WO2003071148A1 - Rolling bearing unit for wheel support - Google Patents

Rolling bearing unit for wheel support Download PDF

Info

Publication number
WO2003071148A1
WO2003071148A1 PCT/JP2003/001943 JP0301943W WO03071148A1 WO 2003071148 A1 WO2003071148 A1 WO 2003071148A1 JP 0301943 W JP0301943 W JP 0301943W WO 03071148 A1 WO03071148 A1 WO 03071148A1
Authority
WO
WIPO (PCT)
Prior art keywords
raceway
rolling bearing
bearing unit
seal
ring
Prior art date
Application number
PCT/JP2003/001943
Other languages
French (fr)
Japanese (ja)
Inventor
Junshi Sakamoto
Original Assignee
Nsk Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nsk Ltd. filed Critical Nsk Ltd.
Priority to AU2003207106A priority Critical patent/AU2003207106A1/en
Publication of WO2003071148A1 publication Critical patent/WO2003071148A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/02Hubs adapted to be rotatably arranged on axle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Definitions

  • the present invention relates to a rolling bearing unit for supporting wheels, which rotatably supports wheels, particularly driven wheels (rear wheels of FF vehicles, front wheels of FR vehicles and RR vehicles), with respect to a suspension system of a vehicle. Regarding improvement. Background art
  • FIG. 12 A rolling bearing unit for supporting a wheel
  • Japanese Patent Application Laid-Open No. 2001-221243 describes a structure as shown in FIGS.
  • a wheel 1 constituting a wheel is rotatably supported on an end of an axle 3 constituting a suspension device by a rolling bearing unit 2 for supporting a wheel. That is, the inner races 5, which are stationary raceways, constituting the wheel supporting rolling bearing unit 2, are externally fitted to the support shaft 4 fixed to the end of the axle 3, and fixed by the nut 6.
  • the wheel 1 is fixedly connected to a hub 7, which is a rotating raceway, constituting the wheel supporting rolling bearing unit 2 by a plurality of studs 8, 8 and nuts 9, 9.
  • the inner circumferential surface of the hub 7 is formed with double-row outer raceways 10a and 10b, each of which is a rotating raceway surface, and the outer circumferential surface is formed with a mounting flange 11 respectively.
  • the wheel 1 is mounted on one side (the outer side in the illustrated example) of the mounting flange 11 together with a drum 12 for constituting a braking device by the studs 8 and 8 and nuts 9 and 9. The connection is fixed.
  • Balls 14, 10 are provided between the outer raceways 10a, 10b and the inner raceways 13, 13 formed on the outer peripheral surface of the inner races 5, 5, each of which is a stationary raceway surface. 14 are provided so as to roll freely while being held by a plurality of cages 15 and 15, respectively.
  • a double-row anguilla type ball bearing which is a back-to-back combination, is configured, and the hub 7 is rotated around each of the inner rings 5, 5. It supports freely and radial and thrust loads freely.
  • seal rings 16a and 16b are provided between the inner peripheral surfaces of both ends of the above-mentioned eight lobes 7 and the outer peripheral surfaces of the ends of the above-mentioned inner races 5 and 5, respectively, so that the above-mentioned balls 1 It blocks the space provided with 4, 14 and the outside space.
  • the outer end of the above-mentioned bracket 7 (the term “outer in the axial direction” means the outer side in the width direction when assembled to the vehicle. Similarly, the center side in the width direction is called “inside”. The same applies throughout the present specification.) Is closed by a cap 17 which is a sealing member other than the seal ring.
  • FIG. 11 Fix wheel 1 and drum 12 with tires (not shown) in combination.
  • a drum drum for braking is configured by combining the drum 12 of these with a wheel cylinder and a shoe (not shown) supported by a packing plate 18 fixed to the end of the axle 3. At the time of braking, a pair of shoes provided on the inner diameter side of the drum 12 is pressed against the inner peripheral surface of the drum 12.
  • a hub 7a as a rotating raceway is provided on the inner diameter side of an outer ring 19 as a stationary raceway, and a plurality of balls each being a rolling element. It is supported rotatably by 14 and 14.
  • the double-row outer raceways 10a and 10b are rotated on the inner circumferential surface of the outer race 19, respectively, on the outer circumferential surface of the hub 7a.
  • First and second inner raceways 20 and 21 which are side raceway surfaces are provided, respectively.
  • the hub 7a is formed by combining a hub body 22 and an inner ring 23.
  • the mounting flange 11 a for supporting the wheel is also provided, the first inner raceway 20 is also provided at the intermediate portion, and the inner end track is also provided at the intermediate portion.
  • the small-diameter step portions 24 each having a smaller diameter than the portion where the first inner ring raceway 20 is formed are provided.
  • the inner ring 23 provided with the second inner ring raceway 21 having an arc-shaped cross section on the outer peripheral surface is externally fitted to the small-diameter stepped portion 24.
  • the inner end surface of the inner ring 23 is suppressed by a caulking portion 25 formed by plastically deforming the inner end portion of the hub body 22 radially outward, and the inner ring 23 is attached to the hub body 22. On the other hand, it is fixed. Further, the inner peripheral surfaces of both ends of the outer ring 19, the outer peripheral surface of the intermediate portion of the hub 7a, and the inner ring Seal rings 16c and 16d are provided between the inner peripheral surface of the inner end of the outer ring 19 and the outer peripheral surface of the hub 7a. It blocks the space where 14 and 14 are installed from the external space.
  • seal rings 16a and 16b were installed at the openings at both ends of the internal space where balls 14 and 14 were installed. It is inevitable that the torque required to rotate the hub 7 (or 7a) (the rolling resistance of the wheel bearing rolling bearing unit) will increase.
  • a structure in which one end of the internal space is closed with a cap and a seal ring is provided only on the other end in the axial direction to shut off the internal space from the external space is disclosed in, for example, As described in Japanese Patent Application Laid-Open No. 241450, it has been conventionally known.
  • the rolling bearing unit for supporting wheels of the present invention has been invented in view of such circumstances. Disclosure of the invention
  • the rolling bearing unit for supporting a wheel of the present invention includes a stationary raceway, a rotating raceway, a plurality of balls, and a seal ring, similarly to the above-described conventionally known rolling bearing unit for supporting a wheel.
  • the stationary race is supported and fixed to the suspension device in use.
  • the rotating raceway rings support and fix the wheels in use.
  • each of the balls is present on the opposing peripheral surfaces of the stationary raceway ring and the rotating raceway ring.
  • Each of the balls has a circular cross-section between the stationary raceway surface and the rotating raceway surface. It is located between them.
  • the seal ring closes an opening at one end of a space in which the balls are installed between peripheral surfaces of the stationary raceway ring and the rotating raceway facing each other.
  • the seal ring has two or three seal lips, each of which is made of a resilient material.
  • the axial load for applying a preload to each of the balls is 0.49 to 2.94 kN (50 to 30 Okgf).
  • the stiffness coefficient when the axial load is 1.96 kN is 0.09 or more.
  • the torque (seal resistance) required for relative rotation with the rotating side raceway at 20 Omin- 1 is 0.03 to 0.2 N'm.
  • a sealing member be provided in addition to the seal ring to block the entire axial one-end opening of the raceway located on the outer diameter side of the stationary raceway and the rotating raceway.
  • the seal ring is provided on a side opposite to the sealing member in the axial direction.
  • the rigidity coefficient described in the present specification is defined as the rigidity R [kN-m / deg] of the wheel supporting rolling bearing unit and the radial dynamic load rating C r of the wheel supporting rolling bearing unit. This is the ratio (RZC r) to [N].
  • the rigidity R in this case is the above-mentioned two values when a moment load is applied to the rotating raceway while the stationary raceway constituting the wheel supporting rolling bearing unit is fixed. It is expressed by the inclination angle of the bearing ring, and is measured, for example, as shown in FIG. FIG. 14 shows a state in which the rigidity R of the wheel supporting rolling bearing unit 2a shown in FIG. 13 is measured.
  • the outer ring 19, which is the stationary raceway, is fixed to the upper surface of the fixing base 38, and the base end of the lever plate 39 is attached to the mounting flange 11a of the hub 7a, which is the rotating raceway (Fig. 14). (The left end). Then, a load is applied to a portion of the upper surface of the lever plate 39 which is separated from the center of rotation of the above-mentioned bracket 7a by a distance L corresponding to the rotation radius of the tire. Then, a moment load of 1.5 kN'm is applied.
  • the inclination angle is determined by the inclination angle [deg] of the mounting surface 41 of the mounting flange 11a with respect to the upper surface 40 of the fixed base 38. Measured as Then, the stiffness R [kN-m / deg] is obtained by dividing the moment load (1.5 kN'm) by the inclination angle. Further, the rigidity coefficient is obtained by dividing the rigidity R by the radial dynamic load rating Cr [N] of the wheel supporting rolling bearing unit 2a.
  • the rotating torque can be sufficiently reduced while securing the required rigidity and durability.
  • the axial load for applying the preload is 0.49 kN or more
  • the rolling load is 1.96 kN
  • the rolling resistance is 0.12 Nm or more
  • the stiffness coefficient is 0.09 or more. Therefore, the steering stability can be improved.
  • the axial load for applying the preload is 2.94 kN or less
  • the rolling resistance is 0.23 N * m or less
  • the rotation resistance (torque) of the seal ring is 0.2 N * m or less
  • the required seal performance (mainly muddy water resistance to prevent infiltration of muddy water) can be ensured because the seal ring has a rotational resistance of at least 0.03 Nm.
  • the axial load for applying the preload is 0.49 to 2.94 kN, and when this axial load is 1.96 kN, the rolling resistance is 0.12 to 0.23 N
  • the rotation torque is ensured while ensuring rigidity and durability. It can be understood that can be sufficiently reduced.
  • FIG. 1 is a sectional view showing a first example of a structure to which the present invention is applied.
  • FIG. 2 is a cross-sectional view showing a second example of the structure to which the present invention is applied.
  • FIG. 3 is a half sectional view showing a third example of the subject to the structure of the present invention
  • FIG. 4 is a half sectional view showing a fourth example of the structure to which the present invention is applied.
  • FIG. 5 is a partial cross-sectional view showing a first example of a specific structure of a seal ring applicable to the present invention.
  • FIG. 6 is a partial cross-sectional view showing a second example of the specific structure of the seal ring applicable to the present invention.
  • FIG. 7 is a partial cross-sectional view showing a third example of the specific structure of the seal ring applicable to the present invention.
  • FIG. 8 is a partial cross-sectional view showing a fourth example of the specific structure of the seal ring applicable to the present invention.
  • FIG. 9 is a partial cross-sectional view showing a fifth example of the specific structure of the seal ring applicable to the present invention.
  • FIG. 10 is a partial sectional view showing a sixth example of the specific structure of the seal ring applicable to the present invention. '
  • FIG. 11 is a partial sectional view showing a seventh example of the specific structure of the seal ring applicable to the present invention.
  • FIG. 12 is a cross-sectional view showing a first example of a conventionally known rolling bearing unit for supporting a wheel in a state where the rolling bearing unit is mounted on a suspension device.
  • FIG. 13 is a cross-sectional view showing a second example of a conventionally known rolling bearing unit for supporting a wheel.
  • FIG. 14 is a cross-sectional view showing a state in which the rigidity of the wheel supporting rolling bearing unit is measured.
  • FIG. 1 shows, as a first example, a structure in which the structure shown in FIG. 12 described above is modified to make it easier to reduce the rotational torque while ensuring sealing performance.
  • the inner inner raceway 13a is formed directly on the outer peripheral surface of the intermediate portion of the support shaft 4a.
  • the outer seal ring 16a which is incorporated in the conventional structure shown in FIG. 12, is omitted, and only the inner seal ring 16b is provided.
  • the preload is applied to the balls 14, 14 by appropriately regulating the torque for tightening the nut 6 screwed to the outer end of the support shaft 4a.
  • the axial load to be applied shall be 0.49 to 2.94 kN.
  • the torque (rolling resistance) required to rotate the hub 7 around the support shaft 4a at 20 OmiiT 1 is 0.12 to 0.23N '. m.
  • the stiffness coefficient when the axial load is 1.96 kN is set to 0.09 or more.
  • the rotation resistance (torque) of the inner seal ring 16 is regulated in the range of 0.03 to 0.2 N * m.
  • a sealing member other than the seal ring 16 b and the seal ring attached to the outer end opening of the hub 7 is used. This is prevented by cap 17.
  • the structure of the other parts is the same as the conventional structure shown in FIG.
  • FIG. 2 shows a second example of a rolling bearing unit for supporting a wheel, which is an object of the present invention.
  • the outer end of the support shaft 4b is The outer end surface of the inner race 5 is held down by a caulking portion 25 that is plastically deformed in the outward direction, and the inner race 5 is fixed to the support shaft 4b.
  • the axial load for applying the preload is adjusted by the load at the time of processing the caulking portion 25.
  • the structure of the other parts is the same as in the first example described above.
  • FIG. 3 shows a third example of a rolling bearing unit for supporting a wheel, which is an object of the present invention.
  • the structure shown in FIG. 13 is changed to a structure to which the present invention can be applied.
  • the inner end opening of the outer ring 19 is closed with a cap 17a which is a sealing member other than the seal ring, and the inner peripheral surface of the outer end of the outer ring 19 and the outer peripheral portion of the intermediate portion of the hub body 22.
  • the surface is closed with a seal ring 16c.
  • the sealing 16d (FIG. 13) between the inner peripheral surface of the inner end of the outer ring 19 and the outer peripheral surface of the inner ring 23 is omitted.
  • the rotation resistance of the seal ring 16c is regulated in the range of 0.03 to 0.2 N ⁇ m.
  • Each ball 14, 14 installed The seal ring 16c and the cap 17a prevent the foreign matter such as muddy water from entering the space.
  • the axial load for applying the preload is adjusted by the load at the time of processing the caulked portion 25.
  • the structure of the other parts is the same as the first and second examples described above and the conventional structure shown in FIG.
  • FIG. 4 shows a fourth example of a rolling bearing unit for supporting a wheel, which is an object of the present invention.
  • the inner ring 2 externally fitted to the small-diameter stepped portion 24 of the hub main body 2 2a by a nut 27 screwed to the male screw portion 26 provided at the inner end of the hub main body 22a.
  • the inner end face of 3 is held down.
  • the shape of the cap 17 b which is a sealing member other than the seal ring attached to the inner end opening of the outer ring 19, is expanded to prevent interference with the male screw part 26 and the nut 27. I have.
  • the axial load for applying the preload is adjusted by the torque for tightening the nut 27.
  • Other configurations are the same as those of the above-described second example.
  • FIGS. 5 to 9 are the first and second examples of the rolling bearing unit for wheel support shown in Figs. 1 and 2 above, and have a structure that can be used as the inner seal ring 16b. Is shown.
  • the first example shown in FIG. 5 includes an outer-diameter-side seal ring 28 that is fitted and fixed to the inner end of the hub 7 (FIGS. 1 and 2), and the support shafts 4a (FIG. 1) and 4b ( This is a combination seal ring that combines the inner side seal ring 29 that is externally fitted and fixed to the inner end portion of Fig. 2) .Two total seal lips, two on the inner side and one on the outer side Is provided.
  • the torque (rotational resistance) required for the relative rotation between the outer diameter side and the inner diameter side seal rings 28, 29 was 0.22 N'm or more.
  • the outer diameter side and the inner diameter based on the friction between the leading edges of the three seal lips and the mating surface (the surface of the metal core).
  • the torque (rotational resistance) required for the relative rotation between the two sealing rings 28, 29 is restricted to the range of 0.03 to 0.2 Nm.
  • a seal ring 30 that is fitted and fixed to the inner end of the hub 7 (FIGS. 1 and 2), and the support shafts 4a (FIG. 1) and 4b (FIG. 2) is a combination seal ring in which a slinger 31 fixed externally to the portion near the inner end of Ring 30 with three sealing lips.
  • the sealing ring is formed based on the friction between the leading edges of the three sealing lips and the surface of the slinger 31.
  • the torque (rotational resistance) required for relative rotation between the slinger 30 and the slinger 31 is restricted to a range of 0.03 to 0.2 N ⁇ m.
  • the seal ring 30a for internally fitting and fixing to the inner end of the hub 7 is one of the two seal lips 32a and 32b.
  • the seal lip 32a on the inside of the support shaft 4a (FIG. 14b (FIG. 2)) is slid in contact with the outer peripheral surface of the portion near the inner end of the support shaft 4a (FIG. 14b (FIG. 2).
  • the seal ring 30a and the support shafts 4a and 4b are formed based on the friction between the tip edges of the two seal lips 32a and 32b and the outer peripheral surface of the portion near the inner ends of the support shafts 4a and 4b.
  • the torque (rotational resistance) required for relative rotation is restricted to the range of 0.03 to 0.2 N * m.
  • a seal ring 34a that locks on the inner peripheral surface of the inner end of the hub 7 (FIGS. 1 and 2), and the support shafts 4a (FIG. 1) and 4b (FIG. ) Is a combination seal ring that combines a seal ring 34b that locks to the outer peripheral surface of the portion near the inner end of ().
  • two seal rings 34a that lock to the hub 7 side
  • a seal ring 34b that locks to the b side has one seal lip, one in total.
  • the torque (rotational resistance) required for the relative rotation between the hub 7 and the support shafts 4a, 4b is 0.03 to 0.3.
  • FIG. 9 shows that the front edges of the two seal lips provided on the seal ring 35 fitted inside the inner end of the hub 7 (FIGS. 1-2) are supported by the support shaft 4a (FIG. 14b (FIG. 2)).
  • the outer edges of the two seal lips and the inner ends of the support shafts 4a and 4b are in contact with each other.
  • the torque (rotational resistance) required for the relative rotation between the seal ring 35 and the support shaft 4a based on the friction is
  • FIGS. 10 and 11 are the third and fourth examples of the wheel supporting rolling bearing unit shown in FIGS. 3 and 4, respectively, and the inner peripheral surface of the outer end of the outer ring 19 (FIGS. 3 and 4).
  • hub body This figure shows a structure that can be used as a seal ring provided between the outer peripheral surface of the intermediate portion 22 (FIG. 3) and 22a (FIG. 4).
  • the mark “X” indicates that a large amount of muddy water has infiltrated the interior space filled with grease
  • the mark “ ⁇ ” indicates that a small amount of muddy water has penetrated
  • the mark “ ⁇ ” indicates that muddy water has penetrated. Indicates that was not observed. From the results of such experiments, it can be seen that muddy water can be prevented from infiltrating with any structure of seal ring if the seal torque is 0.03 N ⁇ m or more.
  • Table 2 shows the results of a second experiment performed to determine the effect of the sealing torque on the rotation torque and durability of the entire rolling bearing unit. This experiment was performed at a rotation speed of 20 O min- 1 .
  • Table 4 shows the results of a fourth experiment performed to determine the effect of the rolling resistance on the rigidity of the rolling bearing unit and the overall rotational torque. This experiment was performed with an axial load (preload) of 1.96 kN (200 kgf) and a rotation speed of SO Omin- 1 .
  • Table 5 shows the results of a fifth experiment conducted to determine the effect of the rigidity coefficient on the rigidity of the rolling bearing unit. This experiment was performed with an axial load of 1.96 kN applied.
  • Table 6 shows the results of an experiment conducted to find out the effect of the sealing torque and the rolling resistance on the rotation torque of the rolling bearing unit as a whole. This experiment was performed at an axial load (preload) of 1.96 kN (20 Okgf) and a rotation speed of 200 min- 1 .
  • the rolling bearing unit for supporting a wheel according to the present invention is configured and operates as described above, the steering torque and the rotating torque of the hub that rotates with the wheel are reduced while maintaining the steering stability and durability, thereby improving the acceleration performance. However, it can contribute to the improvement of the running performance of vehicles mainly on fuel efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rolling Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Sealing Of Bearings (AREA)

Abstract

Of the two end openings of a space in which balls (14, 14) are received, the inner end opening is closed by a cap (17a). Further, the outer end opening is closed by a sealing ring (16c) having three seal lips. The rolling resistance that changes on the basis of preload is controlled to be within the range of 0.12 - 0.23 N·m, and the rotation resistance of this seal ring (16c) based on the friction between each seal lip and the mating surface is controlled to be within the range of 0.03 - 0.2 N·m. This reduces the rotation torque of the hub rotating with the wheel while securing steering stability, thus improving the traveling performance of the vehicle centered on acceleration performance and fuel consumption performance.

Description

明 細書 車輪支持用転がり軸受ュニッ卜 技術分野  Description Rolling bearing unit for wheel support Technical field
この発明は、 自動車の懸架装置に対して車輪、 特に従動輪 (FF車の後輪、 F R車及び RR車の前輪) を回転自在に支持する為の、 車輪支持用転がり軸受ュニ ットの改良に関する。 背景技術  The present invention relates to a rolling bearing unit for supporting wheels, which rotatably supports wheels, particularly driven wheels (rear wheels of FF vehicles, front wheels of FR vehicles and RR vehicles), with respect to a suspension system of a vehicle. Regarding improvement. Background art
車輪支持用転がり軸受ユニットとして、 例えば特開 2001— 221243号 公報には、 図 12〜13に示す様な構造が記載されている。 先ず、 このうちの図 12に示した第 1例の構造に就いて説明する。 車輪を構成するホイール 1は、 車 輪支持用転がり軸受ユニット 2により、 懸架装置を構成する車軸 3の端部に回転 自在に支持している。 即ち、 この車軸 3の端部に固定した支持軸 4に、 上記車輪 支持用転がり軸受ユニット 2を構成する、 静止側軌道輪である内輪 5、 5を外嵌 し、 ナット 6により固定している。 一方、 上記車輪支持用転がり軸受ユニット 2 を構成する、 回転側軌道輪であるハブ 7に上記ホイール 1を、 複数本のスタッド 8、 8とナット 9、 9とにより結合固定している。  As a rolling bearing unit for supporting a wheel, for example, Japanese Patent Application Laid-Open No. 2001-221243 describes a structure as shown in FIGS. First, the structure of the first example shown in FIG. 12 will be described. A wheel 1 constituting a wheel is rotatably supported on an end of an axle 3 constituting a suspension device by a rolling bearing unit 2 for supporting a wheel. That is, the inner races 5, which are stationary raceways, constituting the wheel supporting rolling bearing unit 2, are externally fitted to the support shaft 4 fixed to the end of the axle 3, and fixed by the nut 6. . On the other hand, the wheel 1 is fixedly connected to a hub 7, which is a rotating raceway, constituting the wheel supporting rolling bearing unit 2 by a plurality of studs 8, 8 and nuts 9, 9.
上記ハブ 7の内周面には、 それぞれが回転側軌道面である複列の外輪軌道 10 a、 10 bを、 外周面には取付フランジ 1 1を、 それぞれ形成している。 上記ホ ィール 1は、 制動装置を構成する為のドラム 12と共に、 上記取付フランジ 1 1 の片側面 (図示の例では外側面) に、 上記各スタッド 8、 8とナット 9、 9とに より、 結合固定している。  The inner circumferential surface of the hub 7 is formed with double-row outer raceways 10a and 10b, each of which is a rotating raceway surface, and the outer circumferential surface is formed with a mounting flange 11 respectively. The wheel 1 is mounted on one side (the outer side in the illustrated example) of the mounting flange 11 together with a drum 12 for constituting a braking device by the studs 8 and 8 and nuts 9 and 9. The connection is fixed.
上記各外輪軌道 10 a、 10 bと、 上記各内輪 5、 5の外周面に形成した、 そ れぞれが静止側軌道面である各内輪軌道 13, 13との間には、 玉 14、 14を 複数個ずつ、 それぞれ保持器 15、 15により保持した状態で転動自在に設けて いる。 構成各部材をこの様に組み合わせる事により、 背面組み合わせである複列 アンギユラ型の玉軸受を構成し、 上記各内輪 5、 5の周囲に上記ハブ 7を、 回転 自在に、 且つ、 ラジアル荷重及びスラスト荷重を支承自在に支持している。 尚、 上記八ブ 7の両端部内周面と、 上記各内輪 5、 5の端部外周面との間には、 それ ぞれシールリング 1 6 a、 1 6 bを設けて、 上記各玉 1 4、 1 4を設けた空間と 外部空間とを遮断している。 更に、 上記八ブ 7の外端 (軸方向に関して外とは、 車両への組み付け状態で幅方向外側を言う。 同じく、 幅方向中央側を内と言う。 本明細書全体で同じ。) 開口部は、 シールリング以外の密封部材であるキャップ 1 7により塞いでいる。 Balls 14, 10 are provided between the outer raceways 10a, 10b and the inner raceways 13, 13 formed on the outer peripheral surface of the inner races 5, 5, each of which is a stationary raceway surface. 14 are provided so as to roll freely while being held by a plurality of cages 15 and 15, respectively. By combining the constituent members in this way, a double-row anguilla type ball bearing, which is a back-to-back combination, is configured, and the hub 7 is rotated around each of the inner rings 5, 5. It supports freely and radial and thrust loads freely. In addition, seal rings 16a and 16b are provided between the inner peripheral surfaces of both ends of the above-mentioned eight lobes 7 and the outer peripheral surfaces of the ends of the above-mentioned inner races 5 and 5, respectively, so that the above-mentioned balls 1 It blocks the space provided with 4, 14 and the outside space. Further, the outer end of the above-mentioned bracket 7 (the term "outer in the axial direction" means the outer side in the width direction when assembled to the vehicle. Similarly, the center side in the width direction is called "inside". The same applies throughout the present specification.) Is closed by a cap 17 which is a sealing member other than the seal ring.
上述の様な車輪支持用転がり軸受ュニット 2の使用時には、 図 1 2に示す様に、 内輪 5、 5を外嵌固定した支持軸 4を車軸 3に固定すると共に、 八ブ 7の取付フ ランジ 1 1に、 図示しないタイヤを組み合わせたホイール 1及びドラム 1 2を固 定する。 又、 このうちのドラム 1 2と、 上記車軸 3の端部に固定のパッキングプ レート 1 8に支持した、 図示しないホイルシリンダ及びシユーとを組み合わせて、 制動用のドラムブレーキを構成する。 制動時には、 上記ドラム 1 2の内径側に設 けた 1対のシュ一をこのドラム 1 2の内周面に押し付ける。  When using the rolling bearing unit 2 for wheel support as described above, as shown in FIG. 11 Fix wheel 1 and drum 12 with tires (not shown) in combination. Also, a drum drum for braking is configured by combining the drum 12 of these with a wheel cylinder and a shoe (not shown) supported by a packing plate 18 fixed to the end of the axle 3. At the time of braking, a pair of shoes provided on the inner diameter side of the drum 12 is pressed against the inner peripheral surface of the drum 12.
次に、 図 1 3に示した従来構造の第 2例に就いて説明する。 この車輪支持用転 がり軸受ユニット 2 aの場合には、 静止側軌道輪である外輪 1 9の内径側に、 回 転側軌道輪であるハブ 7 aを、 それぞれが転動体である複数の玉 1 4、 1 4によ り、 回転自在に支持している。 この為に、 上記外輪 1 9の内周面にそれぞれが静 止側軌道面である複列の外輪軌道 1 0 a、 1 0 bを、 上記ハブ 7 aの外周面にそ れぞれが回転側軌道面である第一、 第二の内輪軌道 2 0、 2 1を、 それぞれ設け ている。 このハブ 7 aは、 ハブ本体 2 2と内輪 2 3とを組み合わせて成る。 この うちのハブ本体 2 2の外周面の外端部に車輪を支持する為の取付フランジ 1 1 a を、 同じく中間部に上記第一の内輪軌道 2 0を、 同じく中間部内端寄り部分にこ の第一の内輪軌道 2 0を形成した部分よりも小径である小径段部 2 4を、 それぞ れ設けている。 そして、 この小径段部 2 4に、 外周面に断面円弧状である上記第 二の内輪軌道 2 1を設けた上記内輪 2 3を外嵌している。 更に、 上記ハブ本体 2 2の内端部を径方向外方に塑性変形させて成るかしめ部 2 5により上記内輪 2 3 の内端面を抑え付けて、 この内輪 2 3を上記ハブ本体 2 2に対し固定している。 更に上記外輪 1 9の両端部内周面と、 上記ハブ 7 aの中間部外周面及び上記内輪 2 3の内端部外周面との間に、 それぞれシールリング 1 6 c、 1 6 dを設けて、 上記外輪 1 9の内周面と上記ハブ 7 aの外周面との間で上記各玉 1 4、 1 4を設 けた空間と、 外部空間とを遮断している。 Next, a second example of the conventional structure shown in FIG. 13 will be described. In the case of this wheel supporting rolling bearing unit 2a, a hub 7a as a rotating raceway is provided on the inner diameter side of an outer ring 19 as a stationary raceway, and a plurality of balls each being a rolling element. It is supported rotatably by 14 and 14. For this purpose, the double-row outer raceways 10a and 10b, each of which is a stationary raceway surface, are rotated on the inner circumferential surface of the outer race 19, respectively, on the outer circumferential surface of the hub 7a. First and second inner raceways 20 and 21 which are side raceway surfaces are provided, respectively. The hub 7a is formed by combining a hub body 22 and an inner ring 23. At the outer end of the outer peripheral surface of the hub body 22, the mounting flange 11 a for supporting the wheel is also provided, the first inner raceway 20 is also provided at the intermediate portion, and the inner end track is also provided at the intermediate portion. The small-diameter step portions 24 each having a smaller diameter than the portion where the first inner ring raceway 20 is formed are provided. The inner ring 23 provided with the second inner ring raceway 21 having an arc-shaped cross section on the outer peripheral surface is externally fitted to the small-diameter stepped portion 24. Further, the inner end surface of the inner ring 23 is suppressed by a caulking portion 25 formed by plastically deforming the inner end portion of the hub body 22 radially outward, and the inner ring 23 is attached to the hub body 22. On the other hand, it is fixed. Further, the inner peripheral surfaces of both ends of the outer ring 19, the outer peripheral surface of the intermediate portion of the hub 7a, and the inner ring Seal rings 16c and 16d are provided between the inner peripheral surface of the inner end of the outer ring 19 and the outer peripheral surface of the hub 7a. It blocks the space where 14 and 14 are installed from the external space.
上述した従来構造の場合、 玉 1 4、 1 4を設置した内部空間の両端開口部にシ —ルリング 1 6 a、 1 6 b (又は 1 6 c、 1 6 d ) を設置していた為、 ハブ 7 (又は 7 a ) の回転に要するトルク (車輪支持用転がり軸受ユニットの回転抵 抗) が大きくなる事が避けられない。 一方、 上記内部空間と外部空間との遮断を 行なうのに、 この内部空間の一端側をキャップにより塞ぎ、 シールリングを軸方 向他端側にのみ設ける構造も、 例えば特開 2 0 0 1— 2 4 1 4 5 0号公報に記載 されている様に、 従来から知られている。  In the case of the conventional structure described above, seal rings 16a and 16b (or 16c and 16d) were installed at the openings at both ends of the internal space where balls 14 and 14 were installed. It is inevitable that the torque required to rotate the hub 7 (or 7a) (the rolling resistance of the wheel bearing rolling bearing unit) will increase. On the other hand, a structure in which one end of the internal space is closed with a cap and a seal ring is provided only on the other end in the axial direction to shut off the internal space from the external space is disclosed in, for example, As described in Japanese Patent Application Laid-Open No. 241450, it has been conventionally known.
但し、 従来の車輪支持用転がり軸受ユニットの場合には、 シールリングの回転 抵抗が必ずしも低くない為、 この車輪支持用転がり軸受ュニットの転がり抵抗に 就いても十分に低くできなかった。 この結果、 この車輪支持用転がり軸受ュニッ トを組み込んだ車両の、 加速性能、 燃費性能を中心とする走行性能が悪化する為、 近年に於ける省エネルギ化の流れを受けて、 改良が望まれている。  However, in the case of a conventional rolling bearing unit for supporting a wheel, since the rotational resistance of the seal ring is not necessarily low, the rolling resistance of the rolling bearing unit for supporting a wheel cannot be sufficiently reduced. As a result, the running performance of the vehicle incorporating the wheel supporting rolling unit is deteriorated, mainly in terms of acceleration performance and fuel efficiency. Therefore, improvement is desired in response to the recent trend of energy saving. ing.
シールリング設置部分の抵抗を低減して転がり軸受の回転トルクを低減する構 造として従来から、 特開平 1 0— 2 5 2 7 6 2号公報に記載されたものの如きシ —ルリップの締め代を工夫する構造の他、 軸受型式、 予圧量、 各部の形状、 接触 角や軌道面の曲率半径等の内部設計、 グリースの種類、 シールリングの形状ゃ材 料等を工夫する事が考えられている。 伹し、 これらの要素を互いに関連付けつつ 適正に規制して、 必要とするシール性能を確保し、 且つ、 上記回転トルクを低減 する設計は面倒であった。 この為、 より簡便に車輪支持用転がり軸受ユニットの 回転トルクを低減できる構造の実現が望まれている。  Conventionally, as a structure for reducing the rotational torque of a rolling bearing by reducing the resistance of the seal ring installation portion, a seal lip tightening as disclosed in Japanese Patent Application Laid-Open No. H10-252527 has been proposed. In addition to the devised structure, it is considered to devise the bearing type, preload amount, shape of each part, internal design such as contact angle and radius of curvature of raceway surface, type of grease, shape of seal ring, material, etc. . However, it was troublesome to design these elements in a proper manner while associating them with each other to secure the required sealing performance and to reduce the rotational torque. Therefore, it is desired to realize a structure that can more easily reduce the rotational torque of the wheel supporting rolling bearing unit.
但し、 この回転トルクを低減する場合でも、 操縦安定性を確保すべく、 車輪の 支持剛性を確保する事、 転がり軸受ユニットの耐久性を確保すべく、 この転がり 軸受ュニットの内部空間への異物侵入防止を十分に図れる構造とする事が必要で ある。 即ち、 上記操縦安定性を確保する為には、 上記転がり軸受ユニットの剛性 を高くして上記支持剛性を確保する必要があるが、 単にこの剛性を高くすべく各 転動体に付与する予圧を高くすると、 これら各転動体の転がり抵抗が増大して、 上記回転トルクを低減できない。 又、 シールリングの摺動抵抗に関しても、 単に 低くする事のみを考えた場合には、 上記転がり軸受ュニットの内部空間への異物 侵入防止を十分に図れず、 上記耐久性を十分に確保できなくなる。 However, even if the rotational torque is reduced, foreign matter infiltrates into the internal space of the rolling bearing unit to secure the support rigidity of the wheel to secure the steering stability and to ensure the durability of the rolling bearing unit. It is necessary to have a structure that can sufficiently prevent such problems. In other words, in order to ensure the above steering stability, it is necessary to increase the rigidity of the rolling bearing unit to secure the supporting rigidity, but simply increase the preload applied to each rolling element in order to increase the rigidity. Then, the rolling resistance of each of these rolling elements increases, The rotation torque cannot be reduced. In addition, if the only consideration is to lower the sliding resistance of the seal ring, it is not possible to sufficiently prevent foreign substances from entering the interior space of the rolling bearing unit, and the durability described above cannot be secured sufficiently. .
本発明の車輪支持用転がり軸受ュニットは、 この様な事情に鑑みて発明したも のである。 発明の開示  The rolling bearing unit for supporting wheels of the present invention has been invented in view of such circumstances. Disclosure of the invention
本発明の車輪支持用転がり軸受ュニットは、 前述した従来から知られている車 輪支持用転がり軸受ユニットと同様に、 静止側軌道輪と、 回転側軌道輪と、 複数 個の玉と、 シールリングとを備える。  The rolling bearing unit for supporting a wheel of the present invention includes a stationary raceway, a rotating raceway, a plurality of balls, and a seal ring, similarly to the above-described conventionally known rolling bearing unit for supporting a wheel. And
このうちの静止側軌道輪は、 使用状態で懸架装置に支持固定される。  Of these, the stationary race is supported and fixed to the suspension device in use.
又、 上記回転側軌道輪は、 使用状態で車輪を支持固定する。  In addition, the rotating raceway rings support and fix the wheels in use.
又、 上記各玉は、 上記静止側軌道輪と回転側軌道輪との互いに対向する周面に 存在する、 ぞれぞれが断面円弧形である静止側軌道面と回転側軌道面との間に設 けられている。  Further, each of the balls is present on the opposing peripheral surfaces of the stationary raceway ring and the rotating raceway ring. Each of the balls has a circular cross-section between the stationary raceway surface and the rotating raceway surface. It is located between them.
更に、 上記シールリングは、 上記静止側軌道輪と上記回転側軌道輪との互いに 対向する周面同士の間で上記各玉を設置した空間の 1端部の開口を塞ぐ。  Further, the seal ring closes an opening at one end of a space in which the balls are installed between peripheral surfaces of the stationary raceway ring and the rotating raceway facing each other.
そして、 上記シ一ルリングは、 それぞれが弹性材製である 2〜 3本のシールリ ップを有する。  The seal ring has two or three seal lips, each of which is made of a resilient material.
特に、 本発明の車輪支持用転がり軸受ユニットに於いては、 上記各玉に予圧を 付与する為のアキシアル荷重が、 0. 49〜2. 94 kN (50〜30 Okgf ) である。  Particularly, in the rolling bearing unit for supporting a wheel of the present invention, the axial load for applying a preload to each of the balls is 0.49 to 2.94 kN (50 to 30 Okgf).
このアキシアル荷重が 1. 96 kN (20 Okgf ) である場合の、 上記各玉の 転がり抵抗に基づく、 上記静止側軌道輪と上記回転側軌道輪とを 20 Omin—1 で 相対回転させる為に要するトルク (転がり抵抗) が、 0. 12〜0. 23N * m である。 When the axial load is 1.96 kN (20 Okgf), it is necessary to rotate the stationary raceway and the rotating raceway relative to each other at 20 Omin- 1 based on the rolling resistance of each ball. The torque (rolling resistance) is between 0.12 and 0.23N * m.
又、 同じく上記アキシアル荷重が 1. 96 k Nである場合の剛性係数が、 0. 09以上である。  Also, the stiffness coefficient when the axial load is 1.96 kN is 0.09 or more.
更に、 上記各シールリップと相手面との摩擦に基づく、 上記静止側軌道輪と上 記回転側軌道輪とを 20 Omin— 1 で相対回転させる為に要するトルク (シール抵 抗) が、 0. 03〜0. 2N ' mである。 Further, based on the friction between each seal lip and the mating surface, The torque (seal resistance) required for relative rotation with the rotating side raceway at 20 Omin- 1 is 0.03 to 0.2 N'm.
シールリング以外に、 密封部材を設けて、 上記静止側軌道輪と上記回転側軌道 輪とのうちの外径側に位置する軌道輪の軸方向一端開口部の全体を塞ぐのが好ま しい。  It is preferable that a sealing member be provided in addition to the seal ring to block the entire axial one-end opening of the raceway located on the outer diameter side of the stationary raceway and the rotating raceway.
また上記シールリングは、 上記密封部材と軸方向反対側に設けられる。  The seal ring is provided on a side opposite to the sealing member in the axial direction.
尚、 本明細書中に記載する上記剛性係数とは、 上記車輪支持用転がり軸受ュニッ トの剛性 R [kN - m/deg ] と、 この車輪支持用転がり軸受ユニットのラジア ル動定格荷重 C r [N] との比 (RZC r) である。 又、 この場合に於ける剛性 Rは、 上記車輪支持用転がり軸受ユニットを構成する静止側軌道輪を固定した状 態で回転側軌道輪にモ一メント荷重を負荷した場合に於ける、 上記両軌道輪の傾 斜角度で表すもので、 例えば、 図 14に示す様にして測定する。 尚、 この図 14 は、 前述の図 13に示した車輪支持用転がり軸受ユニット 2 aの剛性 Rを測定す る状態に就いて示している。 The rigidity coefficient described in the present specification is defined as the rigidity R [kN-m / deg] of the wheel supporting rolling bearing unit and the radial dynamic load rating C r of the wheel supporting rolling bearing unit. This is the ratio (RZC r) to [N]. In addition, the rigidity R in this case is the above-mentioned two values when a moment load is applied to the rotating raceway while the stationary raceway constituting the wheel supporting rolling bearing unit is fixed. It is expressed by the inclination angle of the bearing ring, and is measured, for example, as shown in FIG. FIG. 14 shows a state in which the rigidity R of the wheel supporting rolling bearing unit 2a shown in FIG. 13 is measured.
測定作業時には、 静止側軌道輪である外輪 19を固定台 38の上面に固定する と共に、 回転側軌道輪であるハブ 7 aの取付フランジ 11 aに、 梃子板 39の基 端部 (図 14の左端部) を結合固定する。 そして、 この梃子板 39の上面で、 上 記八ブ 7 aの回転中心から、 タイヤの回転半径分の距離 Lだけ離れた部分に荷重 を加えて、 上記梃子板 39を介して上記ハブ 7 aに、 1. 5 kN 'mのモ一メン ト荷重を加える。 このモーメント荷重に基づいて上記ハブ 7 aが、 上記外輪 19 に対し傾斜するので、 この傾斜角度を、 上記固定台 38の上面 40に対する上記 取付フランジ 1 1 aの取付面 41の傾斜角度 [deg ] として測定する。 そして、 上記モ一メント荷重 (1. 5 kN 'm) をこの傾斜角度で除する事により、 上記 剛性 R [kN - m/deg ] を求める。 更に、 この剛性 Rを上記車輪支持用転がり 軸受ユニット 2 aのラジアル動定格荷重 C r [N] で除する事により、 前記剛性 係数を求める。  During the measurement work, the outer ring 19, which is the stationary raceway, is fixed to the upper surface of the fixing base 38, and the base end of the lever plate 39 is attached to the mounting flange 11a of the hub 7a, which is the rotating raceway (Fig. 14). (The left end). Then, a load is applied to a portion of the upper surface of the lever plate 39 which is separated from the center of rotation of the above-mentioned bracket 7a by a distance L corresponding to the rotation radius of the tire. Then, a moment load of 1.5 kN'm is applied. Since the hub 7a is inclined with respect to the outer ring 19 based on the moment load, the inclination angle is determined by the inclination angle [deg] of the mounting surface 41 of the mounting flange 11a with respect to the upper surface 40 of the fixed base 38. Measured as Then, the stiffness R [kN-m / deg] is obtained by dividing the moment load (1.5 kN'm) by the inclination angle. Further, the rigidity coefficient is obtained by dividing the rigidity R by the radial dynamic load rating Cr [N] of the wheel supporting rolling bearing unit 2a.
上述の様に構成する本発明の車輪支持用転がり軸受ュニットの場合には、 必要 とする剛性及び耐久性を確保しつつ、 回転トルクを十分に低減できる。  In the case of the rolling bearing unit for supporting a wheel of the present invention configured as described above, the rotating torque can be sufficiently reduced while securing the required rigidity and durability.
即ち、 予圧を付与する為のアキシアル荷重を 0. 49 kN以上、 このアキシァ ル荷重が 1. 96k Nである場合の転がり抵抗を 0. 12 N · m以上、 同じく剛 性係数を 0. 09以上とした事に伴い、 上記車輪支持用転がり軸受ユニットの剛 性を確保して、 操縦安定性を良好にできる。 That is, the axial load for applying the preload is 0.49 kN or more, When the rolling load is 1.96 kN, the rolling resistance is 0.12 Nm or more, and the stiffness coefficient is 0.09 or more. Therefore, the steering stability can be improved.
これに対して、 上記予圧を付与する為のアキシアル荷重を 2. 94kN以下に、 上記転がり抵抗を 0. 23N * m以下に、 シールリングの回転抵抗 (トルク) を 0. 2N *m以下に、 それぞれ抑えているので、 上記回転トルクの低減を図れる。 尚、 上記アキシアル荷重が 2. 94 kNを越えると、 (例えば 0. 23N ' m 以下と言った様に) 上記転がり抵抗を低く抑える事ができなくなって、 上記回転 トルクを低減できなくなる。 これに対して、 上記アキシアル荷重が 0. 49 kN に満たない場合には、 上記車輪支持用転がり軸受ユニットの剛性確保が難しくな つて、 操縦安定性が低下する。  On the other hand, the axial load for applying the preload is 2.94 kN or less, the rolling resistance is 0.23 N * m or less, the rotation resistance (torque) of the seal ring is 0.2 N * m or less, Since each is suppressed, the above-described rotational torque can be reduced. If the axial load exceeds 2.94 kN, the rolling resistance cannot be kept low (for example, 0.23 N'm or less), and the rotational torque cannot be reduced. On the other hand, when the axial load is less than 0.49 kN, it becomes difficult to secure the rigidity of the wheel supporting rolling bearing unit, and the steering stability is reduced.
一方、 上記シールリングの回転抵抗を 0. 03 N · m以上確保しているので、 必要とするシール性能 (主として泥水の侵入防止の為の耐泥水性能) を確保でき る。  On the other hand, the required seal performance (mainly muddy water resistance to prevent infiltration of muddy water) can be ensured because the seal ring has a rotational resistance of at least 0.03 Nm.
即ち、 本発明者の行なった実験の結果、 シールリップの数が 2本又は 3本であ る限り、 このシールリップの形状や材質を含め、 シールリングの構造に関係なく、 このシールリングの回転抵抗の大小により、 シール性能の適否を判定できる事が 分かった。 同時に、 上記シールリングの回転抵抗を 0. 03N 'm以上にすれば、 必要とするシール性能を得られる事も分かった。  That is, as a result of an experiment conducted by the inventor, as long as the number of the seal lip is two or three, regardless of the shape and material of the seal lip, regardless of the structure of the seal ring, the rotation of the seal ring is performed. It was found that the suitability of the sealing performance could be determined based on the magnitude of the resistance. At the same time, it was found that the required sealing performance could be obtained if the rotational resistance of the seal ring was set to 0.03 N'm or more.
これらにより、 予圧を付与する為のアキシアル荷重が、 0. 49〜2. 94k N、 このアキシアル荷重が 1. 96 kNである場合の転がり抵抗が 0. 12〜0. 23 N · m, 同じく剛性係数が 0. 09以上、 上記シールリングの回転抵抗が 0. 03〜0. 2N · mである本発明の車輪支持用転がり軸受ュニットの場合には、 剛性及び耐久性を確保しつつ、 回転トルクを十分に低減できる事が分かる。 図面の簡単な説明  As a result, the axial load for applying the preload is 0.49 to 2.94 kN, and when this axial load is 1.96 kN, the rolling resistance is 0.12 to 0.23 N In the case of the rolling bearing unit for supporting a wheel according to the present invention in which the coefficient is 0.09 or more and the rotation resistance of the seal ring is 0.03 to 0.2 Nm, the rotation torque is ensured while ensuring rigidity and durability. It can be understood that can be sufficiently reduced. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の対象となる構造の第 1例を示す断面図である。  FIG. 1 is a sectional view showing a first example of a structure to which the present invention is applied.
図 2は、 本発明の対象となる構造の第 2例を示す断面図である。  FIG. 2 is a cross-sectional view showing a second example of the structure to which the present invention is applied.
図 3は、 本発明の対象となる構造の第 3例を示す半部断面図である ( 図 4は、 本発明の対象となる構造の第 4例を示す半部断面図である。 Figure 3 is a half sectional view showing a third example of the subject to the structure of the present invention ( FIG. 4 is a half sectional view showing a fourth example of the structure to which the present invention is applied.
図 5は、 本発明に適用し得るシ一ルリングの具体的構造の第 1例を示す部分断 面図である。  FIG. 5 is a partial cross-sectional view showing a first example of a specific structure of a seal ring applicable to the present invention.
図 6は、 本発明に適用し得るシールリングの具体的構造の第 2例を示す部分断 面図である。  FIG. 6 is a partial cross-sectional view showing a second example of the specific structure of the seal ring applicable to the present invention.
図 7は、 本発明に適用し得るシールリングの具体的構造の第 3例を示す部分断 面図である。  FIG. 7 is a partial cross-sectional view showing a third example of the specific structure of the seal ring applicable to the present invention.
図 8は、 本発明に適用し得るシールリングの具体的構造の第 4例を示す部分断 面図である。  FIG. 8 is a partial cross-sectional view showing a fourth example of the specific structure of the seal ring applicable to the present invention.
図 9は、 本発明に適用し得るシールリングの具体的構造の第 5例を示す部分断 面図である。  FIG. 9 is a partial cross-sectional view showing a fifth example of the specific structure of the seal ring applicable to the present invention.
図 1 0は、 本発明に適用し得るシールリングの具体的構造の第 6例を示す部分 断面図である。 '  FIG. 10 is a partial sectional view showing a sixth example of the specific structure of the seal ring applicable to the present invention. '
図 1 1は、 本発明に適用し得るシールリングの具体的構造の第 7例を示す部分 断面図である。  FIG. 11 is a partial sectional view showing a seventh example of the specific structure of the seal ring applicable to the present invention.
図 1 2は、 従来から知られている車輪支持用転がり軸受ユニットの第 1例を、 懸架装置への組み付け状態で示す断面図である。  FIG. 12 is a cross-sectional view showing a first example of a conventionally known rolling bearing unit for supporting a wheel in a state where the rolling bearing unit is mounted on a suspension device.
図 1 3は、 従来から知られている車輪支持用転がり軸受ユニットの第 2例を示 す断面図である。  FIG. 13 is a cross-sectional view showing a second example of a conventionally known rolling bearing unit for supporting a wheel.
図 1 4は、 車輪支持用転がり軸受ュニットの剛性を測定する状態を示す断面図 である。 発明を実施するための最良の形態  FIG. 14 is a cross-sectional view showing a state in which the rigidity of the wheel supporting rolling bearing unit is measured. BEST MODE FOR CARRYING OUT THE INVENTION
先ず、 本発明の対象となる車輪支持用転がり軸受ュニットの構造の 4例に就い て説明する。 先ず、 図 1は、 その第 1例として、 前述の図 1 2に示した構造に改 良を加えて、 シール性能を確保しつつ回転トルクの低減を行ない易くした構造を 示している。 この為に本例の場合には、 内側の内輪軌道 1 3 aを、 支持軸 4 aの 中間部外周面に直接形成している。 これにより、 上記図 1 2に示した従来構造で 考えられた、 内側の内輪 5と支持軸 4との嵌合部を通じての異物侵入をなくせる 構造としている。 又、 上記図 12に示した従来構造に組み込んでいた、 外側のシ ールリング 16 aを省略し、 内側のシールリング 16 bのみとしている。 First, four examples of the structure of the rolling bearing unit for supporting a wheel, which is the subject of the present invention, will be described. First, FIG. 1 shows, as a first example, a structure in which the structure shown in FIG. 12 described above is modified to make it easier to reduce the rotational torque while ensuring sealing performance. For this reason, in the case of this example, the inner inner raceway 13a is formed directly on the outer peripheral surface of the intermediate portion of the support shaft 4a. As a result, it is possible to prevent foreign matter from entering through the fitting portion between the inner inner ring 5 and the support shaft 4, which was considered in the conventional structure shown in FIG. It has a structure. Further, the outer seal ring 16a, which is incorporated in the conventional structure shown in FIG. 12, is omitted, and only the inner seal ring 16b is provided.
この様な構造に本発明を適用する場合には、 上記支持軸 4 aの外端部に螺着し たナット 6を緊締するトルクを適正に規制する事により、 各玉 14、 14に予圧 を付与する為のアキシアル荷重を 0. 49〜2. 94kNとする。 そして、 この アキシアル荷重が 1. 96 kNである場合の、 上記支持軸 4 aの周囲でハブ 7を 20 OmiiT1 で回転させる為に要するトルク (転がり抵抗) を 0. 12〜0. 2 3N 'mとする。 又、 これと共に、 このアキシアル荷重が 1. 96 kNである場 合の剛性係数を、 0. 09以上とする。 更に、 上記内側のシールリング 16 の 回転抵抗 (トルク) を、 0. 03〜0. 2N *mの範囲に規制する。 上記各玉 1 4、 14を設置した空間内への、 泥水等の異物侵入防止は、 上記シールリング 1 6 bと、 ハブ 7の外端開口部に被着したシールリング以外の密封部材であるキヤ ップ 17とにより防止する。 その他の部分の構造は、 上記図 12に示した従来構 造と同様である。 When the present invention is applied to such a structure, the preload is applied to the balls 14, 14 by appropriately regulating the torque for tightening the nut 6 screwed to the outer end of the support shaft 4a. The axial load to be applied shall be 0.49 to 2.94 kN. When the axial load is 1.96 kN, the torque (rolling resistance) required to rotate the hub 7 around the support shaft 4a at 20 OmiiT 1 is 0.12 to 0.23N '. m. In addition, the stiffness coefficient when the axial load is 1.96 kN is set to 0.09 or more. Further, the rotation resistance (torque) of the inner seal ring 16 is regulated in the range of 0.03 to 0.2 N * m. To prevent foreign matter such as muddy water from entering the space in which the balls 14 and 14 are installed, a sealing member other than the seal ring 16 b and the seal ring attached to the outer end opening of the hub 7 is used. This is prevented by cap 17. The structure of the other parts is the same as the conventional structure shown in FIG.
次に、 図 2は、 本発明の対象となる車輪支持用転がり軸受ユニットの第 2例を 示している。 上述した図 1に示す構造が、 支持軸 4 aの外端部に螺着したナット 6により内輪 5を固定しているのに対して、 本例は、 支持軸 4 bの外端部を径方 向外方に塑性変形させて成るかしめ部 25により内輪 5の外端面を抑え付けて、 この内輪 5を上記支持軸 4 bに固定している。 予圧付与の為のアキシアル荷重は、 上記かしめ部 25を加工する際の荷重により調節する。 その他の部分の構造は上 述した第 1例と同様である。  Next, FIG. 2 shows a second example of a rolling bearing unit for supporting a wheel, which is an object of the present invention. While the structure shown in FIG. 1 described above fixes the inner ring 5 with a nut 6 screwed to the outer end of the support shaft 4a, in this example, the outer end of the support shaft 4b is The outer end surface of the inner race 5 is held down by a caulking portion 25 that is plastically deformed in the outward direction, and the inner race 5 is fixed to the support shaft 4b. The axial load for applying the preload is adjusted by the load at the time of processing the caulking portion 25. The structure of the other parts is the same as in the first example described above.
次に、 図 3は、 本発明の対象となる車輪支持用転がり軸受ユニットの第 3例を 示している。 本例は、 前述の図 13に示した構造を、 本発明を適用可能な構造に 変更したものである。 この為に本例の場合には、 外輪 19の内端開口部をシール リング以外の密封部材であるキャップ 17 aにより塞ぐと共に、 この外輪 19の 外端部内周面とハブ本体 22の中間部外周面との間をシールリング 16 cにより 塞いでいる。 上記外輪 19の内端部内周面と内輪 23の外周面との間のシ一ルリ ング 16 d (図 13) は省略している。 そして、 上記シールリング 16 cの回転 抵抗を、 0. 03〜0. 2N · mの範囲に規制している。 各玉 14、 14を設置 した空間内への、 泥水等の異物侵入防止は、 上記シールリング 1 6 cと上記キヤ ップ 1 7 aとにより防止している。 予圧付与の為のアキシアル荷重は、 かしめ部 2 5を加工する際の荷重により調節する。 その他の部分の構造は、 上述した第 1 〜2例、 並びに上記図 1 3に示した従来構造と同様である。 Next, FIG. 3 shows a third example of a rolling bearing unit for supporting a wheel, which is an object of the present invention. In this example, the structure shown in FIG. 13 is changed to a structure to which the present invention can be applied. For this reason, in the case of this example, the inner end opening of the outer ring 19 is closed with a cap 17a which is a sealing member other than the seal ring, and the inner peripheral surface of the outer end of the outer ring 19 and the outer peripheral portion of the intermediate portion of the hub body 22. The surface is closed with a seal ring 16c. The sealing 16d (FIG. 13) between the inner peripheral surface of the inner end of the outer ring 19 and the outer peripheral surface of the inner ring 23 is omitted. The rotation resistance of the seal ring 16c is regulated in the range of 0.03 to 0.2 N · m. Each ball 14, 14 installed The seal ring 16c and the cap 17a prevent the foreign matter such as muddy water from entering the space. The axial load for applying the preload is adjusted by the load at the time of processing the caulked portion 25. The structure of the other parts is the same as the first and second examples described above and the conventional structure shown in FIG.
次に、 図 4は、 本発明の対象となる車輪支持用転がり軸受ユニットの第 4例を 示している。 本例の場合には、 ハブ本体 2 2 aの内端部に設けた雄ねじ部 2 6に 螺着したナツト 2 7により、 このハブ本体 2 2 aの小径段部 2 4に外嵌した内輪 2 3の内端面を抑え付けている。 これに合わせて、 外輪 1 9の内端開口部に被着 したシールリング以外の密封部材であるキャップ 1 7 bの形状を膨らませ、 上記 雄ねじ部 2 6及びナツト 2 7との干渉を防止している。 予圧付与の為のアキシァ ル荷重は、 ナット 2 7を緊締するトルクにより調節する。 その他の構成は、 上述 した第 2例の場合と同様である。  Next, FIG. 4 shows a fourth example of a rolling bearing unit for supporting a wheel, which is an object of the present invention. In the case of this example, the inner ring 2 externally fitted to the small-diameter stepped portion 24 of the hub main body 2 2a by a nut 27 screwed to the male screw portion 26 provided at the inner end of the hub main body 22a. The inner end face of 3 is held down. In accordance with this, the shape of the cap 17 b, which is a sealing member other than the seal ring attached to the inner end opening of the outer ring 19, is expanded to prevent interference with the male screw part 26 and the nut 27. I have. The axial load for applying the preload is adjusted by the torque for tightening the nut 27. Other configurations are the same as those of the above-described second example.
次に、 本発明に適用し得るシールリングの具体的構造の 7例に就いて、 図 5〜 1 1により説明する。 このうち、 図 5〜9に示した 5例は、 前記図 1〜2に示し た車輪支持用転がり軸受ュニットの第 1〜 2例で、 内側のシールリング 1 6 bと して利用可能な構造を示している。  Next, seven examples of the specific structure of the seal ring applicable to the present invention will be described with reference to FIGS. Of these, the five examples shown in Figs. 5 to 9 are the first and second examples of the rolling bearing unit for wheel support shown in Figs. 1 and 2 above, and have a structure that can be used as the inner seal ring 16b. Is shown.
先ず、 図 5に示した第 1例は、 ハブ 7 (図 1〜2 ) の内端部に内嵌固定する外 径側シールリング 2 8と、 支持軸 4 a (図 1 )、 4 b (図 2 ) の内端寄り部分に 外嵌固定する内径側シ一ルリング 2 9とを組み合わせた組み合わせシールリング であり、 内径側に 2本、 外径側に 1本の、 合計 3本のシールリップを備える。 こ の様な構造の場合、 従来は上記外径側、 内径側両シールリング 2 8、 2 9同士の 相対回転に要するトルク (回転抵抗) が 0 . 2 2 N ' m以上であった。 これに対 して、 本例の構造を本発明に適用する場合には、 上記 3本のシールリップの先端 縁と相手面 (芯金の表面) との摩擦に基づく、 上記外径側、 内径側両シールリン グ 2 8、 2 9同士の相対回転に要するトルク (回転抵抗) を、 0 . 0 3〜0 . 2 N · mの範囲に規制する。  First, the first example shown in FIG. 5 includes an outer-diameter-side seal ring 28 that is fitted and fixed to the inner end of the hub 7 (FIGS. 1 and 2), and the support shafts 4a (FIG. 1) and 4b ( This is a combination seal ring that combines the inner side seal ring 29 that is externally fitted and fixed to the inner end portion of Fig. 2) .Two total seal lips, two on the inner side and one on the outer side Is provided. In the case of such a structure, conventionally, the torque (rotational resistance) required for the relative rotation between the outer diameter side and the inner diameter side seal rings 28, 29 was 0.22 N'm or more. On the other hand, when the structure of this example is applied to the present invention, the outer diameter side and the inner diameter based on the friction between the leading edges of the three seal lips and the mating surface (the surface of the metal core). The torque (rotational resistance) required for the relative rotation between the two sealing rings 28, 29 is restricted to the range of 0.03 to 0.2 Nm.
次に、 図 6に示した第 2例は、 ハブ 7 (図 1〜2 ) の内端部に内嵌固定するシ —ルリング 3 0と、 支持軸 4 a (図 1 )、 4 b (図 2 ) の内端寄り部分に外嵌固 定するスリンガ 3 1とを組み合わせた組み合わせシールリングであり、 上記シー ルリング 30に 3本のシールリップを備える。 本例の場合、 これら 3本のシール リップの先端縁と上記スリンガ 31の表面との摩擦に基づく、 上記シ一ルリングNext, in the second example shown in FIG. 6, a seal ring 30 that is fitted and fixed to the inner end of the hub 7 (FIGS. 1 and 2), and the support shafts 4a (FIG. 1) and 4b (FIG. 2) is a combination seal ring in which a slinger 31 fixed externally to the portion near the inner end of Ring 30 with three sealing lips. In the case of this example, the sealing ring is formed based on the friction between the leading edges of the three sealing lips and the surface of the slinger 31.
30とスリンガ 31との相対回転に要するトルク (回転抵抗) を、 0. 03〜0. 2N · mの範囲に規制する。 The torque (rotational resistance) required for relative rotation between the slinger 30 and the slinger 31 is restricted to a range of 0.03 to 0.2 N · m.
次に、 図 7に示した第 3例は、 ハブ 7 (図 1〜2) の内端部に内嵌固定するシ —ルリング 30 aを構成する 2本のシールリップ 32 a、 32 bのうちの内側の シールリップ 32 aを、 ガー夕スプリング 33により、 支持軸 4 a (図 1 4 b (図 2) の内端寄り部分の外周面に摺接させる構造としている。 本例の場合、 上記 2本のシールリップ 32 a、 32 bの先端縁と上記支持軸 4 a、 4bの内端 寄り部分の外周面との摩擦に基づく、 上記シールリング 30 aと支持軸 4 a、 4 bとの相対回転に要するトルク (回転抵抗) を、 0. 03〜0. 2N * mの範囲 に規制する。  Next, in the third example shown in FIG. 7, the seal ring 30a for internally fitting and fixing to the inner end of the hub 7 (FIGS. 1-2) is one of the two seal lips 32a and 32b. The seal lip 32a on the inside of the support shaft 4a (FIG. 14b (FIG. 2)) is slid in contact with the outer peripheral surface of the portion near the inner end of the support shaft 4a (FIG. 14b (FIG. 2). The seal ring 30a and the support shafts 4a and 4b are formed based on the friction between the tip edges of the two seal lips 32a and 32b and the outer peripheral surface of the portion near the inner ends of the support shafts 4a and 4b. The torque (rotational resistance) required for relative rotation is restricted to the range of 0.03 to 0.2 N * m.
次に、 図 8に示した第 4例は、 ハブ 7 (図 1〜2) の内端部内周面に係止する シールリング 34 aと、 支持軸 4 a (図 1)、 4b (図 2) の内端寄り部分の外 周面に係止するシ一ルリング 34 bとを組み合わせた組み合わせシールリングで ある。 本例の場合、 ハブ 7側に係止するシールリング 34 aに 2本、 支持軸 4 a、 Next, in a fourth example shown in FIG. 8, a seal ring 34a that locks on the inner peripheral surface of the inner end of the hub 7 (FIGS. 1 and 2), and the support shafts 4a (FIG. 1) and 4b (FIG. ) Is a combination seal ring that combines a seal ring 34b that locks to the outer peripheral surface of the portion near the inner end of (). In the case of this example, two seal rings 34a that lock to the hub 7 side,
4 b側に係止するシールリング 34 bに 1本の、 合計 3本のシールリップを備え る。 この様な本例の場合、 これら 3本のシールリップの先端縁と相手面 ひ、ブ 7 の内周面、 支持軸 4 a、 4bの外周面、 芯金の表面) との摩擦に基づく、 ハブ 7 と支持軸 4 a、 4 bとの相対回転に要するトルク (回転抵抗) を、 0. 03〜0.4 A seal ring 34b that locks to the b side has one seal lip, one in total. In the case of this example, based on the friction between the leading edge of these three seal lips and the mating surface, the inner peripheral surface of the bush 7, the outer peripheral surfaces of the support shafts 4a and 4b, and the surface of the core metal, The torque (rotational resistance) required for the relative rotation between the hub 7 and the support shafts 4a, 4b is 0.03 to 0.3.
2N · mの範囲に規制する。 Restrict to the range of 2N · m.
次に、 図 9は、 ハブ 7 (図 1〜2) の内端部に内嵌するシールリング 35に設 けた 2本のシールリップの先端縁を、 支持軸 4 a (図 1 4b (図 2) の内端 寄り部分の外周面に摺接させるものである。 この様な本例の場合、 上記 2本のシ ールリップの先端縁と上記支持軸 4 a、 4bの内端部外周面との摩擦に基づく、 上記シールリング 35と支持軸 4 aとの相対回転に要するトルク (回転抵抗) を、 Next, FIG. 9 shows that the front edges of the two seal lips provided on the seal ring 35 fitted inside the inner end of the hub 7 (FIGS. 1-2) are supported by the support shaft 4a (FIG. 14b (FIG. 2)). In this case, the outer edges of the two seal lips and the inner ends of the support shafts 4a and 4b are in contact with each other. The torque (rotational resistance) required for the relative rotation between the seal ring 35 and the support shaft 4a based on the friction is
0. 03〜0. 2N · mの範囲に規制する。 Restrict within the range of 0.03 to 0.2N · m.
次に、 図 10〜11に示した 2例は、 前記図 3〜4に示した車輪支持用転がり 軸受ユニットの第 3〜4例で、 外輪 19 (図 3〜4) の外端部内周面とハブ本体 22 (図 3)、 22 a (図 4) の中間部外周面との間に設けるシールリングとし て利用可能な構造を示している。 先ず、 図 10に示した第 1例のシールリングNext, the two examples shown in FIGS. 10 and 11 are the third and fourth examples of the wheel supporting rolling bearing unit shown in FIGS. 3 and 4, respectively, and the inner peripheral surface of the outer end of the outer ring 19 (FIGS. 3 and 4). And hub body This figure shows a structure that can be used as a seal ring provided between the outer peripheral surface of the intermediate portion 22 (FIG. 3) and 22a (FIG. 4). First, the seal ring of the first example shown in FIG.
36は、 上記外輪 19の外端部に内嵌固定自在な芯金に 3本のシールリップを設 けたもので、 これら各シールリップの先端縁を、 取付フランジ 11 a (図 3〜 4) の内側面、 或はこの内側面と上記ハブ本体 22、 22 aの外周面とを連続さ せる曲面部に摺接自在としている。 この様な本例の場合、 上記 3本のシールリツ プの先端縁と上記ハブ本体 22、 22 aの表面との摩擦に基づく、 上記シ一ルリ ング 36とハブ本体 22, 22 aとの相対回転に要するトルク (回転抵抗) を、 0. 03〜0. 2N · mの範囲に規制する。 36 has three seal lips on a metal core that can be fitted and fixed inside the outer end of the outer ring 19, and the leading edge of each seal lip is attached to the mounting flange 11a (Figs. 3 and 4). The inner surface or a curved surface that connects the inner surface to the outer peripheral surface of the hub body 22, 22a can be slidably contacted. In the case of this example, the relative rotation between the sealing ring 36 and the hub bodies 22, 22a based on the friction between the tip edges of the three sealing lips and the surfaces of the hub bodies 22, 22a. Torque (rotational resistance) required in the range of 0.03 to 0.2 N · m.
次に、 図 11に示した第 2例の場合には、 シールリング 36 aに設けた 3本の シールリップのうちの中間のシールリップ 37を、 ガ一夕スプリング 33 aによ り、 ハブ本体 22 (図 3)、 22 a (図 4) の中間部外周面に押し付ける様にし ている。 この様な本例の場合も、 3本のシールリップの先端縁と上記ハブ本体 2 2、 22 aの表面との摩擦に基づく、 上記シールリング 36 aとハブ本体 22、 22 aとの相対回転に要するトルク (回転抵抗) を、 0. 03〜0. 2N 'mの 範囲に規制する。 実施例  Next, in the case of the second example shown in FIG. 11, the middle seal lip 37 of the three seal lips provided on the seal ring 36a is connected to the hub body by the spring 33a. 22 (Fig. 3) and 22a (Fig. 4) are pressed against the outer peripheral surface. In the case of this embodiment as well, the relative rotation between the seal ring 36a and the hub bodies 22, 22a based on the friction between the tip edges of the three seal lips and the surfaces of the hub bodies 22, 22a. Torque (rotational resistance) required in the range of 0.03 to 0.2 N'm. Example
次に、 本発明の効果を確認する為に行なった実験の結果に就いて説明する。 第 一の実験では、 図 5〜11に示した 7種類のシールリングに就いて、 シールリン グ単体での回転抵抗 (シールトルク) とシール性能との関係を求めた。 シ一ルト ルクの調節は、 シールリップの締め代 (弾性変形量) の調整、 弾性材の変更、 相 手面との接触状態の調整により行なった。 そして、 上記 7種類のシールリングの それぞれに就いて、 シールトルクが 0〜0. 22N · mまでのものを 6種類ずつ 製作した。 そして、 各シールリングを、 図 1又は図 3に示した車輪支持用転がり 軸受ユニットに組み込んで、 泥水浸入試験に供した。 車輪支持用転がり軸受ュニ ットの潤滑は、 粘度が 10〜14 c S t (10X 10— 6〜14X 10— 6m2 / s) のグリースを封入する事により行ない、 20での環境下で、 ハブ 7、 7 aを 20 Omin— 1 で回転させた。 この様な条件で行なった実験の結果を次の表 1に示す Next, the results of experiments performed to confirm the effects of the present invention will be described. In the first experiment, for the seven types of seal rings shown in Figs. 5 to 11, the relationship between the rotational resistance (seal torque) of the seal ring alone and the seal performance was determined. Adjustment of the seal torque was performed by adjusting the interference (the amount of elastic deformation) of the seal lip, changing the elastic material, and adjusting the state of contact with the opposite surface. For each of the above seven types of seal rings, six types with seal torques from 0 to 0.22 Nm were manufactured. Then, each seal ring was assembled into a wheel supporting rolling bearing unit shown in FIG. 1 or FIG. 3 and subjected to a muddy water intrusion test. Lubrication of the wheel supporting rolling bearing Interview two Tsu DOO is performed by a viscosity encapsulating grease 10~14 c S t (10X 10- 6 ~14X 10- 6 m 2 / s), an environment of 20 Then, the hubs 7 and 7a were rotated at 20 Omin- 1 . Table 1 shows the results of the experiment conducted under these conditions.
[表 1 ] [table 1 ]
Figure imgf000014_0001
Figure imgf000014_0001
尚、 この表 1中、 「X」 印はグリースを封入した内部空間に多量の泥水が浸入 した事を、 「△」 印は少量の泥水が浸入した事を、 「〇」 印は泥水の浸入が観測さ れなかった事を、 それぞれ表している。 この様な実験の結果から、 シールトルク が 0 . 0 3 N · m以上であれば、 何れの構造のシールリングの場合でも、 泥水の 浸入を阻止できる事が分かる。 In Table 1, the mark “X” indicates that a large amount of muddy water has infiltrated the interior space filled with grease, the mark “△” indicates that a small amount of muddy water has penetrated, and the mark “〇” indicates that muddy water has penetrated. Indicates that was not observed. From the results of such experiments, it can be seen that muddy water can be prevented from infiltrating with any structure of seal ring if the seal torque is 0.03 N · m or more.
次に、 シールトルク (回転抵抗)、 予圧付与の為のアキシアル荷重、 転がり抵 抗、 剛性係数が、 操縦安定性、 転がり軸受ユニット全体の回転トルク、 耐久性に 及ぼす影響を知る為に、 図 4に示した車輪支持用転がり軸受ユニットに図 1 0に 示したシールリング 3 6を組み込んで行なった、 第二〜第五の実験に就いて、 表 2〜 5を参照しつつ説明する。 尚、 以下に示す表 2〜 5中、 「X」 印は何らかの 面で実用上問題が生じた事を、 「△」 印は何らかの面で若干の問題が生じた事を、 「〇」 印は何れの面からも問題が生じなかった事を、 それぞれ表している。 尚、 第二〜第五の実験は、 同じ条件で 3回ずつ行なった。  Next, to understand the effects of seal torque (rotational resistance), axial load for applying preload, rolling resistance, and stiffness coefficient on steering stability, rotational torque, and durability of the entire rolling bearing unit. The second to fifth experiments performed by incorporating the seal ring 36 shown in FIG. 10 into the wheel supporting rolling bearing unit shown in FIG. 10 will be described with reference to Tables 2 to 5. In Tables 2 to 5 below, the symbol “X” indicates that some problem occurred in some aspects, the symbol “△” indicates that some problem occurred in some aspects, and the symbol “〇” indicates It indicates that no problem occurred from any aspect. The second to fifth experiments were performed three times under the same conditions.
先ず、 表 2は、 上記シールトルクが、 転がり軸受ユニット全体の回転トルク、 耐 久性に及ぼす影響を知る為に行なった、 第二の実験の結果に就いて示している。 尚、 この実験は、 回転速度 2 0 O min— 1 で行なった。 [表 2] First, Table 2 shows the results of a second experiment performed to determine the effect of the sealing torque on the rotation torque and durability of the entire rolling bearing unit. This experiment was performed at a rotation speed of 20 O min- 1 . [Table 2]
Figure imgf000015_0001
Figure imgf000015_0001
この表 2に示した第二の実験の結果、 上記シールトルクが 0. 03〜0. 20 Ν · mの範囲にあれば、 転がり軸受ュニット全体の回転トルク、 耐久性の何れの 面からも満足できる性能を得られる事が分かった。 これに対して、 上記シ一ルト ルクが 0. O IN ' m及び 0. 02N · mの場合には、 玉 14、 14を設置した 内部空間への異物進入を十分に防止できず、 耐久性確保の面で問題を生じた。 こ れに対して、 上記シ一ルトルクが 0. 22N · m及び 0. 25N · mの場合には、 転がり軸受ュニット全体の回転トルクを十分に低く抑える事ができなかった。 次に、 表 3は、 前記アキシアル荷重 (予圧) が、 転がり軸受ユニットの剛性及 び全体の回転トルクに及ぼす影響を知る為に行なった、 第三の実験の結果に就い て示している。 As a result of the second experiment shown in Table 2, if the above-mentioned sealing torque is in the range of 0.03 to 0.20 m, the rolling bearing unit is satisfactory in terms of both rotational torque and durability. I found that I could get the performance I could. On the other hand, when the above-mentioned shield is 0.0 IN m and 0.02 Nm, foreign matters cannot be sufficiently prevented from entering the interior space where the balls 14, 14 are installed, and the durability is high. A problem arose in terms of security. On the other hand, when the sealing torque was 0.22 N · m and 0.25 N · m, the rotation torque of the entire rolling bearing unit could not be suppressed sufficiently. Next, Table 3 shows the results of a third experiment performed to determine the effect of the axial load (preload) on the stiffness of the rolling bearing unit and the overall rotational torque.
[表 3] [Table 3]
Figure imgf000016_0001
Figure imgf000016_0001
この表 3に示した第三の実験の結果、 上記アキシアル荷重が 0. 49〜2. 9 4kNであれば、 操縦安定性、 転がり軸受ユニット全体の回転トルクの何れの面 からも満足できる性能を得られる事が分かった。 これに対して、 上記アキシアル 荷重が 0. 294 kN及び 0. 392 kNの場合には、 上記転がり軸受ュニット の剛性が低く、 十分な操縦安定性を確保できなかった。 これに対して、 上記アキ シアル荷重が 3. 43 kN及び 3. 92 kNの場合には、 転がり抵抗が高くなつ て、 転がり軸受ユニット全体の回転トルクを十分に低く抑える事ができなかった。 次に、 表 4は、 前記転がり抵抗が、 転がり軸受ユニットの剛性及び全体の回転 トルクに及ぼす影響を知る為に行なった、 第四の実験の結果に就いて示している。 尚、 この実験は、 アキシアル荷重 (予圧) を 1. 96 kN ( 200 kgf ) 付与す ると共に、 回転速度 S O Omin—1 で行なった。 As a result of the third experiment shown in Table 3, if the above-mentioned axial load is 0.49 to 2.94 kN, satisfactory performance can be obtained from both aspects of steering stability and rotational torque of the entire rolling bearing unit. I found that I could get it. On the other hand, when the axial load was 0.294 kN and 0.392 kN, the rigidity of the rolling bearing unit was low, and sufficient steering stability could not be secured. On the other hand, when the axial load was 3.43 kN and 3.92 kN, the rolling resistance was high, and the rotational torque of the entire rolling bearing unit could not be suppressed sufficiently. Next, Table 4 shows the results of a fourth experiment performed to determine the effect of the rolling resistance on the rigidity of the rolling bearing unit and the overall rotational torque. This experiment was performed with an axial load (preload) of 1.96 kN (200 kgf) and a rotation speed of SO Omin- 1 .
[表 4] [Table 4]
Figure imgf000017_0001
Figure imgf000017_0001
この表 4に示した第四の実験の結果、 上記転がり抵抗が 0. 12〜0. 23Ν *mであれば、 操縦安定性、 転がり軸受ユニット全体の回転トルクの何れの面か らも満足できる性能を得られる事が分かった。 これに対して、 上記転がり抵抗が 0. 1 N · m及び 0. 11 N · mの場合には、 上記転がり軸受ュニッ卜の剛性が 低く、 十分な操縦安定性を確保できなかった。 これに対して、 上記転がり抵抗が 0. 24N 'm及び 0. 25N · mの場合には、 転がり軸受ユニット全体の回転 トルクを十分に低く抑える事ができなかった。 As a result of the fourth experiment shown in Table 4, if the above-mentioned rolling resistance is 0.12 to 0.23 mm, the steering stability and the rolling torque of the entire rolling bearing unit can be satisfied. It turns out that performance can be obtained. In contrast, when the rolling resistance was 0.1 N · m or 0.11 N · m, the rigidity of the rolling bearing unit was low, and sufficient steering stability could not be secured. On the other hand, when the rolling resistance was 0.24 N'm and 0.25 N · m, the rotation torque of the entire rolling bearing unit could not be suppressed sufficiently.
更に、 表 5は、 前記剛性係数が、 転がり軸受ユニットの剛性に及ぼす影響を知 る為に行なった、 第五の実験の結果に就いて示している。 尚、 この実験は、 アキ シアル荷重を 1. 96 kN付与した状態で行なった。 Further, Table 5 shows the results of a fifth experiment conducted to determine the effect of the rigidity coefficient on the rigidity of the rolling bearing unit. This experiment was performed with an axial load of 1.96 kN applied.
[表 5] [Table 5]
Figure imgf000018_0001
Figure imgf000018_0001
この表 5に示した第五の実験の結果、 上記剛性係数が 0. 09以上であれば、 操縦安定性に関して満足できる性能を得られる事が分かった。 これに対して、 上 記剛性係数が 0. 07、 0. 08の場合には、 上記転がり軸受ユニットの剛性が 低く、 十分な操縦安定性を確保できなかった。 As a result of the fifth experiment shown in Table 5, it was found that if the stiffness coefficient was 0.09 or more, satisfactory performance in terms of steering stability could be obtained. On the other hand, when the rigidity coefficients were 0.07 and 0.08, the rigidity of the rolling bearing unit was low, and sufficient steering stability could not be secured.
更に、 次の表 6は、 前記シールトルクと前記転がり抵抗とが、 転がり軸受ュニ ット全体としての回転トルクに及ぼす影響に就いて知る為に行なった実験の結果 を示している。 尚、 この実験は、 アキシアル荷重 (予圧) を 1. 96 kN (20 Okgf ) 付与すると共に、 回転速度 200min— 1 で行なった。 Further, Table 6 below shows the results of an experiment conducted to find out the effect of the sealing torque and the rolling resistance on the rotation torque of the rolling bearing unit as a whole. This experiment was performed at an axial load (preload) of 1.96 kN (20 Okgf) and a rotation speed of 200 min- 1 .
[表 6] [Table 6]
Figure imgf000018_0002
Figure imgf000018_0002
尚、 この表 6中、 「X」 印は全体としての回転トルクが大きかった事を、 「△」 印はやや大きかった事を、 「〇」 印は小さかった事を、 それぞれ表している。 こ の様な表 6から明らかな通り、 シールトルクを 0. 2Ν ·πι以下、 転がり抵抗を 0. 23 Ν · m以下に抑えた本発明は、 全体としての回転トルクを 0. 43Ν · m以下と、 低く抑える事ができる。 産業上の利用の可能性 In Table 6, “X” indicates that the rotation torque was large as a whole, “△” indicates that it was slightly large, and “〇” indicates that it was small. This As is clear from Table 6, the present invention, in which the sealing torque is suppressed to 0.2Νππ or less and the rolling resistance is suppressed to 0.23Νm or less, the rotational torque as a whole is 0.43Νm or less. , Can be kept low. Industrial applicability
本発明の車輪支持用転がり軸受ュニットは、 以上に述べた通り構成され作用す るので、 操縦安定性及び耐久性を確保しつつ、 車輪と共に回転するハブの回転ト ルクを低減して、 加速性能、 燃費性能を中心とする車両の走行性能の向上に寄与 できる。  Since the rolling bearing unit for supporting a wheel according to the present invention is configured and operates as described above, the steering torque and the rotating torque of the hub that rotates with the wheel are reduced while maintaining the steering stability and durability, thereby improving the acceleration performance. However, it can contribute to the improvement of the running performance of vehicles mainly on fuel efficiency.

Claims

請求の範囲 The scope of the claims
1. 使用状態で懸架装置に支持固定される静止側軌道輪と、 使用状態で車輪を 支持固定する回転側軌道輪と、 これら静止側軌道輪と回転側軌道輪との互いに対 向する周面に存在する、 それぞれが断面円弧形である静止側軌道面と回転側軌道 面との間に設けられた複数個の玉と、 上記静止側軌道輪と上記回転側軌道輪との 互いに対向する周面同士の間で上記各玉を設置した空間の 1端部の開口を塞ぐシ ールリングとを備え、 このシールリングは、 それぞれが弾性材製である 2〜 3本 のシールリップを有するものである車輪支持用転がり軸受ユニットに於いて、 上 記各玉に予圧を付与する為のアキシアル荷重が 0. 49〜2. 94kNであり、 このアキシアル荷重が 1. 96 kNである場合の、 上記各玉の転がり抵抗に基づ く、 上記静止側軌道輪と上記回転側軌道輪とを 20 Omin—1 で相対回転させる為 に要するトルクが 0. 12〜0. 23N · mであり、 同じく上記アキシアル荷重 が 1. 96 k Nである場合の剛性係数が 0. 09以上であり、 上記各シ一ルリッ プと相手面との摩擦に基づく、上記静止側軌道輪と上記回転側軌道輪とを 200 min—1で相対回転させる為に要するトルクが 0. 03〜0. 2N ' mである事を 特徴とする車輪支持用転がり軸受ュニット。 1. A stationary raceway that is supported and fixed to the suspension device in use, a rotating raceway that supports and fixes the wheels in use, and the facing surfaces of the stationary raceway and the rotating raceway facing each other A plurality of balls provided between the stationary-side raceway surface and the rotating-side raceway surface each having an arc-shaped cross section, and the stationary-side raceway and the rotating-side raceway facing each other. A seal ring for closing the opening at one end of the space where the balls are installed between the peripheral surfaces, the seal ring having two to three seal lips each made of an elastic material. In a rolling bearing unit for supporting a wheel, the axial load for applying a preload to each of the above balls is 0.49 to 2.94 kN, and when the axial load is 1.96 kN, Based on the rolling resistance of the ball, the stationary race and the rotation The torque required to rotate the side bearing ring relative to the side raceway at 20 Omin- 1 is 0.12 to 0.23 Nm, and the stiffness coefficient is 0.09 when the axial load is 1.96 kN. The torque required to relatively rotate the stationary raceway ring and the rotating raceway ring at 200 min- 1 based on the friction between the respective seal lip and the mating surface is 0.03-0. A rolling bearing unit for supporting wheels, characterized in that it is 2N'm.
2. 更に、 上記静止側軌道輪と上記回転側軌道輪とのうちの外径側に位置する 軌道輪の軸方向一端開口部の全体を塞ぐシ一ルリング以外の密封部材を有する請 求項 1に記載の車輪支持用転がり軸受ュニット。 2. Claim 1 further comprising a sealing member other than a seal ring for closing the entire axial one end opening of the raceway located on the outer diameter side of the stationary raceway and the rotation raceway. The rolling bearing unit for supporting wheels described in the above item.
PCT/JP2003/001943 2002-02-25 2003-02-21 Rolling bearing unit for wheel support WO2003071148A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003207106A AU2003207106A1 (en) 2002-02-25 2003-02-21 Rolling bearing unit for wheel support

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-047820 2002-02-25
JP2002047820A JP2005299684A (en) 2002-02-25 2002-02-25 Rolling bearing unit for wheel support

Publications (1)

Publication Number Publication Date
WO2003071148A1 true WO2003071148A1 (en) 2003-08-28

Family

ID=27750713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001943 WO2003071148A1 (en) 2002-02-25 2003-02-21 Rolling bearing unit for wheel support

Country Status (3)

Country Link
JP (1) JP2005299684A (en)
AU (1) AU2003207106A1 (en)
WO (1) WO2003071148A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1548307A1 (en) * 2002-09-06 2005-06-29 Nsk Ltd., Rolling bearing unit for supporting wheel
EP1548306A1 (en) * 2002-09-06 2005-06-29 Nsk Ltd. Rolling bearing unit for supporting wheel
WO2010018041A1 (en) * 2008-08-12 2010-02-18 Schaeffler Kg Steering knuckle with pre-sealing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121645A (en) * 2008-11-17 2010-06-03 Ntn Corp Bearing seal for wheel, and bearing device for wheel equipped with the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113418A (en) * 1993-10-18 1995-05-02 Toyota Motor Corp Vehicle bearing device and manufacture thereof
JPH1123598A (en) * 1997-06-27 1999-01-29 Nippon Seiko Kk Bearing provided with rotating speed detector
JP2001121904A (en) * 1999-10-27 2001-05-08 Ntn Corp Wheel bearing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113418A (en) * 1993-10-18 1995-05-02 Toyota Motor Corp Vehicle bearing device and manufacture thereof
JPH1123598A (en) * 1997-06-27 1999-01-29 Nippon Seiko Kk Bearing provided with rotating speed detector
JP2001121904A (en) * 1999-10-27 2001-05-08 Ntn Corp Wheel bearing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1548307A1 (en) * 2002-09-06 2005-06-29 Nsk Ltd., Rolling bearing unit for supporting wheel
EP1548306A1 (en) * 2002-09-06 2005-06-29 Nsk Ltd. Rolling bearing unit for supporting wheel
EP1548306A4 (en) * 2002-09-06 2007-07-04 Nsk Ltd Rolling bearing unit for supporting wheel
EP1548307A4 (en) * 2002-09-06 2007-07-04 Nsk Ltd Rolling bearing unit for supporting wheel
US7287909B2 (en) 2002-09-06 2007-10-30 Nsk Ltd. Wheel supporting rolling bearing unit
US7338212B2 (en) 2002-09-06 2008-03-04 Nsk, Ltd. Wheel supporting rolling bearing unit
WO2010018041A1 (en) * 2008-08-12 2010-02-18 Schaeffler Kg Steering knuckle with pre-sealing
US8500338B2 (en) 2008-08-12 2013-08-06 Schaeffler Technologies AG & Co. KG Steering knuckle with pre-sealing

Also Published As

Publication number Publication date
AU2003207106A1 (en) 2003-09-09
JP2005299684A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
US6280093B1 (en) Wheel supporting structure
US7338212B2 (en) Wheel supporting rolling bearing unit
JP2000289403A5 (en)
US7287909B2 (en) Wheel supporting rolling bearing unit
US7147381B2 (en) Wheel support bearing assembly
US20080304784A1 (en) Rolling Bearing Assembly
JP4085736B2 (en) Rolling bearing device
WO2003071146A1 (en) Rolling bearing unit for supporting wheel
WO2003071148A1 (en) Rolling bearing unit for wheel support
JP3794008B2 (en) Wheel bearing
WO2003074890A1 (en) Rolling bearing unit for supporting wheel
JP5708403B2 (en) Sealing device for bearing
WO2003071147A1 (en) Rolling bearing unit for supporting wheel
JP2018197598A (en) Hub unit for drive wheel
JP2023159713A (en) hub unit bearing
JP2004306681A (en) Rolling bearing unit for wheel support
JP4221831B2 (en) Rolling bearing unit for wheels
JP2017160960A (en) Wheel bearing device
JP2024019837A (en) hub unit bearing
JP2024013116A (en) hub unit bearing
CN115807814A (en) Bearing device for wheel
JP2008169931A (en) Wheel bearing unit
JP2008101682A (en) Bearing device for wheel
WO2011019703A1 (en) Method and apparatus for bearing race creep prevention

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP