WO2003070302A1 - Installation destinee a la delivrance de calories dans tout ou partie d'un tissu cellulaire humain ou animal - Google Patents

Installation destinee a la delivrance de calories dans tout ou partie d'un tissu cellulaire humain ou animal Download PDF

Info

Publication number
WO2003070302A1
WO2003070302A1 PCT/FR2003/000192 FR0300192W WO03070302A1 WO 2003070302 A1 WO2003070302 A1 WO 2003070302A1 FR 0300192 W FR0300192 W FR 0300192W WO 03070302 A1 WO03070302 A1 WO 03070302A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
heating unit
installation according
tube
injected
Prior art date
Application number
PCT/FR2003/000192
Other languages
English (en)
Inventor
Henri Mehier
Original Assignee
Henri Mehier
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henri Mehier filed Critical Henri Mehier
Priority to JP2003569255A priority Critical patent/JP4216729B2/ja
Priority to DE60304558T priority patent/DE60304558T2/de
Priority to AU2003219236A priority patent/AU2003219236A1/en
Priority to EP03715035A priority patent/EP1476212B1/fr
Publication of WO2003070302A1 publication Critical patent/WO2003070302A1/fr
Priority to US10/894,183 priority patent/US7335195B2/en
Priority to US11/966,716 priority patent/US8337491B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14212Pumping with an aspiration and an expulsion action
    • A61M5/14216Reciprocating piston type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B2018/044Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid
    • A61B2018/046Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid in liquid form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B2018/044Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid
    • A61B2018/048Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid in gaseous form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/36General characteristics of the apparatus related to heating or cooling
    • A61M2205/3653General characteristics of the apparatus related to heating or cooling by Joule effect, i.e. electric resistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2206/00Characteristics of a physical parameter; associated device therefor
    • A61M2206/10Flow characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0068Static characteristics of the catheter tip, e.g. shape, atraumatic tip, curved tip or tip structure
    • A61M25/007Side holes, e.g. their profiles or arrangements; Provisions to keep side holes unblocked
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/1413Modular systems comprising interconnecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/44Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for cooling or heating the devices or media

Definitions

  • the invention relates to an installation intended for the delivery of calories by means of a liquid, in all or part of a human or animal cellular tissue.
  • a heat transfer liquid chosen from the group comprising water, hydrogen peroxide and ethanol in all or part of organs, in particular at the level of cancer cells.
  • One of the methods of treating cancerous tumors consists in removing all or part of the cancerous tissue by targeted administration of heat or cold. This principle is known under the name “thermoablation” and is currently used in particular in the treatment of hepatic metastases.
  • thermoablation by heat Several techniques based on the principle of thermoablation by heat are today proposed, such as laser, radiofrequency with needle, cryotherapy falling for its part from thermoablation by cold.
  • these techniques have a number of drawbacks.
  • the volume of the treated tumor remains limited (in practice from 4 to 5 cm in diameter) and the intervention time relatively long, from 20 to 30 minutes for radiofrequency and cryotherapy, even more for treatment. laser.
  • the Applicant discovered that the delivery of water or hydrogen peroxide, to a tumor should advantageously be carried out with small volumes of water, injected in pulsed form, both for reasons efficiency only for security reasons.
  • the liquid intended to be injected is a physically active substance, in practice water, hydrogen peroxide or even ethanol, the latter two having the advantage, in addition to the supply of calories, to be chemically aggressive towards the tumor to be treated.
  • the invention therefore relates to an installation intended for the delivery of calories by means of a liquid, into all or part of a human or animal cellular tissue comprising: a unit for heating said liquid, - a unit for injecting liquid into the heating unit, a means for diffusing heated liquid, a means for supplying the heated liquid from the heating unit to the diffusion means.
  • the installation is characterized in that it has means for delivering the liquid heated in a pulsed regime at the level of the diffusion means.
  • the installation has means for delivering, in pulsed mode, the liquid heated to a pressure at least equal to the saturated vapor pressure of the liquid to be injected.
  • the injection unit is in the form of a chamber containing the liquid to be injected and in which a piston is moved in translation under the action of an electric actuator or pneumatic, the triggering, travel, force and speed of movement of which are determined according to the desired rate, volume and injection pressure of the liquid, the chamber communicating with the heating unit via a first valve.
  • the injection unit constitutes the first element contributing to ensuring the delivery of calories in pulsed mode, by injecting into the heating unit a determined quantity of cold water at regular intervals, thanks to the combination the action of a jack whose triggering, travel, force and speed are programmed according to the desired rhythm, volume and injection pressure, with a valve preventing the return of the liquid injected into the chamber .
  • the actuation and the stroke of the actuator are programmed as a function of the number of injections desired to deliver a determined volume of water, the latter directly depending on the size of the tumor to be treated.
  • the Applicant has thus found that satisfactory tissue necrosis was obtained by using a volume of pressurized water at 400 ° C representing approximately 5% of the volume of the tumor to be treated.
  • the actuation and the stroke of the cylinder are then programmed to obtain volumes of injected liquid of between 0.2 and 1 ml at regular intervals of 0.5 to 1 second.
  • the programming of the race 'of the cylinder is provided by adjusting the number of turns of the motor driving the actuator.
  • the pressure at which the liquid is injected depends on the speed of movement and the force of the jack which are also programmed.
  • the programming of the speed of movement of the jack is ensured by the adjustment of the speed of rotation of the motor actuating the jack.
  • the force and the speed are chosen so that the liquid is injected into the heating unit at a pressure at least 50 bars higher, advantageously 100 bars above the saturated vapor pressure of the liquid to be injected. In the case of water injection, the injection pressure will be fixed at around 350 bars.
  • the jack is an electric or pneumatic jack.
  • the actuator When the treatment is carried out near magnetic resonance imaging devices, the actuator must be non-magnetic.
  • a pneumatic cylinder is advantageously used which drives small volumes of water into the heating unit until the desired volume is obtained.
  • the installation comprises a liquid storage tank intended to supply the chamber of the injection unit, said storage tank being fixed or removable.
  • the liquid supply to the chamber is conveniently carried out with predetermined volume corresponding to the volume to be injected into the tumor.
  • the reservoir is separated from the chamber by a second valve preventing the return of the liquid in the chamber, under the action of the piston.
  • the liquid for example water
  • the heating unit After the liquid (for example water) cold under pressure, transmitted to the heating unit, it is heated to a temperature of 400 ° C and more.
  • the heating unit is in the form of a metal coil incorporating an electrical resistance or a heat exchanger, around which is surrounded a stainless steel tube traversed by said liquid .
  • the internal diameter of the tube is chosen so as to prevent mixing of hot water with cold water at the time of drawing.
  • the length of the tube is chosen in combination with the internal diameter depending on the volume to be injected. In practice, the internal diameter is between 0.1 and 0.5 mm, advantageously 0.3 mm, the length of the tube varying according to the dimensions of the coil and being comprised, in practice, between 1500 and 5000 mm .
  • the dimension of the external diameter of the stainless steel tube is between 1 and 2 mm, advantageously of the order of 1.5 mm.
  • the electrical resistance is replaced by a source supplied by a heat transfer fluid, the heat transfer fluid being heated away from the heating unit and conveyed by an insulated pipe.
  • non-magnetic between 1 and
  • the heating unit is separated from the supply means, either by a valve calibrated at a pressure at least equal to the saturated vapor pressure of the liquid to be injected, either by a valve capable of withstanding a high temperature and high pressure, respectively of the order of 400 ° C and at least 350 bars; in practice of the order of 1000 bars.
  • the valve is calibrated at 250 bars for 400 ° C.
  • the installation comprises a cold water bypass circuit, the starting point of which is positioned between the injection unit and the heating unit while the ending point is positioned at downstream of the valve, said bypass circuit being connected to the starting point by means of a programmable high pressure solenoid valve.
  • This cold water circuit has a double advantage. First of all, it makes it possible, during the operation of the installation, to purge the hot water which remains in the diffusion means, thus reducing heating outside the injection phases while accelerating the rhythm of the pulses. In addition, it constitutes a safety system in the event that too much hot water has been injected, the operator being able to then inject cold water into the tumor.
  • the cold water circuit is in the form of a stainless steel tube, the outside diameter of which is between 1.2 and 1.8 mm, while the inside diameter is between 0.1 and 0.5 mm.
  • the heating unit is separated from the diffusion means by a supply means.
  • the means for supplying the heated liquid is in the form of a flexible hollow tube capable of undergoing high pressure and temperature and whose length is between 40 and 80 cm while the outer diameter is between 100 and 250 ⁇ m and the internal diameter is between 50 and 150 ⁇ m.
  • the pressure and the temperature are respectively higher than 250 bars and 400 ° C.
  • the tube is made of A305 quality stainless steel, titanium, or a platinum / iridium or nickel / titanium alloy.
  • the tube further has at one of its ends a first conical seal ensuring the junction with the heating unit and a second conical seal ensuring the junction with the diffusion means.
  • the means of diffusion can be of two types.
  • the diffusion means is in the form of a tube similar to that described in document WO-00/29055. More specifically, the diffusion means is in the form of a hollow tube whose walls are provided with all or part of perforations, in particular the walls in contact with the tissue to be treated and whose distal end is closed. In practice, such a tube is intended to be made integral with the organ to be treated. As with the supply means, it is made of a material of the titanium, stainless steel, platinum / iridium or nickel / titanium alloy, and more generally of any material capable of withstanding a pressure and a temperature respectively higher at 250 bars and 400 ° C (for water).
  • the outside diameter of the tube is between 100 and 250 ⁇ m, while the inside diameter is between 50 and 150 ⁇ m.
  • it is provided with substantially circular perforations of diameter between 30 and 70 ⁇ m, advantageously 50 ⁇ m.
  • the supply means is in the form of a rigid needle whose distal end is closed and whose walls have, over all or part of the length of the needle, in particular the walls in contact with the tissue to be treated, perforations of diameter between 30 and 70 ⁇ m, advantageously 50 ⁇ m.
  • the inside diameter of the needle is between 0.05 and 0.2 mm, while the outside diameter is between 0.2 mm and 0.7 mm, the length being between 100 and 200 mm.
  • This needle is made of a material such as hard steel or stainless steel, titanium or a metal alloy.
  • the junction of the upstream end of the needle with the supply means is advantageously provided by a weld or a conical joint.
  • the invention also relates to a method for treating all or part of human or animal tissue by the ⁇ noablation according to which calories are supplied to said tissue by means of a liquid, according to a pulsed diet.
  • calories are supplied by means of a volume of liquid comprised between 0.2 and 1, at regular intervals comprised between 0.5 and 1 second, at a pressure at least equal to the vapor pressure saturated with the liquid to be injected.
  • the duration of the pulses is between 0.1 and 0.2 seconds.
  • the invention also relates to a method of administering calories by means of a liquid in all or part of human or animal tissue using the apparatus described above and which consists in: positioning the diffusion means at the level of the organ to be treated, to connect said diffusion means to the supply means, then to connect the supply means to the assembly formed by the heating unit and the injection unit, to be programmed the triggering, the stroke, the speed and the force of the jack, depending on the desired rhythm, volume and injection pressure of the liquid, to supply the chamber of the injection unit with the desired volume of liquid to be injected , to trigger the cylinder, once the desired volume of water injected at the desired temperature, to withdraw the diffusion means.
  • the duration of the last draw is extended for the same volume of water so as to heat the means of diffusion and thus avoid the spread of cancer cells outside the tumor, at the time of removal.
  • Figure 1 is a schematic representation of the installation.
  • Figure 2 is a schematic representation of the injection unit.
  • Figure 3 is a schematic representation of the heating unit.
  • Figure 4 is a schematic representation of the supply means.
  • Figure 5 is a schematic representation of the diffusion means in the form of a needle.
  • Figure 6 is a schematic representation of the diffusion means in the form of a tube.
  • the installation of the invention comprises 4 main elements, respectively an injection unit (1) communicating through a stainless steel tube (2) with a heating unit (3), a means for supplying hot liquid or extension (4) and a means for diffusion (5).
  • the external diameter of the stainless steel tube (2) is equal to 1.6 mm while its internal diameter is equal to 0.25 mm.
  • the injection unit is separated from the heating unit by a valve (6), the heating unit (3) being itself separated from the extension (4) by a valve (7).
  • the installation is completed by a cold water bypass circuit (8), the inlet of which is positioned between the injection unit (1) and the heating unit (3), while the outlet is positioned downstream of the valve (7).
  • the cold water circuit (8) communicates with the main hot water circuit at the entry point via a programmable solenoid valve (9).
  • the jack (11) can be an electric jack or a pneumatic jack depending on the environment in which it is used (need for a non-magnetic jack or not).
  • the jack is an electric jack, the triggering of which, the stroke (regulated by the number of revolutions of the motor), the force (regulated by the power of the motor) and the speed (regulated by the speed of motor rotation) are programmable.
  • the force of the chosen cylinder is equal to 10 Knewtons for a surface of the piston less than 3 cm 2 .
  • the cylinder is capable of injecting cold water into the heating unit at a pressure of 350 bars.
  • the chamber (10) is further com ected to a liquid storage tank (13) ensuring the supply of liquid to the chamber.
  • the liquid reservoir (13) is further separated from the chamber (10) by means of a second valve (14).
  • the heating unit (3) shown diagrammatically in FIG. 3 is presented in the form of an aluminum coil (15), of diameter equal to 50 mm and of length equal to 100 mm, wound with a stainless steel tube ( 16) with an external diameter equal to 1.6 mm and an internal diameter equal to 0.25 mm, with a length of between 1,500 and 5,000 mm constituting the extension of the tube (2).
  • the coil assembly (15) stainless steel tube (16) incorporates an electrical resistance (17).
  • the coil (15) is further provided with a probe (18) regulating the temperature of the coil.
  • the coil is also held in two concentric tubes (19, 19 ') allowing thermal isolation and cooling of the system in combination with a fan (20).
  • the extension (4) as shown in Figure 4 is in turn in the form of a hollow tube (21) of length equal to 50 cm and internal and external diameters respectively equal to 100 microns and 200 microns.
  • This tube is made of A305 quality stainless steel and covered with a plastic sheath of the silicone type.
  • the supply means also has, at its upstream end, a first conical seal (22) allowing connection to the heating unit and a second conical seal (22 ') allowing connection to the diffusion means.
  • the supply means (4) is separated from the heating unit (3) by means of a valve (7).
  • the valve is calibrated at a pressure at least equal to the saturated vapor pressure of the liquid to be injected. When the injected liquid is water, the valve (7) is calibrated at 250 bars 400 ° C.
  • Two types of media can be used.
  • the first type corresponds to a steel needle (23) of length equal to approximately 20 cm, closed at its distal end (25) and provided with perforations (24) over all or part of its height, in particularly in the area intended to be in contact with the tissue to be treated.
  • the outside diameter of the needle is 0.5 mm while the inside diameter is 0.2 mm.
  • the perforations have a diameter equal to 50 ⁇ m.
  • the extension (21) is connected to the needle by welding (26).
  • the diffusion means (5) is in the form of a tube (27) intended to be sewn directly at the level of the fabric.
  • the tube (27) is provided with perforations (28) of size equal to 70 ⁇ m in diameter and arranged over all or part of the length of the tube, in particular at the part intended to be in contact with the fabric.
  • the tube is further closed at its distal end (29).
  • the outside diameter of the tube is 200 ⁇ m, while the inside diameter is 100 ⁇ m.
  • the upstream end of the tube is provided with a conical seal (30).
  • a needle (23) or a tube (27) is chosen having a distribution of the perforations which are adapted as a function of the size of the tumor to be treated.
  • the diffusion means (5) is in the form of a tube, the latter is positioned in the tissue to be treated, advantageously by means of a puncture needle of larger diameter serving as a guide.
  • the free end of the tube (27) communicates with the outside of the body.
  • the diffusion means is then connected to the extension (3) by means of the conical seal (30).
  • the free end of the extension (hollow tube) (21) is then connected to the heating unit (3) / injection unit (1) assembly by means of the conical seal (22).
  • the diffusion means is in the form of a needle, the welded needle / extension assembly (26) is positioned at the level of the tumor to be treated.
  • the operator determines the volume of water to be injected according to the size of the tumor. From his experience, the Applicant has found that it is generally necessary to inject a volume of liquid representing 5% of the volume of the tumor to be treated in order to obtain satisfactory necrosis (at 400 ° C).
  • the operator determines the volume of each injection and deduces from it the number of pulses necessary to manage to deliver the total volume of liquid.
  • the triggering, the stroke, the force and the speed of the jack are then programmed to allow N times the volume of liquid to be injected at regular intervals, in practice between 0.5 and 1 second per pulse of duration between 0.1 and 0.2 seconds.
  • the last pulse is of a duration greater than the previous pulses for the same injected volume, and this, in order to allow the diffusion means to be heated before its removal, thus making it possible to avoid the risk of proliferation of cancer cells in healthy tissue.
  • the manipulation then begins by injecting the first volume of cold water into the heating unit.
  • This volume is quickly heated to 400 ° C, at a pressure of 250 bars (1 second for 1 ml with 2000 watts for water).
  • the heated water is propelled to the diffusion means after opening the valve (7).
  • the pressurized water comes out at the end of the tube or of the needle in the vapor state then, the temperature decreasing by release of calories in the tumor, the vapor transforms into hot water close to the boiling temperature, that is to say 100 ° C, the water then continuing to release the calories.
  • the injection of small volumes of water at the perforations of the diffusion means results in a high localized supply of calories, the diffusion of which then takes place by thermal conduction.
  • a small volume of cold water (2 to 5% of the volume of hot water) is sent into the supply means and the diffusion means between each injection of pressurized hot water, and this , by programming the solenoid valve (9).
  • This variant makes it possible to avoid heating of the diffusion means, in particular the part not in contact with healthy tissue between each injection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Surgical Instruments (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicinal Preparation (AREA)

Abstract

Installation destinée ô la délivrance de calories au moyen d'un liquide, dans tout ou partie d'un tissu cellulaire humain ou animal comprenant : - une unité de chauffage (3) dudit liquide,- une unité d'injection (1) de liquide dans l'unité de chauffage,- un moyen de diffusion (5) de liquide chauffé,- un moyen d'amenée (4) du liquide chauffé depuis l'unité de chauffage jusqu'au moyen de diffusion,caractérisée en ce qu'elle est rendue apte ô assurer la délivrance du liquide chauffé au niveau du moyen de diffusion en régime pulsé.

Description

INSTALLATION DESTINEE A LA DELIVRANCE DE CALORIES DANS TOUT OU PARTIE D'UN TISSU CELLULAIRE HUMAIN OU ANIMAL
L'invention concerne une installation destinée à la délivrance de calories au moyen d'un liquide, dans tout ou partie d'un tissu cellulaire humain ou animal.
Plus précisément, elle se rapporte à un appareil permettant d'injecter un liquide caloporteur choisi dans le groupe comprenant l'eau, l'eau oxygénée et l'éthanol dans tout ou partie d'organes, en particulier au niveau de cellules cancéreuses
Une des méthodes de traitement des tumeurs cancéreuses consiste à détraire en tout ou partie le tissu cancéreux par administration ciblée de chaleur ou de froid. Ce principe est connu sous la dénomination "thermoablation" et est actuellement mis en œuvre notamment dans le traitement des métastases hépatiques.
Plusieurs techniques s 'appuyant sur le principe de la thermoablation par la chaleur sont aujourd'hui proposées, telles que laser, radiofréquence avec aiguille, la cryothérapie relevant quant à elle de la thermoablation par le froid. Toutefois,. ces techniques présentent un certain nombre d'inconvénients. En particulier, le volume de la tumeur traitée reste limité (en pratique de 4 à 5 cm de diamètre) et le temps d'intervention relativement long, de 20 à 30 minutes pour la radiofréquence et la cryothérapie, d'avantage encore pour le traitement au laser.
Le document WO-00/29055 du Demandeur décrit une technique de thermoablation par la chaleur consistant à injecter dans un tube creux, souple muni de perforations et "cousu" au sein de l'organe à traiter, une substance physiquement active, en pratique de l'eau ou de l'eau oxygénée sous forme pressurisée. La température du liquide pressurisé, au contact du tissu à traiter, diminue et l'eau ou l'eau oxygénée redevient liquide au sein même de la tumeur. Le liquide pressurisé est obtenu et injecté au moyen d'un appareil composé d'une unité de chauffage se présentant sous forme d'une bobine métallique sur laquelle est enroulé un tube en inox, directement connecté au tube microperforé. L'eau chemine et est chauffée dans le tube inox au niveau de cette unité à une température voisine de 400 °C et une pression voisine de 250 bars.
Dans le cadre de sa recherche, le Demandeur a découvert que la délivrance d'eau ou d'eau oxygénée, au niveau d'une tumeur devait avantageusement être effectuée avec de faibles volumes d'eau, injectés sous forme puisée, tant pour des raisons d'efficacité que pour des raisons de sécurité.
L'utilisation de faibles volumes d'eau, en pratique compris entre 0.2 et 1 ml, permet en effet d'éviter les risques de diffusion de chaleur en dehors de la tumeur et partant, la destruction de tissus sains. Le Demandeur a en outre constaté que l'administration de faibles volumes d'eau ou d'eau oxygénée à intervalles réguliers, en pratique compris entre 0.5 et 1 seconde, permettait de traiter des zones de volumes plus importantes et dans un délai plus court qu'avec les teelmiques connues de l'art antérieur. En outre le régime puisé permet d'éviter réchauffement de la partie du tube non en contact avec la tumeur, c'est à dire de la partie du tube reliant l'extérieur de l'organisme interdisant de fait, la destruction, par la chaleur, de tissus sains.
Comme déjà dit, le liquide destiné à être injecté est une substance physiquement active, en pratique de l'eau, de l'eau oxygénée ou encore de l'éthanol, ces deux derniers présentant l'avantage, outre l'apport de calories, d'être chimiquement agressif vis à vis de la tumeur à traiter.
L'invention concerne donc une installation destinée à la délivrance de calories au moyen d'un liquide, dans tout ou partie d'un tissu cellulaire humain ou animal comprenant : une unité de chauffage dudit liquide, - une unité d'injection de liquide dans l'unité de chauffage, un moyen de diffusion de liquide chauffé, un moyen d'amenée du liquide chauffé depuis l'unité de chauffage jusqu'au moyen de diffusion.
L'installation se caractérise en ce qu'elle présente des moyens de délivrance du liquide chauffé en régime puisé au niveau du moyen de diffusion.
En pratique, l'installation présente des moyens de délivrance, en régime puisé, du liquide chauffé à une pression au moins égale à la pression de vapeur saturante du liquide à injecter.
Dans la suite de la description, l'installation sera illustrée en utilisant l'eau comme liquide à injecter, bien que l'eau oxygénée ou encore l'éthanol puissent être également envisagés.
Pour se faire et selon une première caractéristique de l'invention, l'unité d'injection se présente sous forme d'une chambre contenant le liquide à injecter et dans laquelle un piston est mû en translation sous l'action d'un vérin électrique ou pneumatique, dont le déclenchement, la course, la force et la vitesse de déplacement sont déterminés en fonction du rythme, du volume et de la pression d'injection souhaités du liquide, la chambre communiquant avec l'unité de chauffage par l'intermédiaire d'une première valve. En d'autres termes, l'unité d'injection constitue le premier élément contribuant à assurer la délivrance de calories en régime puisé, en injectant dans l'unité de chauffage une quantité déterminée d'eau froide à intervalles réguliers, grâce à la combinaison de l'action d'un vérin dont le déclenchement, la course, la force et la vitesse sont programmés en fonction du rythme, du volume et de la pression d'injection souhaités, avec une valve interdisant le retour du liquide injecté dans la chambre.
Plus précisément, le déclenchement et la course du vérin sont programmés en fonction du nombre d'injections souhaité pour délivrer un volume d'eau déterminé, ce dernier dépendant directement de la taille de la tumeur à traiter. Le Demandeur a ainsi constaté qu'on obtenait une nécrose des tissus satisfaisante en utilisant un volume d'eau pressurisée à 400°C représentant environ 5% du volume de la tumeur à traiter. Le déclenchement et la course du vérin sont alors programmés pour obtenir des volumes de liquide injectés compris entre 0.2 et 1 ml à intervalles réguliers de 0.5 à 1 seconde. En pratique, la programmation de la course' du vérin est assurée par le réglage du nombre de tour du moteur actionnant le vérin.
Par ailleurs, la pression à laquelle le liquide est injecté dépend de la vitesse de déplacement et de la force du vérin qui sont également programmés. En pratique, la programmation de la vitesse de déplacement du vérin est assurée par le réglage de la vitesse de rotation du moteur actionnant le vérin.
Or, pour pouvoir injecter de faibles volumes d'eau, il est nécessaire de chauffer le liquide à une température très élevée, pour l'eau ou l'eau oxygénée, par exemple de l'ordre de 400°C et plus. A une telle température et à pression atmosphérique, l'eau ou l'eau oxygénée serait vaporisée au niveau de l'unité de chauffage interdisant ainsi la délivrance efficace, sous forme puisée, de calories au niveau du système de diffusion. Dès lors, pour résoudre le double problème du maintien de la substance sous forme liquide à une telle température et de son administration sous forme puisée avec des puises d'une durée comprise en pratique entre 0,1 et 0,2 seconde, la force et la vitesse sont choisies de telle sorte à ce que le liquide soit injecté dans l'unité de chauffage à une pression supérieure d'au moins 50 bars, avantageusement 100 bars à la pression de vapeur saturante du liquide à injecter. Dans le cas d'injection d'eau, la pression d'injection sera fixée à environ 350 bars.
Comme déjà dit, le vérin est un vérin électrique ou pneumatique. En effet, lorsque le traitement est effectué à proximité d'appareils d'imagerie par résonance magnétique, le vérin doit être amagnétique. Dans ce cas, on utilise avantageusement un vérin pneumatique qui chasse dans l'unité de chauffage de petits volumes d'eau jusqu'à obtenir le volume souhaité.
Selon une autre caractéristique, l'installation comprend un réservoir de stockage de liquide destiné à alimenter la chambre de l'unité d'injection, ledit réservoir de stockage étant fixe ou amovible. L'alimentation en liquide de la chambre ' est avantageusement effectuée avec des volumes prédéterminés correspondant au volume à injecter dans la tumeur. Dans tous les cas, le réservoir est séparé de la chambre par une seconde valve interdisant le retour du liquide dans la chambre, sous l'action du piston.
Une fois le liquide (par exemple l'eau) froid sous pression, transmis à l'unité de chauffage, celui-ci est chauffé jusqu'à une température de 400°C et plus.
Dans un mode de réalisation avantageux et toujours pour assurer le régime puisé, l'unité de chauffage se présente sous forme d'une bobine métallique incorporant une résistance électrique ou un échangeur de température, autour de laquelle est entouré un tube inox parcouru par ledit liquide. Le diamètre interne du tube est choisi de telle sorte à interdire le mélange de l'eau chaude avec l'eau froide au moment du puise. Par ailleurs, la longueur du tube est choisie en combinaison avec le diamètre interne en fonction du volume à injecter. En pratique, le diamètre interne est compris entre 0,1 et 0,5 mm, avantageusement 0,3 mm, la longueur du tube variant en fonction des dimensions de la bobine et étant comprise, en pratique, entre 1 500 et 5 000 mm. De même, la dimension du diamètre externe du tube inox est comprise entre 1 et 2 mm, avantageusement de l'ordre de 1,5 mm.
Lorsque le traitement est effectué à proximité d'appareils d'imagerie par résonance magnétique, la résistance électrique est remplacée par une source alimentée par un fluide caloporteur, le fluide caloporteur étant chauffé à distance de l'unité de chauffage et véhiculé par i tuyau isolé amagnétique (entre 1 et
2 mètres).
Selon une autre caractéristique, pour résoudre le problème du maintien du liquide à injecter sous forme pressurisée à la température souhaitée jusqu'au moyen de diffusion, l'unité de chauffage est séparée du moyen d'amenée, soit par une soupape tarée à une pression au moins égale à la pression de vapeur saturante du liquide à injecter, soit par une vanne susceptible de résister à une température élevée et pression élevée, respectivement de l'ordre de 400°C et d'au moins 350 bars ; en pratique de l'ordre de 1 000 bars. Lorsque le liquide à injecter est de l'eau, la soupape est tarée à 250 bars pour 400°C.
Dans un mode de réalisation avantageux, l'installation comprend un circuit de dérivation d'eau froide, dont le point de départ est positionné entre l'unité d'injection et l'unité de chauffage tandis que le point d'arrivée est positionné en aval de la soupape, ledit circuit de dérivation étant connecté au point de départ au moyen d'une électrovanne haute pression programmable. Ce circuit d'eau froide présente un double avantage. Tout d'abord, il permet, pendant le fonctionnement de l'installation, de purger l'eau chaude qui reste dans le moyen de diffusion, réduisant ainsi réchauffement en dehors des phases d'injection tout en accélérant le rythme des impulsions. En outre, il constitue un système de sécurité dans l'hypothèse où un volume d'eau chaude trop important aurait été injecté, l'opérateur pouvant injecter alors de l'eau froide dans la tumeur.
En pratique, le circuit d'eau froide se présente sous forme d'un tube inox, dont le diamètre extérieur est compris entre 1,2 et 1,8 mm, tandis que le diamètre intérieur est compris entre 0,1 et 0,5 mm.
Selon une autre caractéristique, l'unité de chauffage est séparée du moyen de diffusion par un moyen d'amenée. Pour réduire au maximum l'espace mort présent à la sortie de l'unité de chauffage et assurer la délivrance de liquide pressurisé sous foπne puisée, le moyen d'amenée du liquide chauffé se présente sous foπne d'un tube creux souple apte à subir une pression et une température élevées et dont la longueur est comprise entre 40 et 80 cm tandis que le diamètre extérieur est compris entre 100 et 250 μm et le diamètre interne est compris entre 50 et 150 μm. Pour l'eau, la pression et la température sont respectivement supérieures à 250 bars et 400°C. En pratique, le tube est fabriqué en acier inoxydable de qualité A305, en titane, ou encore en un alliage platine/iridium ou nickel/titane. Il peut être en outre recouvert d'une gaine plastique résistant à la température et assez rigide du type silicone, polyimide, polyuréthane. Le tube présente en outre à l'une de ses extrémités un premier joint conique assurant la jonction avec l'unité de chauffage et un second joint conique assurant la jonction avec le moyen de diffusion. En d'autres tenues, et comme il ressort de ce qui précède, la combinaison des caractéristiques : du vérin, permettant l'aπivée d'eau froide en puise dans l'unité de chauffage, - du tube inox dans lequel le liquide est chauffé, peimettant la propulsion d'eau chaude à température homogène et maximale, de la soupape, permettant de maintenir la pression égale à la pression de vapeur saturante du liquide à injecter, du moyen d'amenée, permettant de réduire le volume mort au maximum, assure la délivrance d'eau sous foπne pressurisée en régime puisé au niveau du système de diffusion.
Le moyen de diffusion peut être de deux types.
Dans un premier mode de réalisation, le moyen de diffusion se présente sous foπne d'un tube similaire à celui décrit dans le document WO-00/29055. Plus précisément, le moyen de diffusion se présente sous forme d'un tube creux dont les parois sont munies en tout ou partie de perforations, en particulier les parois en contact avec le tissu à traiter et dont l'extrémité distale est obturée. En pratique, un tel tube est destiné à être rendu solidaire de l'organe à traiter. De même que s'agissant du moyen d'amenée, il est fabriqué en un matériau du type titane, acier inoxydable, alliage platine/iridium ou nickel/titane, et plus généralement en tout matériau apte à supporter une pression et une température respectivement supérieure à 250 bars et 400°C (pour le cas de l'eau).
Par ailleurs et selon une autre caractéristique, le diamètre extérieur du tube est compris entre 100 et 250 μm, tandis que le diamètre intérieur est compris entre 50 et 150 μm. Comme déjà dit, il est muni de perforations sensiblement circulaires de diamètre compris entre 30 et 70 μm, avantageusement 50 μm.
Dans un second mode de réalisation, le moyen d'amenée se présente sous forme d'une aiguille rigide dont l'extrémité distale est obturée et dont les parois présentent, sur tout ou partie de la longueur de l'aiguille, en particulier les parois en contact avec le tissu à traiter, des perforations de diamètre compris entre 30 et 70 μm, avantageusement 50 μm. Selon une première caractéristique, le diamètre intérieur de l'aiguille est compris entre 0,05 et 0,2 mm, tandis que le diamètre extérieur est compris entre 0,2 mm et 0,7 mm, la longueur étant comprise entre 100 et 200 mm. Cette aiguille est fabriquée en un matériau du type acier ou inox dur, titane ou encore alliage métallique. La jonction de l'extrémité amont de l'aiguille avec le moyen d'amenée est assurée avantageusement par une soudure ou un joint conique.
L'invention concerne également un procédé de traitement de tout ou partie d'un tissu humain ou animal par theπnoablation selon lequel on fournit audit tissu des calories au moyen d'un liquide, selon un régime puisé.
Dans un mode de réalisation avantageux, on fournit des calories au moyen d'un volume de liquide compris entre 0,2 et 1, à intervalles réguliers compris entre 0,5 et 1 seconde, à une pression au moins égale à la pression de vapeur saturante du liquide à injecter.
En pratique, la durée des puises est comprise entre 0,1 et 0,2 seconde. L'invention concerne également un procédé d'administration de calories au moyen d'un liquide dans tout ou partie d'un tissu humain ou animal à l'aide de l'appareil décrit ci-avant et consistant : à positionner le moyen de diffusion au niveau de l'organe à traiter, à connecter ledit moyen de diffusion au moyen d'amenée, à connecter ensuite le moyen d'amenée à l'ensemble fomié par l'unité de chauffage et l'unité d'injection, à programmer le déclenchement, la course, la vitesse et la force du vérin, en fonction du rythme, du volume et de la pression d'injection souhaités du liquide, à alimenter la chambre de l'unité d'injection en volume de liquide à injecter souhaité, à déclencher le vérin, une fois le volume d'eau souhaité injecté à la température souhaitée, à retirer le moyen de diffusion.
Dans un mode de réalisation avantageux, la durée du dernier puise est prolongée pour un même volume d'eau de manière à chauffer le moyen de diffusion et ainsi éviter la dissémination de cellules cancéreuses en dehors de la tumeur, au moment du retrait.
L'invention et les avantages qui en découlent ressortiront mieux du mode de réalisation suivant à l'appui des figures annexées.
La figure 1 est une représentation schématique de l'installation.
La figure 2 est une représentation schématique de l'unité d'injection.
La figure 3 est une représentation schématique de l'unité de chauffage.
La figure 4 est une représentation schématique du moyen d'amenée.
La figure 5 est une représentation schématique du moyen de diffusion sous forme d'une aiguille. La figure 6 est une représentation schématique du moyen de diffusion sous forme d'un tube.
Comme le montre la figure 1, l'installation de l'invention comprend 4 éléments principaux, respectivement une unité d'injection (1) communiquant par le biais d'un tube inox (2) avec une unité de chauffage (3), un moyen d'amenée de liquide chaud ou rallonge (4) et un moyen de diffusion (5). Le diamètre extérieur du tube inox (2) est égal à 1,6 mm tandis que son diamètre interne est égal à 0,25 mm.
Selon une première caractéristique de l'invention, l'unité d'injection est séparée de l'unité de chauffage par une valve (6), l'unité de chauffage (3) étant elle-même séparée de la rallonge (4) par une soupape (7).
Dans le mode de réalisation avantageux, tel que représenté sur la figure 1, l'installation est complétée par un circuit de dérivation d'eau froide (8), dont l'entrée est positionnée entre l'unité d'injection (1) et l'unité de chauffage (3), tandis que la sortie est positionnée en aval de la soupape (7). Par ailleurs, le circuit d'eau froide (8) communique avec le circuit principal d'eau chaude au niveau du point d'entrée par le biais d'une électrovanne programmable (9).
Chaque élément de l'installation va maintenant être revu dans le détail.
S'agissant tout d'abord de l'unité d'injection (1), celle-ci se présente sous fomie d'un cylindre muni d'une chambre (10) dans laquelle est mû en translation, sous l'effet d'un vérin (11), un piston (12). Le vérin (11) peut être un vérin électrique ou un vérin pneumatique en fonction de l'environnement dans lequel il est utilisé (nécessité d'un vérin amagnétique ou non). Dans le présent exemple de réalisation, le vérin est un vérin électrique, dont le déclenchement, la course (réglée par le nombre de tour du moteur), la force (réglée par la puissance du moteur) et la vitesse (réglée par la vitesse de rotation du moteur) sont programmables. Dans cet exemple, la force du vérin choisi est égale à lO Knewtons pour une surface du piston inférieure à 3 cm2. Lorsque le liquide utilisé est de l'eau, le vérin est apte à injecter de l'eau froide dans l'unité de chauffage à une pression de 350 bars.
La chambre (10) est en outre com ectée à un réservoir de stockage de liquide (13) assurant l'alimentation en liquide de la chambre. Le réservoir de liquide (13) est en outre séparé de la chambre (10) par le biais d'une seconde valve (14).
L'unité de chauffage (3) représentée schématiquement sur la figure 3 se présente sous foπne d'une bobine d'aluminium (15), de diamètre égal à 50 mm et de longueur égale à 100 mm, enroulée d'un tube inox (16) de diamètre extérieur égal à 1,6 mm et de diamètre interne égal à 0,25 mm, de longueur comprise entre 1 500 et 5 000 mm constituant le prolongement du tube (2). L'ensemble bobine (15) tube inox (16) incorpore une résistance électrique (17). La bobine (15) est en outre munie d'une sonde (18) régulant la température de la bobine. La bobine est par ailleurs maintenue dans deux tubes concentriques (19, 19') permettant l'isolation theπnique et le refroidissement du système en combinaison avec un ventilateur (20).
La rallonge (4) telle que représentée sur la figure 4, se présente quant à elle sous forme d'un tube creux (21) de longueur égale à 50 cm et de diamètres interne et externe respectivement égaux à 100 μm et 200 μm. Ce tube est réalisé en acier inoxydable de qualité A305 et recouvert d'une gaine plastique du type silicone. Le moyen d'amenée présente en outre, à son extrémité amont, un premier joint conique (22) permettant le raccordement à l'unité de chauffage et un second joint conique (22') permettant le raccordement au moyen de diffusion. Comme déjà dit, le moyen d'amenée (4) est séparé de l'unité de chauffage (3) par le biais d'une soupape (7). Selon une caractéristique essentielle, la soupape est tarée à une pression au moins égale à la pression de vapeur saturante du liquide à injecter. Lorsque le liquide injecté est de l'eau, la soupape (7) est tarée à 250 bars 400°C.
Deux types de moyen de diffusion peuvent être utilisés.
Le premier type, représenté en figure 5, coπespond à une aiguille en acier (23) de longueur égale à 20 cm environ, obturée à son extrémité distale (25) et munie de perforations (24) sur tout ou partie de sa hauteur, en particulier dans la zone destinée à être en contact avec le tissu à traiter. Le diamètre extérieur de l'aiguille est de 0,5 mm tandis que le diamètre intérieur est égal à 0,2 mm. En outre, les perforations ont un diamètre égal à 50 μm. En pratique, la rallonge (21) est connectée à l'aiguille par soudure (26).
Dans un second mode de réalisation représenté figure 6, le moyen de diffusion (5) se présente sous forme d'un tube (27) destiné à être cousu directement au niveau du tissu. Le tube (27) est muni de perforations (28) de taille égale à 70 μm de diamètre et ménagées sur tout ou partie de la longueur du tube, en particulier au niveau de la partie destinée à être en contact avec le tissu. Le tube est en outre obturé à son extrémité distale (29). Le diamètre extérieur du tube est égal à 200 μm, tandis que le diamètre intérieur est égal à 100 μm. De même que pour l'aiguille, l'extrémité amont du tube est munie d'un joint conique (30).
L'installation est mise en oeuvre de la manière suivante. Dans un premier temps, on choisit une aiguille (23) ou un tube (27) présentant une répartition des perforations qui sont adaptées en fonction de la taille de la tumeur à traiter. Lorsque le moyen de diffusion (5) se présente sous fomie d'un tube, celui-ci est positionné dans le tissu à traiter, avantageusement par l'intermédiaire d'une aiguille de ponction de diamètre supérieur servant de guide. Une fois positionné, l'extrémité libre du tube (27) communique avec l'extérieur de l'organisme. Le moyen de diffusion est alors connecté à la rallonge (3) par le biais du joint conique (30). L'extrémité libre de la rallonge (tube creux) (21) est alors comiectée à l'ensemble unité de chauffage (3) / unité d'injection (1) par le biais du joint conique (22). Lorsque le moyen de diffusion se présente sous fomie d'une aiguille, l'ensemble aiguille/rallonge soudé (26) est positiomié au niveau de la tumeur à traiter.
L'opérateur détem ine ensuite le volume d'eau à injecter en fonction de la taille de la tumeur. De par son expérience, le Demandeur a constaté qu'il était nécessaire, en général, d'injecter un volume de liquide représentant 5 % du volume de la tumeur à traiter pour obtenir une nécrose satisfaisante (à 400°C).
L'opérateur détermine ensuite le volume de chaque injection et en déduit le nombre d'impulsions nécessaires pour parvenir à délivrer le volume total de liquide. Le déclenchement, la course, la force et la vitesse du vérin sont alors programmés pour pennettre d'injecter N fois le volume de liquide à intervalles réguliers, en pratique compris entre 0,5 et 1 seconde par puise de durée comprise entre 0,1 et 0,2 seconde. Dans un mode de réalisation avantageux, la dernière impulsion est d'une durée supérieure aux impulsions précédentes pour un même volume injecté, et ce, pour pennettre de chauffer le moyen de diffusion avant son retrait, permettant ainsi d'éviter le risque de prolifération des cellules cancéreuses dans les tissus sains. La manipulation débute alors en injectant le premier volume d'eau froide dans l'unité de chauffage. Ce volume est rapidement chauffé à 400°C, à une pression de 250 bars (1 seconde pour 1 ml avec 2 000 watts pour de l'eau). A l'impulsion d'eau froide suivante, l'eau chauffée est propulsée jusqu'au moyen de diffusion après ouverture de la soupape (7). L'eau pressurisée sort à l'extrémité du tube ou de l'aiguille à l'état de vapeur puis, la température diminuant par libération de calories dais la tumeur, la vapeur se transforme en eau chaude voisine de la température d'ébullition, c'est-à-dire 100°C, l'eau continuant alors à libérer les calories. L'injection de faibles volumes d'eau au niveau des perforations du moyen de diffusion entraîne un apport de calories localisé élevé, dont la diffusion se fait ensuite par conduction thermique.
Dans un mode de réalisation avantageux, on envoie un petit volume d'eau froide (2 à 5 % du volume d'eau chaude) dans le moyen d'amenée et le moyen de diffusion entre chaque injection d'eau chaude pressurisée, et ce, en programmant l'électiOvanne (9). Cette variante permet d'éviter réchauffement du moyen de diffusion, en particulier la partie non en contact avec les tissus sains entre chaque injection.
L'invention et les avantages qui en découlent ressortent bien de la description qui précède.
On notera en particulier l'aptitude de l'installation à assurer un- régime d'administration de calories directement au sein d'un organisme, en régime puisé, permettant ainsi de traiter des cellules cancéreuses et en particulier des tumeurs, par la chaleur, et ce, avec de très faibles volumes de liquide chauffé. En 'outre, la mise en œuvre du faible volume d'eau peπ et d'éviter la diffusion de calories en dehors des tissus tumoraux et par ailleurs, le régime puisé présente l'avantage de ne pas conduire à un échauffement non contrôlé du moyen de diffusion et partant une nécrose des tissus sains.

Claims

REVENDICATIONS
1/ Installation destinée à la délivrance de calories au moyen d'un liquide, dans tout ou partie d'un tissu cellulaire humain ou animal comprenant : - une unité de chauffage (3) dudit liquide, une unité d'injection (1) de liquide dans l'unité de chauffage, un moyen de diffusion (5) de liquide chauffé, un moyen d'amenée (4) du liquide chauffé depuis l'unité de chauffage jusqu'au moyen de diffusion, caractérisée en ce qu'elle présente des moyens de délivrance du liquide chauffé au niveau du moyen de diffusion en régime puisé.
2/ Installation selon la revendication 1, caractérisée en ce que l'unité d'injection présente des moyens de délivrance du liquide chauffé à une pression au moins égale à la pression de vapeur saturante du liquide à injecter.
3/ Installation selon l'une des revendications précédentes, caractérisée en ce que l'unité d'injection (1) se présente sous foπne d'une chambre (10) contenant le liquide à injecter et dans laquelle un piston (12) est mû en translation sous l'action d'un vérin (11) électrique ou pneumatique, dont le déclenchement, la course, la force, et la vitesse de déplacement sont déterminés en fonction du rytlime, du volume et de la pression d'injection souhaités du liquide, la chambre (10) communiquant avec l'unité de chauffage (3) par l'inteπnédiaire d'une première valve (6).
4/ Installation selon la revendication 3, caractérisée en ce que le déclenchement et la course du vérin (11) sont programmés pour obtenir des volumes de liquide injectés compris entre 0,2 et 1 ml à intervalle régulier de 0,5 à 1 seconde. 5/ Installation selon la revendication 4, caractérisée en ce que la force du vérin (11) est choisie de telle sorte à ce que le liquide soit injecté dans l'unité de chauffage (3) à une pression supérieure d'au moins 50 bars, avantageusement 100 bars à la pression de vapeur saturante dudit liquide.
6/ Installation selon l'une des revendications précédentes, caractérisée en ce qu'elle comprend un réservoir de stockage de liquide (13) destiné à alimenter la chambre (10) de l'unité d'injection (1), ledit réservoir de stockage (13) étant séparé de la chambre (10) par une seconde valve (14).
Il Installation selon l'une des revendications précédentes, caractérisée en ce que l'unité de chauffage se présente sous forme d'une bobine métallique (15) incorporant une résistance électrique (17) ou un échangeur de température autour de laquelle est entouré un tube inox (16), dont le diamètre interne est compris entre 0,1 et 0,5 mm, la longueur du tube variant entre 1 500 et 5 000 mm.
8/ Installation selon l'une des revendications précédentes, caractérisée en ce que l'unité de chauffage (3) est séparée du moyen d'amenée (4) par une soupape (7) tarée à une pression au moins égale à la pression de vapeur saturante du liquide à injecter.
9/ Installation selon la revendication 8, caractérisée en ce qu'elle comprend un circuit de dérivation d'eau froide (8), dont le point de départ est positionné entre l'unité d'injection (1) et l'unité de chauffage (3) tandis que le point d'airivée est positiomiée en aval de la soupape (7), ledit circuit de dérivation (8) étant connecté au point de départ au moyen d'une électrovanne haute pression programmable (9). 10/ Installation selon l'une des revendications précédentes, caractérisée en ce que le moyen d'amenée (4) se présente sous forme d'un tube creux (21) de diamètre intérieur compris entre 50 et 150 μm, la longueur du tube étant comprise entre 40 et 80 cm.
11/ Installation selon l'une des revendications précédentes, caractérisée en ce que le moyen de diffusion (5) se présente sous foπne d'un tube creux (27), dont l'extrémité distale (29) est obturée et dont les parois sont munies en tout ou partie de perforations (28) sensiblement circulaires de diamètre compris entre 30 et 70 μm, avantageusement 50 μm, le diamètre extérieur du tube étant compris entre 100 et 250 μm, tandis que le diamètre intérieur est compris entre 50 et 150 μm.
12/ Installation selon l'une des revendications 1 à 10, caractérisée en ce que le moyen de diffusion se présente sous foπne d'une aiguille rigide (23) dont l'extrémité distale (25) est obturée et dont les parois présentent, sur tout ou partie de leur longueur, des perforations (24) de diamètre compris entre 30 et 70 μm, avantageusement 50 μm, le diamètre intérieur de l'aiguille étant compris entre 0,05 et 0,2 mm, tandis que le diamètre extérieur est compris entre 0,2 mm et 0,7 mm, la longueur étant comprise entre 100 et 200 mm.
PCT/FR2003/000192 2002-02-21 2003-01-21 Installation destinee a la delivrance de calories dans tout ou partie d'un tissu cellulaire humain ou animal WO2003070302A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003569255A JP4216729B2 (ja) 2002-02-21 2003-01-21 ヒトまたは動物のすべてのまたは一部の細胞組織に対して熱を供給するための装置
DE60304558T DE60304558T2 (de) 2002-02-21 2003-01-21 Vorrichtung zur verabreichung von kalorien an das gesamte oder einen teil des zellgewebes beim mensch oder tier
AU2003219236A AU2003219236A1 (en) 2002-02-21 2003-01-21 Installation for delivering calories to all or part of human or animal cell tissue
EP03715035A EP1476212B1 (fr) 2002-02-21 2003-01-21 Installation destinee a la delivrance de calories dans tout ou partie d'un tissu cellulaire humain ou animal
US10/894,183 US7335195B2 (en) 2002-02-21 2004-07-19 Installation for delivering heat to all or part of human or animal cell tissue
US11/966,716 US8337491B2 (en) 2002-02-21 2007-12-28 Installation for delivering heat to all or part of human or animal cell tissue

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02.02213 2002-02-21
FR0202213A FR2836047B1 (fr) 2002-02-21 2002-02-21 Installation destinee a la delivrance de calories dans tout ou partie d'un tissu cellulaire humain ou animal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/894,183 Continuation US7335195B2 (en) 2002-02-21 2004-07-19 Installation for delivering heat to all or part of human or animal cell tissue

Publications (1)

Publication Number Publication Date
WO2003070302A1 true WO2003070302A1 (fr) 2003-08-28

Family

ID=27636390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/000192 WO2003070302A1 (fr) 2002-02-21 2003-01-21 Installation destinee a la delivrance de calories dans tout ou partie d'un tissu cellulaire humain ou animal

Country Status (9)

Country Link
US (2) US7335195B2 (fr)
EP (1) EP1476212B1 (fr)
JP (1) JP4216729B2 (fr)
AT (1) ATE322922T1 (fr)
AU (1) AU2003219236A1 (fr)
DE (1) DE60304558T2 (fr)
ES (1) ES2259761T3 (fr)
FR (1) FR2836047B1 (fr)
WO (1) WO2003070302A1 (fr)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2884149A1 (fr) * 2005-04-12 2006-10-13 Henri Mehier Tube implantable destine a l'injection notamment de fluide caloporteur dans tout ou partie d'un tissu humain ou animal
FR2915872A1 (fr) * 2007-05-10 2008-11-14 Ct D Etude Et De Rech Medicale Installation destinee a l'injection de vapeur d'eau dans un vaisseau sanguin humain ou animal
US7674259B2 (en) 2000-12-09 2010-03-09 Tsunami Medtech Medical instruments and techniques for thermally-mediated therapies
US7993323B2 (en) 2006-11-13 2011-08-09 Uptake Medical Corp. High pressure and high temperature vapor catheters and systems
US8147532B2 (en) 2007-10-22 2012-04-03 Uptake Medical Corp. Determining patient-specific vapor treatment and delivery parameters
US8197470B2 (en) 2007-08-23 2012-06-12 Aegea Medical, Inc. Uterine therapy device and method
US8322335B2 (en) 2007-10-22 2012-12-04 Uptake Medical Corp. Determining patient-specific vapor treatment and delivery parameters
US8758341B2 (en) 2000-12-09 2014-06-24 Tsunami Medtech, Llc Thermotherapy device
US8858549B2 (en) 1998-03-27 2014-10-14 Tsunami Medtech, Llc Medical instruments and techniques for treating pulmonary disorders
US8900223B2 (en) 2009-11-06 2014-12-02 Tsunami Medtech, Llc Tissue ablation systems and methods of use
US8911430B2 (en) 2008-06-17 2014-12-16 Tsunami Medtech, Llc Medical probes for the treatment of blood vessels
US9050076B2 (en) 2004-11-16 2015-06-09 Uptake Medical Corp. Device and method for lung treatment
US9113944B2 (en) 2003-01-18 2015-08-25 Tsunami Medtech, Llc Method for performing lung volume reduction
US9161801B2 (en) 2009-12-30 2015-10-20 Tsunami Medtech, Llc Medical system and method of use
US9433457B2 (en) 2000-12-09 2016-09-06 Tsunami Medtech, Llc Medical instruments and techniques for thermally-mediated therapies
US9468487B2 (en) 2001-12-07 2016-10-18 Tsunami Medtech, Llc Medical instrument and method of use
US9561068B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US9561066B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US9561067B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US9662060B2 (en) 2011-10-07 2017-05-30 Aegea Medical Inc. Integrity testing method and apparatus for delivering vapor to the uterus
US9700365B2 (en) 2008-10-06 2017-07-11 Santa Anna Tech Llc Method and apparatus for the ablation of gastrointestinal tissue
US9743974B2 (en) 2010-11-09 2017-08-29 Aegea Medical Inc. Positioning method and apparatus for delivering vapor to the uterus
US9782211B2 (en) 2013-10-01 2017-10-10 Uptake Medical Technology Inc. Preferential volume reduction of diseased segments of a heterogeneous lobe
US9907599B2 (en) 2003-10-07 2018-03-06 Tsunami Medtech, Llc Medical system and method of use
US9924992B2 (en) 2008-02-20 2018-03-27 Tsunami Medtech, Llc Medical system and method of use
US9943353B2 (en) 2013-03-15 2018-04-17 Tsunami Medtech, Llc Medical system and method of use
US9993290B2 (en) 2014-05-22 2018-06-12 Aegea Medical Inc. Systems and methods for performing endometrial ablation
US10064697B2 (en) 2008-10-06 2018-09-04 Santa Anna Tech Llc Vapor based ablation system for treating various indications
US10179019B2 (en) 2014-05-22 2019-01-15 Aegea Medical Inc. Integrity testing method and apparatus for delivering vapor to the uterus
USD845467S1 (en) 2017-09-17 2019-04-09 Uptake Medical Technology Inc. Hand-piece for medical ablation catheter
US10485604B2 (en) 2014-12-02 2019-11-26 Uptake Medical Technology Inc. Vapor treatment of lung nodules and tumors
US10531906B2 (en) 2015-02-02 2020-01-14 Uptake Medical Technology Inc. Medical vapor generator
US10548653B2 (en) 2008-09-09 2020-02-04 Tsunami Medtech, Llc Methods for delivering energy into a target tissue of a body
US10695126B2 (en) 2008-10-06 2020-06-30 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue
US11129673B2 (en) 2017-05-05 2021-09-28 Uptake Medical Technology Inc. Extra-airway vapor ablation for treating airway constriction in patients with asthma and COPD
US11284931B2 (en) 2009-02-03 2022-03-29 Tsunami Medtech, Llc Medical systems and methods for ablating and absorbing tissue
US11331037B2 (en) 2016-02-19 2022-05-17 Aegea Medical Inc. Methods and apparatus for determining the integrity of a bodily cavity
US11331140B2 (en) 2016-05-19 2022-05-17 Aqua Heart, Inc. Heated vapor ablation systems and methods for treating cardiac conditions
US11344364B2 (en) 2017-09-07 2022-05-31 Uptake Medical Technology Inc. Screening method for a target nerve to ablate for the treatment of inflammatory lung disease
US11350988B2 (en) 2017-09-11 2022-06-07 Uptake Medical Technology Inc. Bronchoscopic multimodality lung tumor treatment
US11419658B2 (en) 2017-11-06 2022-08-23 Uptake Medical Technology Inc. Method for treating emphysema with condensable thermal vapor
US11490946B2 (en) 2017-12-13 2022-11-08 Uptake Medical Technology Inc. Vapor ablation handpiece
US11653927B2 (en) 2019-02-18 2023-05-23 Uptake Medical Technology Inc. Vapor ablation treatment of obstructive lung disease
US11806066B2 (en) 2018-06-01 2023-11-07 Santa Anna Tech Llc Multi-stage vapor-based ablation treatment methods and vapor generation and delivery systems

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7885697B2 (en) 2004-07-13 2011-02-08 Dexcom, Inc. Transcutaneous analyte sensor
US6605751B1 (en) 1997-11-14 2003-08-12 Acrymed Silver-containing compositions, devices and methods for making
DE60028415T2 (de) 1999-12-30 2007-06-06 Acrymed, Portland Methode und zusammensetzungen für verbesserte abgabevorrichtungen
US7613491B2 (en) 2002-05-22 2009-11-03 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US8364229B2 (en) 2003-07-25 2013-01-29 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US8486426B2 (en) 2002-07-29 2013-07-16 Kimberly-Clark Worldwide, Inc. Methods and compositions for treatment of dermal conditions
US9763609B2 (en) 2003-07-25 2017-09-19 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US8886273B2 (en) 2003-08-01 2014-11-11 Dexcom, Inc. Analyte sensor
US20190357827A1 (en) 2003-08-01 2019-11-28 Dexcom, Inc. Analyte sensor
US20080119703A1 (en) * 2006-10-04 2008-05-22 Mark Brister Analyte sensor
US8626257B2 (en) * 2003-08-01 2014-01-07 Dexcom, Inc. Analyte sensor
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
US8364231B2 (en) 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
US8287453B2 (en) * 2003-12-05 2012-10-16 Dexcom, Inc. Analyte sensor
US8423114B2 (en) 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8425416B2 (en) 2006-10-04 2013-04-23 Dexcom, Inc. Analyte sensor
US20080197024A1 (en) * 2003-12-05 2008-08-21 Dexcom, Inc. Analyte sensor
US8364230B2 (en) 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
US11633133B2 (en) 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8425417B2 (en) * 2003-12-05 2013-04-23 Dexcom, Inc. Integrated device for continuous in vivo analyte detection and simultaneous control of an infusion device
US8808228B2 (en) 2004-02-26 2014-08-19 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US7640048B2 (en) * 2004-07-13 2009-12-29 Dexcom, Inc. Analyte sensor
US7783333B2 (en) 2004-07-13 2010-08-24 Dexcom, Inc. Transcutaneous medical device with variable stiffness
US8361553B2 (en) 2004-07-30 2013-01-29 Kimberly-Clark Worldwide, Inc. Methods and compositions for metal nanoparticle treated surfaces
CN101010004B (zh) 2004-07-30 2012-10-03 金伯利-克拉克环球有限公司 抗微生物的装置和组合物
IN266973B (fr) 2004-07-30 2007-07-06 Kimberly Clark Co
EP1796568A1 (fr) * 2004-09-09 2007-06-20 Vnus Medical Technologies, Inc. Procedes et dispositif pour traiter des structures anatomiques creuses
WO2006034249A2 (fr) 2004-09-20 2006-03-30 Acrymed, Inc. Compositions antimicrobiennes amorphes
US20070032785A1 (en) 2005-08-03 2007-02-08 Jennifer Diederich Tissue evacuation device
US20070233148A1 (en) * 2005-09-01 2007-10-04 Csaba Truckai Systems and methods for delivering bone fill material and controlling the temperature thereof
WO2007127236A2 (fr) 2006-04-28 2007-11-08 Acrymed, Inc. Pansements pour site antimicrobien
US8478377B2 (en) * 2006-10-04 2013-07-02 Dexcom, Inc. Analyte sensor
US8562528B2 (en) * 2006-10-04 2013-10-22 Dexcom, Inc. Analyte sensor
US8449464B2 (en) * 2006-10-04 2013-05-28 Dexcom, Inc. Analyte sensor
US8298142B2 (en) * 2006-10-04 2012-10-30 Dexcom, Inc. Analyte sensor
US8275438B2 (en) * 2006-10-04 2012-09-25 Dexcom, Inc. Analyte sensor
US8447376B2 (en) 2006-10-04 2013-05-21 Dexcom, Inc. Analyte sensor
US8696679B2 (en) * 2006-12-08 2014-04-15 Dfine, Inc. Bone treatment systems and methods
US20080262413A1 (en) * 2007-04-19 2008-10-23 Ladizinsky Daniel A Method For Supplying Oxygenated Water To Promote Internal Healing
US20200037874A1 (en) 2007-05-18 2020-02-06 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
EP2152350A4 (fr) 2007-06-08 2013-03-27 Dexcom Inc Dispositif de distribution de médicament intégré pour une utilisation avec un capteur de substance à analyser en continu
EP4098177A1 (fr) 2007-10-09 2022-12-07 DexCom, Inc. Système d'administration d'insuline intégré avec un capteur de glucose en continu
US8396528B2 (en) 2008-03-25 2013-03-12 Dexcom, Inc. Analyte sensor
WO2009149456A1 (fr) * 2008-06-06 2009-12-10 Varix Medical Corporation Dispositif pour thérapie veineuse et procédé
US20100198209A1 (en) * 2009-01-30 2010-08-05 Tartaglia Joseph M Hemorrhoid Therapy and Method
CA2789141C (fr) * 2010-02-05 2018-06-12 Deka Products Limited Partnership Appareil, procede et systeme de pompe a perfusion
WO2012142502A2 (fr) 2011-04-15 2012-10-18 Dexcom Inc. Étalonnage avancé de capteur d'échantillon à analyser et détection d'erreur avancée
JP6412874B2 (ja) * 2012-10-29 2018-10-24 フォエバー ヤング インターナショナル、 インク. 温度変更体内流体送達装置及びシステム
FR3018443B1 (fr) * 2014-03-11 2018-05-25 Miravas Dispositif pour generer de la vapeur a injecter dans un vaisseau humain ou animal
US9863712B2 (en) * 2015-10-13 2018-01-09 International Business Machines Corporation Demand-based charging of a heat pipe
US9835384B2 (en) 2015-10-13 2017-12-05 International Business Machines Corporation Demand-based charging of a heat pipe
US10058372B1 (en) * 2017-08-17 2018-08-28 John H. Shadduck Medical ablation devices and methods
US11943876B2 (en) 2017-10-24 2024-03-26 Dexcom, Inc. Pre-connected analyte sensors
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors
EP4278995A1 (fr) * 2022-05-17 2023-11-22 Carag Ag Dispositif de traitement
WO2024163362A1 (fr) * 2023-01-30 2024-08-08 Lhotse Medical, Inc. Systèmes thermiques et procédés d'extraction de cristallin

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3490696A (en) * 1968-07-12 1970-01-20 Exotech Hypervelocity pulsed jet head assembly
US4265600A (en) * 1978-09-05 1981-05-05 Harold Mandroian Pump apparatus
US5116313A (en) * 1989-08-31 1992-05-26 Her Majesty The Queen In Right Of Canada, As Represented By The National Research Council Variable intensity remote controlled needleless injectors
WO2000029055A1 (fr) * 1998-11-17 2000-05-25 Henri Mehier Dispositif destine a assurer la delivrance d'une substance active directement au sein d'un tissu cellulaire, moyen d'implantation du dispositif et appareils destines a l'injection de substance active dans ledit dispositif
EP1013297A2 (fr) * 1998-12-21 2000-06-28 Ferton Holding SA Injecteur à haute pression pour liquides

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073167A (en) * 1987-06-26 1991-12-17 M/A-Com, Inc. In-line microwave warming apparatus
US5180896A (en) * 1990-10-11 1993-01-19 University Of Florida System and method for in-line heating of medical fluid
US5122138A (en) * 1990-11-28 1992-06-16 Manwaring Kim H Tissue vaporizing accessory and method for an endoscope
DE9200452U1 (de) * 1992-01-16 1992-06-04 Rau, Horst-Günter, Dr.med., 8000 München Hochfrequenzstromunterstütztes Hochdruckflüssigkeitsstrahlschneidegerät
US6508816B2 (en) * 1998-03-27 2003-01-21 John H. Shadduck Medical instrument working end creating very high pressure gradients
US6911028B2 (en) * 1998-10-28 2005-06-28 John H. Shadduck Medical instrument working end and method for endoluminal treatments
US6024095A (en) * 1998-04-10 2000-02-15 Proteus Therapeutics, Inc. Corneal heat and stretch method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3490696A (en) * 1968-07-12 1970-01-20 Exotech Hypervelocity pulsed jet head assembly
US4265600A (en) * 1978-09-05 1981-05-05 Harold Mandroian Pump apparatus
US5116313A (en) * 1989-08-31 1992-05-26 Her Majesty The Queen In Right Of Canada, As Represented By The National Research Council Variable intensity remote controlled needleless injectors
WO2000029055A1 (fr) * 1998-11-17 2000-05-25 Henri Mehier Dispositif destine a assurer la delivrance d'une substance active directement au sein d'un tissu cellulaire, moyen d'implantation du dispositif et appareils destines a l'injection de substance active dans ledit dispositif
EP1013297A2 (fr) * 1998-12-21 2000-06-28 Ferton Holding SA Injecteur à haute pression pour liquides

Cited By (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8858549B2 (en) 1998-03-27 2014-10-14 Tsunami Medtech, Llc Medical instruments and techniques for treating pulmonary disorders
US9204889B2 (en) 1998-03-27 2015-12-08 Tsunami Medtech, Llc Medical instrument and method of use
US8758341B2 (en) 2000-12-09 2014-06-24 Tsunami Medtech, Llc Thermotherapy device
US10524847B2 (en) 2000-12-09 2020-01-07 Tsunami Medtech, Llc Medical instruments and techniques for thermally-mediated therapies
US9433457B2 (en) 2000-12-09 2016-09-06 Tsunami Medtech, Llc Medical instruments and techniques for thermally-mediated therapies
US7674259B2 (en) 2000-12-09 2010-03-09 Tsunami Medtech Medical instruments and techniques for thermally-mediated therapies
US9615875B2 (en) 2000-12-09 2017-04-11 Tsunami Med Tech, LLC Medical instruments and techniques for thermally-mediated therapies
US10675079B2 (en) 2000-12-09 2020-06-09 Tsunami Medtech, Llc Method for treating tissue
US9468487B2 (en) 2001-12-07 2016-10-18 Tsunami Medtech, Llc Medical instrument and method of use
US9113944B2 (en) 2003-01-18 2015-08-25 Tsunami Medtech, Llc Method for performing lung volume reduction
US9907599B2 (en) 2003-10-07 2018-03-06 Tsunami Medtech, Llc Medical system and method of use
US9050076B2 (en) 2004-11-16 2015-06-09 Uptake Medical Corp. Device and method for lung treatment
US9642668B2 (en) 2004-11-16 2017-05-09 Uptake Medical Technology Inc. Device and method for lung treatment
JP4819876B2 (ja) * 2005-04-12 2011-11-24 サントル・デチュード・エ・ドゥ・レシェルシュ・メディカル・ダルシャン−セルマ ヒトまたは動物組織の全部または一部に特に伝熱流体を注入するための埋め込み可能な管
FR2884149A1 (fr) * 2005-04-12 2006-10-13 Henri Mehier Tube implantable destine a l'injection notamment de fluide caloporteur dans tout ou partie d'un tissu humain ou animal
JP2008535605A (ja) * 2005-04-12 2008-09-04 サントル・デチュード・エ・ドゥ・レシェルシュ・メディカル・ダルシャン−セルマ ヒトまたは動物組織の全部または一部に特に伝熱流体を注入するための埋め込み可能な管
US7736334B2 (en) 2005-04-12 2010-06-15 Centre D'etude Et De Recherche Medicale D'archamps Implantable tube for injection particularly of heat transfer fluid into all or part of a human or animal tissue
WO2006108974A1 (fr) * 2005-04-12 2006-10-19 Centre D'etude Et De Recherche Medicale D'archamps Tube implantable destine a l'injection notamment de fluide caloporteur dans tout ou partie d'un tissu humain ou animal
US7993323B2 (en) 2006-11-13 2011-08-09 Uptake Medical Corp. High pressure and high temperature vapor catheters and systems
US9113858B2 (en) 2006-11-13 2015-08-25 Uptake Medical Corp. High pressure and high temperature vapor catheters and systems
FR2915872A1 (fr) * 2007-05-10 2008-11-14 Ct D Etude Et De Rech Medicale Installation destinee a l'injection de vapeur d'eau dans un vaisseau sanguin humain ou animal
WO2008148996A1 (fr) * 2007-05-10 2008-12-11 Centre D'etude Et De Recherche Medicale D'archamps - Cerma Installation destinee a l'injection de vapeur d'eau dans un vaisseau sanguin humain ou animal
US11207118B2 (en) 2007-07-06 2021-12-28 Tsunami Medtech, Llc Medical system and method of use
US10758292B2 (en) 2007-08-23 2020-09-01 Aegea Medical Inc. Uterine therapy device and method
US8221403B2 (en) 2007-08-23 2012-07-17 Aegea Medical, Inc. Uterine therapy device and method
US8221401B2 (en) 2007-08-23 2012-07-17 Aegea Medical, Inc. Uterine therapy device and method
US8216217B2 (en) 2007-08-23 2012-07-10 Aegea Medical, Inc. Uterine therapy device and method
US8197470B2 (en) 2007-08-23 2012-06-12 Aegea Medical, Inc. Uterine therapy device and method
US11213338B2 (en) 2007-08-23 2022-01-04 Aegea Medical Inc. Uterine therapy device and method
US10154871B2 (en) 2007-08-23 2018-12-18 Aegea Medical Inc. Uterine therapy device and method
US8734380B2 (en) 2007-10-22 2014-05-27 Uptake Medical Corp. Determining patient-specific vapor treatment and delivery parameters
US8147532B2 (en) 2007-10-22 2012-04-03 Uptake Medical Corp. Determining patient-specific vapor treatment and delivery parameters
US8322335B2 (en) 2007-10-22 2012-12-04 Uptake Medical Corp. Determining patient-specific vapor treatment and delivery parameters
US10595925B2 (en) 2008-02-20 2020-03-24 Tsunami Medtech, Llc Medical system and method of use
US9924992B2 (en) 2008-02-20 2018-03-27 Tsunami Medtech, Llc Medical system and method of use
US11179187B2 (en) 2008-05-31 2021-11-23 Tsunami Medtech, Llc Methods for delivering energy into a target tissue of a body
US11478291B2 (en) 2008-05-31 2022-10-25 Tsunami Medtech, Llc Methods for delivering energy into a target tissue of a body
US11141210B2 (en) 2008-05-31 2021-10-12 Tsunami Medtech, Llc Systems and methods for delivering energy into a target tissue of a body
US11129664B2 (en) 2008-05-31 2021-09-28 Tsunami Medtech, Llc Systems and methods for delivering energy into a target tissue of a body
US11284932B2 (en) 2008-05-31 2022-03-29 Tsunami Medtech, Llc Methods for delivering energy into a target tissue of a body
US8911430B2 (en) 2008-06-17 2014-12-16 Tsunami Medtech, Llc Medical probes for the treatment of blood vessels
US10548653B2 (en) 2008-09-09 2020-02-04 Tsunami Medtech, Llc Methods for delivering energy into a target tissue of a body
US9561067B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US9561068B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US11779430B2 (en) 2008-10-06 2023-10-10 Santa Anna Tech Llc Vapor based ablation system for treating uterine bleeding
US10064697B2 (en) 2008-10-06 2018-09-04 Santa Anna Tech Llc Vapor based ablation system for treating various indications
US11589920B2 (en) 2008-10-06 2023-02-28 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply an ablative zone to tissue
US11020175B2 (en) 2008-10-06 2021-06-01 Santa Anna Tech Llc Methods of ablating tissue using time-limited treatment periods
US10842549B2 (en) 2008-10-06 2020-11-24 Santa Anna Tech Llc Vapor ablation system with a catheter having more than one positioning element and configured to treat pulmonary tissue
US11813014B2 (en) 2008-10-06 2023-11-14 Santa Anna Tech Llc Methods and systems for directed tissue ablation
US9700365B2 (en) 2008-10-06 2017-07-11 Santa Anna Tech Llc Method and apparatus for the ablation of gastrointestinal tissue
US10842548B2 (en) 2008-10-06 2020-11-24 Santa Anna Tech Llc Vapor ablation system with a catheter having more than one positioning element
US10842557B2 (en) 2008-10-06 2020-11-24 Santa Anna Tech Llc Vapor ablation system with a catheter having more than one positioning element and configured to treat duodenal tissue
US9561066B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US10695126B2 (en) 2008-10-06 2020-06-30 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue
US11284931B2 (en) 2009-02-03 2022-03-29 Tsunami Medtech, Llc Medical systems and methods for ablating and absorbing tissue
US8900223B2 (en) 2009-11-06 2014-12-02 Tsunami Medtech, Llc Tissue ablation systems and methods of use
US9161801B2 (en) 2009-12-30 2015-10-20 Tsunami Medtech, Llc Medical system and method of use
US11457969B2 (en) 2010-08-13 2022-10-04 Tsunami Medtech, Llc Medical system and method of use
US10499973B2 (en) 2010-08-13 2019-12-10 Tsunami Medtech, Llc Medical system and method of use
US11160597B2 (en) 2010-11-09 2021-11-02 Aegea Medical Inc. Positioning method and apparatus for delivering vapor to the uterus
US10238446B2 (en) 2010-11-09 2019-03-26 Aegea Medical Inc. Positioning method and apparatus for delivering vapor to the uterus
US9743974B2 (en) 2010-11-09 2017-08-29 Aegea Medical Inc. Positioning method and apparatus for delivering vapor to the uterus
US9662060B2 (en) 2011-10-07 2017-05-30 Aegea Medical Inc. Integrity testing method and apparatus for delivering vapor to the uterus
US10881442B2 (en) 2011-10-07 2021-01-05 Aegea Medical Inc. Integrity testing method and apparatus for delivering vapor to the uterus
US11413086B2 (en) 2013-03-15 2022-08-16 Tsunami Medtech, Llc Medical system and method of use
US9943353B2 (en) 2013-03-15 2018-04-17 Tsunami Medtech, Llc Medical system and method of use
US12114909B2 (en) 2013-03-15 2024-10-15 Tsunami Medtech, Llc Medical system and method of use
US11672584B2 (en) 2013-03-15 2023-06-13 Tsunami Medtech, Llc Medical system and method of use
US11090102B2 (en) 2013-10-01 2021-08-17 Uptake Medical Technology Inc. Preferential volume reduction of diseased segments of a heterogeneous lobe
US9782211B2 (en) 2013-10-01 2017-10-10 Uptake Medical Technology Inc. Preferential volume reduction of diseased segments of a heterogeneous lobe
US9993290B2 (en) 2014-05-22 2018-06-12 Aegea Medical Inc. Systems and methods for performing endometrial ablation
US10575898B2 (en) 2014-05-22 2020-03-03 Aegea Medical Inc. Systems and methods for performing endometrial ablation
US10299856B2 (en) 2014-05-22 2019-05-28 Aegea Medical Inc. Systems and methods for performing endometrial ablation
US10179019B2 (en) 2014-05-22 2019-01-15 Aegea Medical Inc. Integrity testing method and apparatus for delivering vapor to the uterus
US11219479B2 (en) 2014-05-22 2022-01-11 Aegea Medical Inc. Integrity testing method and apparatus for delivering vapor to the uterus
US10485604B2 (en) 2014-12-02 2019-11-26 Uptake Medical Technology Inc. Vapor treatment of lung nodules and tumors
US10531906B2 (en) 2015-02-02 2020-01-14 Uptake Medical Technology Inc. Medical vapor generator
US11331037B2 (en) 2016-02-19 2022-05-17 Aegea Medical Inc. Methods and apparatus for determining the integrity of a bodily cavity
US12011283B2 (en) 2016-02-19 2024-06-18 Aegea Medical Inc. Methods and apparatus for determining the integrity of a bodily cavity
US11331140B2 (en) 2016-05-19 2022-05-17 Aqua Heart, Inc. Heated vapor ablation systems and methods for treating cardiac conditions
US11129673B2 (en) 2017-05-05 2021-09-28 Uptake Medical Technology Inc. Extra-airway vapor ablation for treating airway constriction in patients with asthma and COPD
US11344364B2 (en) 2017-09-07 2022-05-31 Uptake Medical Technology Inc. Screening method for a target nerve to ablate for the treatment of inflammatory lung disease
US11350988B2 (en) 2017-09-11 2022-06-07 Uptake Medical Technology Inc. Bronchoscopic multimodality lung tumor treatment
USD845467S1 (en) 2017-09-17 2019-04-09 Uptake Medical Technology Inc. Hand-piece for medical ablation catheter
US11419658B2 (en) 2017-11-06 2022-08-23 Uptake Medical Technology Inc. Method for treating emphysema with condensable thermal vapor
US11490946B2 (en) 2017-12-13 2022-11-08 Uptake Medical Technology Inc. Vapor ablation handpiece
US11864809B2 (en) 2018-06-01 2024-01-09 Santa Anna Tech Llc Vapor-based ablation treatment methods with improved treatment volume vapor management
US11806066B2 (en) 2018-06-01 2023-11-07 Santa Anna Tech Llc Multi-stage vapor-based ablation treatment methods and vapor generation and delivery systems
US11653927B2 (en) 2019-02-18 2023-05-23 Uptake Medical Technology Inc. Vapor ablation treatment of obstructive lung disease

Also Published As

Publication number Publication date
FR2836047B1 (fr) 2004-04-02
US7335195B2 (en) 2008-02-26
EP1476212B1 (fr) 2006-04-12
AU2003219236A1 (en) 2003-09-09
ES2259761T3 (es) 2006-10-16
JP2005517503A (ja) 2005-06-16
US20080103566A1 (en) 2008-05-01
FR2836047A1 (fr) 2003-08-22
JP4216729B2 (ja) 2009-01-28
EP1476212A1 (fr) 2004-11-17
DE60304558T2 (de) 2006-12-14
DE60304558D1 (de) 2006-05-24
ATE322922T1 (de) 2006-04-15
US8337491B2 (en) 2012-12-25
US20040254532A1 (en) 2004-12-16

Similar Documents

Publication Publication Date Title
EP1476212B1 (fr) Installation destinee a la delivrance de calories dans tout ou partie d'un tissu cellulaire humain ou animal
EP2144570B1 (fr) Installation destinee a l'injection de vapeur d'eau dans un vaisseau sanguin humain ou animal
EP1885418B1 (fr) Tube implantable destiné à l'injection notamment de fluide caloporteur dans tout ou partie d'un tissu humain ou animal
CA2293544C (fr) Applicateur intratissulaire ultrasonore pour l'hyperthermie
EP1131124B1 (fr) Dispositif destine a assurer la delivrance d'une substance active directement au sein d'un tissu cellulaire, moyen d'implantation du dispositif et appareils destines a l'injection de substance active dans ledit dispositif
EP0538200A1 (fr) Appareil d'obturation par le vide de canaux radiculaires dentaires
EP2528501B1 (fr) Electrode intracerebrale
WO2002013723A1 (fr) Dispositif pour prelever du liquide seminal animal
EP2765884B1 (fr) Appareil de coiffure a vapeur a pompe commandee
EP3116565B1 (fr) Dispositif pour générer de la vapeur à injecter dans un vaisseau humain ou animal
EP2959793B1 (fr) Appareil de coiffure a vapeur avec pompe a demarrage automatique
EP2549942B1 (fr) Dispositif destiné à l'administration de calories dans un tissu, vaisseau ou cavité humaine ou animale
FR2790965A1 (fr) Dispositif destine a assurer la delivrance de vapeur directement au sein de tout ou partie d'un organe cible humain ou animal, installation destinee a l'injection de vapeur dans ledit dispositif
FR2925837A1 (fr) Dispositif destine a l'administration de vapeur d'eau dans un tissu, vaisseau ou cavite humaine ou animale
FR2482461A1 (fr) Distributeur pour dialyse peritoneale et ligne d'injection destinee a equiper ledit distributeur
FR2885059A1 (fr) Dispositif d'application d'un fluide sur une zone a traiter comprenant une minuterie
FR2885058A1 (fr) Dispositif d'application d'un fluide sur une zone a traiter comprenant une buse d'ejection amelioree
FR2814938A1 (fr) Procede et dispositif d'obturation et d'etancheite d'un canal dentaire

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003715035

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10894183

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003569255

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003715035

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003715035

Country of ref document: EP