層と接するように形成され、多結晶シリコンから構成された光電変換層と、
前記光電変換層上に形成された透明導電性物質層と、
前記透明導電性物質層上に形成された表面集電電極と、
を有することを特徴とする光発電装置。 An oriented metal tape having a {100} <001> texture and made of iron, iron alloy, copper, or copper alloy;
A metal electrode layer formed on the oriented metal tape and made of nickel, nickel alloy, aluminum or aluminum alloy ; and
A photoelectric conversion layer formed on the metal electrode layer so as to be in contact with the metal electrode layer and made of polycrystalline silicon ;
A transparent conductive material layer formed on the photoelectric conversion layer;
A surface current collecting electrode formed on the transparent conductive material layer;
A photovoltaic device characterized by comprising:
前記配向金属テープ上に形成され、ニッケル、ニッケル合金、アルミニウム又はアルミニウム合金から構成された金属電極層と、
前記金属電極層上に前記金属電極層と接するように形成され、多結晶シリコンから構成された光電変換層と、
前記光電変換層上に形成された透明導電性物質層と、
前記透明導電性物質層上に形成された表面集電電極と、
を有することを特徴とする光発電装置。 An oriented metal tape having a {110} <001> texture and made of an iron alloy;
A metal electrode layer formed on the oriented metal tape and made of nickel, nickel alloy, aluminum or aluminum alloy ; and
A photoelectric conversion layer formed on the metal electrode layer so as to be in contact with the metal electrode layer and made of polycrystalline silicon ;
A transparent conductive material layer formed on the photoelectric conversion layer;
A surface current collecting electrode formed on the transparent conductive material layer;
A photovoltaic device characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009295595A JP5419160B2 (en) | 2009-01-07 | 2009-12-25 | Photovoltaic power generation apparatus and manufacturing method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009001959 | 2009-01-07 | ||
JP2009001959 | 2009-01-07 | ||
JP2009295595A JP5419160B2 (en) | 2009-01-07 | 2009-12-25 | Photovoltaic power generation apparatus and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010183070A JP2010183070A (en) | 2010-08-19 |
JP5419160B2 true JP5419160B2 (en) | 2014-02-19 |
Family
ID=42764339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009295595A Expired - Fee Related JP5419160B2 (en) | 2009-01-07 | 2009-12-25 | Photovoltaic power generation apparatus and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5419160B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5566227B2 (en) * | 2010-09-08 | 2014-08-06 | 日新製鋼株式会社 | CIGS solar cell electrode substrate and battery |
JP2012059855A (en) * | 2010-09-08 | 2012-03-22 | Nisshin Steel Co Ltd | Substrate for cigs solar cell and battery |
FR2971086B1 (en) * | 2011-01-31 | 2014-04-18 | Inst Polytechnique Grenoble | STRUCTURE SUITABLE FOR FORMATION OF SOLAR CELLS |
JP6889062B2 (en) * | 2017-07-31 | 2021-06-18 | アズビル株式会社 | Manufacturing method of cathode electrode of UV sensor and UV sensor |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6472571A (en) * | 1987-09-14 | 1989-03-17 | Kawasaki Steel Co | Manufacture of base plate for amorphous solar cell substrate |
JP2721271B2 (en) * | 1990-11-20 | 1998-03-04 | キヤノン株式会社 | Solar cell manufacturing method |
JP3017431B2 (en) * | 1995-09-28 | 2000-03-06 | キヤノン株式会社 | Method for manufacturing photovoltaic element |
JP3473494B2 (en) * | 1999-05-12 | 2003-12-02 | Jfeスチール株式会社 | Grain-oriented silicon steel sheet with low iron loss value |
JP2000357660A (en) * | 1999-06-15 | 2000-12-26 | Sharp Corp | Board having polycrystalline silicon film and manufacture thereof, and solar battery having the film |
JP4559586B2 (en) * | 2000-04-20 | 2010-10-06 | 新日本製鐵株式会社 | Single crystal thin film material |
JP2006140414A (en) * | 2004-11-15 | 2006-06-01 | Matsushita Electric Ind Co Ltd | Substrate for solar cell, and solar cell using same |
JP2006185979A (en) * | 2004-12-27 | 2006-07-13 | Matsushita Electric Ind Co Ltd | Thin-film solar battery module and its manufacturing method |
JP4794886B2 (en) * | 2005-03-31 | 2011-10-19 | 古河電気工業株式会社 | High-strength polycrystalline metal substrate for oxide superconductivity and oxide superconducting wire using the same |
US8101858B2 (en) * | 2006-03-14 | 2012-01-24 | Corus Technology B.V. | Chalcopyrite semiconductor based photovoltaic solar cell comprising a metal substrate, coated metal substrate for a photovoltaic solar cell and manufacturing method thereof |
JP5073386B2 (en) * | 2007-07-05 | 2012-11-14 | 株式会社Neomaxマテリアル | ELECTRODE WIRE FOR SOLAR CELL, ITS SUBSTRATE, AND METHOD FOR PRODUCING SUBSTRATE |
-
2009
- 2009-12-25 JP JP2009295595A patent/JP5419160B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010183070A (en) | 2010-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070044832A1 (en) | Photovoltaic template | |
US7288332B2 (en) | Conductive layer for biaxially oriented semiconductor film growth | |
KR101537305B1 (en) | Crystallographically textured metal substrate, crystallographically textured device, cell and photovoltaic module including such device and thin layer deposition method | |
JP5520496B2 (en) | Manufacturing method of solar cell | |
JP2011503847A (en) | Crystalline thin film photovoltaic structure and method for forming the same | |
JP2008235877A (en) | Solar cell and manufacturing method therefor | |
JP2001267611A (en) | Thin-film solar battery and its manufacturing method | |
TWI455333B (en) | Solar cell | |
CN109449214B (en) | Gallium oxide semiconductor Schottky diode and manufacturing method thereof | |
CN110444611A (en) | A kind of solar battery and preparation method thereof of oxide passivation contact | |
JP2011146528A (en) | Polycrystalline silicon solar cell and method of manufacturing the same | |
CN112086344B (en) | Preparation method of aluminum gallium oxide/gallium oxide heterojunction film and application of aluminum gallium oxide/gallium oxide heterojunction film in vacuum ultraviolet detection | |
JP2002151715A (en) | Thin-film solar cell | |
JP5419160B2 (en) | Photovoltaic power generation apparatus and manufacturing method thereof | |
JP2012188711A (en) | Transparent conductive film for solar cell and method for manufacturing the same | |
JP2012119569A (en) | Nitride semiconductor element | |
JP2012099646A (en) | Photoelectric conversion element | |
CN106887483A (en) | Silicon substrate heterojunction solar cell and preparation method thereof | |
CN116347908B (en) | Perovskite solar cell, preparation method thereof and photovoltaic module | |
JP2004119491A (en) | Method for manufacturing thin film solar battery, and thin film solar battery manufactured thereby | |
CN115498071A (en) | Preparation method of battery, battery and electronic product | |
JP2010267885A (en) | Silicon-based thin-film photoelectric converter, and method of manufacturing the same | |
Chan et al. | Oxide solar cells fabricated using zinc oxide and plasma-oxidized cuprous oxide | |
JPH11186583A (en) | Integrated tandem-type thin-film photoelectric converting device and its manufacture | |
WO2003073515A1 (en) | Thin-film solar cell and its production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130312 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130313 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130509 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130806 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131004 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131029 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131114 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |