WO2003064736A2 - Verfahren zur abkühlung schmelzgesponnener filamente und vorrichtung zum schmelzspinnen - Google Patents
Verfahren zur abkühlung schmelzgesponnener filamente und vorrichtung zum schmelzspinnen Download PDFInfo
- Publication number
- WO2003064736A2 WO2003064736A2 PCT/EP2003/000632 EP0300632W WO03064736A2 WO 2003064736 A2 WO2003064736 A2 WO 2003064736A2 EP 0300632 W EP0300632 W EP 0300632W WO 03064736 A2 WO03064736 A2 WO 03064736A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steam
- cooling
- steam generator
- switched
- filaments
- Prior art date
Links
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
- D01D5/088—Cooling filaments, threads or the like, leaving the spinnerettes
Definitions
- the invention relates to a method for cooling melt-spun filaments according to the preamble of claim 1 and a device for melt spinning a plurality of strand-like filaments according to the preamble of claim 8.
- melt spinning a large number of strand-like filaments are extruded from a polymer melt through a large number of nozzle bores in a spinneret by means of a spinning device.
- the freshly spun filament strands are cooled after exiting the spinning device in order to be combined as a thread or bundle of threads.
- the cooling takes place by means of a cooling device which has a cooling shaft through which the filaments pass.
- the cooling shaft is connected to a coolant source, which supplies a conditioned cooling air to the cooling shaft.
- the cooling air is given a certain moisture content by the conditioning in order to obtain an intensive cooling of the filaments.
- Such a method and device are known for example from EP 0046 571 A2.
- the moisture content of the conditioned cooling air should have a constant humidity setpoint over time. However, this can only be ensured if there are no interruptions or faults in the conditioning of the cooling air, which can hardly be avoided in the known device by using a conditioning system.
- the object is achieved by a method with the features of claim 1 and by a device with the features of claim 8.
- the invention provides that the wet steam required for conditioning the cooling air is generated by a plurality of steam generators which are connected in parallel to the coolant source. This enables uniform and improved conditioning to be achieved. In addition, there is greater flexibility in the provision of steam.
- the required amount of steam as well as the number of steam generators can be coordinated with one another in such a way that a minimum steam quantity is not undercut even when the steam generator is in partial operation.
- the development of the invention according to claim 2 and claim 8 is particularly advantageous.
- at least one of the steam generators is switched to an idle state during the conditioning of the cooling air.
- the amount of steam required for conditioning is generated by the steam generators that are kept in the operating state.
- the steam generator which is in the idle state can now be serviced or cleaned without influencing the amount of steam generated.
- the switchover of the steam generators is carried out according to a predetermined sequence.
- the steam generators are connected to a control device, which ensure that each of the steam generators is put into an idle state one after the other.
- the steam generators can successively go through a rest phase for maintenance and cleaning without significant fluctuations in the generation of the required amount of steam.
- the change to switch over the steam generator can advantageously be determined by a cycle time which results, for example, from the cleaning or maintenance cycle of the steam generator. This ensures that the amount of steam emitted by each steam generator is generated with high constancy during the operating state of the respective steam generator.
- the method variant according to claim 7 is particularly advantageous for ensuring a constant amount of steam.
- the steam generator when one of the steam generators is switched from the idle state to the operating state, the steam generator is run through a pre-run state in order, for example, in a warm-up phase to obtain the operating state required Approach steam generation. Only after the preliminary state has ended is the next steam generator in the sequence switched from the operating state to the idle state.
- Fig. 1 shows schematically a device according to the invention for melt spinning a plurality of strand-like filaments
- Fig. 2 shows schematically a circuit diagram for switching the steam generator shown in Fig. 1
- the device 1 shows an exemplary embodiment of a device according to the invention for melt spinning a large number of strand-like filaments.
- the device has a spinning device 1 and a cooling device 2 arranged directly underneath the spinning device 1.
- the spinning device 1 contains a melt feed 3, which is connected, for example, to a melt source (not shown here), for example an extruder or a pump.
- the melt feed 3 leads to a spinning head 4.
- On the underside of the spinning head 4, one or more nozzle packs 5 are arranged, which contain a multiplicity of nozzle bores in order to extrude a multiplicity of strand-shaped filaments 6.
- a cooling shaft 7 of the cooling device 2 is arranged below the nozzle packet 5 and surrounds the emerging filaments 6.
- the cooling shaft 7 is connected via an air duct 8 to the outlet of a cooling fluid source 9.
- the cooling fluid source 9 is supplied with fresh air via an air inlet 10 arranged opposite the air supply 8.
- the cooling fluid source 9 is coupled to a plurality of steam generators 121, 122 and 123.
- each of the steam generators 121, 121, 122 and 123 each connected in parallel to the cooling fluid source 9 through the separate steam line 111, 112 and 113.
- the steam generators 121, 122 and 123 can be controlled via a control line 14 by a control device 13.
- a conditioned cooling air is introduced into the cooling shaft 7 via the air supply 8 through the cooling fluid source 9.
- the cooling fluid source 9 is supplied with fresh air on the one hand via the air inlet 10 and, on the other hand, the steam generated by the steam generators 121 and 122, for example 111 and 112, via at least two steam lines.
- the fresh air is mixed with the wet steam and blown into the air supply 8 as conditioned cooling air, for example by a fan.
- the steam generators 121, 122 or 123 can be designed, for example, as cylinders filled with water, in which the water is heated by means of electrical energy, for example directly through a power line in the water or according to the so-called immersion heater principle.
- minerals accumulate in the remaining cylinder water over the course of the operating time. Mineral enrichment has a disruptive effect on steam generation. If the max. permissible mineral content, the steam generator can even be damaged. A cleaning process is required after a certain operating time of the steam generator. Here, the mineral content is reduced by the so-called cutting off. When the water is removed, it is drained from the steam generator and refilled with fresh water.
- the steam generator 123 is switched from an operating state to a dysentery state by the control device 13, for example.
- the cooling fluid source 9 is only supplied with wet steam by the steam generators 121 and 122 for conditioning the cooling air.
- the control device 13 switches each of the steam generators 121, 122 or 123 from an operating state to the idle state and vice versa in a certain order.
- 2 shows a circuit diagram for the steam generators 121, 122 and 123.
- the horizontal line represents a time axis.
- the steam generators 121, 122 and 123 can optionally be switched to an operating state B, a pre-running state V or an idle state R.
- a respective desired amount of steam is generated by the respective steam generator and supplied to the cooling fluid source 9.
- a preheating phase takes place after a water change in the respective steam generator in order to heat the steam generator to the required steam temperature.
- the pre-run condition is always maintained after the idle state has ended before the steam generator is restarted.
- the steam generator goes through the cleaning phase in which it can be switched off for maintenance. If one now starts on the time axis at the time to, the steam generation in order to provide the amount of wet steam for conditioning the cooling air is generated by the steam generators 121 and 123.
- the steam generator 122 is switched to the idle state R and is ready for cleaning or maintenance.
- the idle state R of the steam generator 122 has ended.
- the steam generator 122 is switched to the pre-heating state V for preheating.
- time t 2 there follows a switchover in such a way that the steam generator 122 is switched from the preliminary state V to the operating state B and at the same time the steam generator 121 from the operating state B to the idle state R.
- the steam generator 121 goes through the idle state R and after Reaching the point in time t 3 the pre-run state V.
- the required amount of steam is generated by the steam generators 122 and 123 for conditioning the cooling air.
- the next switchover takes place, the steam generator 121 being switched back to the operating state B and the steam generator 123 being in the rest state R.
- the cycle time T for switching the steam generator results from the equation:
- the cycle time is constant in the exemplary embodiment shown in FIG. 2, so that a renewed switchover of the steam generator is initiated after each cycle time has elapsed.
- the cycle time for switching the steam generator could be derived from a maximum operating time of a steam generator, after which cleaning of the steam generator is required.
- the operating time of the steam generator according to the exemplary embodiment according to FIG. 2 would total twice the cycle time T.
- a sensor 15 is provided in FIG. 1 at the outlet of the cooling fluid source 9, which is connected via a signal line 16 to the control device 13.
- the moisture content of the conditioned cooling air can be detected by the sensor 15, for example.
- the signaled measured value of the moisture content is subjected to an actual-target comparison and, depending on the difference, a switchover of the steam generator is initiated.
- This process variant is particularly advantageous in order to achieve a high level of consistency in the conditioning of the cooling air. A high level of uniformity is achieved when the filaments cool, which results in very good constancy of the physical properties of the spun filaments.
- the device according to the invention shown in FIG. 1 is only one exemplary embodiment.
- the cooling fluid source could be connected to at least two steam generators or else to four, five or even more steam generators for conditioning the cooling air.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03734686A EP1470272B1 (de) | 2002-01-29 | 2003-01-23 | Verfahren zur abkühlung schmelzgesponnener filamente und vorrichtung zum schmelzspinnen |
DE50309685T DE50309685D1 (de) | 2002-01-29 | 2003-01-23 | Verfahren zur abkühlung schmelzgesponnener filamente und vorrichtung zum schmelzspinnen |
JP2003564319A JP2005516125A (ja) | 2002-01-29 | 2003-01-23 | 溶融紡糸されたフィラメントを冷却する方法および溶融紡糸するための装置 |
US10/889,907 US20040238997A1 (en) | 2002-01-29 | 2004-07-13 | Method and apparatus for cooling melt spun filaments |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10203296 | 2002-01-29 | ||
DE10203296.3 | 2002-01-29 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/889,907 Continuation US20040238997A1 (en) | 2002-01-29 | 2004-07-13 | Method and apparatus for cooling melt spun filaments |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2003064736A2 true WO2003064736A2 (de) | 2003-08-07 |
WO2003064736A3 WO2003064736A3 (de) | 2004-04-22 |
Family
ID=27634736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2003/000632 WO2003064736A2 (de) | 2002-01-29 | 2003-01-23 | Verfahren zur abkühlung schmelzgesponnener filamente und vorrichtung zum schmelzspinnen |
Country Status (6)
Country | Link |
---|---|
US (1) | US20040238997A1 (de) |
EP (1) | EP1470272B1 (de) |
JP (1) | JP2005516125A (de) |
CN (1) | CN1324173C (de) |
DE (1) | DE50309685D1 (de) |
WO (1) | WO2003064736A2 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE502006004562D1 (de) * | 2005-04-07 | 2009-10-01 | Oerlikon Textile Gmbh & Co Kg | Verfahren und vorrichtung zum schmelzspinnen und abkühlen einer vielzahl von filamenten |
EP2061919B1 (de) * | 2006-11-10 | 2013-04-24 | Oerlikon Textile GmbH & Co. KG | Verfahren und vorrichtung für schmelzspinnen und kühlen von kunstfasern |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1337210A (fr) * | 1960-12-20 | 1963-09-13 | Procédé et dispositif d'humidification de l'air, à effet instantané | |
DE10046611A1 (de) * | 1999-09-21 | 2001-03-29 | Barmag Barmer Maschf | Vorrichtung zum Abkühlen einer Filamentschar |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB541238A (en) * | 1940-04-17 | 1941-11-19 | Henry Dreyfus | Improvements in or relating to the manufacture of artificial textile materials and the like |
US3115385A (en) * | 1962-09-19 | 1963-12-24 | Du Pont | Quenching process |
US3908605A (en) * | 1974-11-01 | 1975-09-30 | Charles M Andersen | Automatic boiler blowdown apparatus and method |
US4362682A (en) * | 1980-08-21 | 1982-12-07 | Badische Corporation | Chip-free staple fiber process |
US4502842A (en) * | 1983-02-02 | 1985-03-05 | Colt Industries Operating Corp. | Multiple compressor controller and method |
CH673659A5 (de) * | 1987-03-05 | 1990-03-30 | Inventa Ag | |
JPH03137209A (ja) * | 1989-10-23 | 1991-06-11 | Kanebo Ltd | 合成繊維の紡糸冷却方法及び装置 |
JPH0670300B2 (ja) * | 1990-05-31 | 1994-09-07 | 米原 隆 | 無電界不織布成形法 |
US5193491A (en) * | 1991-04-01 | 1993-03-16 | Delaware Capital Formation, Inc. | Cleaning system for boiler |
FR2693789B1 (fr) * | 1992-07-17 | 1994-10-07 | Trouvay & Cauvin Ets | Générateur de vapeur à cloisons poreuses. |
CN1082123A (zh) * | 1992-08-11 | 1994-02-16 | 中国科学院山西煤炭化学研究所 | 湿法含氟纤维的纺丝方法 |
JP4335987B2 (ja) * | 1998-11-04 | 2009-09-30 | ユニチカ株式会社 | ポリ乳酸系マルチフィラメントの製造方法 |
US6298656B1 (en) * | 2000-09-29 | 2001-10-09 | Siemens Westinghouse Power Corporation | Compressed air steam generator for cooling combustion turbine transition section |
-
2003
- 2003-01-23 JP JP2003564319A patent/JP2005516125A/ja active Pending
- 2003-01-23 WO PCT/EP2003/000632 patent/WO2003064736A2/de active IP Right Grant
- 2003-01-23 CN CNB038028859A patent/CN1324173C/zh not_active Expired - Fee Related
- 2003-01-23 EP EP03734686A patent/EP1470272B1/de not_active Expired - Lifetime
- 2003-01-23 DE DE50309685T patent/DE50309685D1/de not_active Expired - Lifetime
-
2004
- 2004-07-13 US US10/889,907 patent/US20040238997A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1337210A (fr) * | 1960-12-20 | 1963-09-13 | Procédé et dispositif d'humidification de l'air, à effet instantané | |
DE10046611A1 (de) * | 1999-09-21 | 2001-03-29 | Barmag Barmer Maschf | Vorrichtung zum Abkühlen einer Filamentschar |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 015, no. 353 (C-0865), 6. September 1991 (1991-09-06) & JP 03 137209 A (KANEBO LTD), 11. Juni 1991 (1991-06-11) * |
Also Published As
Publication number | Publication date |
---|---|
WO2003064736A3 (de) | 2004-04-22 |
DE50309685D1 (de) | 2008-06-05 |
EP1470272A2 (de) | 2004-10-27 |
CN1324173C (zh) | 2007-07-04 |
CN1694980A (zh) | 2005-11-09 |
EP1470272B1 (de) | 2008-04-23 |
US20040238997A1 (en) | 2004-12-02 |
JP2005516125A (ja) | 2005-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1951936B1 (de) | Verfahren und vorrichtung zum schmelzspinnen und abkühlen eines multifilen fadens mit kühllufttemperaturmessung innerhalb des filamentbündels | |
EP0809723B1 (de) | Verfahren und Vorrichtung zum Schmelzspinnen von Polyurethan und/oder Polyurethanharnstoff | |
EP1771371A1 (de) | Verfahren und vorrichtung zur qualitätssteuerung bei herstellung eines strangförmigen polymerproduktes | |
EP1587972A1 (de) | Vorrichtung und verfahren zum spinnen farbiger fasern | |
EP3692188A1 (de) | Vorrichtung für die extrusion von filamenten und herstellung von spinnvliesstoffen | |
DE102016014976A1 (de) | Verfahren und Vorrichtung zum Schmelzspinnen eines Fadens | |
EP0837161A2 (de) | Verfahren und Vorrichtung zum Spinnen von thermoplastischen Fäden | |
EP0781877B1 (de) | Schmelzespinnvorrichtung | |
EP1470272B1 (de) | Verfahren zur abkühlung schmelzgesponnener filamente und vorrichtung zum schmelzspinnen | |
EP2783028A1 (de) | Vorrichtung zur herstellung eines spinnkabels | |
EP1838908B1 (de) | Verfahren und vorrichtung zum schmelzspinnen und texturieren einer vielzahl von multifilen faeden | |
WO2005098098A1 (de) | Verfahren und vorrichtung zum schmelzspinnen mehrerer multifiler fäden | |
WO2005038105A1 (de) | Verfahren und vorrichtung zum herstellen eines effektgarnes | |
DE2218239C3 (de) | Vorrichtung zum Schmelzspinnen von Filamenten aus einem synthetischen Polymerisat | |
EP1689918B1 (de) | Verfahren und vorrichtung zur auftragssteuerung eines herstellungsprozesses für ein faserprodukt | |
DE3521571C1 (de) | Verfahren und Vorrichtung fuer die Herstellung von Monofilfaeden geringer Dickentoleranz aus thermoplastischem Kunststoff | |
DE19956251A1 (de) | Einrichtung zum Herstellen künstlicher Filamente | |
DE10335469A1 (de) | Vorrichtung zum Schmelzspinnen synthetischer Fäden | |
WO2005033697A1 (de) | Verfahren und vorrichtung zur überwachung eines fadens | |
DE10145640A1 (de) | Verfahren und Vorrichtung zur Herstellung gerader keramischer Fasern | |
EP0622480A1 (de) | Verfahren zur Dosierung vorgebbarer Mengen von Faserflocken unterschiedlicher Qualität und/oder Farbe | |
DE10343460A1 (de) | Vorrichtung zum Spinnen und Aufwickeln zumindest eines synthetischen Fadens | |
DE102018006531A1 (de) | Verfahren zu Überwachung eines Schmelzspinnprozesses und Schmelzspinnvorrichtung | |
EP1846599A1 (de) | Verfahren und vorrichtung zum stauchkraeuseln eines multifilen fadens | |
EP1527219A1 (de) | Verfahren und vorrichtung zum spinnen und texturieren von synthetischen fäden |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): CN JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 10889907 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003564319 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20038028859 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003734686 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2003734686 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 2003734686 Country of ref document: EP |