WO2003067526A2 - Nonuniform rotational distortion (nurd) reduction - Google Patents

Nonuniform rotational distortion (nurd) reduction Download PDF

Info

Publication number
WO2003067526A2
WO2003067526A2 PCT/US2003/002182 US0302182W WO03067526A2 WO 2003067526 A2 WO2003067526 A2 WO 2003067526A2 US 0302182 W US0302182 W US 0302182W WO 03067526 A2 WO03067526 A2 WO 03067526A2
Authority
WO
WIPO (PCT)
Prior art keywords
image
instruction
image vector
computing
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2003/002182
Other languages
English (en)
French (fr)
Other versions
WO2003067526A3 (en
Inventor
Shashidhar Sathyanarayana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Ltd Barbados
Boston Scientific Scimed Inc
Original Assignee
Boston Scientific Ltd Barbados
Scimed Life Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Scientific Ltd Barbados, Scimed Life Systems Inc filed Critical Boston Scientific Ltd Barbados
Priority to CA2471733A priority Critical patent/CA2471733C/en
Priority to DE60324137T priority patent/DE60324137D1/de
Priority to EP03737552A priority patent/EP1505908B1/en
Priority to JP2003566801A priority patent/JP4242292B2/ja
Priority to AU2003210648A priority patent/AU2003210648A1/en
Publication of WO2003067526A2 publication Critical patent/WO2003067526A2/en
Anticipated expiration legal-status Critical
Publication of WO2003067526A3 publication Critical patent/WO2003067526A3/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/10Image enhancement or restoration using non-spatial domain filtering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8934Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration
    • G01S15/8938Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions
    • G01S15/894Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions by rotation about a single axis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8977Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using special techniques for image reconstruction, e.g. FFT, geometrical transformations, spatial deconvolution, time deconvolution
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/80Geometric correction
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/40Analysis of texture
    • G06T7/41Analysis of texture based on statistical description of texture
    • G06T7/42Analysis of texture based on statistical description of texture using transform domain methods
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • G06T2207/20056Discrete and fast Fourier transform, [DFT, FFT]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular

Definitions

  • the invention relates generally to medical imaging, and more particularly to reducing Nonuniform Rotational Distortion (NURD) in medical images.
  • NURD Nonuniform Rotational Distortion
  • imaging techniques such as ultrasound imaging are commonly used in medical procedures to obtain images of the inside of a patient's body.
  • IVUS intravascular ultrasound
  • images revealing the internal anatomy of blood vessels are obtained by inserting a catheter with an ultrasound transducer mounted on or near its tip into the blood vessel.
  • the ultrasound transducer is positioned in a region of the blood vessel to be imaged, where it emits pulses of ultrasound energy into the blood vessel and surrounding tissue.
  • a portion of the ultrasound energy is reflected off of the blood vessel wall and surrounding tissue back to the transducer.
  • the reflected ultrasound energy (echo) impinging on the transducer produces an electrical signal, which is used to form an image of the blood vessel.
  • FIG. 1 is a representation of an axial view of a rotating transducer 10 mounted on the tip of a prior art catheter 20.
  • the transducer 10 is coupled to a drive motor (not shown) via a drive cable 30 and rotates within a sheath 35 of the catheter 20.
  • the blood vessel 40 being imaged typically includes a blood region 45 and wall structures (blood-wall interface) 50 and the surrounding tissue.
  • a cross-sectional image of the blood vessel is obtained by having the transducer 10 emit a plurality of ultrasound pulses, e.g., 256, at different angles as it is rotated over one revolution.
  • FIG. 1 illustrates one exemplary ultrasound pulse 60 being emitted from the transducer 10.
  • the echo pulse 65 for each emitted pulse 60 received by the transducer is used to compose one radial line or "image vector" in the image of the blood vessel.
  • the transducer 10 is rotated at a uniform angular velocity so that the image vectors are taken at evenly spaced angles within the blood vessel 40.
  • An image processor (not shown) assembles the image vectors acquired during one revolution of the transducer 10 into a cross-sectional image of the blood vessel 40.
  • the image processor assembles the image vectors based on the assumption that the image vectors were taken at evenly spaced angles within the blood vessel 40, which occurs when the transducer 10 is rotated at a uniform angular velocity.
  • a uniform angular velocity for the transducer 10 This is because the transducer 10 is mechanically coupled to a drive motor (not shown), which may be located one to two meters from the transducer, via the drive cable 30.
  • the drive cable 30 must follow all the bends along the path of the blood vessel to reach the region of the blood vessel 40 being imaged. As a result, the drive cable 30 typically binds and/or whips around as it is rotated in the blood vessel 40.
  • FIG. 1 is a representation of a rotating transducer of a prior art catheter inside a blood vessel.
  • FIG. 2 is a flowchart illustration of an example embodiment of a new image processing method for reducing NURD in IVUS images acquired using a rotating transducer.
  • Described below is a new image processing method that reduces NURD in IVUS images acquired using a rotating transducer.
  • an IVUS image of a blood vessel the blood inside the blood vessel and the tissue surrounding the blood vessel have texture, which appear as speckles in the IVUS image.
  • the blood typically has a fine image texture and the surrounding tissue has a course image texture.
  • the image texture of the blood and the surrounding tissue should be fairly consistent throughout the image.
  • the transducer rotates at a nonuniform angular velocity, the image texture in the blood and the surrounding tissue becomes nonuniform.
  • the new imaging processing method corrects for NURD in an image, as explained further below.
  • an image processor receives an input image comprising a plurality of image vectors, e.g., 256 vectors.
  • the image vectors are mapped onto angles in the image based on the assumption that the image vectors were taken at uniformly spaced angles.
  • Each of the image vectors further comprises a plurality of pixels.
  • the value of each pixel corresponds to the amplitude of a received echo pulse that is reflected back to the transducer from a certain angle and radial distance with respect to the transducer.
  • the values of the pixels may be scaled according to a gray scale and/or a color scale.
  • a spectral measure of texture around each pixel is computed in the azimuthal direction. This may be accomplished by performing a one-dimensional Fourier transform on a set of pixels within a weighted window centered at the pixel.
  • the Fourier transform may be performed using standard signal processing techniques known to those of ordinary skill in the art.
  • the Fourier transform for each pixel produces a frequency spectrum that contains local textural information for the pixel.
  • the weight of the window used in the Fourier transform may be computed using the following equation:
  • Weight where w is the width of the window, ⁇ determines the drop off rate of the weight from the center of the window, and n is incremented from 1 to w.
  • the width w may be 16 pixels and ⁇ may be 4.
  • step 230 the mean frequency of the Fourier transform for each pixel is computed.
  • the mean frequency for each pixel provides a textural measure for the pixel with higher values indicating textural compression and lower values indicating textural blurring.
  • step 240 for each image vector, the average value of the mean frequency for the pixels in the image vector is computed.
  • the average frequency value for each image vector correlates with the relative angular velocity for the transducer at the image vector.
  • a high average frequency value indicates a relatively high angular velocity for the transducer at the image vector and a low average frequency value indicates a relatively low angular velocity for the transducer at the image vector.
  • the average frequency values for the image vectors is noted to be fairly constant.
  • step 250 the integral of the average frequency values for all the image vectors is computed with the integral normalized to a value of 2 ⁇ radians, which is the angle of one revolution of the transducer.
  • step 260 an estimate of the actual angle for each image vector is computed using the running value of the normalized integral at the image vector. This estimated angle for each image vector takes into account the fact that image vectors are not taken at uniformly spaced angles.
  • step 270 each image vector is remapped to its respective estimated angle to produce a NURD corrected image. In other words, NURD is reduced or eliminated by deriving an estimated angle for each image vector and using that estimated angle instead of the inaccurately assumed uniformly spaced angle.
  • the value of the width w and ⁇ used to compute weight of the window in step 220 may be optimized through normal experimentation.
  • a phantom e.g., made of rubber, having a known cross-sectional profile may be imaged using a rotating transducer.
  • the NURD algorithm may then be applied to the image of the phantom while adjusting the values of w and ⁇ until the NURD corrected image exhibits the least amount of NURD.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Theoretical Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Probability & Statistics with Applications (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Image Processing (AREA)
  • Amplifiers (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Prostheses (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
PCT/US2003/002182 2002-02-05 2003-01-23 Nonuniform rotational distortion (nurd) reduction Ceased WO2003067526A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2471733A CA2471733C (en) 2002-02-05 2003-01-23 Nonuniform rotational distortion (nurd) reduction
DE60324137T DE60324137D1 (de) 2002-02-05 2003-01-23 Verringerung von ungleichförmigen drehungsverzerrungen (nurd)
EP03737552A EP1505908B1 (en) 2002-02-05 2003-01-23 Nonuniform rotational distortion (nurd) reduction
JP2003566801A JP4242292B2 (ja) 2002-02-05 2003-01-23 不均一回転ゆがみの低減
AU2003210648A AU2003210648A1 (en) 2002-02-05 2003-01-23 Nonuniform rotational distortion (nurd) reduction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/072,355 US7024025B2 (en) 2002-02-05 2002-02-05 Nonuniform Rotational Distortion (NURD) reduction
US10/072,355 2002-02-05

Publications (2)

Publication Number Publication Date
WO2003067526A2 true WO2003067526A2 (en) 2003-08-14
WO2003067526A3 WO2003067526A3 (en) 2004-11-25

Family

ID=27659457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/002182 Ceased WO2003067526A2 (en) 2002-02-05 2003-01-23 Nonuniform rotational distortion (nurd) reduction

Country Status (9)

Country Link
US (1) US7024025B2 (enExample)
EP (1) EP1505908B1 (enExample)
JP (1) JP4242292B2 (enExample)
AT (1) ATE410956T1 (enExample)
AU (1) AU2003210648A1 (enExample)
CA (1) CA2471733C (enExample)
DE (1) DE60324137D1 (enExample)
ES (1) ES2315507T3 (enExample)
WO (1) WO2003067526A2 (enExample)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8214010B2 (en) 2007-01-19 2012-07-03 Sunnybrook Health Sciences Centre Scanning mechanisms for imaging probe
US8460195B2 (en) 2007-01-19 2013-06-11 Sunnybrook Health Sciences Centre Scanning mechanisms for imaging probe
US9039626B2 (en) 2009-03-31 2015-05-26 Sunnybrook Health Sciences Centre Medical device with means to improve transmission of torque along a rotational drive shaft

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4489770B2 (ja) * 2003-07-21 2010-06-23 パイエオン インコーポレイテッド 動く臓器を描出した画像シリーズ内の最適画像を識別する方法及びシステム
US8047996B2 (en) * 2005-10-31 2011-11-01 Volcano Corporation System and method for reducing angular geometric distortion in an imaging device
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
US20080123911A1 (en) * 2006-09-26 2008-05-29 Duc Lam Systems and Methods for Restoring a Medical Image Affected by Nonuniform Rotational Distortion
WO2009009799A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Catheter for in vivo imaging
US9596993B2 (en) 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
WO2009009802A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Oct-ivus catheter for concurrent luminal imaging
US8197413B2 (en) * 2008-06-06 2012-06-12 Boston Scientific Scimed, Inc. Transducers, devices and systems containing the transducers, and methods of manufacture
US8351667B2 (en) * 2008-08-15 2013-01-08 Sti Medical Systems, Llc Methods of contrast enhancement for images having blood vessel structures
GB2470942B (en) * 2009-06-11 2014-07-16 Snell Ltd Detection of non-uniform spatial scaling of an image
JP5944913B2 (ja) * 2010-10-28 2016-07-05 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 超音波画像内の不均一回転歪みを低減するためのコンピュータ可読媒体及び同コンピュータ可読媒体を含むシステム
US11141063B2 (en) 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use
US11040140B2 (en) 2010-12-31 2021-06-22 Philips Image Guided Therapy Corporation Deep vein thrombosis therapeutic methods
US9360630B2 (en) 2011-08-31 2016-06-07 Volcano Corporation Optical-electrical rotary joint and methods of use
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US20140100454A1 (en) 2012-10-05 2014-04-10 Volcano Corporation Methods and systems for establishing parameters for three-dimensional imaging
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
WO2014055880A2 (en) 2012-10-05 2014-04-10 David Welford Systems and methods for amplifying light
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
US9840734B2 (en) 2012-10-22 2017-12-12 Raindance Technologies, Inc. Methods for analyzing DNA
CA2894403A1 (en) 2012-12-13 2014-06-19 Volcano Corporation Devices, systems, and methods for targeted cannulation
US11406498B2 (en) 2012-12-20 2022-08-09 Philips Image Guided Therapy Corporation Implant delivery system and implants
US10942022B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Manual calibration of imaging system
US10939826B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Aspirating and removing biological material
JP2016504589A (ja) 2012-12-20 2016-02-12 ナサニエル ジェイ. ケンプ, 異なる撮像モード間で再構成可能な光コヒーレンストモグラフィシステム
US10595820B2 (en) 2012-12-20 2020-03-24 Philips Image Guided Therapy Corporation Smooth transition catheters
JP2016506276A (ja) 2012-12-20 2016-03-03 ジェレミー スティガール, 血管内画像の位置の特定
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
EP2936426B1 (en) 2012-12-21 2021-10-13 Jason Spencer System and method for graphical processing of medical data
EP2936626A4 (en) 2012-12-21 2016-08-17 David Welford SYSTEMS AND METHOD FOR REDUCING A WAVELENGTH LIGHT EMISSION
JP2016501625A (ja) 2012-12-21 2016-01-21 ジェローム マイ, 可変線密度での超音波撮像
US10058284B2 (en) 2012-12-21 2018-08-28 Volcano Corporation Simultaneous imaging, monitoring, and therapy
WO2014099672A1 (en) 2012-12-21 2014-06-26 Andrew Hancock System and method for multipath processing of image signals
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
US10993694B2 (en) 2012-12-21 2021-05-04 Philips Image Guided Therapy Corporation Rotational ultrasound imaging catheter with extended catheter body telescope
WO2014100162A1 (en) 2012-12-21 2014-06-26 Kemp Nathaniel J Power-efficient optical buffering using optical switch
WO2014100530A1 (en) 2012-12-21 2014-06-26 Whiseant Chester System and method for catheter steering and operation
US10226597B2 (en) 2013-03-07 2019-03-12 Volcano Corporation Guidewire with centering mechanism
WO2014138555A1 (en) 2013-03-07 2014-09-12 Bernhard Sturm Multimodal segmentation in intravascular images
US11154313B2 (en) 2013-03-12 2021-10-26 The Volcano Corporation Vibrating guidewire torquer and methods of use
JP2016521138A (ja) 2013-03-12 2016-07-21 コリンズ,ドナ 冠動脈微小血管疾患を診断するためのシステム及び方法
JP6339170B2 (ja) 2013-03-13 2018-06-06 ジンヒョン パーク 回転式血管内超音波装置から画像を生成するためのシステム及び方法
US11026591B2 (en) 2013-03-13 2021-06-08 Philips Image Guided Therapy Corporation Intravascular pressure sensor calibration
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
JP6342984B2 (ja) 2013-03-14 2018-06-13 ボルケーノ コーポレイション エコー源性特性を有するフィルタ
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
US12343198B2 (en) 2013-03-14 2025-07-01 Philips Image Guided Therapy Corporation Delivery catheter having imaging capabilities
WO2017040484A1 (en) 2015-08-31 2017-03-09 Gentuity, Llc Imaging system includes imaging probe and delivery devices
US10952702B2 (en) 2016-06-21 2021-03-23 Canon U.S.A., Inc. Non-uniform rotational distortion detection catheter system
WO2020061001A1 (en) 2018-09-17 2020-03-26 Gentuity, Llc Imaging system with optical pathway
CN114040702A (zh) 2019-04-30 2022-02-11 Gentuity有限责任公司 具有流体加压元件的成像探头
US12239412B2 (en) 2019-05-21 2025-03-04 Spryte Medical, Inc. Systems and methods for OCT-guided treatment of a patient
CN111671468B (zh) * 2020-05-28 2023-04-28 苏州博动戎影医疗科技有限公司 一种血管内超声单阵元换能器的异步聚焦动态补偿方法
US20230000321A1 (en) * 2021-03-01 2023-01-05 Gentuity, Llc Optical imaging system
CN117152026B (zh) * 2023-10-30 2024-02-02 天津恒宇医疗科技有限公司 一种血管内超声图像处理方法、装置和设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5361768A (en) 1992-06-30 1994-11-08 Cardiovascular Imaging Systems, Inc. Automated longitudinal position translator for ultrasonic imaging probes, and methods of using same
US5383460A (en) 1992-10-05 1995-01-24 Cardiovascular Imaging Systems, Inc. Method and apparatus for ultrasound imaging and atherectomy
US6424725B1 (en) 1996-05-16 2002-07-23 Digimarc Corporation Determining transformations of media signals with embedded code signals
US5485845A (en) * 1995-05-04 1996-01-23 Hewlett Packard Company Rotary encoder for intravascular ultrasound catheter
US6095976A (en) 1997-06-19 2000-08-01 Medinol Ltd. Method for enhancing an image derived from reflected ultrasound signals produced by an ultrasound transmitter and detector inserted in a bodily lumen
US5921934A (en) 1997-11-25 1999-07-13 Scimed Life Systems, Inc. Methods and apparatus for non-uniform rotation distortion detection in an intravascular ultrasound imaging system
US5989191A (en) * 1998-06-19 1999-11-23 Hewlettt-Packard Company Using doppler techniques to measure non-uniform rotation of an ultrasound transducer
US6450964B1 (en) 2000-09-05 2002-09-17 Advanced Cardiovascular Systems, Inc. Imaging apparatus and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8214010B2 (en) 2007-01-19 2012-07-03 Sunnybrook Health Sciences Centre Scanning mechanisms for imaging probe
US8460195B2 (en) 2007-01-19 2013-06-11 Sunnybrook Health Sciences Centre Scanning mechanisms for imaging probe
US8712506B2 (en) 2007-01-19 2014-04-29 Sunnybrook Health Sciences Centre Medical imaging probe with rotary encoder
US8784321B2 (en) 2007-01-19 2014-07-22 Sunnybrook Health Sciences Centre Imaging probe with combined ultrasound and optical means of imaging
US9039626B2 (en) 2009-03-31 2015-05-26 Sunnybrook Health Sciences Centre Medical device with means to improve transmission of torque along a rotational drive shaft

Also Published As

Publication number Publication date
WO2003067526A3 (en) 2004-11-25
EP1505908B1 (en) 2008-10-15
AU2003210648A1 (en) 2003-09-02
ATE410956T1 (de) 2008-10-15
JP2006505293A (ja) 2006-02-16
DE60324137D1 (de) 2008-11-27
ES2315507T3 (es) 2009-04-01
JP4242292B2 (ja) 2009-03-25
EP1505908A2 (en) 2005-02-16
CA2471733A1 (en) 2003-08-14
AU2003210648A8 (en) 2003-09-02
US20030147551A1 (en) 2003-08-07
US7024025B2 (en) 2006-04-04
CA2471733C (en) 2011-06-07

Similar Documents

Publication Publication Date Title
CA2471733C (en) Nonuniform rotational distortion (nurd) reduction
EP1690230B1 (en) Automatic multi-dimensional intravascular ultrasound image segmentation method
US7856130B2 (en) Object recognition system for medical imaging
US5654509A (en) Control system that distinguishes between imaging and nonimaging environments in an ultrasound system
CN101467892B (zh) 超声波诊断装置、超声波图像处理装置及方法
US20020167533A1 (en) Compound image display system and method
EP2613170A1 (en) Clutter suppression in ultrasonic imaging systems
US7852334B2 (en) Ultrasonic imaging apparatus, an image-processing apparatus, and an ultrasonic image-processing method
CN103391749B (zh) 通过超声波成像分析二尖瓣返流
US20210022714A1 (en) Non-uniform rotation distortion (nurd) reduction in ultrasound imaging devices, systems, and methods
EP2082369B1 (en) Systems and methods for restoring a medical image affected by nonuniform rotational distortion
JP6078475B2 (ja) 超音波画像中の僧帽弁の逆流開口部の位置の自動同定
CN103379864B (zh) 用于超声二尖瓣返流分析的壁滤波器
KR101120700B1 (ko) 컬러 도플러 모드 영상을 제공하는 초음파 시스템 및 방법
EP4666103A1 (en) Adaptively weighted spatial compounding for ultrasound image contrast enhancement
US9918699B2 (en) Seam elimination and motion compensation in imaging data
CN112826535B (zh) 一种超声成像中自动定位血管的方法和装置及设备
CN114066767A (zh) 增强血管超声图像的对比度的处理方法和图像处理系统
KR101097539B1 (ko) 볼륨 데이터를 보정하는 초음파 장치 및 방법
CN113491535A (zh) 超声波诊断装置、信号处理装置以及信号处理程序
Frey et al. UltraFlex: Iterative Model-Based Ultrasonic Flexible-Array Shape Calibration
CN118986413A (zh) 超声束与血流运动方向夹角的估算方法、校准系统及方法
CN113298724A (zh) 图像处理方法
JP2001037758A (ja) 超音波診断装置、ティッシュパワードプラ像表示方法および心筋イメージ表示方法
Kubota et al. Fuzzy rule-based boundary extraction of plaque in intravascular ultrasound image

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2471733

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003737552

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003566801

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003737552

Country of ref document: EP