WO2003073141A1 - Athermal resin optical waveguide device - Google Patents

Athermal resin optical waveguide device Download PDF

Info

Publication number
WO2003073141A1
WO2003073141A1 PCT/JP2003/001921 JP0301921W WO03073141A1 WO 2003073141 A1 WO2003073141 A1 WO 2003073141A1 JP 0301921 W JP0301921 W JP 0301921W WO 03073141 A1 WO03073141 A1 WO 03073141A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
temperature
substrate
waveguide
fluorinated polyimide
Prior art date
Application number
PCT/JP2003/001921
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihiro Moroi
Hidehisa Nanai
Yuji Yamamoto
Shigeki Sakaguchi
Original Assignee
Central Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Company, Limited filed Critical Central Glass Company, Limited
Publication of WO2003073141A1 publication Critical patent/WO2003073141A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind

Definitions

  • the present invention relates to an asamaru resin optical waveguide device which eliminates the need for external temperature control by eliminating the temperature dependence of the optical waveguide itself by using a polyimide substrate for the optical waveguide.
  • DWDM Dense Wavelength Division Multiplexing
  • a wavelength multiplexer / demultiplexer that multiplexes or demultiplexes light of different wavelengths is an extremely important device.
  • the center wavelength of the device changes due to a change in ambient temperature.
  • One way to stabilize and improve such temperature characteristics is to incorporate a high-accuracy external temperature control device into the element as a correction component.
  • this method hindered cost reduction and miniaturization of the device, and had a problem in practical use.
  • the change in the center wavelength of the device is due to the temperature dependence of the optical path length of the optical circuit that constitutes the device, and the temperature dependence of the optical path length is expressed by the following equation.
  • n equivalent refractive index of the optical waveguide
  • linear thermal expansion coefficient of the substrate
  • the temperature dependence of the optical path length of the optical circuit becomes zero, the change in the center wavelength of the device due to the temperature change in the surrounding environment is eliminated, and the temperature-independent optical waveguide (a (Referred to as a thermal optical waveguide).
  • a substrate having a negative linear thermal expansion coefficient is used, and an optical waveguide that is assimilated by controlling the linear thermal expansion coefficient is disclosed.
  • quartz optical waveguides are limited due to the fabrication temperature being close to 100 ° C. and the high fabrication cost, and there is a major problem in the spread of optical waveguide devices.
  • thermo-optic constant (dn / dT) of the resin is negative in a resin optical waveguide whose fabrication temperature is low and cost reduction can be expected. From this, an asamaru optical waveguide can be manufactured by controlling the linear thermal expansion coefficient of the substrate.
  • An as-made optical waveguide using a fluorinated acrylic resin as the optical waveguide material and a resin material as the substrate has been reported (see 2001 Optical Fiber Communication Conference and Exhibit, Postdeadline Papers, PD7-1).
  • the heat resistance temperature of this asamaru optical waveguide is as low as about 85 ° C., and there is a temperature problem when used in combination with an active element such as VOA.
  • Another problem is that the propagation loss at 1.5 zm, which is a commonly used optical communication wavelength band, is as large as 0.8 dB / cm. Therefore, there has been a long-awaited need for a resin optical waveguide that is heat-resistant, has low propagation loss, and has long-term reliability in a resin waveguide expected to be reduced in cost.
  • An object of the present invention is to solve the above-mentioned problems in the conventional asamaru optical waveguide and to provide an asamaru optical waveguide having low cost, easy manufacturing, heat resistance, low propagation loss, and long-term reliability. It is to provide.
  • the inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and found that a fluorinated polyimide having high heat resistance and excellent light transmittance in an optical waveguide manufacturing process was used as a substrate material, and a waveguide material was used.
  • a fluorinated polyimide having high heat resistance and excellent light transmittance in an optical waveguide manufacturing process was used as a substrate material, and a waveguide material was used.
  • thermo-optic constant (dnZdT) of the substrate By controlling the thermo-optic constant (dnZdT) of the substrate and the linear thermal expansion coefficient of the substrate, it was found that an asamal resin optical waveguide having low cost, heat resistance, low propagation loss, and long-term reliability can be manufactured.
  • an optical waveguide formed on a fluorinated polyimide substrate which has substantially temperature independence in a temperature range of 0 to 150 ° C.
  • a waveguide device is provided.
  • a heat-resistant material such as fluorinated epoxy or deuterated polysiloxane may be used as the waveguide material.
  • the light transmittance is good in the 85 m wavelength band
  • the propagation loss in the 1.5 m band which is a normal optical communication wavelength band
  • the deuterated polysiloxane is 1.5 im.
  • the propagation loss is about 0.4 dBZcm, the manufacturing cost is high, and it cannot be used practically as a general optical waveguide material.
  • Fluorinated polyimide has a high heat-resistant temperature of 300 ° C or higher and a small propagation loss of 0.3 dB / cm in the 1.5-m band, and is suitable as a resin-assembled optical waveguide material.
  • the substrate material and the waveguide material become the same material, which increases the compatibility, improves the adhesion between the substrate and the waveguide, and reduces and avoids the residual stress of the fabricated device. It is possible to improve the long-term reliability under high temperature and high humidity.
  • fluorinated polyimide for the substrate and controlling its linear thermal expansion coefficient, it has low cost, easy manufacturing, heat resistance, low propagation loss, long-term reliability, and eliminates temperature dependence.
  • fluorinated polyimide for the substrate and controlling its linear thermal expansion coefficient, it has low cost, easy manufacturing, heat resistance, low propagation loss, long-term reliability, and eliminates temperature dependence.
  • the fluorinated polyimide substrate is prepared from a polyimide solution or a polyamic acid solution, or a mixture thereof.
  • the coefficient of linear thermal expansion is from 40 pm / K to 120 ppm. It has been found that it can be set arbitrarily within the range of / K, and that it has a glass transition temperature of 300 ° C or higher and can be manufactured with high transparency, so that it is suitable as an optical waveguide substrate.
  • the temperature of the transmission refractive index of the optical waveguide can be increased.
  • An asamal resin optical waveguide device with no dependency can be formed.
  • Thermo-optical constants of the material used as an optical waveguide material will depend on the material compositions being used, approximately - in the range of 0. 6 X 10- 4 ⁇ one 1. 8 X 10- 4 ZK Since the refractive index n is about 1.5, substituting these values into Equation 1 yields a coefficient of linear thermal expansion ⁇ of the substrate satisfying the assimilation condition in the range of 40 to 120 ppm / K. It is desired that the control can be performed arbitrarily.
  • the optical waveguide may be used in combination with an active element such as VOA on the substrate, and since these elements generate heat, the heat resistance temperature is preferably about 150 ° C. or more.
  • resin materials have high reliability up to about half the glass transition temperature (° C) and can ensure heat resistance. It is suitable as a material for an optical waveguide element having heat resistance.
  • the material of the optical waveguide highly transparent, but also the substrate for the optical waveguide needs to have high light transmission in order to obtain an optical waveguide with low light propagation loss.
  • the substrate material and the waveguide material are the same, so that compatibility is high.
  • fluorinated polyimide is suitable as a material for the optical waveguide device.
  • tetrapyruonic acid and its derivatives used in the production of fluorinated polyimide constituting the substrate.
  • an example of tetracarboxylic acid will be given. 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane (hereinafter referred to as 6 FDA), 3,3 ', 4,4,1-tetracarboxydiphenyl ether, 3,3 ', 4,4'-benzophenone tetracarboxylic acid, 3,3', 4,4'-tetra-potoxydiphenylsulfone, pyromellitic acid and the like.
  • 6 FDA 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane
  • 6 FDA 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane
  • 6 FDA 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane
  • 6 FDA 2,
  • the diamine component for example, the following diamine or its diisocyanate derivative is used.
  • 2,2'-bis (trifluoromethyl) _4,4'-diaminobiphenyl hereinafter referred to as TFDB
  • 2,2'-bis (p-aminophenol) hexafluoropropane 2,2 ' -Dimethylbenzidine, 3,3,1-dimethylpentidine, 4,4'-oxydianiline (hereinafter referred to as ODA), etc., which may be used alone or in combination.
  • ODA 4,4'-oxydianiline
  • a polyimide substrate having high surface smoothness without bubble swelling or warpage due to stress generation can be manufactured.
  • a suitable one can be selected by measuring the linear thermal expansion coefficient and the glass transition temperature of the obtained fluorinated polyimide.
  • An example of the asamaru resin optical waveguide device is a device that resonates, reflects, transmits, or branches a specific wavelength by interfering or resonating light propagating in the optical waveguide. Coupler, Matsu eighteenda interferometer, A resonator, a Fabry-Believe resonator, an arrayed waveguide diffraction grating, and the like.
  • Coupler Matsu eighteenda interferometer, A resonator, a Fabry-Believe resonator, an arrayed waveguide diffraction grating, and the like.
  • 6 FDAZTFDB polyimide solution a polyimide solution having a concentration of 30% and a viscosity of 50 boise
  • a polyimide optical waveguide core was prepared from the solution of Preparation Example 3, and the lower and upper clads were prepared with the solution of Preparation Example 2.
  • the solution of Preparation Example 1 was prepared so that the linear thermal expansion coefficient of the polyimide substrate was 78 ppmZK, and 50 g of this solution was placed on a 20 cm square glass plate on which a release agent had been applied in advance. Cast using an applicator. After casting, heat treatment was performed in an oven at 70 ° C for 2 hours and at 150 ° C for 2 hours to partially remove the solvent. Thereafter, the solvent-containing plate was peeled from the support. Subsequently, the obtained solvent-containing plate was fixed to a frame, heated in an oven at 200 ° C. for 2 hours, and then heated at 380 ° C. for 2 hours to substantially completely remove the solvent.
  • the heating rate to the heating temperature was set at 3 ° C / min.
  • This polyimide substrate had a thickness of 550 m, a Young's modulus of 4.5 GPa, a glass transition temperature of 325 ° C, and a surface roughness of 4 nm. A coefficient of linear thermal expansion of 78 ppmZK was obtained. No foaming or warpage was observed on the polyimide substrate.
  • a linear optical waveguide and an arrayed waveguide diffraction grating were fabricated using the obtained polyimide substrate.
  • a 6 FDAZTFDB polyamic acid solution (the solution of Preparation Example 2) was spin-coated on this polyimide substrate, and heated at 70 ° C for 2 hours, at 160 ° C for 1 hour, at 250 ° C for 30 minutes, and at 350 ° C for 1 hour. Thermal imidization was performed to form an under clad with a thickness of 15 m.
  • a 6 FDAZTFDB / QDA polyamic acid solution (the solution of Preparation Example 3) was spin-coated on this substrate, and heated under the same conditions as above to form a core layer.
  • This core layer was formed into a linear core pattern having a length of 7 Omm, a width of 8 mm, and a height of 8 zm by photolithography and dry etching.
  • an overcladding having a thickness of 15 m was formed on the substrate under the same conditions as those for forming a 6 FDAZTFDB polyamic acid solution (the solution of Preparation Example 2) undercladding.
  • the propagation loss was measured by a cutback method using 1.55 Aim light through the fabricated waveguide, it was 0.3 dBZcm, and the polarization dependent loss was less than 0.3 IdB / cm, making it suitable as an optical waveguide.
  • the propagation loss was measured by a cutback method using 1.55 Aim light through the fabricated waveguide, it was 0.3 dBZcm, and the polarization dependent loss was less than 0.3 IdB / cm, making it suitable as an optical waveguide.
  • Array waveguide grating with a core size of 8 m in width, 8 m in height, 8 x 8 channels, center wavelength of 1.5525 m, and a wavelength interval of 200 GHz is the same process as the fabrication of the above linear optical waveguide It was produced using.
  • Array waveguide fabricated When the temperature characteristics of the diffraction grating were measured, the change in the center wavelength of the device was less than 0.01 nm / ° C in the range of 0 ° C to 150 ° C.
  • the fabricated resin optical waveguide device had low optical loss, no polarization dependence, and was substantially temperature independent.
  • the fabricated linear waveguide and AWG were left in an atmosphere at a temperature of 85 ° C and a humidity of 85% for 2,000 hours. However, there was no change in characteristics before and after the storage, and they had long-term reliability.
  • a directional coupler having a waveguide length of 2 cm, a waveguide interval of a coupling portion of 3 m, and a coupling length of 1.2 mm was manufactured by the same material and the same process as in Example 1.
  • the core size was 8 m wide and 8 m high.
  • the incident light was measured using a 1.55 m laser in the range of 0 ° C to 150 ° C, and the branching ratio was determined by measuring the amount of light emitted from each port. At any temperature, the crossport showed a branching ratio of 99.1% or more, and was virtually independent of temperature.
  • the insertion loss of the directional coupler was 1.0 dB, and the polarization dependent loss was 0.2 dB / cm or less. Thus, a suitable optical waveguide was obtained.
  • the fabricated directional coupler was left in an atmosphere at a temperature of 85 ° C and a humidity of 85% for 2000 hours. However, there was no change in characteristics before and after the exposure, and it had long-term reliability.
  • a linear optical waveguide and an arrayed waveguide diffraction grating were fabricated under the same conditions as in Example 1 'except that a silicon substrate was used as the substrate.
  • the light propagation loss was measured by the cutback method by passing 1.55 light through the fabricated linear optical waveguide.
  • the measured loss was 0.6 dB / cm, and the polarization dependent loss was 0.7 dBZcm. Both dependency losses have worsened.
  • the change in the central wavelength of the device from 0 ° C to 150 ° C was ⁇ 0.15 nm / ° C, which was unsuitable for AWG. there were.
  • the fabricated linear waveguide and AWG were left in an atmosphere at a temperature of 85 ° C and a humidity of 85% for 2,000 hours, separation occurred between the silicon substrate and the optical waveguide.
  • the optical propagation loss has deteriorated to 0.8 dBZcm, and the long-term reliability is insufficient. there were.
  • an asamaru resin optical waveguide device having low cost, easy production, heat resistance, low propagation loss, and long-term reliability.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

An athermal resin optical waveguide device comprising an optical waveguide formed on a substrate of fluorinated polyimide characterized by exhibiting a substantial non-dependence on temperature over a temperature range of 0 to 150ºC.

Description

明 細 書 アサ一マル樹脂光導波路デバィス 発明の背景  Description Asamaru resin optical waveguide device Background of the invention
本発明は、 光導波路について、 ポリイミド基板を使用することにより光導波 路そのものの温度依存性を解消し、 外部温度制御を不要としたアサ一マル樹脂 光導波路デバィスに関するものである。  The present invention relates to an asamaru resin optical waveguide device which eliminates the need for external temperature control by eliminating the temperature dependence of the optical waveguide itself by using a polyimide substrate for the optical waveguide.
伝送容量の拡大を実現する手段として高密度波長分割多重通信方式 (DWD M) が活発に検討されている。 この DWDMにおいては、 異なる波長の光を合 波あるいは分波する波長合分波器が極めて重要なデバイスとなる。 しかしなが ら、 周囲環境の温度変化によりデバイスの中心波長が変化するという問題があ る。 このような温度特性を安定化、 改善する一つの方法として、 高精度な外部 温度制御装置を補正部品として素子に組み入れるという方法がある。 しかしな がら、 この方法では、 デバイスの低コスト化、 小型化の障害になり実用化に向 け問題があった。  Dense Wavelength Division Multiplexing (DWDM) is being actively studied as a means to increase transmission capacity. In this DWDM, a wavelength multiplexer / demultiplexer that multiplexes or demultiplexes light of different wavelengths is an extremely important device. However, there is a problem that the center wavelength of the device changes due to a change in ambient temperature. One way to stabilize and improve such temperature characteristics is to incorporate a high-accuracy external temperature control device into the element as a correction component. However, this method hindered cost reduction and miniaturization of the device, and had a problem in practical use.
一方、 デバイスの中心波長変化はデバイスを構成する光回路の光路長の温度 依存性に起因しており、 光路長の温度依存性は以下の式で表される  On the other hand, the change in the center wavelength of the device is due to the temperature dependence of the optical path length of the optical circuit that constitutes the device, and the temperature dependence of the optical path length is expressed by the following equation.
l/LX d S/dT=dn/dT+n a  l / LX d S / dT = dn / dT + n a
ここで各記号は以下のものを示す。  Here, each symbol indicates the following.
L :導波路長、 S :光路長 (n X L) 、 T :温度  L: waveguide length, S: optical path length (n X L), T: temperature
n :光導波路の等価屈折率、 α :基板の線熱膨張係数  n: equivalent refractive index of the optical waveguide, α: linear thermal expansion coefficient of the substrate
d S/dT:光路長の温度依存を示す係数  d S / dT: Coefficient indicating the temperature dependence of the optical path length
d n/dT:熱光学定数  d n / dT: thermo-optic constant
この式で、 lZLXd S/dTが零であること、 すなわち、  In this equation, lZLXd S / dT is zero, that is,
d n/dT + n = 0 (式 1)  d n / dT + n = 0 (Equation 1)
を満たす光導波路では光回路の光路長の温度依存性が零となり、 周囲環境の 温度変化によるデバイスの中心波長変化を解消し、 温度無依存の光導波路 (ァ サーマル光導波路と言う) を実現することができる。 In an optical waveguide that satisfies the condition, the temperature dependence of the optical path length of the optical circuit becomes zero, the change in the center wavelength of the device due to the temperature change in the surrounding environment is eliminated, and the temperature-independent optical waveguide (a (Referred to as a thermal optical waveguide).
石英光導波路においては、 負の線熱膨張係数を有する基板を使用し、 その線 熱膨張係数を制御することによりアサ一マル化した光導波路が開示されている In a quartz optical waveguide, a substrate having a negative linear thermal expansion coefficient is used, and an optical waveguide that is assimilated by controlling the linear thermal expansion coefficient is disclosed.
(特開 200 0— 3 52 6 33号公報参照) 。 しかしながら、 石英光導波路で はその作製温度が 1 00 0°C近いこと、 作製コストが高いことなどにより、 適 用可能な範囲が限定され、 光導波路デバイスの普及に大きな課題がある。 (See Japanese Patent Application Laid-Open No. 2000-352633). However, the applicable range of quartz optical waveguides is limited due to the fabrication temperature being close to 100 ° C. and the high fabrication cost, and there is a major problem in the spread of optical waveguide devices.
一方、 作製温度が低温であり、 低コスト化が期待できる樹脂光導波路におい ては、 樹脂の熱光学定数 (d n/dT) は負である。 このことから、 基板の線 熱膨張係数を制御することによりアサ一マル光導波路が作製できる。 光導波路 材料にフッ素化アクリル樹脂、 基板に樹脂材料を使用したアサ一マル光導波路 が報告されている (2001 Optical Fiber Communication Conference and Exhi bit, Postdeadline Papers, PD7- 1参照) 。  On the other hand, the thermo-optic constant (dn / dT) of the resin is negative in a resin optical waveguide whose fabrication temperature is low and cost reduction can be expected. From this, an asamaru optical waveguide can be manufactured by controlling the linear thermal expansion coefficient of the substrate. An as-made optical waveguide using a fluorinated acrylic resin as the optical waveguide material and a resin material as the substrate has been reported (see 2001 Optical Fiber Communication Conference and Exhibit, Postdeadline Papers, PD7-1).
しかしながら、 このアサ一マル光導波路では耐熱温度が 8 5°C程度と低く、 VO A等のァクディブ素子と組み合わせて使用するには温度的な問題があった。 また、 通常使用される光通信波長帯である 1. 5 zmでの伝搬損失が 0. 8 d B/cmと大きいという課題もあった。 そこで、 低コスト化が期待される樹脂 導波路において、 耐熱性があり、 さらに伝搬損失が小さく、 長期信頼性を兼ね 備えたアサ一マル光導波路の開発が待たれていた。  However, the heat resistance temperature of this asamaru optical waveguide is as low as about 85 ° C., and there is a temperature problem when used in combination with an active element such as VOA. Another problem is that the propagation loss at 1.5 zm, which is a commonly used optical communication wavelength band, is as large as 0.8 dB / cm. Therefore, there has been a long-awaited need for a resin optical waveguide that is heat-resistant, has low propagation loss, and has long-term reliability in a resin waveguide expected to be reduced in cost.
発明の要約 Summary of the Invention
本発明の目的は、 従来のアサ一マル光導波路における上述の問題点を解消し、 低コスト性、 作製の容易性、 耐熱性、 低伝搬損失性、 長期信頼性を兼ね備えた アサ一マル光導波路を提供することである。  An object of the present invention is to solve the above-mentioned problems in the conventional asamaru optical waveguide and to provide an asamaru optical waveguide having low cost, easy manufacturing, heat resistance, low propagation loss, and long-term reliability. It is to provide.
本発明者らは、 上記課題を解決するため鋭意検討をすすめたところ、 基板材 料には光導波路作製プロセスにおいて耐熱性が高く、 光透過性に優れたフッ素 化ポリイミドを用いて、 導波路材料の熱光学定数 (dnZdT) と基板の線熱 膨張係数を制御することにより、 低コスト、 耐熱性、 低伝搬損失、 長期信頼性 を兼ね備えたアサ一マル樹脂光導波路を製造できることを見いだし、 本発明に 到達した。 すなわち、 本発明では、 フッ素化ポリイミド基板上に形成された光導波路で あり、 0〜 1 50°Cの温度範囲において、 実質的に温度無依存性を持つことを 特徴とするアサ一マル樹脂光導波路デバイスが提供される。 The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and found that a fluorinated polyimide having high heat resistance and excellent light transmittance in an optical waveguide manufacturing process was used as a substrate material, and a waveguide material was used. By controlling the thermo-optic constant (dnZdT) of the substrate and the linear thermal expansion coefficient of the substrate, it was found that an asamal resin optical waveguide having low cost, heat resistance, low propagation loss, and long-term reliability can be manufactured. Has been reached. That is, according to the present invention, an optical waveguide formed on a fluorinated polyimide substrate, which has substantially temperature independence in a temperature range of 0 to 150 ° C. A waveguide device is provided.
好適な実施例の説明 Description of the preferred embodiment
アサ一マル樹脂導波路デバイスの耐熱性を向上させるためには、 導波路材料 として、 フッ素化エポキシ、 重水素化ポリシロキサン等の耐熱性のある材料を 使用すればよいが、 フッ素化エポキシは、 波長 85 m帯では光透過性が 良好であるが、 通常の光通信波長帯である 1. 5 m帯での伝搬損失が 1 dB /cmと大きく、 重水素化ポリシロキサンは 1. 5 imで伝搬損失が 0. 4 d BZcm程度であるが製造コストが高く、 一般的な光導波材料としては現実的 に使用できない。  In order to improve the heat resistance of the Asamaru resin waveguide device, a heat-resistant material such as fluorinated epoxy or deuterated polysiloxane may be used as the waveguide material. Although the light transmittance is good in the 85 m wavelength band, the propagation loss in the 1.5 m band, which is a normal optical communication wavelength band, is as large as 1 dB / cm, and the deuterated polysiloxane is 1.5 im. Although the propagation loss is about 0.4 dBZcm, the manufacturing cost is high, and it cannot be used practically as a general optical waveguide material.
フッ素化ポリイミドは耐熱温度が 300°C以上と高く、 かつ波長 1. 5 m 帯での伝搬損失が 0. 3 dB/cmと小さく、 樹脂アサ一マル光導波路材料と して好適である。  Fluorinated polyimide has a high heat-resistant temperature of 300 ° C or higher and a small propagation loss of 0.3 dB / cm in the 1.5-m band, and is suitable as a resin-assembled optical waveguide material.
すなわち、 フッ素化ポリイミドを光導波路材料として、 That is, using fluorinated polyimide as the optical waveguide material,
d n/dT + n α = 0 (式 1 ) の、 左辺が実質上零となるようにフッ素化 ポリイミド基板の線熱膨張係数を制御すれば、 耐熱性のある、 光伝搬性の良い アサ一マル樹脂光導波路を提供することができる。  By controlling the linear thermal expansion coefficient of the fluorinated polyimide substrate so that the left side of dn / dT + n α = 0 (Equation 1) becomes substantially zero, heat-resistant and light-propagating Asamaru A resin optical waveguide can be provided.
さらに、 導波路材料にフッ素化ポリイミドを用いることにより、 基板材料と 導波路材料が同一材料となるため相溶性が高まり、基板と導波路の密着力向上、 作製したデバイスの残留応力の低減、 回避が可能となり、 高温高湿下等に対す る長期信頼性を向上させることができる。  Furthermore, by using fluorinated polyimide as the waveguide material, the substrate material and the waveguide material become the same material, which increases the compatibility, improves the adhesion between the substrate and the waveguide, and reduces and avoids the residual stress of the fabricated device. It is possible to improve the long-term reliability under high temperature and high humidity.
すなわち、 基板にフッ素化ポリイミドを使用し、 その線熱膨張係数を制御す ることにより低コスト性、 製作の容易性、 耐熱性、 低伝搬損失性、 長期信頼性 を兼ね備え、 温度依存性を解消したアサ一マル樹脂光導波路デバイスを提供で さる。  In other words, by using fluorinated polyimide for the substrate and controlling its linear thermal expansion coefficient, it has low cost, easy manufacturing, heat resistance, low propagation loss, long-term reliability, and eliminates temperature dependence. To provide an asamal resin optical waveguide device.
以下、 本発明についてより詳細に説明する。  Hereinafter, the present invention will be described in more detail.
本発明者らは、 耐熱性のある低光伝搬損失アサ一マル光導波路について検討 した結果、 フッ素化ポリイミド基板はポリイミド溶液やポリアミド酸溶液、 あ るいはこれらの混合物より作製するが、 溶液の調製方法および基板の作製方法 によって、 線熱膨張係数として 40 pm/Kから 120 p pm/Kの範囲に おいて任意に設定できること、 また、 300°C以上のガラス転移温度をもち、 さらに高透明性であるものが製作できるため光導波路用基板として好適である ことを見いだした。 すなわち、 線熱膨張係数が 40〜 120 p pm/K、 ガラ ス転移温度が 300°C以上であり、 光透過性の良いフッ素化ポリイミド基板を 使用することで、 光導波路の透過屈折率の温度依存性を解消したアサ一マル樹 脂光導波路デバィスを形成することができる。 The present inventors have studied heat-resistant low-light-propagation-loss optical waveguides. As a result, the fluorinated polyimide substrate is prepared from a polyimide solution or a polyamic acid solution, or a mixture thereof.However, depending on the method of preparing the solution and the method of preparing the substrate, the coefficient of linear thermal expansion is from 40 pm / K to 120 ppm. It has been found that it can be set arbitrarily within the range of / K, and that it has a glass transition temperature of 300 ° C or higher and can be manufactured with high transparency, so that it is suitable as an optical waveguide substrate. In other words, by using a fluorinated polyimide substrate that has a linear thermal expansion coefficient of 40 to 120 ppm / K and a glass transition temperature of 300 ° C or higher, and has good light transmittance, the temperature of the transmission refractive index of the optical waveguide can be increased. An asamal resin optical waveguide device with no dependency can be formed.
光導波路材料として使用される材料の熱光学定数 (d nZdT) は使用され ている材料組成にもよるが、 およそ— 0. 6 X 10— 4〜一 1. 8 X 10— 4 ZKの範囲であり、 屈折率 nはおよそ 1. 5であることから、 これらの数値を 式 1に代入すると、 アサ一マル化条件を満たす基板の線熱膨張係数 αは、 40 〜120 p pm/Kの範囲において任意に制御できることが望まれる。 Thermo-optical constants of the material used as an optical waveguide material (d NZDT) will depend on the material compositions being used, approximately - in the range of 0. 6 X 10- 4 ~ one 1. 8 X 10- 4 ZK Since the refractive index n is about 1.5, substituting these values into Equation 1 yields a coefficient of linear thermal expansion α of the substrate satisfying the assimilation condition in the range of 40 to 120 ppm / K. It is desired that the control can be performed arbitrarily.
また、 光導波路は VOA等のアクティブ素子と基板上で組み合わせて使用す ることがあり、 これらの素子が発熱するため、 耐熱温度は 1 50°C程度以上あ ることが好ましい。  Further, the optical waveguide may be used in combination with an active element such as VOA on the substrate, and since these elements generate heat, the heat resistance temperature is preferably about 150 ° C. or more.
一般的に樹脂材料では、 ガラス転移温度 (°C) の 1/2程度の温度までは信 頼性が高く、 耐熱性が確保できるため、 300°C以上のガラス転移温度を持つ フッ素化ポリイミドは耐熱性のある、 光導波路素子の材料として好適である。 次に、 光透過性の観点から、 光導波路材料が高透明性であることはもちろん のこと、 光導波路用基板も、 光透過性が高いことが低光伝搬損失の光導波路を 得るために必要であり、 通常光通信に使用される波長である 1. 5 ^m帯での 伝搬損失が 0. 3 dBZ cmと小さいフッ素化ポリイミドが光導波路素子の材 料として好適である。  In general, resin materials have high reliability up to about half the glass transition temperature (° C) and can ensure heat resistance. It is suitable as a material for an optical waveguide element having heat resistance. Next, from the viewpoint of light transmission, not only is the material of the optical waveguide highly transparent, but also the substrate for the optical waveguide needs to have high light transmission in order to obtain an optical waveguide with low light propagation loss. A fluorinated polyimide having a small propagation loss of 0.3 dBZ cm in the 1.5 ^ m band, which is a wavelength normally used for optical communication, is suitable as a material for an optical waveguide device.
さらに、 デバイスの信頼性の観点から、 Telcordia規格の高温高湿テスト等に おいて特性変化を生じないことが好ましい。 導波路材料にフッ素化ポリイミド を用いることにより、 基板材料と導波路材料が同一材料となるため相溶性が高 まり、 基板と導波路の密着力向上、 作製したデバイスの残留応力の低減、 回避 が可能となる。 このことにより、 上記テストに対する信頼性を向上させること ができる。 このことからも、 フッ素化ポリイミドが光導波路素子の材料として 好適である。 Further, from the viewpoint of device reliability, it is preferable that characteristics do not change in a high-temperature and high-humidity test of Telcordia standard. By using fluorinated polyimide for the waveguide material, the substrate material and the waveguide material are the same, so that compatibility is high. In other words, it is possible to improve the adhesion between the substrate and the waveguide, to reduce and avoid the residual stress of the manufactured device. This can improve the reliability of the test. For this reason, fluorinated polyimide is suitable as a material for the optical waveguide device.
以上の特性を兼ね備えた、 フッ素化ポリイミドをアサ一マル樹脂光導波路材 料として用いることが好ましい。  It is preferable to use a fluorinated polyimide having the above characteristics as an asamaru resin optical waveguide material.
基板を構成するフッ素化ポリイミドの製造に使用されるテトラ力ルポン酸お よびその誘導体の具体的な例としては次のようなものがある。 ここではテトラ カルボン酸としての例を挙げる。 2, 2 _ビス (3, 4—ジカルポキシフエ二 ル) へキサフルォロプロパン (以下 6 FDAと表す) 、 3, 3 ' , 4, 4, 一 テトラカルボキシジフエ二ルェ一テル、 3, 3 ' , 4, 4 ' —ベンゾフエノン テトラカルボン酸、 3, 3 ' , 4, 4' —テトラ力ルポキシジフエニルスルホ ン、 ピロメリット酸などがあげられる。 これらテトラカルボン酸おょぴその誘 導体を単独で用いても良いし、 混合して用いても良い。  The following are specific examples of tetrapyruonic acid and its derivatives used in the production of fluorinated polyimide constituting the substrate. Here, an example of tetracarboxylic acid will be given. 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane (hereinafter referred to as 6 FDA), 3,3 ', 4,4,1-tetracarboxydiphenyl ether, 3,3 ', 4,4'-benzophenone tetracarboxylic acid, 3,3', 4,4'-tetra-potoxydiphenylsulfone, pyromellitic acid and the like. These tetracarboxylic acids and their derivatives may be used alone or as a mixture.
ジァミン成分としては、 例えば、 次のジァミン、 または、 そのジイソシァネ —卜誘導体等が使用される。 2, 2 ' 一ビス (トリフルォロメチル) _4, 4 ' —ジアミノビフエニル (以下、 TFDBと表す) 、 2, 2 _ビス (p—アミ ノフエニル) へキサフルォロプロパン、 2, 2 ' ージメチルベンジジン、 3, 3, 一ジメチルペンジジン、 4, 4 ' 一ォキシジァニリン (以下、 ODAと表 す) 等が挙げられるが、 これらを単独で用いても良いし、 混合して用いても良 い。  As the diamine component, for example, the following diamine or its diisocyanate derivative is used. 2,2'-bis (trifluoromethyl) _4,4'-diaminobiphenyl (hereinafter referred to as TFDB), 2,2'-bis (p-aminophenol) hexafluoropropane, 2,2 ' -Dimethylbenzidine, 3,3,1-dimethylpentidine, 4,4'-oxydianiline (hereinafter referred to as ODA), etc., which may be used alone or in combination. No.
これらを使用して、 泡ふくれや、 応力発生によるそりのない表面平滑性の高 いポリイミド基板を製造することができる。  Using these, a polyimide substrate having high surface smoothness without bubble swelling or warpage due to stress generation can be manufactured.
具体的な組成としては、 得られるフッ素化ポリイミドの線熱膨張係数とガラ ス転移温度を測定して好適なものを選択する事ができる。  As a specific composition, a suitable one can be selected by measuring the linear thermal expansion coefficient and the glass transition temperature of the obtained fluorinated polyimide.
本発明でいうアサ一マル樹脂光導波路デバイスの例としては、 光導波路中を 伝搬する光を干渉または共振させることにより、 特定の波長を共振、 反射、 透 過または分岐するデバイスであり、 方向性結合器、 マツ八ツエンダ干渉器、 リ ング共振器、フアブリべ口一共振器、アレイ導波路回折格子などが挙げられる。 以下、 実施例を用いて本発明をさらに詳しく説明するが、 本発明はこれらの 実施例に限定されるものではない。 An example of the asamaru resin optical waveguide device according to the present invention is a device that resonates, reflects, transmits, or branches a specific wavelength by interfering or resonating light propagating in the optical waveguide. Coupler, Matsu eighteenda interferometer, A resonator, a Fabry-Believe resonator, an arrayed waveguide diffraction grating, and the like. Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
〔調製例 1〕  (Preparation Example 1)
三ッロフラスコに 6 FDAを 8 8. 8 g (0. 2mo 1 ) と TFDBを 64. 0 g (0. 2mo 1 ) 及びァ—プチ口ラタトン 3 5 6. 5 gを加えた。 この混 合物を窒素雰囲気下、 オイルバスを用いて 1 70°Cで 6時間撹拌し、 濃度 30 %、 粘度 50ボイズのポリイミド溶液 (以下 6 FDAZTFDBポリイミド溶 液と表す) を得た。  88.8 g (0.2mo 1) of 6 FDA, 64.0 g (0.2mo 1) of TFDB, and 3.56.5 g of raphatone rattatone were added to a three-necked flask. The mixture was stirred in an oil bath at 170 ° C. for 6 hours under a nitrogen atmosphere to obtain a polyimide solution having a concentration of 30% and a viscosity of 50 boise (hereinafter, referred to as 6 FDAZTFDB polyimide solution).
〔調製例 2〕  (Preparation Example 2)
三ッロフラスコに6 0八を88. 8 g (0. 2mo l ) と TFDBを 64. 0 g (0. 2mo 1 ) 及び N, N—ジメチルァセトアミド (以下、 DMAcと 表す) を 6 9 6. 0 gを加えた。 この混合物を窒素雰囲気下、 室温で 3日間撹 拌し、 濃度 1 5 %、 粘度 1 8 0ボイズのポリアミド酸溶液 (以下 6 FDA/T FDBポリアミド酸溶液と表す) を得た。  In a flask, 88.8 g (0.2 mol) of TFDB, 64.0 g (0.2 mol) of TFDB and 696 of N, N-dimethylacetamide (hereinafter referred to as DMAc) were added. .0 g was added. This mixture was stirred under a nitrogen atmosphere at room temperature for 3 days to obtain a polyamic acid solution having a concentration of 15% and a viscosity of 180 boise (hereinafter referred to as 6 FDA / TFDB polyamic acid solution).
〔調製例 3〕  (Preparation Example 3)
三ッロフラスコに6 0八を8 8. 8 g (0. 2mo l ) 、 TFDBを 44. 8 g (0. 14mo l) 、 ODAを 1 2. 0 g (0. 0 6 m o 1 ) 及び、 D M Acを 82 5. 6 g加えた。 この混合物を窒素雰囲気下、室温で 3日間撹拌し、 濃度 1 5 %、 粘度 1 60ボイズのポリアミド酸溶液 (以下 6 FDA/TFDB /ODAポリアミド酸溶液と表す) を得た。  608.8 in 88.8 g (0.2 mol), TFDB in 44.8 g (0.14 mol), ODA in 12.0 g (0.06 mol) and DM 825.6 g of Ac was added. This mixture was stirred under a nitrogen atmosphere at room temperature for 3 days to obtain a polyamic acid solution having a concentration of 15% and a viscosity of 160 boise (hereinafter referred to as 6 FDA / TFDB / ODA polyamic acid solution).
〔実施例 1〕  (Example 1)
調製例 3の溶液から、 ポリイミド光導波路のコアを作製し、 下部、 上部のク ラッドは調製例 2の溶液で作製するが、 この組成では、  A polyimide optical waveguide core was prepared from the solution of Preparation Example 3, and the lower and upper clads were prepared with the solution of Preparation Example 2.
d n/dT + n = 0 (式 1 )  d n / dT + n = 0 (Equation 1)
の d nZdTは — 1. 1 7 X l O— 4/K であることがわかっており、 光 導波路の等価屈折率が 1. 5であるので、 基板の線熱膨張係数が 7 8 p pmZIt is known that d nZdT is — 1.17 X l O— 4 / K, and since the equivalent refractive index of the optical waveguide is 1.5, the coefficient of linear thermal expansion of the substrate is 78 p pmZ
Kであれば、 光導波路が温度無依存になる。 そのため、 ポリイミド基板の線熱膨張係数が 78 p pmZKになるよう、 調 製例 1の溶液を調製し、 この溶液 50 gを、 あらかじめ剥離剤を塗布しておい た 20 cm角のガラス板上にアプリケ一ターを用いてキャストした。 キャスト 後、 オーブンにて 70°C2時間、 1 50°C 2時間の熱処理を行い、 溶媒を一部 除去した。 その後、 含溶媒板状体を支持体から剥離した。 引き続いて、 得られ た含溶媒板状体を枠体に固定し、 オーブンにて 200°Cで 2時間加熱後、 38 0°C2時間の加熱をおこない、 溶媒を実質的に完全に除去した。 この時、 各、 加熱温度への昇温速度は 3°C/m i nで実施した。 このポリイミド基板は厚さ が 550 mであり、 ヤング率が 4. 5 GP a、 ガラス転移温度は 325°C、 表 面粗さは 4 nmであった。 線熱膨張係数は 78 p pmZKのものが得られた。 なお、 このポリイミド基板に泡ふくれ、 ソリ発生は認められなかった。 If K, the optical waveguide becomes temperature independent. Therefore, the solution of Preparation Example 1 was prepared so that the linear thermal expansion coefficient of the polyimide substrate was 78 ppmZK, and 50 g of this solution was placed on a 20 cm square glass plate on which a release agent had been applied in advance. Cast using an applicator. After casting, heat treatment was performed in an oven at 70 ° C for 2 hours and at 150 ° C for 2 hours to partially remove the solvent. Thereafter, the solvent-containing plate was peeled from the support. Subsequently, the obtained solvent-containing plate was fixed to a frame, heated in an oven at 200 ° C. for 2 hours, and then heated at 380 ° C. for 2 hours to substantially completely remove the solvent. At this time, the heating rate to the heating temperature was set at 3 ° C / min. This polyimide substrate had a thickness of 550 m, a Young's modulus of 4.5 GPa, a glass transition temperature of 325 ° C, and a surface roughness of 4 nm. A coefficient of linear thermal expansion of 78 ppmZK was obtained. No foaming or warpage was observed on the polyimide substrate.
得られたポリイミド基板を用いて直線光導波路およびアレイ導波路回折格子 を作製した。  A linear optical waveguide and an arrayed waveguide diffraction grating were fabricated using the obtained polyimide substrate.
まず、 6 FDAZTFDBポリアミド酸溶液 (調製例 2の溶液) をこのポリ イミド基板にスピンコートし、 70°Cで 2時間、 160 で1時間、 250 °C で 30分、 更に 350 °Cで 1時間加熱イミド化を行い、 厚さ 1 5 mのアンダー クラッドを形成した。 次に、 この基板上に 6 FDAZTFDB/QDAポリア ミド酸溶液 (調製例 3の溶液) をスピンコー卜し、 上記と同条件にて加熱し、 コア層を形成した。 このコア層をフォトリソグラフィー、 ドライエッチングに より長さ 7 Omm、幅 8 ΠΙ、高さ 8 zmの直線コアパターンを形成した。次に、 この基板上に 6 FDAZTFDBポリアミド酸溶液 (調製例 2の溶液) をアン ダークラッドを形成したのと同条件にて厚さ 1 5 mのオーバ一クラッドを形 成した。作製した導波路に 1. 55 Aimの光を通してカツトバック法で光伝搬損 失を測定したところ、 0. 3 dBZcmであり、 また偏波依存損失は 0. I d B/ cm以下で光導波路として好適なものが得られた。  First, a 6 FDAZTFDB polyamic acid solution (the solution of Preparation Example 2) was spin-coated on this polyimide substrate, and heated at 70 ° C for 2 hours, at 160 ° C for 1 hour, at 250 ° C for 30 minutes, and at 350 ° C for 1 hour. Thermal imidization was performed to form an under clad with a thickness of 15 m. Next, a 6 FDAZTFDB / QDA polyamic acid solution (the solution of Preparation Example 3) was spin-coated on this substrate, and heated under the same conditions as above to form a core layer. This core layer was formed into a linear core pattern having a length of 7 Omm, a width of 8 mm, and a height of 8 zm by photolithography and dry etching. Next, an overcladding having a thickness of 15 m was formed on the substrate under the same conditions as those for forming a 6 FDAZTFDB polyamic acid solution (the solution of Preparation Example 2) undercladding. When the propagation loss was measured by a cutback method using 1.55 Aim light through the fabricated waveguide, it was 0.3 dBZcm, and the polarization dependent loss was less than 0.3 IdB / cm, making it suitable as an optical waveguide. Was obtained.
アレイ導波路回折格子(AWG) として、 コアサイズが幅 8 m、高さ 8 m、 8 X 8チャンネル、 中心波長 1. 5525 m、 波長間隔 200 GHzのものを 上記直線光導波路の作製と同じプロセスを用い作製した。 作製したアレイ導波 路回折格子の温度特性を測定したところ、 0°Cから 1 50°Cの範囲においてデ バイスの中心波長変化は一 0. 01 nm/°C以下であった。 作製した樹脂光導 波路デバィスは低光損失で偏波依存性もなく、 実質的に温度無依存であつた。 作製した直線導波路および AWGを温度 85°C, 湿度 8 5%の雰囲気下に 2 000時間放置したが、 放置前後において特性変化は生じず、 長期信頼性を兼 ね備えていた。 Array waveguide grating (AWG) with a core size of 8 m in width, 8 m in height, 8 x 8 channels, center wavelength of 1.5525 m, and a wavelength interval of 200 GHz is the same process as the fabrication of the above linear optical waveguide It was produced using. Array waveguide fabricated When the temperature characteristics of the diffraction grating were measured, the change in the center wavelength of the device was less than 0.01 nm / ° C in the range of 0 ° C to 150 ° C. The fabricated resin optical waveguide device had low optical loss, no polarization dependence, and was substantially temperature independent. The fabricated linear waveguide and AWG were left in an atmosphere at a temperature of 85 ° C and a humidity of 85% for 2,000 hours. However, there was no change in characteristics before and after the storage, and they had long-term reliability.
〔実施例 2〕  (Example 2)
実施例 1と同じ材料、 同じプロセスにより、 導波路長 2 cm、 結合部の導波 路間隔 3 m、 結合長 1. 2 mmの方向性結合器を作製した。 コアサイズは幅 8 m、 高さ 8 mとした。 入射光には 1. 55 mのレ一ザを使用して 0 °Cから 1 50°Cの範囲において、 各ポートの出射光量を測定し分岐比を求めた。 いずれ の温度においてもクロスポートで 99. 1 %以上の分岐比が得られ、 実質的に 温度無依存であった。 また方向性結合器の挿入損失は 1. 0 dB、 偏波依存損 失は 0. 2 dB/ cm以下であり光導波路として好適なものが得られた。  A directional coupler having a waveguide length of 2 cm, a waveguide interval of a coupling portion of 3 m, and a coupling length of 1.2 mm was manufactured by the same material and the same process as in Example 1. The core size was 8 m wide and 8 m high. The incident light was measured using a 1.55 m laser in the range of 0 ° C to 150 ° C, and the branching ratio was determined by measuring the amount of light emitted from each port. At any temperature, the crossport showed a branching ratio of 99.1% or more, and was virtually independent of temperature. In addition, the insertion loss of the directional coupler was 1.0 dB, and the polarization dependent loss was 0.2 dB / cm or less. Thus, a suitable optical waveguide was obtained.
作製した方向性結合器を温度 85°C、 湿度 85%の雰囲気下に 2000時間 放置したが、 放置前後において特性変化は生じず、 長期信頼性を兼ね備えてい た。  The fabricated directional coupler was left in an atmosphere at a temperature of 85 ° C and a humidity of 85% for 2000 hours. However, there was no change in characteristics before and after the exposure, and it had long-term reliability.
〔比較例 1〕  (Comparative Example 1)
基板にシリコン基板を用いた以外は実施例 1 'と同条件で、 直線光導波路およ びアレイ導波路回折格子 (AWG) を作製した。  A linear optical waveguide and an arrayed waveguide diffraction grating (AWG) were fabricated under the same conditions as in Example 1 'except that a silicon substrate was used as the substrate.
作製した直線光導波路に 1. 55 の光を通してカットバック法で光伝搬損 失を測定したところ、 0. 6 dB/cm、 また偏波依存損失は 0. 7 dBZc mであり、 損失、 偏波依存損失ともに悪化した。 また、 アレイ導波路回折格子 の温度特性を測定したところ、 0°Cから 1 50°Cの範囲においてデバイスの中 心波長変化は— 0. 15 nm/°Cであり AWGとしては不適なものであった。 作製した直線導波路および AWGを温度 85°C、 湿度 8 5%の雰囲気下に 2 000時間放置したところ、シリコン基板と光導波路の間に剥離が生じていた。 また、 光伝搬損失は 0. 8 dBZcmに悪化しており、 長期信頼性は不十分で あった。 The light propagation loss was measured by the cutback method by passing 1.55 light through the fabricated linear optical waveguide.The measured loss was 0.6 dB / cm, and the polarization dependent loss was 0.7 dBZcm. Both dependency losses have worsened. When the temperature characteristics of the arrayed waveguide diffraction grating were measured, the change in the central wavelength of the device from 0 ° C to 150 ° C was −0.15 nm / ° C, which was unsuitable for AWG. there were. When the fabricated linear waveguide and AWG were left in an atmosphere at a temperature of 85 ° C and a humidity of 85% for 2,000 hours, separation occurred between the silicon substrate and the optical waveguide. In addition, the optical propagation loss has deteriorated to 0.8 dBZcm, and the long-term reliability is insufficient. there were.
本発明の方法によれば、低コスト性、作製の容易性、耐熱性、低伝搬損失性、 長期信頼性を兼ね備えたアサ一マル樹脂光導波路デバイスが製造できる。  According to the method of the present invention, it is possible to manufacture an asamaru resin optical waveguide device having low cost, easy production, heat resistance, low propagation loss, and long-term reliability.

Claims

請 求 の 範 囲 The scope of the claims
1 . フッ素化ポリイミド基板上に形成された光導波路であって、 0〜1 5 0 °cの温度範囲において、 実質的に温度無依存性を持つことを特徴とするアサ一 マル樹脂光導波路デバイス。 1. An optical waveguide device formed on a fluorinated polyimide substrate, which is substantially temperature-independent in a temperature range of 0 to 150 ° C. .
2 . 請求項 1記載のフッ素化ポリイミド基板が線熱膨張係数が 4 0〜1 2 0 p p mZK:、 ガラス転移温度が 3 0 0 °C以上であることを特徴とする請求項 1 記載のアサ一マル樹脂光導波路デバイス。 2. The ASA according to claim 1, wherein the fluorinated polyimide substrate according to claim 1 has a linear thermal expansion coefficient of 40 to 120 pp mZK: and a glass transition temperature of 300 ° C. or more. One resin optical waveguide device.
3 . 導波路材料がフッ素化ポリイミドであり、 デバイスの構成材料がすべて フッ素化ポリイミドであることを特徴とする請求項 1記載のアサ一マル樹脂 光導波路: 3. The asamal resin optical waveguide according to claim 1, wherein the waveguide material is fluorinated polyimide, and all the constituent materials of the device are fluorinated polyimide.
4 . 導波路材料がフッ素化ポリイミドであり、 デバイスの構成材料がすべて フッ素化ポリイミドであることを特徴とする請求項 2記載のアサ一マル樹脂 光導波路: 4. The asamal resin optical waveguide according to claim 2, wherein the waveguide material is fluorinated polyimide, and all the constituent materials of the device are fluorinated polyimide.
PCT/JP2003/001921 2002-02-26 2003-02-21 Athermal resin optical waveguide device WO2003073141A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-050139 2002-02-26
JP2002050139 2002-02-26
JP2003-026848 2003-02-04
JP2003026848A JP2003322738A (en) 2002-02-26 2003-02-04 Athermal resin optical waveguide device

Publications (1)

Publication Number Publication Date
WO2003073141A1 true WO2003073141A1 (en) 2003-09-04

Family

ID=27767177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001921 WO2003073141A1 (en) 2002-02-26 2003-02-21 Athermal resin optical waveguide device

Country Status (2)

Country Link
JP (1) JP2003322738A (en)
WO (1) WO2003073141A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928398A (en) * 2009-06-23 2010-12-29 日东电工株式会社 Polyimide compound and method for making and by the optical thin film and the optical waveguides of its acquisition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4743749B2 (en) * 2005-01-31 2011-08-10 国立大学法人京都大学 Low thermal expansion optical waveguide film
JP4552862B2 (en) * 2006-01-10 2010-09-29 日立電線株式会社 Optical multiplexer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191784A (en) * 1998-12-25 2000-07-11 Central Glass Co Ltd Polyimide for optical substrate and optical polyimide substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191784A (en) * 1998-12-25 2000-07-11 Central Glass Co Ltd Polyimide for optical substrate and optical polyimide substrate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KEIL N. ET AL., PROCEEDINGS OF OPTICAL FIBER COMMUNICATION CONFERENCE AND EXHIBIT 2001, vol. 4, 17 March 2001 (2001-03-17) - 22 March 2001 (2001-03-22), pages PD7-1 - PD7-3, XP010545692 *
MATSUURA T. ET AL., MACROMOLECULES, vol. 26, 1993, pages 419 - 423, XP000335369 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928398A (en) * 2009-06-23 2010-12-29 日东电工株式会社 Polyimide compound and method for making and by the optical thin film and the optical waveguides of its acquisition
CN101928398B (en) * 2009-06-23 2013-06-12 日东电工株式会社 Polyimide compound, preparation method therefor, and optical film and optical waveguide produced by employing the compound
US8470959B2 (en) 2009-06-23 2013-06-25 Nitto Denko Corporation Polyimide compound, preparation method therefor, and optical film and optical waveguide produced by employing the compound

Also Published As

Publication number Publication date
JP2003322738A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
EP0616234B1 (en) Method of manufacturing a polyimide optical waveguide
Yeniay et al. Ultra-low-loss polymer waveguides
CA2123061C (en) Optical waveplate, method of manufacturing the same, and waveguide device using the same
US6870978B2 (en) Waveplate and optical circuit formed from mesogen-containing polymer
JP4595288B2 (en) Polybenzoxazole resin, precursor thereof, optical waveguide material using the same, and optical waveguide
JP3296458B2 (en) Polymer film optical waveguide and method of manufacturing the same
JP2002356615A (en) Photosensitive polyimide precursor composition, photosensitive polyimide and optical waveguide using the same
JP2006312680A (en) Polymer-inorganic hybrid optical material
WO2003073141A1 (en) Athermal resin optical waveguide device
JPH0921920A (en) Polyimide optical waveguide
JPH0792338A (en) High molecular optical waveguide and its production
JP3486357B2 (en) Optical polyimide substrate
JP2005173039A (en) Manufacturing method for optical waveguide
JP3486358B2 (en) Optical polyimide substrate
JP2003313294A (en) Optical part using fluorinated polyimide
Matsuura et al. Synthesis and properties of partially fluorinated polyimides for optical applications
JP3299017B2 (en) Polyimide optical waveguide
JPH09324051A (en) Polymeric optical material and optical waveguide made therefrom
JP3941918B2 (en) Manufacturing method of optical wave plate
JP2000072876A (en) Fluorine-containing polyimide resin and optical waveguide by using the same
KR100409223B1 (en) Optical waveguide prepared by using polyimide containing fluoride
JP2005215076A (en) Resin optical waveguide module
MATSUURA et al. Synthesis Partially Fluorinated and Properties of Polyimides for Optical Applications
JPH061914A (en) Polyamic acid composition and polyimide composition
JP3343850B2 (en) Polymer optical waveguide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase