WO2003070457A1 - Reinforced stretch non-woven fabric - Google Patents

Reinforced stretch non-woven fabric Download PDF

Info

Publication number
WO2003070457A1
WO2003070457A1 PCT/JP2003/001860 JP0301860W WO03070457A1 WO 2003070457 A1 WO2003070457 A1 WO 2003070457A1 JP 0301860 W JP0301860 W JP 0301860W WO 03070457 A1 WO03070457 A1 WO 03070457A1
Authority
WO
WIPO (PCT)
Prior art keywords
stretched
nonwoven fabric
film
reinforced
layer
Prior art date
Application number
PCT/JP2003/001860
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Kumehara
Yukio Sugita
Original Assignee
Nippon Petrochemicals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co., Ltd. filed Critical Nippon Petrochemicals Co., Ltd.
Publication of WO2003070457A1 publication Critical patent/WO2003070457A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/45Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the shape
    • A61F13/49Absorbent articles specially adapted to be worn around the waist, e.g. diapers
    • A61F13/49007Form-fitting, self-adjusting disposable diapers
    • A61F13/49009Form-fitting, self-adjusting disposable diapers with elastic means
    • A61F13/4902Form-fitting, self-adjusting disposable diapers with elastic means characterised by the elastic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/08Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary

Definitions

  • the present invention can be suitably used in a wide range of packaging materials, architectural / civil engineering materials, industrial materials, agricultural materials, and the like, has excellent surface smoothness, has good IJ characteristics, and has both vertical and horizontal directions.
  • the present invention relates to a reinforced stretch member having an excellent strength balance in one direction and a high tear strength.
  • the stretched orthogonal nonwoven fabric is suitable as a packaging material because the concealment is arranged in almost one direction, so that it has a design life, has good surface smoothness and glossiness, and has excellent printing characteristics. It is used for In addition, the stretch orthogonality is different from that of a spunbond nonwoven fabric manufactured by a general dry manufacturing method, a spunbond method, in that »is arranged in the longitudinal direction and the transverse direction. Suitable for construction, civil engineering, industrial, and agricultural materials because of its excellent balance of strength.
  • the above-mentioned stretched orthogonal nonwoven fabric has a sufficiently high tensile strength in the stretching direction, it has an orthogonal lamination structure, so that the strength against shear force, that is, the tear strength, is not so high.
  • Some packaging materials such as desiccants, dehumidifiers, oxygen scavengers, and oxidative heating agents, contain stored power.
  • a material ⁇ a material with high tear strength is required to prevent these active materials from flowing out.
  • construction is performed in a large area like house wrap: ⁇ It is important that tear strength is high and construction is easy.
  • ⁇ ⁇ Materials include ⁇ geotextiles used for ⁇ keeping slopes'protection and separating soft ground. Since the geotextile has an accessory attached to the earth and sand even after construction, the shear stress S is applied to the geotextile by the pressure from above, so it is desirable that the geotextile also has a high tear strength. It is.
  • the present invention improves the tear strength while utilizing the properties of a stretched unidirectionally aligned nonwoven fabric, such as surface smoothness and high tensile strength, and conveys a reinforced stretched nonwoven fabric that is suitably used in a wide range of fields as a sheet or sheet. With the goal.
  • the reinforced stretched nonwoven fabric of the present invention comprises at least one stretched unidirectionally aligned nonwoven fabric which is spun from a thermoplastic resin and is stretched in a crosswise direction.
  • the “W layer is laminated by press-bonding to at least one surface of the“ layer ”, and the reinforcing layer has a network structure.
  • the support layer is not stretched perpendicularly, in which two sheets of unidirectional stretches are laminated so that the arrangement directions of ⁇ are perpendicular to each other. Thereby, the strength balance in the »direction and the lateral direction is not excellent.
  • the laminating surfaces of the reinforcing layer and the reinforcing material layer are made of the same material, thereby improving the adhesive strength between them.
  • the reinforcing material layer a multilayer film in which a layer made of a second thermoplastic resin having a lower melting point is laminated on both surfaces of a layer made of the first thermoplastic resin, It is possible to use a reticulated nonwoven fabric obtained by superimposing and fusing two uniaxially oriented reticulated films stretched in a direction that is efficient with the slit so that the orientation axes are orthogonal to each other.
  • the present invention by laminating a layer having a unidirectional orientation and a reinforcing material layer having a network structure, tearing is performed while utilizing the properties of the unidirectional orientation.
  • the strength can be improved, and the range of non-use applications can be greatly expanded.
  • by making the 1-year-old layer non-stretching orthogonal it is possible to make the 1-year-old layer excellent in balance between the ⁇ direction and the lateral direction.
  • the direction perpendicular to the direction that is, the direction of the width or the width of the web.
  • FIG. 1 is a cross-sectional view of a reinforced stretched nonwoven fabric according to one embodiment of the present invention.
  • FIG. 2A is a perspective view of a part of the uniaxially oriented network film shown in FIG.
  • FIG. 2B is an enlarged view of the vicinity of the end face of the uniaxially oriented network film shown in FIG. 2A.
  • FIG. 3 is a perspective view of a raw film used for producing the uniaxially oriented network film shown in FIG.
  • FIG. 4 is a perspective view of a part of another example of the uniaxially oriented network film applicable to the present invention. is there.
  • FIG. 5 is a cross-sectional view of another embodiment of the present invention without reinforced stretching.
  • FIG. 6 is a cross-sectional view of a reinforced stretcher according to still another embodiment of the present invention.
  • FIG. 7 is a cross-sectional view without reinforcement stretching according to still another embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of one embodiment of the present invention without reinforced stretching.
  • the reinforced stretcher 1 is a stretch stretcher which is formed by laminating two stretched unidirectional arrays 2a and 2 so that the alignment directions of the two are perpendicular to each other. It has a layer 2 and a reinforcing material layer 3 having a network structure laminated on one side of the layer 2.
  • the unidirectional stretching irregularities 2a and 2b are filaments made of a thermoplastic resin (hidden) arranged in almost one direction and stretched in the arrangement direction of the capillaries.
  • the reinforcing material layer 3 is composed of a mesh formed by laminating two uniaxially oriented mesh films 4.
  • the drawing orthogonality is defined as a laminate of a drawing unidirectional alignment 2a in which the filaments are arranged and drawn in the longitudinal direction and a drawing unidirectional alignment 2b in which the filament is drawn in the horizontal direction. It is.
  • the stretched unidirectional nonwoven fabrics 2a and 2b are made by stretching filaments in the direction of their own lj, and the fiber (thickness) is 2 in the spinning stage, just like a normal nonwoven fabric.
  • a filament of ⁇ 3 dT eX is spun, but this is stretched 5 to 10 times in the filament arrangement direction. e X or less.
  • the filaments are not oriented and the filaments that have been piled up are arranged in a certain direction, so by stretching them in the direction of filament arrangement, small filaments, in other words, thin filaments, are drawn. Even if it does, the tensile strength after stretching is improved.
  • the unstretched unidirectionally-arranged nonwoven fabrics 2a and 2b contain Stretched filaments and unoriented filaments are slightly mixed, and the fiber mainly has a unidirectional stretching of 1.5 dT eX or less.
  • the undrawn filament has a low melting point and is melted in the subsequent laminating process, so that it functions as an adhesive between the filaments of the drawn unidirectional alignment 2 &, 2b.
  • non-stretched one-way alignments 2a and 2b There are two types of non-stretched one-way alignments 2a and 2b: vertical stretching and horizontal stretching, but in the present embodiment, any of these can be used, and the combination is free. It is.
  • Vertical stretched nonwoven fabric is a nonwoven fabric in which filaments are arranged and stretched in the »direction, which is the feed direction when manufacturing the nonwoven fabric
  • horizontal stretched nonwoven fabric is a direction perpendicular to the feed direction when manufacturing nonwoven fabric In this case, the filaments are arranged and stretched in the lateral direction.
  • the vertically stretched nonwoven fabric is described in detail.
  • the vertical stretching failure for example, the one disclosed in Japanese Patent Application Laid-Open No. 10-24767 can be used.
  • the vertical stretched nonwoven fabric will be described together with its manufacturing method.
  • a draft tension is applied to the filament extruded from the nozzle provided in the die, thereby reducing the diameter of the filament and placing it on a conveyor.
  • the filament melt immediately after exiting the nozzle is actively heated, or the atmosphere near the nozzle (at the position immediately after the filament is spun from the nozzle) is maintained at a high temperature.
  • the temperature during this time should be sufficiently higher than the melting point of the filament to minimize the molecular orientation of the filament due to drafting of the filament.
  • any of hot air blowing from a die, heater heating, and a heat retaining cylinder can be used.
  • a means for heating the filament melt infrared radiation or laser light can be used.
  • MB meltblown
  • This method has the advantage that the molecular orientation of the filament can be reduced by increasing the flow of hot air.
  • the filaments accumulate randomly on the conveyor, and the filaments are subjected to heat treatment on the conveyor due to the influence of hot air, resulting in low stretchability.
  • air containing mist-like moisture is conveyed to the filament spun from the nozzle. Is ejected obliquely to the transfer surface of. Thereby, the filaments are arranged in the vertical direction and cooled.
  • Another method of applying draft tension to the filament is the spunbond (SB) method in a narrow sense, that is, a method using a so-called ejector or air sucker below a large number of nosles.
  • SB spunbond
  • the filament is cooled immediately after it comes out of the nozzle, so that molecular orientation occurs in the filament, and the filament is randomly accumulated on the conveyor. Therefore, in the same way as the MB method mentioned above: ⁇ , the molecular orientation is reduced by combining the means for maintaining the filament at high temperature near the nose, and the mist-like water or cold air is supplied into the ejector.
  • the filament is sufficiently cooled to obtain a filament having good stretchability, and a fluid containing the filament is supplied obliquely to the conveyor conveying surface, so that the filament arrangement can be improved.
  • the filaments can be satisfactorily arranged in the vertical direction by tilting the filaments with respect to the conveying surface of the conveyor and determining the filaments.
  • Means for causing the filament to move relative to the transport surface include tilting the nozzle with respect to the conveyor, turning the filament with the aid of fluid, and tilting the conveyor with respect to the spinning direction of the filament. Is effective. These may be used alone or in combination of a plurality of means.
  • the above MB method is the best method of SB method! /
  • fluid is used to make the filament slant against the conveyor's transport surface
  • the most common fluid near the conveyor is a cold fluid, especially a fluid containing atomized water. desirable. This is to prevent the crystallization from progressing by quenching the spun filament. As the crystallization force advances, stretchability decreases.
  • spraying atomized water also has the effect of adhering the web accumulated on the conveyor onto the conveyor, and as a result, improving spinning stability and improving the alignment of filaments.
  • the filaments are accumulated on the conveyor to form a gap.
  • the web is suctioned from the back side of the conveyor, so that the web is operated on the conveying surface of the conveyor and becomes unstable. It can stabilize the web and also has the effect of removing heat.
  • it is important that the suction of the web is performed with a narrow width in a straight line in the width direction of the conveyor. Even in the normal SB method, suction is often performed! / ⁇ , but ⁇ is wide, and the suction I is performed over a large area, so that the uniformity of basis weight in the plane of the web is improved, and the filament
  • the purpose is to make the arrangement as random as possible, which is different from the purpose of suction in the present embodiment.
  • the suction in the present embodiment also has the effect of reducing the influence of water in the subsequent stretching step, because it also removes water sprayed in a mist for cooling.
  • moisture greatly affects the stretchability, and variations in moisture depending on the site impair the uniformity of stretching, and reduce the stretching ratio and the strength of the web after stretching.
  • the keyed web on the conveyor is stretched in the »direction, which renders it unvertible.
  • the alignment of the filament in the» direction can be further improved.
  • the better the arrangement of the filaments in the longitudinal direction the higher the probability that the filaments are substantially stretched when the web is stretched in the ⁇ direction, and the greater the strength of the final stretched web. If the arrangement of the filaments is poor, the probability that the filament is substantially stretched is reduced only by increasing the distance between the filaments even when the gap is stretched, and sufficient strength after stretching cannot be obtained.
  • the longitudinal stretching of the web there is ⁇ that stretches in one step, but the multi-step stretching method is mainly used.
  • the first-stage drawing is performed as pre-drawing immediately after spinning, and the subsequent second-stage drawing is performed as drawing.
  • the use of the proximity stretching method for the first stage of the multistage stretching is particularly suitable for the present invention.
  • Proximity stretching is a method in which the web is stretched by the difference in surface speed between two adjacent rolls, and stretches while maintaining a short distance between stretches (the distance from the start point to the end point). It is desirable that the distance between stretching is 10 Omm or less. In particular, even if the filaments are arranged as a whole in the 3 ⁇ 4 direction, there are individual bends. It is important for effectively drawing the filament. Heat in proximity stretching is usually given by heating the stretching roll, and the stretching point is supplementarily heated by hot air or infrared rays. Also, as a basket for proximity stretching,? 3 ⁇ 4K and steam can also be used.
  • multi-stage drawing not only proximity drawing but also various means used for drawing ordinary webs (eg, aggregates of »and filaments in nonwoven fabrics) are applied to the second and subsequent steps. It can. For example, stretching methods such as roll stretching, 3 ⁇ 4 stretching, steam stretching, »stretching, and roll rolling are used. Proximity drawing is not necessary because the individual filaments are already long in the longitudinal direction in the first drawing step.
  • the stretched nonwoven fabric will be described.
  • the horizontal stretch for example, the stretch disclosed in Japanese Patent Application Laid-Open No. 3-36948 can be used.
  • a web in which filaments are arranged in a substantially horizontal direction is formed by causing the filaments extruded from the spinning nozzle to oscillate in the horizontal direction by air injection from air injection holes arranged around the spinning nozzle, and to accumulate on a conveyor. be able to.
  • the air ejected from the second air ejection hole collides with each other on the passage of the rotating filament, and spreads at right angles to the conveying direction by the conveyor, that is, in the lateral direction.
  • the rotating filaments are scattered laterally by the force of the air.
  • filaments are accumulated on the conveyor in a state where there are many array components in the horizontal direction.
  • the web thus obtained is stretched in the transverse direction.
  • the stretching method include a tenter method and a pulley method.
  • the tenter method is generally used as a method for widening a film or the like, but it requires a large floor area, and it is difficult to change the product width / magnification ratio. In the case of flaws, the product width must be freely changed depending on the application, and the stretching ratio must be changed according to the thickness of the raw material. Therefore, it is preferable to use a boogie method that makes these changes easily even during driving operation! / ,.
  • the bully-type stretching device has a pair of pulleys and a belt arranged at intervals in the width direction of the web for gripping both side ends of the web.
  • the pulleys are arranged symmetrically with respect to the center line in the width direction of the web so that the outer circumference has a divergent trajectory, and each is rotated at the same peripheral speed.
  • the belt is wound under tension corresponding to each pulley, and one part of this belt is applied to the area from the position where the distance between the pulleys is narrow to the position where it is widened, and the outer peripheral end face of each pulley It is fitted in the groove formed in the hole.
  • the web is introduced from a place where the distance between the pulleys is narrow, and both ends are gripped by the pulley and the velvet. As the pulley rotates, the web passes through a diverging trajectory created by a pair of pulleys while being gripped by the belt, whereby the web is stretched in the lateral direction. Hot water or hot air can be used for heating during this time.
  • the filaments constituting the non-vertical stretched and non-stretched nonwoven fabrics are long filaments.
  • the long ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ filament ’here is essentially a long one
  • the average length exceeds 100 mm. Since the diameter of the filament becomes rigid at 50 ⁇ or more, it is preferably 30 ⁇ or less, and more preferably 2 or less.
  • is desirably ⁇ with a filament diameter of 5 ⁇ m or more.
  • the length and 1 mm of the filament shall be measured by micrograph.
  • thermoplastic resin constituting the filaments of the unidirectionally oriented filaments 2a and 2b examples include high-density polyethylene, polyolefin such as polypropylene, and nylon-polyester. Above all, polypropylene and polyester are cost and handling! Excellent in terms of / ⁇ .
  • the above-described vertical stretched nonwoven fabric and horizontal stretched nonwoven fabric are preferably used as they are as one stretched unidirectionally aligned nonwoven fabric 2a and one stretched unidirectionally aligned nonwoven fabric 2b.
  • the two stretched unidirectionally aligned nonwoven fabrics 2a and 2b can be continuously fed out and superimposed, and a seamless uniform layer 2 having no seams can be obtained.
  • the vertical stretching is marked in advance, and in the production stage of the horizontal stretching, the vertical stretching is fed out onto the horizontal stretching in the first step of transporting the horizontal stretching nonwoven fabric, and then stacked. By laminating these, layer 2 can be manufactured more efficiently.
  • a stretched nonwoven fabric can be obtained using only the vertical stretched nonwoven fabric or the horizontal stretched nonwoven fabric.
  • one vertical stretched nonwoven fabric is unwound as it is, and the other vertical stretched nonwoven fabric is cut to the same length as the other vertical stretched nonwoven fabric.
  • rotating by 90 ° and laminating on the other vertical stretched nonwoven fabric it is possible to make the stretch perpendicular to nonwoven fabric. The same applies to the case where only horizontal stretching is used.
  • the two non-oriented one-dimensional arrangements 2a and 2b can be laminated by, for example, a hot embossing method.
  • the embossing conditions vary depending on the type of resin used for the unidirectional stretching 2a and 2b, but are preferably 30 to 80 ° C lower than the melting point.
  • the two stretched unidirectionally aligned nonwoven fabrics 2a and 2 can be laminated by a thermal rendering process.
  • the intuition layer 2 is composed of two drawn unidirectionally arranged nonwoven fabrics 2a and 2b, in which the fiber arrangement directions are different from each other.
  • the strength in the »direction and in the lateral direction can be freely adjusted by adjusting the basis weight of both.
  • the basis weight of the base layer 2 is preferably 5 to: I 0 0 g / m 2 , It can be selected according to the application. For example, for use in packaging materials that require air permeability, it is preferable that the basis weight of the layer 2 be 30 g Zm 2 or less. On the other hand, for ⁇ which requires higher strength, it is preferable to use a high basis weight.
  • any material having a network structure which can be laminated with the force and intuition layer 2 and which can reinforce the tear strength with respect to the base material layer 2, should be used.
  • a reticulated nonwoven fabric is used.
  • the reticulated film is obtained by laminating two uniaxially oriented reticulated films 4 as shown in FIG. 2A.
  • the uniaxially oriented network film 4 has a second heat having a melting point lower than that of the first thermoplastic resin on both surfaces of the layer 5 made of the high-melting first thermoplastic resin 14. It consists of a three-layered film in which layers 6 made of a plastic resin are laminated, and as shown in Fig. 2a, a plurality of trunks 4a extending to the TO each other, and extending across and adjacent to the trunks 4a. ⁇ »
  • the thickness of the entire layer 6 made of the second thermoplastic resin is 50% or less, preferably 40% or less of the entire thickness of the uniaxially oriented network film 4.
  • the layer 6 made of the second thermoplastic resin only needs to have a thickness of 5 m. It is preferably selected from the range of 10 to 10%.
  • Examples of a method for producing the uniaxially oriented network film 4 include the following method.
  • the layer 6 made of the second thermoplastic resin is laminated on both sides of the layer 5 made of the first thermoplastic resin by extrusion molding such as a multilayer inflation method or a multilayer die method.
  • the raw film 7 is stretched in the longitudinal direction (the direction of the arrow L shown in FIG. 3), and split in a zigzag pattern in the »direction using a splitter (split processing). Then, this film is widened in the horizontal direction, whereby the -axis oriented net-like film 4 in which the trunks
  • the stretching ratio is preferably 1.1 to 15 times. If the draw ratio is less than 1.1, the mechanical strength of the nonwoven fabric is not sufficient. On the other hand, if the stretching ratio exceeds 15 times, it is difficult to stretch by a normal method, and problems such as the need for expensive equipment will occur.
  • any of a roll rolling method and a roll stretching method may be used, but the stretching method is particularly preferably a pseudo-axial stretching method.
  • the rolling method referred to in this specification means that a thermoplastic resin film is passed between two heating rollers arranged with a gap smaller than the thickness thereof, and the melting point of the thermoplastic resin film is reduced.
  • the pseudo-axis stretching method is to pass a thermoplastic resin film between a low-speed roller and a high-speed roller (proximity roller) with the roller spacing as small as possible, and to minimize shrinkage in the ⁇ ⁇ direction. This is mainly a method of stretching while reducing the thickness.
  • two uniaxially oriented net-like films 4 obtained as described above are overlapped so that their orientation axes are orthogonal to each other, and heated and fused to obtain a net-like defect.
  • the superposed uniaxially oriented net-like film 4 is supplied between a pair of calorie heating cylinders, and fixed so as not to cause shrinkage in the ⁇ ⁇ direction.
  • heat fusion is performed at a temperature lower than the melting point of the first thermoplastic resin and higher than the melting point of the second thermoplastic resin.
  • an orthogonal laminating machine is used for heat-sealing the uniaxially oriented network film 4.
  • This orthogonal laminating machine In the case of heat-sealing, one uniaxially oriented network film 4 is supplied to the orthogonal laminating machine as it is, while the other is cut to the same length as the width of the uniaxially oriented network film 4, and one uniaxially oriented network film is cut. Supplied from a direction perpendicular to 4. Therefore, at this point, the seam of the other uniaxially oriented network film 4 exists at regular intervals.
  • the uniaxially oriented reticulated film 9 shown in FIG. 4 is a raw film having the same structure as that used to produce the uniaxially oriented reticulated film 4 shown in FIG.
  • the slit is slit in the zigzag direction (in the direction of arrow T in Fig. 4), and the slit is opened in the vertical direction by stretching in the horizontal direction.
  • a uniaxially oriented network film 9 in which is arranged in a substantially horizontal direction is obtained.
  • the shelf constituting the uniaxially oriented network films 4 and 9 includes, for example, polyolefins such as polyethylene and polypropylene, copolymers thereof, polyesters such as polyethylene terephthalate and polybutylene terephthalate, and polyesters such as these. , Nylon 6, Nylon 66, and other polyamides, and copolymers of these, polychlorinated butyl, methacrylic acid or a copolymer of methacrylic acid or its syrup, polystyrene, polysnoreon, polytetrachloroethylene polycarbonate, Polyurethane and the like.
  • polyolefins such as polyethylene and polypropylene
  • polyesters such as polyethylene terephthalate and polybutylene terephthalate
  • polyesters such as these.
  • Nylon 6, Nylon 66, and other polyamides, and copolymers of these polychlorinated butyl, methacrylic acid or a copolymer of
  • the difference in melting point between the first thermoplastic resin and the second thermoplastic resin needs to be 5 ° C. or more for reasons of production, and preferably 10 to 50 ° C. C.
  • the basis weight of the mesh is preferably 10 to 60 g Zm 2 in order to prevent the thickness from becoming too thick and to exert a necessary tear strength.
  • the reinforcing layer 2 and the reinforcing material layer 3 have been described.
  • a contact method there is a contact method.
  • thermocompression bonding method There are a method using an embossing roll and a method using a mirror-finished roll.
  • the base layer 2 is required to have a high surface smoothness: ⁇ , the use of a mirror-finished roll is preferred.
  • the layer 2 and the reinforcing layer 3 are made of the same material. That is, the reinforcing layer 3 is also made of polyolefin, and the base layer 2 is made of polyester.
  • the reinforcing layer 3 is preferably made of polyester. However, since this is to improve the adhesive strength between the ⁇ ⁇ layer 2 and the reinforcing material layer 3, it is not necessary that the base material layer 2 and the reinforcing material layer 3 as a whole be made of the same material. It is sufficient that the lamination surfaces are made of the same material.
  • the ultrasonic bonding method can be used for the bonding between the support layer 2 and the reinforcing material layer 3.
  • the ultrasonic pressure bonding method enables partial fusion, and is effective for maintaining air permeability and water permeability.
  • the compression bonding of the M2 and the reinforcing material layer 3 can be performed after the both are manufactured, and can be performed during the manufacturing process of the layer 2, although they can be overlapped and fed out.
  • the reinforcing layer 3 manufactured in advance is supplied on the X2 layer in the process of transporting, without winding up the manufactured Yoki layer 2, so that it is suitable. ! Press them together using the ⁇ method. According to this method, the reinforced stretched filament 1 can be efficiently produced.
  • the reinforcing material layer 3 made of a reticulated nonwoven fabric is laminated on the reinforcing layer 2 made of stretched non-woven fabric, so that the surface is excellent in smoothness, printing properties are good, and It takes advantage of the properties of a stretched nonwoven fabric having high tensile strength in the machine direction and the transverse direction, and furthermore has a reinforced stretched non-woven fabric 1 with improved tear strength.
  • the present embodiment shows an example in which the substrate layer 2 at a draw orthogonal nonwoven fabric, as shown in FIG. 5, the ⁇ layer 1 2 consisting of a single stretched unidirectionally arranged non »1 2 a, A reinforced stretched nonwoven fabric 11 in which a reinforcing material layer 13 made of a mesh is laminated on one surface thereof can be used.
  • is determined by the direction in which the filaments of the filaments in the t-layer 12 require the tensile strength, which is mainly required by the non-stretched drawing.
  • the filament orientation direction is set to the longitudinal direction when the tensile strength is not high, and the filament orientation is required when the large tensile strength is mainly required.
  • the direction is the horizontal direction.
  • any of the above-described vertical stretched nonwoven fabric and horizontal stretched nonwoven fabric can be used.
  • the stretched nonwoven fabric is laminated on the reinforcing material layer 12 as it is, or the horizontal stretched nonwoven fabric is cut into the same length as the width of the reinforcing material layer 12 to form a tile, which is rotated 90 °.
  • the orientation direction of the filaments of the stretched unidirectionally arranged nonwoven fabric 12a can be set to the! ⁇ Direction.
  • the stretched nonwoven fabric can be directly laminated on the reinforcing material layer 12 or the lengthwise stretched nonwoven fabric can be cut into the same length as the width of the reinforcing material layer 12 to form a tile.
  • the arrangement direction of the filaments in the unidirectional stretching 12a can be set in the horizontal direction.
  • the reinforcing material layer having the network structure is described as being formed in a net-like manner, but the reinforcing material layer is not limited to this.
  • the reticulated nonwoven fabric is formed by laminating two uniaxially oriented reticulated films, but only one of them may be used as a reinforcing material layer and laminated with a layer.
  • the reinforced stretch non-woven fabric 21 shown in FIG. 6 is a stretched orthogonal nonwoven fabric 22 formed by laminating two stretched unidirectional stretches 22 a and 22 b so that the filament arrangement direction is orthogonal to the base material layer.
  • a single uniaxially oriented network film 23 is laminated thereon as a reinforcing material layer.
  • the uniaxially oriented network film 23 shown in FIG. After stretching the raw film stretched in the vertical direction, split it in the vertical direction, and then expand it in the horizontal direction.
  • the vertical stretched net-shaped film is obtained and slits are formed in the horizontal direction as shown in Fig. 4.
  • Any of a horizontal stretched reticulated film in which the slits are opened in the longitudinal direction by stretching the obtained raw film in the vertical direction may be used. Which one to use may be determined according to the mechanical properties required for the reinforced stretched nonwoven fabric 21.
  • the vertical stretched nonwoven fabric and / or the horizontal stretched fabric described above can be used.
  • a stretched nonwoven fabric can be used in appropriate combination.
  • the simplest method in production is to directly laminate the vertical stretching and the horizontal stretching.
  • vertical stretched nonwoven fabrics or horizontal stretched fabrics are laminated. One is fed as it is, and the other is cut to the same length as the other to form a tile, which is rotated 90 °. By laminating them on the other side, the arrangement direction of the filaments can be made orthogonal.
  • the reinforced stretched nonwoven fabric 31 shown in FIG. 7 is a single stretched unidirectionally aligned nonwoven fabric 32, on which a single uniaxially oriented network film 33 is laminated as a reinforcing material layer.
  • a single uniaxially oriented network film 33 any of a vertical stretched network film and a horizontal stretched network film may be used. Either the stretched unidirectional nonwoven fabric 32 or the vertically stretched nonwoven fabric or non-stretched nonwoven fabric can be used.
  • a vertical stretched nonwoven fabric As a combination of the stretched unidirectionally aligned nonwoven fabric 32 and the uniaxially oriented network finolem 33 in the reinforced stretched nonwoven fabric 31, a vertical stretched nonwoven fabric, a vertical stretched reticulated film, a vertical stretched nonwoven fabric and a horizontal stretched reticulated film, There are four types: non-stretched non-woven fabric, vertical stretch reticulated finolem, horizontal stretch non-stretch and horizontal stretch reticulated film. However, reinforced stretching is not necessary!
  • the filament arrangement direction in the unidirectionally oriented non-aligned film 32 and the stretching direction of the raw film in the uniaxially oriented mesh film 33 are orthogonal to each other. It is desirable that the layers be stacked in such a manner. To achieve this, the combination of a vertically stretched nonwoven fabric and a horizontal stretched reticulated film, and the combination of a horizontal stretched non-woven fabric and a vertical stretched reticulated film are both fed out and laminated as they are.
  • stretched nonwoven In the case of a combination with a vertical stretched reticulated film, or a combination of a horizontal stretched non-stretched film and a horizontal stretched reticulated film, either one is fed out as it is, and the other is cut to the same length as the other width. To make a tile, rotate it 90 ° and stack it on top of the other.
  • a non-woven fabric made of a uniaxially stretched multilayer tape or » can also be used.
  • the uniaxially stretched multilayer tape is obtained by uniaxially stretching the same raw film as that used for producing the above-described uniaxially oriented network film at a stretching ratio of 1.1 to 15 times, preferably 3 to 10 times, or Previously, it was cut along the stretching direction. Then, the uniaxially stretched multilayer tape is arranged in parallel at regular intervals, and is laminated to form a nonwoven fabric, or the uniaxially stretched multilayer tape is woven into a woven fabric to form a reinforcing material layer. Can be used.
  • the reinforcing material layer is laminated on one side of the countermeasure layer, and the reinforcing material layer may be laminated on both sides of the stress layer. Thereby, the tear strength can be further improved.
  • the reinforced stretched nonwoven fabric of the present invention has the above-described effects, it can be used for various uses such as packaging materials, building materials, industrial materials, agricultural materials, and the like.
  • Table 1 shows application examples of the reinforced stretched nonwoven fabric of the present invention.
  • Protection Protective clothing work clothing, experimental clothing, anti-translation), supplies (smoke-proof mask, dust-proof mask, gas mask)
  • Civil engineering drainage materials filtration materials, suction prevention materials, separation materials, seepage control sheets, reinforcement materials, protection materials, asphalt overlays, repair materials for underground pipes, corrosion protection materials
  • Automotive Automotive equipment floor mats, door trims, trunk mats, ceiling molding materials, rear materials Purcell, lining fabric, headrests, bonnet covers, sound absorbing materials, splicing materials, etc.
  • Automotive parts air cleaners, oil filters, indoor clean filters, Outside air intake filter), Seat parts (Kinoletting, Silencer)
  • Fill Air filter (fiM, medium-high performance, ultra-high performance), bag filter, liquid filter, electret filter, vacuum cleaner filter, filter press, wastewater treatment mat, salt removal filter, gas adsorption filter
  • Packaging and storage supplies storage bags, suit strength par, insect repellent par), packaging materials (furoshiki, furashi-no-sei-ichi wrap, wrapping), cleaning supplies (chemical rags, scourers), bags (chemical warmers, freshness holding materials, Oxygen absorber bags, desiccant bags, shopping bags), food products (tea bags, coffee bags, food bags, wrapping), household goods (calendars, anti-slip sheets, love masks, book covers, deodorizing sheets, odori sheets) , Kitchen utensils (drainer sheet, cooking paper, scrubber, scouring cloth, firefloor, firefighting cloth), tape nose top (tape'norecloth, place mat, coaster), office supplies (stamp pad, felt pen core, bulletin board materials, eraser,) , Sports equipment (golf club head cover, tennis racket grip) , Handicraft supplies,
  • Industrial materials (abrasive materials, oil-absorbing materials, papermaking phenolates, heat-resistant cushions, drainage materials for concrete frames, drainage materials, materials, heat-insulating materials, vibration-insulating materials), electric M materials (printed rooster electrical insulation materials, ® « Shielding material, S holding tape, product material (FRP, tape, printing fabric, synthetic paper, static recording material, adhesive tape, thermal transfer sheet, 3 ⁇ 4lt line shielding mat), ⁇ (floppy disc liner , Floppy disk, packaging material, Avm (speaker diaphragm, sound absorbing material), roll (puff mouth, squeeze roll, oiling roll), ⁇ member (V belt, conveyor belt, timing belt), musical instrument (Piano key cushion, hammer rail)
  • product material FRP, tape, printing fabric, synthetic paper, static recording material, adhesive tape, thermal transfer sheet, 3 ⁇ 4lt line shielding mat
  • floppy disc liner , Floppy disk, packaging material
  • Avm peaker diaphragm, sound absorbing material
  • the reinforced stretching was performed by the methods shown in Examples 1 to 3 below, and the tensile strength, elongation, and tear strength in the machine direction and the transverse direction of each of them were determined in accordance with JISL 196. And measured and evaluated. Further, for comparison, the tensile strength in the longitudinal direction and the transverse direction was similarly measured for the mesh member used in Example 1 (Comparative Example 1) and the stretch orthogonal member used in Example 3 (Comparative Example 2). The elongation, elongation, and tear strength were measured.
  • a vertical stretchable fiber was used as the reinforcing layer, and a mesh-like nonwoven fabric was used as the reinforcing material layer.
  • the vertical stretched nonwoven fabric was produced as follows.
  • a polypropylene resin (MFR: 40, melting point: 160 ° C, manufactured by San-Alomer Co., Ltd.) is used as the raw material resin, which is melt-kneaded by an extruder, extruded quantitatively by a gear pump, and extruded with hot air. It was spun into a filament form from a melt process die. The spun filaments are accumulated on a conveyor to form a web in which the filaments are arranged in a substantially vertical direction, which is stretched 6 times in the »direction by a stretching roll to form a vertically stretched nonwoven fabric (3 ⁇ 4
  • the warped stretched nonwoven fabric and the reticulated nonwoven fabric were superimposed on each other, and supplied between mirror rolls at 130 ° C. and a linear pressure of 30 kg / cm, and fffi-bonded to produce a reinforced stretched nonwoven fabric.
  • the basis weight of the produced reinforced stretch was 50 gZm 2 .
  • a stretched nonwoven fabric was used as the opposite layer, and a mesh-like nonwoven fabric was used as the reinforcing material layer.
  • the horizontal stretching failure was produced as follows.
  • the same polypropylene resin as used in Example 1 was used as a raw material resin, melt-kneaded with an extruder, extruded quantitatively with a gear pump, and led to a spray nozzle.
  • Spin from spray nozzle By blowing hot air onto the filaments emitted, the filaments were scattered in a direction perpendicular to the traveling direction of the conveyor, whereby the web in which the filaments were arranged in a substantially horizontal direction was accumulated on the conveyor.
  • the web was stretched 6.5 times in the horizontal direction using a pull-type horizontal stretching machine, to produce a horizontal stretching non-suspended layer.
  • the basis weight of the horizontal stretched nonwoven fabric was 15 g / m 2 .
  • the same reticulated web as used in Example 1 is supplied onto the horizontal stretched non-woven fabric on the conveyor, and the horizontal stretched non-woven fabric is formed.
  • the reticulated nonwoven fabric was overlaid. Then, both were arrived under the same conditions as in the first embodiment. I marked Shin Shin.
  • the basis weight of the produced reinforced stretched non Hear is 5 0 g "m 2 der ivy.
  • a stretch orthogonality in which a vertical stretch and a horizontal stretch are laminated is used as a layer! / ⁇
  • a mesh layer was used as the reinforcing material layer.
  • a vertically stretched nonwoven fabric was produced as follows.
  • a polyester resin manufactured by Teijin Limited, IV value: 0.6, melting point: 260 ° C
  • the filament was spun from a melt blow die.
  • the spun filaments were accumulated on a conveyor to form a web in which the filaments were arranged in a substantially vertical direction, and this was stretched 6 times in the longitudinal direction by a stretching roll, to obtain a vertically stretched nonwoven fabric.
  • the basis weight of the produced vertical stretched nonwoven fabric was measured, it was 10 g nom 2 .
  • the basis weight of the unheared side was 10 g // m 2 .
  • the vertical stretching was supplied onto the horizontal stretcher on the conveyor, and the horizontal stretch and the vertical stretch were overlapped. Both of them were embossed with an embossing roll heated to 220 ° C! / ⁇ , and stretched perpendicularly (m) in which vertical stretch and horizontal stretch were laminated. .
  • basis weight of 3 5 g / m 2 reticulated nonwoven fabric (Nisseki Plasto Co., Ltd., trade name: HS 2 4) was prepared, these stretched perpendicular unsaturated After a corona treatment of 100 kWZm ⁇ min was performed on the opposing surfaces of the woven fabric and the reticulated nonwoven fabric, the two were superposed. The superimposed stretched non-woven fabric and reticulated web were supplied between mirror rolls at 100 ° C. and a linear pressure of 30 kg / cm and adhered to produce a reinforced stretched nonwoven fabric. The basis weight of the produced reinforced stretch was 55 gZm 2 .
  • Table 2 shows the measurement results of tensile strength, elongation, and tear strength of the above Examples 1 to 3 and Comparative Examples 1 and 2 in the longitudinal and transverse directions.

Abstract

A reinforced stretch non-woven fabric which comprises a base material layer and, laminated on one surface thereof through pressing, a reinforcing material layer. The base material layer is preferably a stretched orthogonal non-woven fabric prepared by arranging fibers comprising a thermoplastic resin in almost one direction and stretching the fibers in the direction of the arrangement thereof to form a stretched uni-directional arrangement non-woven fabric, and laminating two sheets of the stretched uni-directional arrangement non-woven fabric so as for the two directions of fiber arrangement to be orthogonal with each other. The reinforcing material layer is preferably a non-woven fabric having a net form prepared by stretching a film having a plurality of slits formed therein in the direction parallel to the slits, to form a uni-axially oriented film having a net form, and laminating the oriented film having a net form so as for the two orientation axes to be orthogonal.

Description

明 細 書 強化延伸不脑 技術分野  Description Reinforced stretching
本発明は、 包装資材、 建築 ·土木資材、 産業資材、 および農業資材等、 広範囲 に好適に使用することができる、 表面平滑性に優れ、 印届 IJ特†生が良好で、 縦方向 および横方向の強度パランスに優れ、 しかも引裂強度が高い強化延伸不脑に関 する。  INDUSTRIAL APPLICABILITY The present invention can be suitably used in a wide range of packaging materials, architectural / civil engineering materials, industrial materials, agricultural materials, and the like, has excellent surface smoothness, has good IJ characteristics, and has both vertical and horizontal directions. The present invention relates to a reinforced stretch member having an excellent strength balance in one direction and a high tear strength.
従来、 例えば包装用資材や建築 ·土木用資材などに用いられている不»とし て、 熱可塑性樹脂からなる »|を一方向に配列し延伸させた 2枚の延伸一方向配 列不織布を互 、に直交して積層させた延伸直交不»が知られている ( 平 1 - 6 0 4 0 8号公報、 平 3 - 3 6 9 4 8号公報等参照)。延伸直交不縣は、 延伸作用により伸度が低くカゝっ強度が高くなるという特徴を有するばかりでなく、 賺が高度に配列するため、 低目付でありながら地合いが均一であるという纖 を有する。 このように、 延伸直交不織布は、 隱がほぼ一方向に配列されている ため意匠†生があり、 表面平滑性が良好で光沢感があり、 印刷特性にも優れている ため、 包装資材として好適に用いられている。 また、 延伸直交不»は、 一般的 な乾式製造法であるスパンボンド法によって製造されたスパンボンド不織布と比 ベると、 »が縦方向および横方向に配列されており、 縦方向と横方向とでの強 度バランスに優れていることから、 建築'土木資材、 産業資材、 および農業資材 に適している。 Conventionally, for example, as a material used for packaging materials and construction and civil engineering materials, two stretched unidirectionally aligned nonwoven fabrics obtained by unidirectionally arranging and stretching a thermoplastic resin »| It is known that the layers are perpendicular to each other and are not perpendicular to each other (see, for example, Japanese Patent Application Laid-Open Nos. 1-64008 and 3-36948). Stretched non-suspended not only has the feature that elongation is low due to the stretching action and the cap strength is high, but also has a fiber whose uniformity is low but the texture is uniform due to the high arrangement of the notes. . As described above, the stretched orthogonal nonwoven fabric is suitable as a packaging material because the concealment is arranged in almost one direction, so that it has a design life, has good surface smoothness and glossiness, and has excellent printing characteristics. It is used for In addition, the stretch orthogonality is different from that of a spunbond nonwoven fabric manufactured by a general dry manufacturing method, a spunbond method, in that »is arranged in the longitudinal direction and the transverse direction. Suitable for construction, civil engineering, industrial, and agricultural materials because of its excellent balance of strength.
' しかしながら、 上述した延伸直交不織布は、 延伸方向での引張り強度は十分に 高いものの、 直交積層構造であるため、 剪断力に対する強度すなわち引裂強度は それほど高くない。  However, although the above-mentioned stretched orthogonal nonwoven fabric has a sufficiently high tensile strength in the stretching direction, it has an orthogonal lamination structure, so that the strength against shear force, that is, the tear strength, is not so high.
包装資材の中には、 乾燥剤、 除湿剤、 脱酸素剤、 あるいは酸化発熱剤に代表さ れるように、 収納されるもの力 人体に触れると重大な事故を起こしカゝねない活 物質である^^、 これらの活物質が流出しないようにするためにも、 引裂強度が 高いものが要望されている。 また、 建築資材では、 ハウスラップのように大面積 で施工される:^には、 引裂強度が高く施工がし易いことが重要である。 ± ^:資 材としては、 ί 斜面の維持'保護用、 軟弱地盤の分離等に用いられるジォテキス タイルがある。 ジォテキスタイルは、 施工後においても土砂の上に付帯物が設置 され、 これによりジォテキスタイルには上からの圧力で剪断応力力 S加わるので、 ジォテキスタイルにも引裂強度が高いことが望まれる。 Some packaging materials, such as desiccants, dehumidifiers, oxygen scavengers, and oxidative heating agents, contain stored power. As a material ^^, a material with high tear strength is required to prevent these active materials from flowing out. For building materials, construction is performed in a large area like house wrap: ^ It is important that tear strength is high and construction is easy. ± ^: Materials include テ geotextiles used for 維持 keeping slopes'protection and separating soft ground. Since the geotextile has an accessory attached to the earth and sand even after construction, the shear stress S is applied to the geotextile by the pressure from above, so it is desirable that the geotextile also has a high tear strength. It is.
また、 産業資材の一部である工業用テープ、 特に養生用テープやマスキングテ ープでは、 一度ネ皮着体に貼られた後、 引き剥がす際に、 テープを長距離にわたつ て一気に引き剥がすことが行われる。 この際も、 テープ には引裂応力力幼口わ るので、 テープ基材が途中で切断されないように、 テープ基材にも引裂強度が高 いことが要求される。 さらに、 農業資材分野においては、 遮光シート、 保温シー ト、 ベた掛けシート等は数シーズンにわたって使用されるのが一般的であるので 耐久性が必要とされる。 しかも、 これらのシートをトンネルにかける際やトンネ ルから外す際には、 シートを弓 Iき裂く方向に力力幼口わるので、 農業資材として用 いられるシートにも引裂き強度が高いことが求められる。 また、 農業用資材とし て用いられるシートは一般に屋外に設置されるので、 強風下にお ヽてもシートが 破れないことが要求され、 この点からも引裂強度は重要な物性である。  Also, with industrial tapes, which are a part of industrial materials, especially curing tapes and masking tapes, once they are pasted on the skin and then peeled off, the tapes are pulled at a stretch over a long distance. Peeling is performed. Also in this case, since the tape has a small tear stress, the tape base must also have high tear strength so that the tape base is not cut in the middle. Furthermore, in the field of agricultural materials, light-shielding sheets, heat-insulating sheets, sticky sheets, etc. are generally used for several seasons, so they need to be durable. Moreover, when these sheets are tunneled or removed from the tunnel, the sheets are forced to tear in the bow I tearing direction, so that sheets used as agricultural materials must also have high tear strength. Can be In addition, since sheets used as agricultural materials are generally installed outdoors, it is required that the sheets do not break even under strong wind, and tear strength is an important physical property from this point as well.
以上のように、 延伸直交不織布をより広い範囲で使用するためには、 高い引張 り強度たけでなく、 高!/、引裂強度が求められて 、た。 発明の開示  As described above, in order to use stretched orthogonal nonwoven fabrics in a wider range, not only high tensile strength but also high! / The tear strength was required. Disclosure of the invention
本発明は、 表面平滑性や高い引張り強度等、 延伸一方向配列不織布の特性を生 かしつつ、 引裂強度を向上させ、 シートあるいは 才として幅広い分野に好適に 用いられる強化延伸不織布を搬することを目的とする。  The present invention improves the tear strength while utilizing the properties of a stretched unidirectionally aligned nonwoven fabric, such as surface smoothness and high tensile strength, and conveys a reinforced stretched nonwoven fabric that is suitably used in a wide range of fields as a sheet or sheet. With the goal.
上記目的を達成するため本発明の強化延伸不織布は、 熱可塑性樹脂から紡糸さ れた »がー方向に配列されカゝっ延伸された少なくとも 1枚の延伸一方向配列不 織布からなる 層と、 この "層の少なくとも片面に圧着されることによって 前記 ¾W層と積層された網状構造の強化材層とを有する。 このように、 延伸一方向配列不«からなる 層に網状構造の強化材層を積 層することで、 延伸一方向配列不織布の弱点である引裂強度が大幅に向上した不 織布が »される。 謝層は、 2枚の延伸一方向配列不脑を瞧の配列方向が 互いに直交するように積層した延伸直交不 であることが好ましい。 これによ り、 »向と横方向との強度パランスに優れた不»となる。 In order to achieve the above object, the reinforced stretched nonwoven fabric of the present invention comprises at least one stretched unidirectionally aligned nonwoven fabric which is spun from a thermoplastic resin and is stretched in a crosswise direction. The “W layer is laminated by press-bonding to at least one surface of the“ layer ”, and the reinforcing layer has a network structure. As described above, by laminating the reinforcing material layer having a network structure on the layer composed of the stretched unidirectionally aligned nonwoven fabric, a nonwoven fabric with significantly improved tear strength, which is a weak point of the stretched unidirectionally aligned nonwoven fabric, is obtained. . It is preferable that the support layer is not stretched perpendicularly, in which two sheets of unidirectional stretches are laminated so that the arrangement directions of 瞧 are perpendicular to each other. Thereby, the strength balance in the »direction and the lateral direction is not excellent.
謝層および強化材層は、 少なくとも互いの積層面が同じ材料で構成されてい ることが好ましく、これによつて両者の接着強度が向上する。強化材層としては、 第 1の熱可塑性樹脂からなる層の両面にその融点よりも低い融点を有する第 2の 熱可塑性樹脂からなる層が積層されてなる多層フィルムに、 互いに 亍な複数の スリットと、 このスリットと ffiな方向の延伸を施された 2枚の一軸配向網状フ イルムを配向軸が直交するように重ね合わせて融着された網状不織布を用いるこ とが可能である。  It is preferable that at least the laminating surfaces of the reinforcing layer and the reinforcing material layer are made of the same material, thereby improving the adhesive strength between them. As the reinforcing material layer, a multilayer film in which a layer made of a second thermoplastic resin having a lower melting point is laminated on both surfaces of a layer made of the first thermoplastic resin, It is possible to use a reticulated nonwoven fabric obtained by superimposing and fusing two uniaxially oriented reticulated films stretched in a direction that is efficient with the slit so that the orientation axes are orthogonal to each other.
以上説明したように本発明によれば、 延伸一方向配列不»からなる £才層と 網状構造の強化材層とを積層することにより、 延伸一方向配列不»の特性を活 かしつつ引裂強度を向上させることができ、 不»の用途範囲を大幅に広げるこ とができる。 また、 ¾1才層を延伸直交不»とすることで、 ί^向と横方向との パランスに優れた不 »とすることができる。  As described above, according to the present invention, by laminating a layer having a unidirectional orientation and a reinforcing material layer having a network structure, tearing is performed while utilizing the properties of the unidirectional orientation. The strength can be improved, and the range of non-use applications can be greatly expanded. In addition, by making the 1-year-old layer non-stretching orthogonal, it is possible to make the 1-year-old layer excellent in balance between the ί direction and the lateral direction.
なお、 本発明において、 »の配列方向や延伸方向の説明に用いる 「縦方向」 とは、 不織布またはゥェブを製造する際の «方向すなわち送り方向を意味し、 また 「横方向」 とは、 縦方向と直角な方向すなわち不»またはウェブの幅方向 を意味している。 図面の簡単な説明  In the present invention, the “longitudinal direction” used in the description of the arrangement direction and the stretching direction of »means a vertical direction, ie, a feeding direction, in producing a nonwoven fabric or a web, and the“ horizontal direction ”means a vertical direction. The direction perpendicular to the direction, that is, the direction of the width or the width of the web. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一実施形態による強化延伸不織布の断面図である。  FIG. 1 is a cross-sectional view of a reinforced stretched nonwoven fabric according to one embodiment of the present invention.
図 2 aは、 図 1に示す一軸配向網状フィルムの一部の斜視図である。  FIG. 2A is a perspective view of a part of the uniaxially oriented network film shown in FIG.
図 2 bは、 図 2 aに示す一軸配向網状フィルムの端面部近傍の拡大図である。 図 3は、 図 2に示す一軸配向網状フィルムを作製するのに用いられる原反フィ ルムの斜視図である。  FIG. 2B is an enlarged view of the vicinity of the end face of the uniaxially oriented network film shown in FIG. 2A. FIG. 3 is a perspective view of a raw film used for producing the uniaxially oriented network film shown in FIG.
図 4は、 本発明に適用可能な一軸配向網状フィルムの他の例の一部の斜視図で ある。 FIG. 4 is a perspective view of a part of another example of the uniaxially oriented network film applicable to the present invention. is there.
図 5は、 本発明の他の実施形態による強化延伸不»の断面図である。  FIG. 5 is a cross-sectional view of another embodiment of the present invention without reinforced stretching.
図 6は、 本発明のさらに他の実施形態による強化延伸不脑の断面図である。 図 7は、 本発明のさらに他の実施形態による強化延伸不»の断面図である。 発明を実施するための最良の形態  FIG. 6 is a cross-sectional view of a reinforced stretcher according to still another embodiment of the present invention. FIG. 7 is a cross-sectional view without reinforcement stretching according to still another embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
次に、 本発明の実施形態について図面を参照して説明する。  Next, an embodiment of the present invention will be described with reference to the drawings.
図 1は、 本発明の一実施形態による強化延伸不»の断面図である。 図 1に示 すように、 強化延伸不» 1は、 2枚の延伸一方向配列不» 2 a , 2 を互 ヽ の,の配列方向が直交するように積層した延伸直交不»からなる謝層 2と、 この謝層 2の片面に積層された、 網状構造の強化材層 3とを有する。 延伸一方 向配列不随 2 a, 2 bは、 熱可塑性樹脂からなるフィラメント (隱) がほぼ 一方向に配列され、 カゝっフィラメントの配列方向に延伸された不«である。 ま た、 強化材層 3は、 2枚の一軸配向網状フィルム 4を 層した網状不»で 構成されている。  FIG. 1 is a cross-sectional view of one embodiment of the present invention without reinforced stretching. As shown in FIG. 1, the reinforced stretcher 1 is a stretch stretcher which is formed by laminating two stretched unidirectional arrays 2a and 2 so that the alignment directions of the two are perpendicular to each other. It has a layer 2 and a reinforcing material layer 3 having a network structure laminated on one side of the layer 2. The unidirectional stretching irregularities 2a and 2b are filaments made of a thermoplastic resin (hidden) arranged in almost one direction and stretched in the arrangement direction of the capillaries. In addition, the reinforcing material layer 3 is composed of a mesh formed by laminating two uniaxially oriented mesh films 4.
以下に、 延伸直交不»およひ 状不«について詳細に説明する。  Hereinafter, the stretching orthogonality and the shape irregularity will be described in detail.
涎伸直交不織布〉  Salinated orthogonal nonwoven fabric>
延伸直交不«は、 フィラメントが縦方向に配列かつ延伸された延伸一方向配 列不脑 2 aと、 ブイラメントが横方向に配列力 延伸された延伸一方向配列不 « 2 bとを積層したものである。  The drawing orthogonality is defined as a laminate of a drawing unidirectional alignment 2a in which the filaments are arranged and drawn in the longitudinal direction and a drawing unidirectional alignment 2b in which the filament is drawn in the horizontal direction. It is.
延伸一方向酉己列不織布 2 a , 2 bは、 前述のように、 フィラメントをその酉己歹 lj 方向に延伸したものであり、 紡糸段階では通常の不織布と同様に纖 (太さ) が 2〜3 d T e Xのフィラメントを紡糸するが、 これをフィラメントの配列方向に 5〜 1 0倍に延伸することにより、延伸一方向配列不» 2 a , 2 bの献は 1 · 5 d T e X以下とされる。 この^ \ 紡糸段階においてはフィラメントが未配向 であり、 力つ集積されたフィラメントが一定方向に配列されているので、 フイラ メントの配列方向に延伸することで、 小さな謹、 言い換えれば細いブイラメン トであっても延伸後の引張り強度が向上する。 しかし、 紡糸段階におけるフイラ メントの配列は完全ではないので、 延伸一方向配列不織布 2 a , 2 bには、 未延 伸フイラメントゃ未配向フィラメントが若干混じっており、 主として纖窆が 1 . 5 d T e X以下の延伸一方向配列不»となる。 未延伸フィラメントは、 融点も 低く、 その後の積層処理で融解するため、 延伸一方向配列不» 2 &, 2 bのフ ィラメント同士の接着剤的機能を果たす。 As described above, the stretched unidirectional nonwoven fabrics 2a and 2b are made by stretching filaments in the direction of their own lj, and the fiber (thickness) is 2 in the spinning stage, just like a normal nonwoven fabric. A filament of ~ 3 dT eX is spun, but this is stretched 5 to 10 times in the filament arrangement direction. e X or less. In this ^ \ spinning stage, the filaments are not oriented and the filaments that have been piled up are arranged in a certain direction, so by stretching them in the direction of filament arrangement, small filaments, in other words, thin filaments, are drawn. Even if it does, the tensile strength after stretching is improved. However, since the arrangement of the filaments in the spinning stage is not perfect, the unstretched unidirectionally-arranged nonwoven fabrics 2a and 2b contain Stretched filaments and unoriented filaments are slightly mixed, and the fiber mainly has a unidirectional stretching of 1.5 dT eX or less. The undrawn filament has a low melting point and is melted in the subsequent laminating process, so that it functions as an adhesive between the filaments of the drawn unidirectional alignment 2 &, 2b.
延伸一方向配列不 » 2 a , 2 bには、 タテ延伸不«とョコ延伸不»とが あるが、 本実施形態においてはこれらの何れも使用することができ、 また組み合 わせも自由である。 タテ延伸不織布とは、 不織布を製造する際の送り方向である »向にフィラメントが配列され延伸された不織布であり、ョコ延伸不織布とは、 不»を製造する際の送り方向と直角な方向である横方向にフィラメントが配列 され延伸された不»である。  There are two types of non-stretched one-way alignments 2a and 2b: vertical stretching and horizontal stretching, but in the present embodiment, any of these can be used, and the combination is free. It is. Vertical stretched nonwoven fabric is a nonwoven fabric in which filaments are arranged and stretched in the »direction, which is the feed direction when manufacturing the nonwoven fabric, and horizontal stretched nonwoven fabric is a direction perpendicular to the feed direction when manufacturing nonwoven fabric In this case, the filaments are arranged and stretched in the lateral direction.
タテ延伸不織布おょぴョコ延伸不織布について、 詳細に説明する。  The vertically stretched nonwoven fabric is described in detail.
タテ延伸不»としては、 例えば、 特開平 1 0— 2 0 4 7 6 7号公報に開示さ れている不 を使用することができる。 以下に、 タテ延伸不織布についてその 製造方法とともに説明する。  As the vertical stretching failure, for example, the one disclosed in Japanese Patent Application Laid-Open No. 10-24767 can be used. Hereinafter, the vertical stretched nonwoven fabric will be described together with its manufacturing method.
まず、 ダイスに設けられたノズルから押し出されたフィラメントにドラフト張 力を与え、 これによつてフィラメントを細径化し、 コンベア上に^ ¾する。 この とき、 ノズルを出た直後のフィラメント融液を積極的に加熱し、 またはノズル近 傍 (フイラメントがノズルから紡出された直後の位置) の雰囲気 を高温に維 持する。 この間の温度はフィラメントの融点よりも十分に高くし、 フィラメント のドラフトによるフィラメントの分子配向をできるだけ小さくする。 ノズル近傍 の雰囲気 を高温にする手段としては、 ダイスからの熱風吹き出し、 ヒータ加 熱、 保温筒など何れも用いることができる。 また、 フィラメント融液を加熱する 手段としては、 赤外線放射やレーザ ¾ を用いることができる。  First, a draft tension is applied to the filament extruded from the nozzle provided in the die, thereby reducing the diameter of the filament and placing it on a conveyor. At this time, the filament melt immediately after exiting the nozzle is actively heated, or the atmosphere near the nozzle (at the position immediately after the filament is spun from the nozzle) is maintained at a high temperature. The temperature during this time should be sufficiently higher than the melting point of the filament to minimize the molecular orientation of the filament due to drafting of the filament. As means for raising the temperature of the atmosphere near the nozzle to high temperature, any of hot air blowing from a die, heater heating, and a heat retaining cylinder can be used. As a means for heating the filament melt, infrared radiation or laser light can be used.
フィラメントにドラフト張力を与える方法として、 メルトブロー (MB) ダイ スを使用する方法がある。 この方法は、 熱風の? ¾を高くすることによりフイラ メントの分子配向を小さくすることができるという利点がある。 ただし、 通常の MB法ではコンベア上でフイラメントがランダムに集積し、 また、 熱風の影響に よりフィラメントがコンベア上で熱処理を受け、 延伸性の低 ヽものとなる。 そこ で、 ノズルから紡出されたフィラメントに、 霧状の水分を含むエア等をコンベア の搬送面に対して斜めに噴射する。 これによつて、 フィラメントのタテ方向への 配列および冷却が行われる。 One way to apply draft tension to the filament is to use a meltblown (MB) die. This method has the advantage that the molecular orientation of the filament can be reduced by increasing the flow of hot air. However, in the normal MB method, the filaments accumulate randomly on the conveyor, and the filaments are subjected to heat treatment on the conveyor due to the influence of hot air, resulting in low stretchability. At this point, air containing mist-like moisture is conveyed to the filament spun from the nozzle. Is ejected obliquely to the transfer surface of. Thereby, the filaments are arranged in the vertical direction and cooled.
フィラメントにドラフト張力を与える他の方法として、狭義のスパンボンド(S B) 法、 すなわち、 多数のノスンレの下方にいわゆるェジェクタあるいはエアサッ カーを使用する方法がある。 通常の S B方法も、 フィラメントはノズルから出た 直後に冷却されるのでフィラメントに分子配向が生じ、 また、 コンベア上でフィ ラメントがランダムに集積する。 そこで、 上述した MB方の:^と同様に、 ノズ ノレ近傍でのフィラメントを高温に維持する手段を組み合わせて分子配向を小さく し、 また、 ェジヱクタ内に霧状の水分や冷風等を供給してフィラメントを十分に 冷却して延伸性の良好なフィラメントとし、 さらに、 このフィラメントを含む流 体をコンペァの搬送面に対して斜めに供給し、 フィラメントの配列性を向上させ ることができる。  Another method of applying draft tension to the filament is the spunbond (SB) method in a narrow sense, that is, a method using a so-called ejector or air sucker below a large number of nosles. In the ordinary SB method, the filament is cooled immediately after it comes out of the nozzle, so that molecular orientation occurs in the filament, and the filament is randomly accumulated on the conveyor. Therefore, in the same way as the MB method mentioned above: ^, the molecular orientation is reduced by combining the means for maintaining the filament at high temperature near the nose, and the mist-like water or cold air is supplied into the ejector. The filament is sufficiently cooled to obtain a filament having good stretchability, and a fluid containing the filament is supplied obliquely to the conveyor conveying surface, so that the filament arrangement can be improved.
このように、 コンベアの搬送面に対して银斜させてフィラメントを魴糸するこ とにより、 フィラメントをタテ方向に良好に配列させることができる。 フィラメ ントを搬送面に対してィ辭斗させる手段としては、 ノズル方向をコンベアに対して 傾けることや、 流体の補助によりフィラメントを ^させることや、 コンベアを フィラメントの紡出方向に対して it斜させることなどが有効である。 これらは、 単独で用いてもよいし、 複数の手段を適雄み合わせて用いてもよい。 なお、 ノ ズル近傍で流体を使用する: ^は、流体は加熱されていることが望ましい。また、 ノズル近傍で流体を使用しな 、 は、 フィラメントとノズノ 傍で積極的に加 熱する。 これは、 フィラメントがドラフトにより細径化される際に、 できるだけ 分子配向を伴わないようにするためである。  In this way, the filaments can be satisfactorily arranged in the vertical direction by tilting the filaments with respect to the conveying surface of the conveyor and determining the filaments. Means for causing the filament to move relative to the transport surface include tilting the nozzle with respect to the conveyor, turning the filament with the aid of fluid, and tilting the conveyor with respect to the spinning direction of the filament. Is effective. These may be used alone or in combination of a plurality of means. Use a fluid near the nozzle: ^ indicates that the fluid is desirably heated. Also, if no fluid is used near the nozzle, the heater actively heats near the filament and the nozzle. This is to avoid as much molecular orientation as possible when the diameter of the filament is reduced by drafting.
上述した M B法おょぴ S B法のィ可れの方法にお!/、ても、 フィラメントをコンペ ァの搬送面に対して慨斜させるために流体を使用しているが、この流体としては、 コンベア近傍では冷流体、 特に霧状の水を含んだ流体が最も望ましい。 紡出され たブイラメントを急冷することにより、 結晶化を進行させないようにするためで ある。 結晶化力 S進むと延伸性が低下してしまう。 また、 霧状の水を噴射すること は、 コンベア上に集積したウェブをコンベア上に貼り付けさせる作用もあり、 そ の結果、 紡糸の安定性、 およびフィラメントの配列性の向上により効果がある。 以上のようにして、 フィラメントがコンベア上に集積してゥェプが形成される が、 コンベアの裏面側からウェブを吸引することにより、 コンベアの搬送面に対 して術させられて不安定になったウェブを安定化させることができ、 しかも熱 を除去する効果も得られる。 この 、 ウェブの吸引は、 コンベアの幅方向に直 線状に力つ狭い幅で行うことが重要である。 通常の S B法においても吸引を行う ことは多!/ヽが、 その^には広!/ヽ面積で吸弓 Iを行つており、 ゥェブ平面内の坪量 の均一性を高め、 かつフイラメントの配列をできるだけランダムとすることを目 的としており、 本実施形態での吸引の目的とは異なる。 さらに、 本実施形態での 吸引は、 冷却のために霧状に噴射された水分も除去するため、 後の延伸工程にお ける水分の影響を低下させる効果もある。 ポリエステルにおいては、 水分が延伸 性に大きく影響し、 部位による水分のばらつきにより延伸の均一性が損なわれ、 延伸倍率や延伸後のウェブの強度が低くなる。 The above MB method is the best method of SB method! / Even though fluid is used to make the filament slant against the conveyor's transport surface, the most common fluid near the conveyor is a cold fluid, especially a fluid containing atomized water. desirable. This is to prevent the crystallization from progressing by quenching the spun filament. As the crystallization force advances, stretchability decreases. In addition, spraying atomized water also has the effect of adhering the web accumulated on the conveyor onto the conveyor, and as a result, improving spinning stability and improving the alignment of filaments. As described above, the filaments are accumulated on the conveyor to form a gap.However, the web is suctioned from the back side of the conveyor, so that the web is operated on the conveying surface of the conveyor and becomes unstable. It can stabilize the web and also has the effect of removing heat. In this case, it is important that the suction of the web is performed with a narrow width in a straight line in the width direction of the conveyor. Even in the normal SB method, suction is often performed! / ヽ, but ^ is wide, and the suction I is performed over a large area, so that the uniformity of basis weight in the plane of the web is improved, and the filament The purpose is to make the arrangement as random as possible, which is different from the purpose of suction in the present embodiment. Further, the suction in the present embodiment also has the effect of reducing the influence of water in the subsequent stretching step, because it also removes water sprayed in a mist for cooling. In the case of polyester, moisture greatly affects the stretchability, and variations in moisture depending on the site impair the uniformity of stretching, and reduce the stretching ratio and the strength of the web after stretching.
コンベア上に鍵したウェブは »向に延伸され、 これによりタテ延伸不 » とされる。 ウェブを »向に延伸することにより、 フィラメントの »向への配 列性をより向上させることができる。 このとき、 フィラメントの縦方向への配列 性が良いものほど、 ウェブの ^向への延伸時にフィラメントが実質的に延伸さ れる確率が髙くなり、 最終延伸ウェブの強度も大きくなる。 フィラメントの配列 が悪 、と、 ゥェプを延伸してもフィラメントの間隔が広がるだけでフイラメント が実質的に延伸される確率力 S低くなり、 延伸後の十分な強度が得られなくなる。 ウェブの縦延伸には、 1段で 伸する^^もあるが、 主に多段延伸法が用い られている。 多段延伸法においては、 1段目の延伸は紡糸直後の予備延伸として 行われ、さらにその後に延伸する 2段目以降の延伸が 伸として行われている。 その中でも特に、 多段延伸の 1段目の延伸に近接延伸法を用いることが本発明に 適している。  The keyed web on the conveyor is stretched in the »direction, which renders it unvertible. By stretching the web in the »direction, the alignment of the filament in the» direction can be further improved. At this time, the better the arrangement of the filaments in the longitudinal direction, the higher the probability that the filaments are substantially stretched when the web is stretched in the ^ direction, and the greater the strength of the final stretched web. If the arrangement of the filaments is poor, the probability that the filament is substantially stretched is reduced only by increasing the distance between the filaments even when the gap is stretched, and sufficient strength after stretching cannot be obtained. In the longitudinal stretching of the web, there is ^^ that stretches in one step, but the multi-step stretching method is mainly used. In the multi-stage drawing method, the first-stage drawing is performed as pre-drawing immediately after spinning, and the subsequent second-stage drawing is performed as drawing. Among them, the use of the proximity stretching method for the first stage of the multistage stretching is particularly suitable for the present invention.
近接延伸とは、 隣接する 2組のロールの表面速度の差によりウェブを延伸する 方式において、 短い延伸間距離 (延伸の開始点から終点までの距離) を保って延 伸を行うものであり、延伸間距離が 1 0 O mm以下であることが望ましい。特に、 フィラメントが全体として¾方向に配列していても個々にはある 屈曲してい る には、 近接延伸においてできるだけ延伸間距離を短く保つことが、 個々の フィラメントを有効に延伸する上で重要である。 近接延伸における熱は、 通常は 延伸するロールを加熱することにより与えられ、 その延伸点が熱風や赤外線によ り補助的に加熱される。 また、 近接延伸の際の籠としては、 ?¾Kや蒸気等も使 用することができる。 Proximity stretching is a method in which the web is stretched by the difference in surface speed between two adjacent rolls, and stretches while maintaining a short distance between stretches (the distance from the start point to the end point). It is desirable that the distance between stretching is 10 Omm or less. In particular, even if the filaments are arranged as a whole in the ¾ direction, there are individual bends. It is important for effectively drawing the filament. Heat in proximity stretching is usually given by heating the stretching roll, and the stretching point is supplementarily heated by hot air or infrared rays. Also, as a basket for proximity stretching,? ¾K and steam can also be used.
一方、 多段延伸においては、 2段目以降の延伸には近接延伸ばかりでなく、 通 常のウェブ (不織布などにおける »やフィラメントの集合体) の延伸に用いら れる種々の手段を適用することができる。 例えば、 ロール延伸、 ¾延伸、 蒸気 延伸、 » 伸、 ロール圧延等の延伸方式である。 近接延伸が必ずしも必要ない のは、 1段目の延伸で既に個々のフィラメントが縦方向に長くわたっているため である。  On the other hand, in multi-stage drawing, not only proximity drawing but also various means used for drawing ordinary webs (eg, aggregates of »and filaments in nonwoven fabrics) are applied to the second and subsequent steps. it can. For example, stretching methods such as roll stretching, ¾ stretching, steam stretching, »stretching, and roll rolling are used. Proximity drawing is not necessary because the individual filaments are already long in the longitudinal direction in the first drawing step.
次に、 ョコ延伸不織布について説明する。 ョコ延伸不 »としては、 例えば、 平 3— 3 6 9 4 8号公報に開示されている不«を使用することができる。 ョコ延伸不織布を製造するには、 まず、 フィラメントがほぼ横方向に配列した ウェブを形成する。 フィラメントがほぼ横方向に配列したウェブは、 紡糸ノズル より押し出されたフィラメントを、 紡糸ノズルの周囲に配したエア噴出孔からの エア噴射により横方向に振らせ、 コンベア上に集積させることによって形成する ことができる。  Next, the stretched nonwoven fabric will be described. As the horizontal stretch, for example, the stretch disclosed in Japanese Patent Application Laid-Open No. 3-36948 can be used. In order to manufacture a stretch-drawn nonwoven fabric, first, a web in which filaments are arranged in a substantially horizontal direction is formed. A web in which filaments are arranged in a substantially horizontal direction is formed by causing the filaments extruded from the spinning nozzle to oscillate in the horizontal direction by air injection from air injection holes arranged around the spinning nozzle, and to accumulate on a conveyor. be able to.
紡糸ノズルの周囲からのエア噴射でフィラメントを横方向に振らせるためには、 紡糸ノズルの周囲に、 それぞれ紡糸ノズルを中心とした円周方向の成分を持って エアを噴射する複数 (通常は 3〜8個) の第 1のエア嘖出孔を設け、 さらに、 こ れら第 1のエア噴出孔の外側に、 噴射したエアがコンベアによるウェブの搬送方 向と ίϊな方向で互 、に衝突するように配された 2つの第 2のエア噴出孔を設け る。 紡糸ノズルから押し出されたフィラメントは、 第 1のエア噴出孔からのエア 噴射によりスパイラル状に回転させられる。 一方、 第 2のエア噴出孔から噴射さ れたエアは、 回転しているフィラメントの通過経路上で互いに衝突し、 コンベア による搬送方向と直角すなわち横方向に広がる。 回転してレヽるフィラメントは、 このエアの勢レヽで横方向に散らされる。 これにより、 コンベア上には、 横方向に 配列成分が多い状態でフィラメントが集積される。  In order to cause the filament to oscillate in the horizontal direction by air injection from around the spinning nozzle, a plurality of air jets around the spinning nozzle, each with a circumferential component centered on the spinning nozzle (usually 3 ), And the ejected air collides with the outside of these first air ejection holes in the direction opposite to the direction of web transport by the conveyor. And two second air ejection holes arranged so as to be in contact with each other. The filament extruded from the spinning nozzle is spirally rotated by air jetting from the first air jetting hole. On the other hand, the air ejected from the second air ejection hole collides with each other on the passage of the rotating filament, and spreads at right angles to the conveying direction by the conveyor, that is, in the lateral direction. The rotating filaments are scattered laterally by the force of the air. As a result, filaments are accumulated on the conveyor in a state where there are many array components in the horizontal direction.
このようにして得られたウェブは、 横方向に延伸される。 ウェブを ^向に延 伸する方法としては、 テンター方式やプーリ方式などが挙げられる。 テンター方 式は、 フィルムなどを拡幅する方式として一般に用いられるが、 広い床面積が必 要なこと、 および製品幅ゃ拡幅倍率の変更が困難である。 不脑は用途に応じて 製品幅を自由に変える必要があり、 また、 原料の厚さ等に応じて延伸倍率を変更 しなければならない。 そこで、 これらの変更を運転操作中でも簡単に行えるブー リ方式を用 、るのが好まし!/、。 The web thus obtained is stretched in the transverse direction. Extend the web Examples of the stretching method include a tenter method and a pulley method. The tenter method is generally used as a method for widening a film or the like, but it requires a large floor area, and it is difficult to change the product width / magnification ratio. In the case of flaws, the product width must be freely changed depending on the application, and the stretching ratio must be changed according to the thickness of the raw material. Therefore, it is preferable to use a boogie method that makes these changes easily even during driving operation! / ,.
ブーリ方式による延伸装置は、 ウェブの両側端部を把持するためにウェブの幅 方向に間隔をあけて配置された一対のプーリとベルトとを有する。 プーリは、 ゥ エブの幅方向の中心線に対して左右対称にその外周が末広がりの軌道を持つよう に配置され、 それぞれ同一周速で回転される。 一方、 ベルトは各プーリに対応し て張力下で掛け回されており、 このベルトの一部位が、 プーリの間隔の狭まった 位置から広がった位置にわたる領域に力.けて、 それぞれプーリの外周端面に形成 された溝にはめ込まれている。  The bully-type stretching device has a pair of pulleys and a belt arranged at intervals in the width direction of the web for gripping both side ends of the web. The pulleys are arranged symmetrically with respect to the center line in the width direction of the web so that the outer circumference has a divergent trajectory, and each is rotated at the same peripheral speed. On the other hand, the belt is wound under tension corresponding to each pulley, and one part of this belt is applied to the area from the position where the distance between the pulleys is narrow to the position where it is widened, and the outer peripheral end face of each pulley It is fitted in the groove formed in the hole.
ウェブは、 プーリの間隔の狭まった箇所から導入され、 両側端部がプーリとベ ノレトとにより把持される。 プーリの回転に伴い、 ウェブはベルトとの間で把持さ れながら一対のプーリが作る末広がりの軌道を通り、 これによりウェブは横方向 に延伸される。 この間の加熱は、 熱水や熱風が利用できる。  The web is introduced from a place where the distance between the pulleys is narrow, and both ends are gripped by the pulley and the velvet. As the pulley rotates, the web passes through a diverging trajectory created by a pair of pulleys while being gripped by the belt, whereby the web is stretched in the lateral direction. Hot water or hot air can be used for heating during this time.
以上のようにして、 フィラメントカ S横方向に配列され延伸されたョコ延伸不織 布が得られる。  As described above, a stretched nonwoven fabric that is aligned and stretched in the transverse direction of the filament filament S is obtained.
以上、 タテ延伸不»およぴョコ延伸不織布の製造方法の例として、 それぞれ 特開平 1 0— 2 0 4 7 6 7号公報およぴ ^平 3 - 3 6 9 4 8号公報に開示され た方法を挙げたが、 その他にも、 フィラメントにドラフト張力を与えるために用 いられる熱風の流域中に、 例えば断面が楕円形のロッド部材を配置し、 このロッ ド部材の回転または周期的な移動により生じるコアンダ効果を利用してフィラメ ントを振動させることによつても、 延伸一方向配列不»を得ることができる。 この^^、 ロッド部材の配置によって、 タテ延伸不»とすることもできるし、 ョコ延伸不»とすることもできる。  As described above, examples of the methods for producing non-stretched and non-stretched nonwoven fabrics are disclosed in Japanese Patent Application Laid-Open Nos. 10-204647 and 1-3-36964, respectively. However, in addition to this, a rod member having an elliptical cross section is placed in a hot-air basin used to apply draft tension to the filament, and the rod member rotates or periodically rotates. Vibration of the filaments utilizing the Coanda effect caused by an excessive movement can also provide a stretching one-way misalignment. Depending on the arrangement of the rod members, it is possible to make the vertical extension or horizontal extension incomplete.
タテ延伸不»およぴョコ延伸不織布を構成するフィラメントは長 »フィラ メントである。 ここでいう長 «フィラメントとは、 実質的に長»であればよ く、 平均長さが 1 0 0 mmを超えているものをいう。 フィラメントの直径は、 5 0 μ πι以上では剛直になるため、 望ましくは 3 0 μ πι以下、 さらに望ましくは 2 以下である。 特に強度の強い不 を目的とする^は、 フィラメント径 が 5 μ m以上であ φことが望ましい。 フィラメントの長さおよ 1¾は顕微鏡写真 により測定する。 The filaments constituting the non-vertical stretched and non-stretched nonwoven fabrics are long filaments. The long フ ィ ラ メ ン ト filament ’here is essentially a long one The average length exceeds 100 mm. Since the diameter of the filament becomes rigid at 50 μπι or more, it is preferably 30 μπι or less, and more preferably 2 or less. In particular, for the purpose of non-strength, φ is desirably φ with a filament diameter of 5 μm or more. The length and 1 mm of the filament shall be measured by micrograph.
延伸一方向配列不» 2 a , 2 bのフィラメントを構成する熱可塑性樹脂とし ては、 高密度ポリエチレン、 ポリプロピレン等のポリオレフイン、 ナイロンゃポ リエステルが挙げられる。 中でもポリプロピレンやポリエステノレが、 コストや取 り扱!/ヽなどの点で優れている。  Examples of the thermoplastic resin constituting the filaments of the unidirectionally oriented filaments 2a and 2b include high-density polyethylene, polyolefin such as polypropylene, and nylon-polyester. Above all, polypropylene and polyester are cost and handling! Excellent in terms of / ヽ.
上述したタテ延伸不織布およぴョコ延伸不織布は、 それぞれそのまま、 一方の 延伸一方向配列不織布 2 aおよ 也方の延伸一方向配列不 » 2 bとして用いる ことが望ましい。 これにより、 2枚の延伸一方向配列不織布 2 a , 2 bを連続的 に繰り出して重ね合わせ、 繋ぎ目のな!/ヽ連続した均一な 層 2を得ることがで きる。また、予めタテ延伸不«をィ標しておき、ョコ延伸不»の製造段階で、 ョコ延伸不織布の搬¾1程でョコ延伸不»上にタテ延伸不«を繰り出して重 ね、 これらを積層することで、 層 2をより効率良く製造することができる。 また、 タテ延伸不織布またはョコ延伸不織布のみでも延伸直交不織布を得るこ とができる。 例えばタテ延伸不織布のみで延伸直交不織布を作製する齢は、一 方のタテ延伸不»はそのまま繰り出し、 他方のタテ延伸不織布はもう一方のタ テ延伸不織布の幅と同じ長さに切断し 9 0 ° 回転してもう一方のタテ延伸不織 布上に積層することで、 延伸直交不»とすることができる。 ョコ延伸不«の みを用いる も同様である。  The above-described vertical stretched nonwoven fabric and horizontal stretched nonwoven fabric are preferably used as they are as one stretched unidirectionally aligned nonwoven fabric 2a and one stretched unidirectionally aligned nonwoven fabric 2b. As a result, the two stretched unidirectionally aligned nonwoven fabrics 2a and 2b can be continuously fed out and superimposed, and a seamless uniform layer 2 having no seams can be obtained. Also, the vertical stretching is marked in advance, and in the production stage of the horizontal stretching, the vertical stretching is fed out onto the horizontal stretching in the first step of transporting the horizontal stretching nonwoven fabric, and then stacked. By laminating these, layer 2 can be manufactured more efficiently. In addition, a stretched nonwoven fabric can be obtained using only the vertical stretched nonwoven fabric or the horizontal stretched nonwoven fabric. For example, when preparing a stretched orthogonal nonwoven fabric using only the vertical stretched nonwoven fabric, one vertical stretched nonwoven fabric is unwound as it is, and the other vertical stretched nonwoven fabric is cut to the same length as the other vertical stretched nonwoven fabric. By rotating by 90 ° and laminating on the other vertical stretched nonwoven fabric, it is possible to make the stretch perpendicular to nonwoven fabric. The same applies to the case where only horizontal stretching is used.
2枚の延伸一方向配列不 » 2 a, 2 bは、 例えば、 熱エンボス法によって積 層することができる。 エンボス条件は、 延伸一方向配列不 » 2 a, 2 bに用い られる樹脂の種類によって異なるが、 その融点よりも 3 0〜8 0 °C低い とす ることが好ましい。 また、 勘才層 2に高い表面平滑性が要求される には、 2 枚の延伸一方向配列不織布 2 a , 2 の積層を、 熱力レンダー処理によって行う こともできる。  The two non-oriented one-dimensional arrangements 2a and 2b can be laminated by, for example, a hot embossing method. The embossing conditions vary depending on the type of resin used for the unidirectional stretching 2a and 2b, but are preferably 30 to 80 ° C lower than the melting point. In addition, when high surface smoothness is required for the sensible layer 2, the two stretched unidirectionally aligned nonwoven fabrics 2a and 2 can be laminated by a thermal rendering process.
勘才層 2は、 2枚の延伸一方向配列不織布 2 a, 2 bの繊維の配列方向が互い に直交しているため、 両者の坪量を調整することにより、 »向と横方向の強度 を自由に調整することができる。 The intuition layer 2 is composed of two drawn unidirectionally arranged nonwoven fabrics 2a and 2b, in which the fiber arrangement directions are different from each other. The strength in the »direction and in the lateral direction can be freely adjusted by adjusting the basis weight of both.
以上、 基材層 2につ 、て説明したが、 基材層 2の坪量は、 5〜: I 0 0 g /m2 であることが好ましく、 またその値は、 強化延伸不 » 1の用途に応じて選択す ることができる。 例えば、 通気性を必要とする包装資材に用いる には、 謝 層 2の坪量は 3 0 g Zm2以下であることが好ましい。一方、より高い強度が必要 とされる^^には、 高坪量とすることが好ましい。 As described above, the base layer 2 is described. However, the basis weight of the base layer 2 is preferably 5 to: I 0 0 g / m 2 , It can be selected according to the application. For example, for use in packaging materials that require air permeability, it is preferable that the basis weight of the layer 2 be 30 g Zm 2 or less. On the other hand, for ^^ which requires higher strength, it is preferable to use a high basis weight.
〈網状不脑〉  <Reticulated>
強化材層 3としては、 網目構造を有しており、 力 、 勘才層 2と積層されて、 基材層 2に対して引裂強度を補強し得るものであれは 々のものを適用すること ができるが、 本実施形態では網状不織布を用いている。  As the reinforcing material layer 3, any material having a network structure, which can be laminated with the force and intuition layer 2 and which can reinforce the tear strength with respect to the base material layer 2, should be used. However, in this embodiment, a reticulated nonwoven fabric is used.
以下に、 網状不織布について詳細に説明する。  Hereinafter, the reticulated nonwoven fabric will be described in detail.
網状不»は、 図 2 aに示すような一軸配向網状フイルム 4を 2枚積層したも のである。 一軸配向網状フィルム 4は、 図 2 bに示すように、 高融点の第 1の熱 可塑' 14樹脂からなる層 5の両面に、 第 1の熱可塑性樹脂よりも低い融点を有する 第 2の熱可塑性樹脂からなる層 6を積層した 3層構造のフィルムからなり、 図 2 aに示すように、 互いに TOに延びた複数の幹 4 aと、 幹 4 aに対して 交差して延ぴ、 隣接する幹誰 4 a同士を繋ぐ ¾»|4 bとで構成される。 そし て、 2枚の一軸配向網状フィルム 4力 互いに幹 »|4 aの方向を交差させて熱 融着することにより、 網状不»力 S構成される。  The reticulated film is obtained by laminating two uniaxially oriented reticulated films 4 as shown in FIG. 2A. As shown in FIG. 2 b, the uniaxially oriented network film 4 has a second heat having a melting point lower than that of the first thermoplastic resin on both surfaces of the layer 5 made of the high-melting first thermoplastic resin 14. It consists of a three-layered film in which layers 6 made of a plastic resin are laminated, and as shown in Fig. 2a, a plurality of trunks 4a extending to the TO each other, and extending across and adjacent to the trunks 4a.幹 »| 4 b which connects 4a to each other. Then, the two uniaxially oriented reticulated films, four forces, are mutually fused in the direction of the trunk »| 4a and are heat-fused to form a reticulated force S.
第 2の熱可塑性樹脂からなる層 6全体の厚みは、 一軸配向網状フィルム 4全体 の厚みの 5 0 %以下、 望ましくは 4 0 %以下である。 2枚の一軸配向網状フィル ム 4の熱融着時の接着強度等の諸物性を満足させるためには、 第 2の熱可塑性樹 脂からなる層 6は 5 mの厚みがあればよいが、 好ましくは 1 0〜1 0 Ο ΙΪΙの 範囲から選択される。  The thickness of the entire layer 6 made of the second thermoplastic resin is 50% or less, preferably 40% or less of the entire thickness of the uniaxially oriented network film 4. In order to satisfy various physical properties such as the adhesive strength at the time of heat fusion of the two uniaxially oriented network films 4, the layer 6 made of the second thermoplastic resin only needs to have a thickness of 5 m. It is preferably selected from the range of 10 to 10%.
一軸配向網状フィルム 4の製造方法としては、 例えば、 以下に示すような方法 が挙げられる。  Examples of a method for producing the uniaxially oriented network film 4 include the following method.
まず、 多層ィンフレーション法あるいは多層 Τダイ法などの押出成形により、 第 1の熱可塑性樹脂からなる層 5の両面に第 2の熱可塑性樹脂からなる層 6が積 層された 3層構造の原反フィルムを製造する。 次いで、 図 3に示すように、 この 原反フィルム 7に、 縦方向 (図 3に示す矢印 L方向) に延伸し、 スプリツターを 用いて »向に千鳥掛けに割繊 (スプリット処理) する。 そして、 このフィルム を横方向に拡幅し、 これにより、 図 2において幹 »|4 aがほぼ縦方向に配列さ れたー軸配向網状フィルム 4が得られる。 First, the layer 6 made of the second thermoplastic resin is laminated on both sides of the layer 5 made of the first thermoplastic resin by extrusion molding such as a multilayer inflation method or a multilayer die method. Manufactures a three-layer raw film. Next, as shown in FIG. 3, the raw film 7 is stretched in the longitudinal direction (the direction of the arrow L shown in FIG. 3), and split in a zigzag pattern in the »direction using a splitter (split processing). Then, this film is widened in the horizontal direction, whereby the -axis oriented net-like film 4 in which the trunks || 4a are arranged in the vertical direction in FIG. 2 is obtained.
延伸倍率 (配向倍率) は、 1 . 1〜 1 5倍が好ましい。 延伸倍率が 1 . 1倍未 満では、 不織布としたときの機械的強度が十分でない。 一方、 延伸倍率が 1 5倍 を超える^は、 通常の方法で延伸すること力難しく、 高価な装置を必要とする などの問題が生ずる。 延伸方法としては、 ロール圧延法またはロール延伸法のい ずれでもよいが、 延伸法においては、 特に擬ー軸延伸法が好ましい。 本明細書で いう圧延法とは、 熱可塑性樹脂フィルムを、 その厚みよりも小さい間隙を有して 配置された 2本の加熱ローラの間を通過させ、 この熱可塑性樹脂フィルムの融点 The stretching ratio (orientation ratio) is preferably 1.1 to 15 times. If the draw ratio is less than 1.1, the mechanical strength of the nonwoven fabric is not sufficient. On the other hand, if the stretching ratio exceeds 15 times, it is difficult to stretch by a normal method, and problems such as the need for expensive equipment will occur. As the stretching method, any of a roll rolling method and a roll stretching method may be used, but the stretching method is particularly preferably a pseudo-axial stretching method. The rolling method referred to in this specification means that a thermoplastic resin film is passed between two heating rollers arranged with a gap smaller than the thickness thereof, and the melting point of the thermoplastic resin film is reduced.
(軟化点) よりも低い で圧縮し、 厚みの減少分だけ長さを伸長する方法をい う。 また、 擬ー軸延伸法とは、 熱可塑性樹脂フィルムを、 ローラ間隔をできるだ け小さくした低速ローラと高速ローラ (近接ローラ) の間を通過させ、 Φ畐方向の 収縮をなるベく抑えて、 主として厚みを減少させて延伸する方法である。 未延伸 フィルムの幅を W,、一軸延伸後のフィルムの幅を" W、延伸倍率を Vとするとき、 下記の式 (Softening point) A method of compressing at a temperature lower than the softening point and extending the length by the reduced thickness. The pseudo-axis stretching method is to pass a thermoplastic resin film between a low-speed roller and a high-speed roller (proximity roller) with the roller spacing as small as possible, and to minimize shrinkage in the Φ 畐 direction. This is mainly a method of stretching while reducing the thickness. When the width of the unstretched film is W, the width of the film after uniaxial stretching is "W, and the stretching ratio is V,
X= l— (V-1/2) X (W, /W) X = l— (V- 1/2 ) X (W, / W)
から求められる Xは、 延伸の擬ー軸性を示す指数であり、 X (0く Xく 1 ) の値 が大きくなるほど擬ー軸性が高い。 Is an index indicating the pseudo-axiality of the stretching. The larger the value of X (0 <X> 1), the higher the pseudo-axiality.
最後に、 以上のようにして得られた一軸配向網状フィルム 4を、 配向軸が直交 するように 2枚重ね合わせ、 これを加熱して融着することにより、 網状不»が 得られる。 熱融着に際しては、 重ね合わせた一軸配向網状フィルム 4を一対のカロ 熱シリンダ間に供給し、 Ψ畐方向の収縮が生じないように固定しながら、 しかも第 1の熱可塑性樹脂からなる層 5の延伸効果が失われないように、 第 1の熱可塑性 樹脂の融点以下で、 力つ第 2の熱可塑性樹脂の融点以上の で熱融着を行う。 なお、同一の一軸配向網状フィルム 4を用いて網状不織布を構成する には、 一軸配向網状フィルム 4の熱融着には直交積層機が用いられる。 この直交積層機 による熱融着の際、 一方の一軸配向網状フィルム 4はそのまま直交積層機に供給 されるが、 他方は、一軸配向網状フィルム 4の幅と同じ長さに切断されて、 一方 の一軸配向網状フィルム 4と直角な方向から供給される。 したがって、 この^ には、 一定の間隔ごとに、 他方の一軸配向網状フィルム 4の継ぎ目が存在するこ とになる。 Finally, two uniaxially oriented net-like films 4 obtained as described above are overlapped so that their orientation axes are orthogonal to each other, and heated and fused to obtain a net-like defect. At the time of heat fusion, the superposed uniaxially oriented net-like film 4 is supplied between a pair of calorie heating cylinders, and fixed so as not to cause shrinkage in the Ψ 畐 direction. In order not to lose the stretching effect, heat fusion is performed at a temperature lower than the melting point of the first thermoplastic resin and higher than the melting point of the second thermoplastic resin. In order to form a reticulated nonwoven fabric using the same uniaxially oriented network film 4, an orthogonal laminating machine is used for heat-sealing the uniaxially oriented network film 4. This orthogonal laminating machine In the case of heat-sealing, one uniaxially oriented network film 4 is supplied to the orthogonal laminating machine as it is, while the other is cut to the same length as the width of the uniaxially oriented network film 4, and one uniaxially oriented network film is cut. Supplied from a direction perpendicular to 4. Therefore, at this point, the seam of the other uniaxially oriented network film 4 exists at regular intervals.
この継ぎ目の存在が好ましくな!/ヽ場合には、 図 2 aに示した一軸配向網状フィ ルム 4と、 図 4に示す一軸配向網状フイルム 9とを積層して網状不織布を構成す るのが好ましレヽ。 図 4に示す一軸配向網状フィルム 9は、 図 2 aに示した一軸配 向網状フィルム 4を製造するのに用いたのと同じ構造の原反フィルムに、 縦方向 に一定の間隔で横方向 (図 4に示す矢印 T方向) に千鳥掛けにスリット処理した ものを、 横方向に延伸することによりスリツトを縦方向に目開きさせたものであ る。 これにより、 がほぼ横方向に配列された一軸配向網状フィルム 9が得ら れる。 このように、 »向に延伸した一軸配向網状フィルム 4 (タテ延伸網状フ ィルム) と横方向に延伸した一軸配向網状フイルム 9 (ョコ延伸網状フィルム) とを積層することで、 継ぎ目のな 、網状不»とすることができる。  In the case where the presence of this seam is not preferable, the uniaxially oriented network film 4 shown in FIG. 2a and the uniaxially oriented network film 9 shown in FIG. I like it. The uniaxially oriented reticulated film 9 shown in FIG. 4 is a raw film having the same structure as that used to produce the uniaxially oriented reticulated film 4 shown in FIG. The slit is slit in the zigzag direction (in the direction of arrow T in Fig. 4), and the slit is opened in the vertical direction by stretching in the horizontal direction. As a result, a uniaxially oriented network film 9 in which is arranged in a substantially horizontal direction is obtained. In this way, by laminating the uniaxially oriented network film 4 (vertical stretched network film) stretched in the »direction and the uniaxially oriented network film 9 (horizontal stretched network film) stretched in the transverse direction, a seamless The mesh can be made non-woven.
ここで、一軸配向網状フィルム 4, 9を構成する棚旨としては、 例えば、 ポリ エチレン、 ポリプロピレン等のポリオレフインおょぴこれらの共重合体、 ポリエ チレンテレフタレート、 ポリブチレンテレフタレート等のポリエステルおよびこ れらの共重合体、 ナイロン 6、 ナイロン 6 6等のポリアミド、 およびこれらの共 重合体、 ポリ塩化ビュル、 メタクリル酸またはその驟導体の重合体おょぴ共重合 体、ポリスチレン、ポリスノレホン、ポリテトラクロロエチレンポリカーボネート、 ポリウレタン等が挙げられる。 その中でも、 割繊性が容易なポリオレフインおよ ぴその重合体、 ポリエステルおょぴその重合体が好ましい。 また、 第 1の熱可塑 性樹脂と第 2の熱可塑性樹脂との融点の差は、 製造上の理由から、 5 °C以上であ ることが必要であり、 好ましくは 1 0〜 5 0 °Cである。  Here, the shelf constituting the uniaxially oriented network films 4 and 9 includes, for example, polyolefins such as polyethylene and polypropylene, copolymers thereof, polyesters such as polyethylene terephthalate and polybutylene terephthalate, and polyesters such as these. , Nylon 6, Nylon 66, and other polyamides, and copolymers of these, polychlorinated butyl, methacrylic acid or a copolymer of methacrylic acid or its syrup, polystyrene, polysnoreon, polytetrachloroethylene polycarbonate, Polyurethane and the like. Among them, polyolefin and its polymer, polyester and its polymer, which are easy to split, are preferable. In addition, the difference in melting point between the first thermoplastic resin and the second thermoplastic resin needs to be 5 ° C. or more for reasons of production, and preferably 10 to 50 ° C. C.
また、 網状不»の坪量は、 厚さが厚くなりすぎず、 力つ必要な引裂強度を発 揮するためには、 1 0〜6 0 g Zm2であることが好ましい。 The basis weight of the mesh is preferably 10 to 60 g Zm 2 in order to prevent the thickness from becoming too thick and to exert a necessary tear strength.
以上、 謝層 2および強化材層 3について説明したが、 これらは圧着により積 層される。 圧着法の代表的な例として、 ,着法が挙げられる。 熱圧着法には、 エンボスロールを用いる方法と、 鏡面ロールを用いる方法があるが、 基材層 2に 高 、表面平滑†生が要求される:^には、 鏡面口ールを用いること力 S好まし 、。 また、 才層 2と強ィ匕材層 3とを 着により積層する には、 層 2と 強化材層 3とは同一の材料で構成されていることが望ましい。 すなわち、 層 2がポリオレフィンである^ iこは強化材層 3もポリオレフインとし、 基材層 2 がポリエステルである:^には強化材層 3もポリエステルとすることが望ましい。 ただし、これは ¾ ^層 2と強化材層 3との接着強度を向上させるためであるので、 基材層 2および強化材層 3全体が同じ材料で構成されている必要はなく、 少なく とも互いの積層面が同じ材料で構成されていればよい。 As described above, the reinforcing layer 2 and the reinforcing material layer 3 have been described. As a typical example of the crimping method, there is a contact method. For the thermocompression bonding method, There are a method using an embossing roll and a method using a mirror-finished roll. The base layer 2 is required to have a high surface smoothness: ^, the use of a mirror-finished roll is preferred. Further, in order to laminate the genius layer 2 and the stiffener layer 3 by adhesion, it is desirable that the layer 2 and the reinforcing layer 3 are made of the same material. That is, the reinforcing layer 3 is also made of polyolefin, and the base layer 2 is made of polyester. The reinforcing layer 3 is preferably made of polyester. However, since this is to improve the adhesive strength between the 層 ^ layer 2 and the reinforcing material layer 3, it is not necessary that the base material layer 2 and the reinforcing material layer 3 as a whole be made of the same material. It is sufficient that the lamination surfaces are made of the same material.
なお、 層 2と強化材層 3とが互いに異なる材料であっても、 特定の処理を 施して両者の接着強度を向上させることもできる。 本発明者等が種々の ¾JE着の 検討を行った結果、 ポリエステルからなる謝層 2とポリオレフィンからなる強 ィ匕材層 3とを,着する際、 熱圧着の直前に両者にコロナ処理を施すことで、 両 者を十分な接着強度を保持する程度に熱圧着できることを見出した。 その理由は 定かではな ヽが、コロナ処理による極性基の付与によつて密着力が上がることと、 融着した強化材層 3の樹脂が ¾#層 2の «間に入り込み一体化されたアンカー 効果;^働くこととが考えられる。  Even if the layer 2 and the reinforcing material layer 3 are made of different materials, a specific treatment can be performed to improve the adhesive strength between them. As a result of the present inventors' various studies on JE attachment, when attaching the polyester layer 2 made of polyester and the stiffener layer 3 made of polyolefin, corona treatment was applied to both of them just before thermocompression bonding. As a result, it has been found that both can be thermocompression-bonded to such an extent that sufficient adhesive strength is maintained. The reason is not clear, but the adhesion is increased by the addition of a polar group by corona treatment, and the resin of the fused reinforcing material layer 3 is inserted into the space between the ¾ # layer 2 and the integrated anchor. Effect; it is considered to work.
謝層 2と強化材層 3との圧着には、 ffi着法の他に、 超音波圧着法を用いる こともできる。 超音波圧着法は、 部分的な融着が可能であり、 通気性や透水性を 維持したい^に有効である。  In addition to the ffi-bonding method, the ultrasonic bonding method can be used for the bonding between the support layer 2 and the reinforcing material layer 3. The ultrasonic pressure bonding method enables partial fusion, and is effective for maintaining air permeability and water permeability.
M 2と強化材層 3との圧着は、 両者を製造した後に両者を重ねて繰り出し て圧着することもできるが、 層 2の製造工程中で行うこともできる。 すなわ ち、 謝層 2の製造後、 製造された毅才層 2を巻き取らずに、 搬送する過程で、 予め製造された強化材層 3を謝層 2の上に重ねて供給し、 適!^法で両者を圧 着する。この方法によれば、強化延伸不脑 1を効率良く生産することができる。 以上説明したように、 本実施形態では、 延伸直交不脑からなる謝層 2に、 網状不織布からなる強化材層 3を積層したことにより、 表面平滑性に優れ、 印刷 特性が良好で、 力 縦方向および横方向に高い引張り強度を有するという延伸直 交不織布の特性を活かし、 更に、 引裂強度を向上させた、 強化延伸不» 1とす ることができる。 しカゝも、 H !の配列性が極めて高い不 である延伸一方向配 列不 « 2 a, 2 bで構成された延伸直交不»と、 網目構造を有する直交不織 布である網状不»という、 形態の異なる 2種類の不»を複合させることで、 上述した引裂強度の向上という効果は相乗的に発揮される。 The compression bonding of the M2 and the reinforcing material layer 3 can be performed after the both are manufactured, and can be performed during the manufacturing process of the layer 2, although they can be overlapped and fed out. In other words, after the production of the Xiao layer 2, the reinforcing layer 3 manufactured in advance is supplied on the X2 layer in the process of transporting, without winding up the manufactured Yoki layer 2, so that it is suitable. ! Press them together using the ^ method. According to this method, the reinforced stretched filament 1 can be efficiently produced. As described above, in the present embodiment, the reinforcing material layer 3 made of a reticulated nonwoven fabric is laminated on the reinforcing layer 2 made of stretched non-woven fabric, so that the surface is excellent in smoothness, printing properties are good, and It takes advantage of the properties of a stretched nonwoven fabric having high tensile strength in the machine direction and the transverse direction, and furthermore has a reinforced stretched non-woven fabric 1 with improved tear strength. Can be In addition, the stretched unidirectional arrangement 不 2a, 2b, which is an extremely non-alignable arrangement of H !, and the mesh nonwoven, which is an orthogonal nonwoven fabric having a network structure, The effect of improving tear strength described above is synergistically exerted by combining two types of defects having different forms.
本実施形態では、 基材層2を延伸直交不織布で構成した例を示したが、 図5に 示すように、 1枚の延伸一方向配列不» 1 2 aからなる對才層 1 2とし、 その 片面に、 網状不»からなる強化材層 1 3を積層した強化延伸不織布 1 1とする こともできる。 この;^は、 ¾ t層 1 2におけるフィラメントの酉己列方向は、 強 化延伸不 tt l 1が主として引張り強度を必要とする方向に応じて決められる。 すなわち、 強化延伸不 » 1 1が、 主として 向に大きな引張り強度を必要と する^にはフィラメントの配列方向は縦方向とされ、 主として 向に大きな 弓 I張り強度を必要とする にはフィラメントの配列方向は横方向とされる。 延伸一方向配列不織布 1 2 aには、 前述したタテ延伸不織布およぴョコ延伸不 織布の何れも用いることができる。 タテ延伸不織布をそのまま強化材層 1 2上に 積層したり、 あるいはョコ延伸不織布を、 強化材層 1 2の幅と同じ長さに切断し てタイル状とし、 それを 9 0° 回転させて強化材層 1 2上に積層したりすること で、 延伸一方向配列不織布 1 2 aのフィラメントの配列方向を!^向とすること ができる。 また、 ョコ延伸不織布をそのまま強化材層 1 2上に積層したり、 ある いはタテ延伸不織布を、 強化材層 1 2の幅と同じ長さに切断してタイル状とし、 それを 9 0 ° 回転させて強化材層 1 2上に積層したりすることで、 延伸一方向配 列不 « 1 2 aのフィラメントの配列方向を横方向とすることができる。 In the present embodiment shows an example in which the substrate layer 2 at a draw orthogonal nonwoven fabric, as shown in FIG. 5, the對才layer 1 2 consisting of a single stretched unidirectionally arranged non »1 2 a, A reinforced stretched nonwoven fabric 11 in which a reinforcing material layer 13 made of a mesh is laminated on one surface thereof can be used. This; ^ is determined by the direction in which the filaments of the filaments in the t-layer 12 require the tensile strength, which is mainly required by the non-stretched drawing. In other words, the filament orientation direction is set to the longitudinal direction when the tensile strength is not high, and the filament orientation is required when the large tensile strength is mainly required. The direction is the horizontal direction. For the stretched unidirectionally arranged nonwoven fabric 12a, any of the above-described vertical stretched nonwoven fabric and horizontal stretched nonwoven fabric can be used. The stretched nonwoven fabric is laminated on the reinforcing material layer 12 as it is, or the horizontal stretched nonwoven fabric is cut into the same length as the width of the reinforcing material layer 12 to form a tile, which is rotated 90 °. By laminating on the reinforcing material layer 12 or the like, the orientation direction of the filaments of the stretched unidirectionally arranged nonwoven fabric 12a can be set to the! ^ Direction. Further, the stretched nonwoven fabric can be directly laminated on the reinforcing material layer 12 or the lengthwise stretched nonwoven fabric can be cut into the same length as the width of the reinforcing material layer 12 to form a tile. By rotating the laminate on the reinforcing material layer 12 by rotating the filament, the arrangement direction of the filaments in the unidirectional stretching 12a can be set in the horizontal direction.
また、 本実施形態では、 網状構造の強化材層を網状不訪で構成した を示 したが、 強化材層はこれに限られるものではない。  Further, in the present embodiment, the reinforcing material layer having the network structure is described as being formed in a net-like manner, but the reinforcing material layer is not limited to this.
前述したように、 網状不織布は、 2枚の一軸配向網状フィルムを積層したもの であるが、そのうちの 1枚のみを強化材層として用い、 層と積層してもよい。 図 6に示す強化延伸不» 2 1は、 2枚の延伸一方向配列不» 2 2 a , 2 2 bをフィラメントの配列方向が直交するように積層した延伸直交不織布 2 2を基 材層とし、 その上に、 強化材層として 1枚の一軸配向網状フイルム 2 3を積層し たものである。 ここで、一軸配向網状フィルム 2 3としては、 図 2 aに示した、 向に延伸した原反フィルムを縦方向に割繊 (スプリット) した後、 横方向に 拡幅することによって得られたタテ延伸網.状フィルム、 および、 図 4に示した、 横方向にスリットが形成された原反フィルムを 向に延伸することによりスリ ットを縦方向に目開きさせたョコ延伸網状フィルムの、 何れを用いてもよい。 ど ちらを用いるかは、 強化延伸不織布 2 1に求める機械的特性に応じて決めればよ い。 As described above, the reticulated nonwoven fabric is formed by laminating two uniaxially oriented reticulated films, but only one of them may be used as a reinforcing material layer and laminated with a layer. The reinforced stretch non-woven fabric 21 shown in FIG. 6 is a stretched orthogonal nonwoven fabric 22 formed by laminating two stretched unidirectional stretches 22 a and 22 b so that the filament arrangement direction is orthogonal to the base material layer. Further, a single uniaxially oriented network film 23 is laminated thereon as a reinforcing material layer. Here, as the uniaxially oriented network film 23, shown in FIG. After stretching the raw film stretched in the vertical direction, split it in the vertical direction, and then expand it in the horizontal direction. The vertical stretched net-shaped film is obtained and slits are formed in the horizontal direction as shown in Fig. 4. Any of a horizontal stretched reticulated film in which the slits are opened in the longitudinal direction by stretching the obtained raw film in the vertical direction may be used. Which one to use may be determined according to the mechanical properties required for the reinforced stretched nonwoven fabric 21.
延伸一方向配歹 1』不» 2 2 a , 2 2 bにつ 、ても、 結果的にフィラメントの酉己 列方向が互いに直交していれば、 前述したタテ延伸不織布および/またはョコ延 伸不織布を適宜組み合わせて用いることができる。 製造上、 最も簡単なのは、 タ テ延伸不 »とョコ延伸不«をそのまま積層することである。 また、 タテ延伸 不織布同士、 あるいはョコ延伸不«同士を積層する 、 一方をそのまま繰り 出し、 他方をもう一方の幅と同じ長さに切断してタイル状とし、 それを 9 0° 回 転させてもう一方の上に積層することで、 フィラメントの配列方向を直交させる ことができる。  Regarding the unidirectional stretching system 1 ”, even if the filaments are not perpendicular to each other as a result, the vertical stretched nonwoven fabric and / or the horizontal stretched fabric described above can be used. A stretched nonwoven fabric can be used in appropriate combination. The simplest method in production is to directly laminate the vertical stretching and the horizontal stretching. Also, vertical stretched nonwoven fabrics or horizontal stretched fabrics are laminated. One is fed as it is, and the other is cut to the same length as the other to form a tile, which is rotated 90 °. By laminating them on the other side, the arrangement direction of the filaments can be made orthogonal.
また、 図 7に示す強化延伸不織布 3 1は、 1枚の延伸一方向配列不織布 3 2を とし、 その上に、 強化材層として 1枚の一軸配向網状フイルム 3 3を積層 したものである。 この^^も、 一軸配向網状フィルム 3 3としては、 タテ延伸網 状フィルムおよぴョコ延伸網状フィルムの何れを用いてもよい。 また、 延伸一方 向配列不織布 3 2も、 タテ延伸不織布おょぴョコ延伸不 の何れも用 ヽること ができる。 すなわち、 この強化延伸不織布 3 1における延伸一方向配列不織布 3 2と一軸配向網状フイノレム 3 3の組み合わせとしては、 タテ延伸不織布とタテ延 伸網状フィルム、 タテ延伸不»とョコ延伸網状フィルム、 ョコ延伸不織布とタ テ延伸網状フイノレム、 ョコ延伸不 とョコ延伸網状フィルム、 の 4通りある。 ただし、 強化延伸不» 3 1の!^向および横方向での灘的強度のパランス の観点からは、 延伸一方向配列不» 3 2におけるフィラメントの配列方向と、 一軸配向網状フィルム 3 3における原反フィルムの延伸方向とが互いに直交する ように積層することが望ましい。 そのためには、 タテ延伸不織布とョコ延伸網状 フィルムとの組み合わせ、 およぴョコ延伸不 とタテ延伸網状フィルムとの組 み合わせの ^^は両者はそのまま繰り出されて積層されるが、 タテ延伸不織布と タテ延伸網状フィルムとの組み合わせ、 およぴョコ延伸不»とョコ延伸網状フ ィルムとの組み合わせの場合には、 何れか一方はそのまま繰り出し、 他方をもう 一方の幅と同じ長さに切断してタイル状とし、 それを 9 0° 回転させてもう一方 の上に積層する。 Further, the reinforced stretched nonwoven fabric 31 shown in FIG. 7 is a single stretched unidirectionally aligned nonwoven fabric 32, on which a single uniaxially oriented network film 33 is laminated as a reinforcing material layer. As for the uniaxially oriented network film 33, any of a vertical stretched network film and a horizontal stretched network film may be used. Either the stretched unidirectional nonwoven fabric 32 or the vertically stretched nonwoven fabric or non-stretched nonwoven fabric can be used. That is, as a combination of the stretched unidirectionally aligned nonwoven fabric 32 and the uniaxially oriented network finolem 33 in the reinforced stretched nonwoven fabric 31, a vertical stretched nonwoven fabric, a vertical stretched reticulated film, a vertical stretched nonwoven fabric and a horizontal stretched reticulated film, There are four types: non-stretched non-woven fabric, vertical stretch reticulated finolem, horizontal stretch non-stretch and horizontal stretch reticulated film. However, reinforced stretching is not necessary! From the viewpoint of balance of Nada-like strength in the horizontal and vertical directions, the filament arrangement direction in the unidirectionally oriented non-aligned film 32 and the stretching direction of the raw film in the uniaxially oriented mesh film 33 are orthogonal to each other. It is desirable that the layers be stacked in such a manner. To achieve this, the combination of a vertically stretched nonwoven fabric and a horizontal stretched reticulated film, and the combination of a horizontal stretched non-woven fabric and a vertical stretched reticulated film are both fed out and laminated as they are. With stretched nonwoven In the case of a combination with a vertical stretched reticulated film, or a combination of a horizontal stretched non-stretched film and a horizontal stretched reticulated film, either one is fed out as it is, and the other is cut to the same length as the other width. To make a tile, rotate it 90 ° and stack it on top of the other.
さらに、 強化ネオ層として、 一軸延伸多層テープからなる不織布や »も用いる ことができる。 一軸延伸多層テープは、 前述した一軸配向網状フィルムを製造す るのと同様の原反フィルムを 1 . 1〜1 5倍、 好ましくは 3〜1 0倍の延伸倍率 で一軸延伸した後、 またはその前に、 延伸方向に沿って裁断したものである。 そ して、 この一軸延伸多層テープを一定の間隔をあけて平行に並べ、 に積層し て不 »としたり、 あるいはこの一軸延伸多層テープを に織成して織布とし たものを、 強化材層として用いることができる。  Further, as the reinforced neo-layer, a non-woven fabric made of a uniaxially stretched multilayer tape or »can also be used. The uniaxially stretched multilayer tape is obtained by uniaxially stretching the same raw film as that used for producing the above-described uniaxially oriented network film at a stretching ratio of 1.1 to 15 times, preferably 3 to 10 times, or Previously, it was cut along the stretching direction. Then, the uniaxially stretched multilayer tape is arranged in parallel at regular intervals, and is laminated to form a nonwoven fabric, or the uniaxially stretched multilayer tape is woven into a woven fabric to form a reinforcing material layer. Can be used.
さらに、 上述した実施形態では強化材層を對才層の片面に積層した例を示した 力 謝層の両面に強化材層を積層してもよい。 これにより引裂強度をより向上 させることができる。  Further, in the above-described embodiment, the reinforcing material layer is laminated on one side of the countermeasure layer, and the reinforcing material layer may be laminated on both sides of the stress layer. Thereby, the tear strength can be further improved.
本発明の強化延伸不織布は、 上述したような効果を有するので、 包装資材、 建 築 · ± ^資材、 産業資材、 農業資材等、 種々の用途に使用することができる。 表 1に、 本発明の強化延伸不織布の用途例を挙げる。 Since the reinforced stretched nonwoven fabric of the present invention has the above-described effects, it can be used for various uses such as packaging materials, building materials, industrial materials, agricultural materials, and the like. Table 1 shows application examples of the reinforced stretched nonwoven fabric of the present invention.
,
最終用途  End use
衣 料 ジャンパー、 ジャンパーライナー、 靴 (靴中 »、 防 «、 ベビー靴) 、 靴部 材 (インソール、 釣靴底) 、 ワッペン、 スリッパ、 帽子 Clothing Jumpers, jumper liners, shoes (in the shoes », protective«, baby shoes), shoe materials (insoles, fishing soles), patches, slippers, hats
防 護 保護衣 (仕事着、 実験着、 防翻艮) 、 用品 (防煙マスク、 防塵マスク、 防 毒マスク) Protection Protective clothing (work clothing, experimental clothing, anti-translation), supplies (smoke-proof mask, dust-proof mask, gas mask)
ルーフイング、 タフト .力 ペット基布、 結露防止シート、 壁装材、 防音床、 防振材、 木質板、 養生シート、 ハウスラップ、 «材目止シート  Roofing, tufting. Pet base cloth, anti-condensation sheet, wall covering, soundproof floor, anti-vibration material, wood board, curing sheet, house wrap, «material sealing sheet
土 木 ドレン材、 濾過材、 吸出し防止材、 分離材、 遮水シート、 補強材、 保護材、 ァ スフアルトオーバーレイ、 地中坦設管の補修材、 防蝕材 Civil engineering drainage materials, filtration materials, suction prevention materials, separation materials, seepage control sheets, reinforcement materials, protection materials, asphalt overlays, repair materials for underground pipes, corrosion protection materials
自動車 自動車內装 (フロアマット、 ドアトリム、 トランクマット、 天井成形材、 リア 資材 パーセル、 内張布、へッドレスト、 ボンネットカバー、吸音材、隨材など) 自動車部品 (エアクリーナ、 オイルフィルタ、 室内清浄フィルタ、 外気取り入 れフィルタ) 、 シート部品 (キノレティング、 サイレンサー) Automotive Automotive equipment (floor mats, door trims, trunk mats, ceiling molding materials, rear materials Purcell, lining fabric, headrests, bonnet covers, sound absorbing materials, splicing materials, etc.) Automotive parts (air cleaners, oil filters, indoor clean filters, Outside air intake filter), Seat parts (Kinoletting, Silencer)
家具 · カーぺット (力一ぺット、 カーぺット ¾¾、 タイノレカーぺット、 電気カーぺッ ィンテ ト、 マット基布、 アンダーカーペット) 、 家具部材 (クッション材、 応接チェ リア ァの中入れわた) 、 建具 (障子紙、 畳関係、 プラインド) 、 壁紙、 装飾品 (ぺ ナント、 ロールスクリーン、 造花) Furniture · Carpets (power carts, carpets, Taino carpets, electric carpets, mat base cloth, under carpet), furniture components (cushion materials, reception chairs) Filling inside), joinery (shoji paper, tatami mats, blinds), wallpaper, ornaments (ぺ Nantes, roll screens, artificial flowers)
フィル 空気フィルタ (fiM、 中高性能用、 超高性能用) 、 バグフィルタ、 液体フィ タ ルタ、 エレクトレットフィルタ、 掃除機用フィルタ、 フィルタプレス用、 排水 処理用マツト、 塩分除去フィルタ、 ガス吸着フィルタ Fill Air filter (fiM, medium-high performance, ultra-high performance), bag filter, liquid filter, electret filter, vacuum cleaner filter, filter press, wastewater treatment mat, salt removal filter, gas adsorption filter
ビニールハウスシート、 苗床用シート、 ぺた掛けシート、 防霜シート、 遮光シ ート、 防草シート、 園芸プランタ、 保温シート  Greenhouse sheet, nursery sheet, paddle sheet, anti-frost sheet, light-shielding sheet, grass-proof sheet, horticultural planter, heat insulation sheet
包装 · 収納用品 (収納袋、 スーツ力パー、 防虫力パー) 、 包装資材 (風呂敷、 フラヮ 生活資 一ラップ、 包装) 、 掃除用品 (化学雑巾、 たわし) 、 袋物 (化学カイロ、 鮮度 材 保持材、 脱酸素剤袋、 乾燥剤袋、 ショッピングバッグ) 、 食品用 (ティーバッ グ、 コーヒーバッグ、 食品バッグ、 纏) 、 生活雑貨 (カレンダー、 滑り止め シート、 愛マスク、 ブックカバー、 脱臭シート、 芳翻謝) 、 台所用品 (水 切りシート、 クッキングベ パー、 たわし、 ローノレタォノレ、 消火布) 、 テープ ノレトップ (テープ'ノレクロス、 ランチョンマット、 コースター) 、 事務用品 (ス タンプパット、 フェルトペン芯、 掲示板用資材、 消し、 ) 、 スポーツ 用品 (ゴルフクラブヘッドカバー、 テニスラケットグリップ) 、 手芸用品、 了 ィ口ンマット Packaging and storage supplies (storage bags, suit strength par, insect repellent par), packaging materials (furoshiki, furashi-no-sei-ichi wrap, wrapping), cleaning supplies (chemical rags, scourers), bags (chemical warmers, freshness holding materials, Oxygen absorber bags, desiccant bags, shopping bags), food products (tea bags, coffee bags, food bags, wrapping), household goods (calendars, anti-slip sheets, love masks, book covers, deodorizing sheets, odori sheets) , Kitchen utensils (drainer sheet, cooking paper, scrubber, scouring cloth, firefloor, firefighting cloth), tape nose top (tape'norecloth, place mat, coaster), office supplies (stamp pad, felt pen core, bulletin board materials, eraser,) , Sports equipment (golf club head cover, tennis racket grip) , Handicraft supplies,
工業資材 (研磨材、 吸油材、 製紙フエノレト、 耐熱クッション、 コンクリート型 材 枠用ドレーン材、 水切り材、 材、 防温材、 防振材) 、 電 M料 (プリント 酉 板電気絶縁材、 ®«シールド材、 S 押さえ卷テープ)、製品材料 (F R P謝、 テープ、 印刷用基布、 合成紙、 静《ΙΒ録体、 接着テープ、 熱転写シ ート、 ¾lt線遮蔽マット) 、 ΟΑβ (フロッピーディスクライナ、 フロッピ 一ディスク包材) 、 Avm (スピーカー振動板、 吸音材) 、 ロール (パフ口 ール、 絞液ロール、 塗油ロール) 、 : β部材 (Vベルト、 コンベアベルト、 タ イミングベルト) 、 楽器 (ピアノキークッション、 ハンマーレール) 次に、 本発明の具体的な実施例について比較例とともに説明する。 Industrial materials (abrasive materials, oil-absorbing materials, papermaking phenolates, heat-resistant cushions, drainage materials for concrete frames, drainage materials, materials, heat-insulating materials, vibration-insulating materials), electric M materials (printed rooster electrical insulation materials, ® « Shielding material, S holding tape, product material (FRP, tape, printing fabric, synthetic paper, static recording material, adhesive tape, thermal transfer sheet, ¾lt line shielding mat), ΟΑβ (floppy disc liner , Floppy disk, packaging material, Avm (speaker diaphragm, sound absorbing material), roll (puff mouth, squeeze roll, oiling roll), β member (V belt, conveyor belt, timing belt), musical instrument (Piano key cushion, hammer rail) Next, specific examples of the present invention will be described together with comparative examples.
ここでは、 以下の実施例 1〜3に示す方法で強化延伸不»を し、 それぞ れについて、 縦方向および横方向の引張り強度、 伸び率、 および引裂強度を、 J I S L 1 9 0 6に準拠して測定し、 評価を行った。 また、 比較のため、 実施例 1で用いた網状不» (比較例 1 )、および実施例 3で用いた延伸直交不脑(比 較例 2 ) についても同様に縦方向および横方向の引張り強度、 伸び率、 および引 裂強度を測定した。  Here, the reinforced stretching was performed by the methods shown in Examples 1 to 3 below, and the tensile strength, elongation, and tear strength in the machine direction and the transverse direction of each of them were determined in accordance with JISL 196. And measured and evaluated. Further, for comparison, the tensile strength in the longitudinal direction and the transverse direction was similarly measured for the mesh member used in Example 1 (Comparative Example 1) and the stretch orthogonal member used in Example 3 (Comparative Example 2). The elongation, elongation, and tear strength were measured.
(実施例 1)  (Example 1)
本実施例では、 謝層としてタテ延伸不脑を用い、 強化材層として網状不織 布を用いた。'  In the present example, a vertical stretchable fiber was used as the reinforcing layer, and a mesh-like nonwoven fabric was used as the reinforcing material layer. '
タテ延伸不織布は、 以下のようにして作製した。 原料樹脂として、 ポリプロピ レン樹脂 (サンァロマー (株) 製、 MF R: 4 0、 融点: 1 6 0 °C) を用い、 こ れを押出機により溶融混練し、 ギアポンプにより定量的に押出し、 熱風とともに メルトプロ一ダイスよりフィラメント状に紡出した。 紡出したフィラメントをコ ンベア上に集積して、 フィラメントがほぼ縦方向に配列されたウェブとし、 これ を延伸ロールにより »向に 6倍に延伸して、 タテ延伸不織布 (¾|才層) を ί« した。 «されたタテ延伸不»の坪量を測定したところ、 1 5 g /m2であった。 続いて、 強化材層として、 ポリプロピレンからなる網状不織布 (日石プラスト (株) 製、 商品名: H S P— T) を用意した。 この網状不織布の坪量は 3 5 gノ m2であった。 The vertical stretched nonwoven fabric was produced as follows. A polypropylene resin (MFR: 40, melting point: 160 ° C, manufactured by San-Alomer Co., Ltd.) is used as the raw material resin, which is melt-kneaded by an extruder, extruded quantitatively by a gear pump, and extruded with hot air. It was spun into a filament form from a melt process die. The spun filaments are accumulated on a conveyor to form a web in which the filaments are arranged in a substantially vertical direction, which is stretched 6 times in the »direction by a stretching roll to form a vertically stretched nonwoven fabric (¾ | ¾ layer). ί «I did. It was 15 g / m 2 when the basis weight of the «delayed vertical drawing» was measured. Subsequently, a mesh-like nonwoven fabric made of polypropylene (trade name: HSP-T, manufactured by Nisseki Plast Co., Ltd.) was prepared as a reinforcing material layer. The grammage of this reticulated nonwoven fabric was 35 g nom 2 .
その後、 これらタテ延伸不»と網状不織布とを重ね合わせ、 1 3 0°C、 線圧 3 0 k g / c mの鏡面ロール間に供給することによって fffi着し、 強化延伸 不織布を作製した。 作製された強化延伸不»の坪量は 5 0 gZm2であった。 Thereafter, the warped stretched nonwoven fabric and the reticulated nonwoven fabric were superimposed on each other, and supplied between mirror rolls at 130 ° C. and a linear pressure of 30 kg / cm, and fffi-bonded to produce a reinforced stretched nonwoven fabric. The basis weight of the produced reinforced stretch was 50 gZm 2 .
(実施例 2 ) '  (Example 2) ''
本実施例では、 對才層としてョコ延伸不»を用い、 強化材層として網状不織 布を用いた。  In the present example, a stretched nonwoven fabric was used as the opposite layer, and a mesh-like nonwoven fabric was used as the reinforcing material layer.
ョコ延伸不脑は、 以下のようにして作製した。 原料樹脂として、 実施例 1で 用いたのと同じポリプロピレン樹脂を用い、 これを押出機にて溶融混練し、 ギア ポンプにより定量的に押出し、 スプレーノズルに導いた。 スプレーノズルから紡 出されたフィラメントに熱風を吹き付けることにより、 フィラメントをコンベア の進行方向に対して直角な方向に飛散させ、 これによつて、 フィラメントがほぼ 横方向に配列されたウェブをコンベア上に集積した。 続いて、 このウェブをプー リ式のョコ延伸装置を用い、 横方向に 6. 5倍に延伸し、 ョコ延伸不縣 (謝 層) を作製した。 ョコ延伸不織布の坪量は 1 5 g/m2であった。 The horizontal stretching failure was produced as follows. The same polypropylene resin as used in Example 1 was used as a raw material resin, melt-kneaded with an extruder, extruded quantitatively with a gear pump, and led to a spray nozzle. Spin from spray nozzle By blowing hot air onto the filaments emitted, the filaments were scattered in a direction perpendicular to the traveling direction of the conveyor, whereby the web in which the filaments were arranged in a substantially horizontal direction was accumulated on the conveyor. Subsequently, the web was stretched 6.5 times in the horizontal direction using a pull-type horizontal stretching machine, to produce a horizontal stretching non-suspended layer. The basis weight of the horizontal stretched nonwoven fabric was 15 g / m 2 .
さらに、 このョコ延伸不»の製造工程に連続して、 実施例 1で用いたのと同 じ網状不»をコンベア上のョコ延伸不»の上に供給して、 ョコ延伸不織布と 網状不織布とを重ね合わせた。そして、両者を実施例 1と同様の条件で赃着し、 強ィ! ^伸不»をィ標した。作製された強化延伸不聽の坪量は 5 0 g "m2であ つた。 Further, following the production process of the horizontal stretched non-woven fabric, the same reticulated web as used in Example 1 is supplied onto the horizontal stretched non-woven fabric on the conveyor, and the horizontal stretched non-woven fabric is formed. The reticulated nonwoven fabric was overlaid. Then, both were arrived under the same conditions as in the first embodiment. I marked Shin Shin. The basis weight of the produced reinforced stretched non Hear is 5 0 g "m 2 der ivy.
(実施例 3)  (Example 3)
本実施例では、 層としてタテ延伸不»とョコ延伸不»とを積層した延 伸直交不脑を用!/ \ 強化材層として網状不脑を用 、た。  In the present embodiment, a stretch orthogonality in which a vertical stretch and a horizontal stretch are laminated is used as a layer! / \ A mesh layer was used as the reinforcing material layer.
まず、 タテ延伸不織布を以下のようにして作製した。 原料樹脂として、 ポリエ ステル樹脂 (帝人 (株) 製、 I V値: 0. 6、 融点: 2 6 0 °C) を用い、 これを 押出機により溶融混練し、 ギアポンプにより定量的に押出し、 熱風とともにメル トブローダイスよりフィラメント状に紡出した。 紡出したフィラメントをコンペ ァ上に集積して、 フィラメントがほぼ縦方向に配列されたウェブとし、 これを延 伸ロールにより縦方向に 6倍に延伸して、 タテ延伸不織布をィ«した。 作製され たタテ延伸不織布の坪量を測定したところ、 1 0 gノ m2であった。 First, a vertically stretched nonwoven fabric was produced as follows. As a raw material resin, a polyester resin (manufactured by Teijin Limited, IV value: 0.6, melting point: 260 ° C) is melt-kneaded by an extruder, and is quantitatively extruded by a gear pump, and is heated with hot air. The filament was spun from a melt blow die. The spun filaments were accumulated on a conveyor to form a web in which the filaments were arranged in a substantially vertical direction, and this was stretched 6 times in the longitudinal direction by a stretching roll, to obtain a vertically stretched nonwoven fabric. When the basis weight of the produced vertical stretched nonwoven fabric was measured, it was 10 g nom 2 .
一方、 ョコ延伸不»を以下のようにして作製した。 原; 樹脂として、 ポリエ ステル樹脂 (帝人 (株) 製、 I V値: 0. 5、 融点: 2 6 0 °C) を用い、 これを 押出機にて溶融混練し、 ギアポンプにより定量的に押出し、 スプレーノズルに導 いた。 スプレーノズルから紡出されたフィラメントに熱風を吹き付けることによ り、 フィラメントをコンベアの進行方向に対して直角な方向に飛散させ、 これに よって、フィラメントがほぼ横方向に配列されたウェブをコンベア上に集積した。 続いて、 このウェブをプーリ式のョコ延伸装置を用い、 ^^向に 6. 5倍に延伸 し、 ョコ延伸不織布を麵した。 ョコ延伸不聽の坪量は 1 0 g//m2であった。 さらに、 このョコ延伸不»の製造工程に連続して、 先に作成したタテ延伸不 をコンベア上のョコ延伸不 の上に供給して、 ョコ延伸不»とタテ延伸 不»とを重ね合わせた。 そして、 両者を、 2 2 0°Cに加熱されたエンボスロー ルによってェンボス処理を行!/ヽ、 タテ延伸不»とョコ延伸不»とを積層させ た延伸直交不» m ) を «した。 On the other hand, horizontal stretching was produced as follows. Raw material: A polyester resin (manufactured by Teijin Limited, IV value: 0.5, melting point: 260 ° C) was used as the resin, melt-kneaded with an extruder, and extruded quantitatively with a gear pump. Led to the spray nozzle. By blowing hot air onto the filament spun from the spray nozzle, the filament is scattered in a direction perpendicular to the traveling direction of the conveyor, whereby the web in which the filaments are arranged in a substantially horizontal direction is placed on the conveyor. Was accumulated. Subsequently, this web was stretched 6.5 times in the ^^ direction using a pulley-type horizontal stretching apparatus to obtain a horizontal stretched nonwoven fabric. The basis weight of the unheared side was 10 g // m 2 . In addition, following the manufacturing process of the horizontal stretching, the vertical stretching Was supplied onto the horizontal stretcher on the conveyor, and the horizontal stretch and the vertical stretch were overlapped. Both of them were embossed with an embossing roll heated to 220 ° C! / ヽ, and stretched perpendicularly (m) in which vertical stretch and horizontal stretch were laminated. .
続いて、強化材層として、ポリエチレンからなる、坪量が 3 5 g/m2の網状不 織布 (日石プラスト (株) 製、 商品名: H S 2 4 ) を用意し、 これら延伸直交不 織布と網状不織布との互いの対向面に 1 0 0 kWZm ^m i nのコロナ処理を 行った後、 両者を重ね合わせた。 重ね合わせられた延伸直交不 と網状不» とを、 1 0 0°C、 線圧 3 0 k g / c mの鏡面ロール間に供給して ¾着し、 強化延伸不織布を作製した。作製された強化延伸不脑の坪量は 5 5 gZm2であ つた。 Subsequently, as reinforcement layer, made of polyethylene, basis weight of 3 5 g / m 2 reticulated nonwoven fabric (Nisseki Plasto Co., Ltd., trade name: HS 2 4) was prepared, these stretched perpendicular unsaturated After a corona treatment of 100 kWZm ^ min was performed on the opposing surfaces of the woven fabric and the reticulated nonwoven fabric, the two were superposed. The superimposed stretched non-woven fabric and reticulated web were supplied between mirror rolls at 100 ° C. and a linear pressure of 30 kg / cm and adhered to produce a reinforced stretched nonwoven fabric. The basis weight of the produced reinforced stretch was 55 gZm 2 .
表 2に、 上述した実施例 1〜3、 および比較例 1, 2の、 縦方向および横方向 についての引張り強度、 伸び率および引裂強度の測定結果を示す。  Table 2 shows the measurement results of tensile strength, elongation, and tear strength of the above Examples 1 to 3 and Comparative Examples 1 and 2 in the longitudinal and transverse directions.
表 2  Table 2
Figure imgf000023_0001
表 2より、 延伸一方向配列不» (タテ延伸不»、 ョコ延伸不») と網状 不«とを熱圧着することで、 縦方向、 横方向とも、 引張り強度および引裂強度 が大幅に向上することが分かる。 特に、 実施例 3と比較例 2との対比から明らか なように、 実施例 3では、 引裂強度は、 延伸直交不聽職での測 果に対し て、 網状不 «により与えられるであろうと考えられる引裂強度を大幅に上回つ ており、 形態の異なる 2種類の不«を複合することにより、 引裂強度に相乗効 果が生じたといえる。
Figure imgf000023_0001
According to Table 2, the tensile strength and tear strength in the machine direction and the transverse direction were obtained by thermocompression bonding between the non-stretched one-way alignment (vertical stretch, horizontal stretch) and the mesh. It can be seen that is greatly improved. In particular, as is evident from the comparison between Example 3 and Comparative Example 2, in Example 3, it was considered that the tear strength would be given by the reticulation, as compared to the measurement in the stretching orthogonal hearing. Thus, it can be said that the synergistic effect of the tear strength was produced by combining two types of defects having different forms.

Claims

請求の範囲 The scope of the claims
1 . 熱可塑性樹脂から紡糸された隱がー方向に配列されカゝっ延伸された少な くとも 1枚の延伸一方向配列不織布からなる勤才層と、 1. A genius layer composed of at least one stretched unidirectionally-arranged nonwoven fabric which is spun from a thermoplastic resin and which is arranged in the direction of the arrow and is stretched in a narrow direction.
前記 層の少なくとも片面に圧着されることによつて嫌己 ¾ί才層と積層され た、 網状構造の強化材層とを有する強化延伸不織布。  A reinforced stretched nonwoven fabric having a net-like reinforcing material layer laminated with a genius layer by being pressed against at least one surface of the layer.
2. 前記謝層は、 2枚の觸己延伸一方向配列不»を、 嫌己瞧の配列方向 が互 1ヽに直交するように積層した延伸直交不織布である、 請求項 1に記載の強化 延伸不脑。 , 2. The reinforced fabric according to claim 1, wherein the support layer is a stretched orthogonal nonwoven fabric obtained by laminating two sheets of unidirectionally stretched one-way alignment so that the alignment directions of the two sides are orthogonal to each other. Stretching failure. ,
3. 2枚の ΙίίΙΒ延伸一方向配列不脑は、 一方が、 賺が 向に配列され力 延伸されたタテ延伸不«であり、 他方が、 »が横方向に配列され力 延伸さ れたョコ延伸不織布である、 請求項 2に記載の強化延伸不織布。 3. One of the two sheets of the unidirectionally stretched sheet is one in which the longitudinal direction is not aligned and the force is stretched, and the other is the one in which the pieces are arranged in the horizontal direction and the force is stretched. 3. The reinforced stretched nonwoven fabric according to claim 2, which is a stretched nonwoven fabric.
4. 2枚の前記延伸一方向配列不織布は、 瞧が 向に配列され力 延伸さ れたタテ延伸不«であり、 一方のタテ延伸不赫上に、 他方のタテ延伸不» 力 fit己一方のタテ延伸不»の幅と同じ長さに切断され 9 0° 回転された状態 で積層されている、 請求項 2に記載の強化延伸不織布。 4. The two stretched unidirectionally aligned nonwoven fabrics are vertically stretched and force-stretched in a direction, and one of the stretchable nonwoven fabrics is placed on one of the lengthwise stretchable nonwoven fabrics. 3. The reinforced stretched nonwoven fabric according to claim 2, wherein the reinforced stretched nonwoven fabric is cut to the same length as the width of the vertical stretch and is rotated by 90 °.
5. 2枚の前記延伸一方向配列不織布は、 誰力 S横方向に配列され;^つ延伸され たョコ延伸不織布であり、一方のョコ延伸不織布上に、他方のョコ延伸不織布が、 前記一方のョコ延伸不織布の幅と同じ長さに切断され 9 0 ° 回転された状態で 積層されている、 請求項 2に記載の強化延伸不»。 5. The two stretched unidirectionally arranged nonwoven fabrics are laterally stretched laterally; the stretched horizontal stretched nonwoven fabric has one stretched nonwoven fabric and the other stretched nonwoven fabric on the other. 3. The reinforced stretch non-woven fabric according to claim 2, wherein the one stretched non-woven fabric is cut into the same length as the width of the one stretched non-woven fabric, and is laminated while being rotated 90 °.
6 · 前記強化材層は、 第 1の熱可塑性樹脂からなる層の両面に前記第 1の熱可 塑性樹脂よりも低い融点を有する第 2の熱可塑性樹脂からなる層が積層されてな る多層フィルムに、 互いに ίϊな複数のスリットと、 このスリットと ^な方向 の延伸を施された 1枚の一軸配向網状フイルムからなる、 請求項 2に記載の強化 延伸不贿。 6The reinforcing material layer is a multilayer formed by laminating a layer made of a second thermoplastic resin having a melting point lower than that of the first thermoplastic resin on both surfaces of a layer made of the first thermoplastic resin. 3. The reinforced film according to claim 2, wherein the film comprises a plurality of slits which are mutually different from each other, and a single uniaxially oriented reticulated film stretched in a direction opposite to the slits. Stretching failure.
7. 前記一軸配向網状フィルムは、 縦方向に延伸された前記多層フィルムに前 記スリットを縦方向に形成しさらに前記多層フィルムを横方向に拡幅したタテ延 伸網状フィルムである、 請求項 6に記載の強化延伸不»。 7. The uniaxially oriented reticulated film is a longitudinally stretched reticulated film in which the slit is formed in the longitudinally stretched multilayer film and the slit is formed in the longitudinal direction, and the multilayer film is widened in the transverse direction. No reinforced stretching described.
8. 前記一軸配向網状フィルムは、 前記スリットが横方向に形成された前記多 層フィルムを横方向に延伸することにより ΙίίΙΒスリットを目開きさせたョコ延伸 網状フィルムである、 請求項 6に記載の強化延伸不織布。 8. The uniaxially oriented reticulated film is a horizontal-stretched reticulated film in which slits are opened by stretching the multilayer film in which the slits are formed in the transverse direction in the transverse direction. Reinforced stretched nonwoven fabric.
9. 前記強化材層は、 第 1の熱可塑性樹脂からなる層の両面に前記第 1の熱可 塑性榭脂よりも低い融点を有する第 2の熱可塑性樹脂からなる層力 S積層されてな る多層フィルムに、 互いに ¥ίϊな複数のスリットと、 このスリットと ί?な方向 の延伸を施された 2枚の一軸配向網状フィルムを配向軸が直交するように重ね合 わせて融着させた網状不織布である、 W求項 1に記載の強化延伸不織布。 9. The reinforcing material layer is formed by laminating a layer made of a second thermoplastic resin having a melting point lower than that of the first thermoplastic resin on both surfaces of a layer made of a first thermoplastic resin. And a plurality of uniaxially oriented net-like films stretched in different directions from each other and fused to each other so that their orientation axes are orthogonal to each other. 2. The reinforced stretched nonwoven fabric according to claim 1, which is a reticulated nonwoven fabric.
1 0. tiriB¾#層は、 ■が »向に配列され力つ延伸された 1枚のタテ延伸 不«からなる、 請求項 9に記載の強化延伸不»。 10. The reinforced stretchable sheet according to claim 9, wherein the tiriB # layer is composed of one piece of vertical stretched sheet in which ■ is arranged in the direction »and stretched vigorously.
1 1 . tiilBS才層は、 賺カ S横方向に配列されかつ延伸された 1枚のョコ延伸 不織布からなる、 請求項 9に記載の強化延伸不»。 11. The reinforced stretchable non-woven fabric according to claim 9, wherein the tiilBS layer is made of one horizontal stretched nonwoven fabric stretched and arranged in the transverse direction.
1 2 . 前記 層は、 »|が»向に配列されカゝっ延伸された 1枚のタテ延伸不 織布と、 »が横方向に配列され力つ延伸された 1枚のョコ延伸不織布とを積層 した延伸直交不縣である、 請求項 9に記載の強化延伸不»。 1 2. The layer is composed of one vertical stretched nonwoven fabric in which »| is arranged in the vertical direction and one stretched nonwoven fabric in which the» is arranged in the horizontal direction and stretched vigorously. 10. The non-stretched stretch according to claim 9, wherein the stretch is orthogonal to the suspension.
1 3 . 前記 層は、 1枚の前記延伸一方向配列不織布からなり、 13. The layer is made of one piece of the stretched unidirectionally aligned nonwoven fabric,
前記強化材層は、 第 1の熱可塑性樹脂からなる層の両面に ΙίίΙΒ第 1の熱可塑性 樹脂よりも低い融点を有する第 2の熱可塑性樹脂からなる層力 S積層されてなる多 層フィルムに、 互いに 亍な複数のスリットと、 このスリットと^1な方向の延 伸を施された 1枚の一軸配向網状フィルムからなる、 請求項 1に記載の強化延伸 不織布。 The reinforcing material layer is formed by laminating, on both surfaces of a layer made of a first thermoplastic resin, a layer strength S made of a second thermoplastic resin having a melting point lower than that of the first thermoplastic resin. The layer film, together with a plurality of slits of亍, this consists of slits and ^ 1 direction one uniaxial orientation reticular film having been subjected to extended Shin, strengthening stretched nonwoven fabric according to claim 1.
1 4. 前記延伸一方向配列不織布は、 麵が!^向に配列されかつ延伸された タテ延伸不訪であり、 嫌己一軸配向網状フィルムは、 縦方向に延伸された前記 多層フィルムに tiff己スリットを »向に形成しさらに ΙίΐΙΒ多層フィルムを横方向 に拡幅したタテ延伸網状フィルムであり、 該タテ延伸網状フィルムは、 前記タテ 延伸不織布の幅と同じ長さに切断され 9 0° 回転された状態で前記タテ延伸不 »上に積層されている、 請求項 1 3に記載の強化延伸不«。 1 4. The stretched unidirectionally-arranged nonwoven fabric does not include vertical stretches in which the 麵 is oriented and stretched, and the unidirectional uniaxially oriented net-like film has a tiff self-alignment with the multilayer stretched in the longitudinal direction. A vertical stretched reticulated film in which a slit is formed in the »direction and the multilayer film is widened in the horizontal direction. The vertical stretched reticulated film was cut to the same length as the width of the vertical stretched nonwoven fabric and rotated 90 °. 14. The reinforced stretcher according to claim 13, wherein the reinforced stretcher is laminated on the vertical stretcher in a state.
1 5. 前記延伸一方向配列不脑は、 賺が 向に配列されカゝっ延伸された タテ延伸不織布であり、 嫌己一軸配向網状フィルムは、 前記スリットが横方向に 形成された前記多層フィルムを横方向に延伸することによって嫌己スリツトを目 開きさせたョコ延伸網状フィルムである、 請求項 1 3に記載の強化延伸不織布。 1 5. The stretching unidirectional alignment failure is a vertically stretched nonwoven fabric which is arranged in the direction of the direction and stretched in the vertical direction. The uniaxially oriented net-like film is the multilayer film in which the slits are formed in the lateral direction. 14. The reinforced stretched nonwoven fabric according to claim 13, which is a horizontal stretched reticulated film in which disgusting slits are opened by stretching in a lateral direction.
1 6. 前記延伸一方向配列不織布は、 賺カ S横方向に配列されカゝっ延伸されたョ コ延伸不織布であり、 tilB—軸配向網状フィルムは、 縦方向に延伸された 多 層フィルムに前記スリットを縦方向に形成しさらに前記多層フィルムを; 向に 拡幅したタテ延伸網状フィルムである、 請求項 1 3に記載の強化延伸不«。 1 6. The stretched unidirectionally arranged nonwoven fabric is a stretched nonwoven fabric which is arranged in the transverse direction and stretched in a transverse direction, and the tilB-axially oriented network film is formed into a multilayer film stretched in the longitudinal direction. 14. The reinforced stretched fiber according to claim 13, wherein the slit is formed in a longitudinal direction, and the multilayer film is a longitudinally stretched net-like film which is widened in the direction.
1 7. ΙίίΙΕ延伸一方向配列不脑は、 難が横方向に配列されかつ延伸された ョコ延伸不織布であり、 前記一軸配向網状フィルムは、 前記スリットが横方向に 形成された前記多層フィルムを横方向に延伸することによって前記スリツトを目 開きさせたョコ延伸網状フィルムであり、 該ョコ延伸網状フィルムは、 前記ョコ 延伸不織布の幅と同じ長さに切断され 9 0 ° 回転された状態で前記ョコ延伸不 »上に積層されている、 請求項 1 3に記載の強化延伸不»。 1 7. The “unstretched unidirectional alignment failure” is a horizontally stretched nonwoven fabric in which difficulties are arranged and stretched in the lateral direction, and the uniaxially oriented net-like film is formed of the multilayer film in which the slits are formed in the lateral direction. This is a horizontal stretched reticulated film in which the slits are opened by stretching in the horizontal direction. 14. The reinforced stretcher according to claim 13, wherein the reinforced stretcher is laminated on the horizontal stretch in a state.
1 8. liilESW層および ΙίίΐΒ強化材層の少なくとも互いの積層面は同じ材料で 構成されている、 請求項 1に記載の強化延伸不»。 1 8. At least the laminated surfaces of the liilESW layer and the ΙίίΐΒ The reinforced stretcher according to claim 1, which is configured.
PCT/JP2003/001860 2002-02-20 2003-02-20 Reinforced stretch non-woven fabric WO2003070457A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002043283A JP2003236964A (en) 2002-02-20 2002-02-20 Reinforced stretched nonwoven fabric
JP2002-43283 2002-02-20

Publications (1)

Publication Number Publication Date
WO2003070457A1 true WO2003070457A1 (en) 2003-08-28

Family

ID=27750522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001860 WO2003070457A1 (en) 2002-02-20 2003-02-20 Reinforced stretch non-woven fabric

Country Status (2)

Country Link
JP (1) JP2003236964A (en)
WO (1) WO2003070457A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4943646B2 (en) * 2004-11-19 2012-05-30 大倉工業株式会社 Adhesive sheet for moisture-permeable floor curing
KR101443401B1 (en) * 2006-08-14 2014-10-02 바스프 에스이 Composite component
JP5986975B2 (en) * 2013-10-18 2016-09-06 Jxエネルギー株式会社 Nonwoven fabric and reinforced laminate
JP6716380B2 (en) * 2016-07-19 2020-07-01 Jxtgエネルギー株式会社 Long fiber non-woven fabric
JP7089384B2 (en) 2018-03-20 2022-06-22 Eneos株式会社 Oxygen permeable packaging material, packaging and manufacturing method thereof
JP2020121289A (en) * 2019-01-31 2020-08-13 Jxtgエネルギー株式会社 Network structure for dust collection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130991A (en) * 1996-10-31 1998-05-19 Nippon Porikemu Kk Nonwoven fabric or woven or knitted fabric having thermally bonded crossing part of warp and weft and laminate using the same
JPH10325062A (en) * 1997-05-23 1998-12-08 Nippon Petrochem Co Ltd Cross-drawn nonwoven fabric and its production
JP2000254991A (en) * 1999-03-04 2000-09-19 Nippon Petrochem Co Ltd Reinforced nonwoven fabric

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130991A (en) * 1996-10-31 1998-05-19 Nippon Porikemu Kk Nonwoven fabric or woven or knitted fabric having thermally bonded crossing part of warp and weft and laminate using the same
JPH10325062A (en) * 1997-05-23 1998-12-08 Nippon Petrochem Co Ltd Cross-drawn nonwoven fabric and its production
JP2000254991A (en) * 1999-03-04 2000-09-19 Nippon Petrochem Co Ltd Reinforced nonwoven fabric

Also Published As

Publication number Publication date
JP2003236964A (en) 2003-08-26

Similar Documents

Publication Publication Date Title
TW490524B (en) Cross laminated nonwoven fabric having intermediate layer
US8951376B2 (en) Method of manufacturing corrugated laminate made of films
TW201040345A (en) Industrial fabric for production of nonwovens, and method of making thereof
TWI618830B (en) Processing apparatus and processing method for hot-air treatment nonwoven fabric
WO1997013020A1 (en) Water jet intertwined nonwoven cloth and method of manufacturing the same
JP2011042923A (en) Two-dimensional web material, method and apparatus for manufacturing the same as well as use thereof
KR20030066722A (en) In-line Heat Treatment of Homofilament Crimp Fibers
WO2009145148A1 (en) Process for producing cleaning sheet
JP5278237B2 (en) Composite spunbond nonwoven
KR101897427B1 (en) Nonwoven apertured elastic film with improved bonding features
JP2005290580A (en) Woven fabric and woven fabric processed product
WO2003070457A1 (en) Reinforced stretch non-woven fabric
JP2004076237A (en) Reinforced drawn nonwoven fabric
KR20040025660A (en) Multilayer approach to producing homofilament crimp spunbond
EP1288362A2 (en) Composite nonwoven fabric having high strength and superior printability and fabrication method of the same
JPH08109564A (en) Long-fiber water jet-interlaced nonwoven fabric and its production
JP2997404B2 (en) Reinforced spunbond nonwoven
JPH08158233A (en) Reinforced nonwoven fabric and its production
KR102011323B1 (en) Floor sheet using non-woven fabric for heating mat and manufacturing method thereof
JP3398831B2 (en) Tatami carpet
EP1175524B1 (en) A stretch recoverable nonwoven fabric and a process for making
JP3464544B2 (en) Method for producing thin and lightweight reinforced hydroentangled nonwoven fabric
JP2002356656A (en) Ground fabric for double-coated adhesive tape using nonwoven fabric, double-coated adhesive tape using the same, and method for producing the double-coated adhesive tape
JP6502250B2 (en) Industrial fabric comprising a spirally wound material strip with a reinforcement
JP2000254991A (en) Reinforced nonwoven fabric

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase