WO2003063268A1 - Sealing gasket for alkali battery - Google Patents

Sealing gasket for alkali battery Download PDF

Info

Publication number
WO2003063268A1
WO2003063268A1 PCT/JP2003/000493 JP0300493W WO03063268A1 WO 2003063268 A1 WO2003063268 A1 WO 2003063268A1 JP 0300493 W JP0300493 W JP 0300493W WO 03063268 A1 WO03063268 A1 WO 03063268A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal plate
gasket
sealing gasket
alkaline battery
ribs
Prior art date
Application number
PCT/JP2003/000493
Other languages
French (fr)
Japanese (ja)
Inventor
Takuji Ogawa
Hidenori Tsuzuki
Shuji Murakami
Katsuhiro Yamashita
Yoshiro Harada
Original Assignee
Fdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002011409A external-priority patent/JP4186468B2/en
Priority claimed from JP2002066670A external-priority patent/JP4186485B2/en
Application filed by Fdk Corporation filed Critical Fdk Corporation
Publication of WO2003063268A1 publication Critical patent/WO2003063268A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/171Lids or covers characterised by the methods of assembling casings with lids using adhesives or sealing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/167Lids or covers characterised by the methods of assembling casings with lids by crimping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • H01M50/188Sealing members characterised by the disposition of the sealing members the sealing members being arranged between the lid and terminal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/367Internal gas exhaust passages forming part of the battery cover or case; Double cover vent systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a synthetic resin sealing gasket interposed between a positive electrode can and a negative electrode terminal plate of an alkaline battery.
  • a conventional alkaline battery will be described with reference to FIGS. 8 and 9.
  • the open end of the positive electrode can 2 of the alkaline battery 1 is sealed with the negative electrode terminal plate 3 through the gasket 6, and the negative electrode terminal plate 3 is closed.
  • a gas outlet 4 is formed in the periphery, and the upper end of a rod-shaped current collector 5 is welded to the center of the inner surface.
  • the gasket 6 has a cylindrical boss portion 61 fitted to the rod-shaped current collector 5, a thin safety valve portion 62 formed around the boss portion, and further from the safety valve portion 62 toward the outer peripheral end of the gasket.
  • connection part 63 a buffer ring 65 having an inverted U-shaped cross section, a flat part 66 contacting the inner bottom surface of the negative terminal plate, and the outer end of the negative terminal plate 3 are crimped by the open end of the positive electrode can. And a fastening portion 67.
  • the thickness of the safety valve portion 62 is set such that the safety valve portion 62 is broken when the pressure in the battery reaches a predetermined pressure in order to avoid rupture due to abnormal internal pressure due to misuse of the battery 1 or the like. Further, the buffer ring 65 having an inverted U-shaped cross section is formed so as not to apply a stress that would break the safety valve portion 62 when the battery 1 is assembled.
  • the present invention provides a battery for an alkaline battery that can sufficiently release gas and, at the same time, can release an abnormal internal pressure immediately even if the gas flow rate is large to avoid rupture. It is intended to provide a sealing gasket. Disclosure of the invention
  • a passage portion which becomes a ventilation portion when the safety valve portion is operated is formed on an outer peripheral portion of the boss portion 61 closer to the terminal plate 3 than the safety valve portion 62.
  • a plurality of lips are provided on the connecting portion 63 along the circumferential direction so as to protrude toward the negative electrode terminal plate, and a plurality of ventilation grooves are formed in the buffer ring 65 by being circumferentially separated.
  • a preferred method of forming the passage on the outer periphery of the boss 61 is to partially reduce the diameter of the boss.
  • FIG. 1 is a partial cross-sectional view showing a portion on the negative electrode terminal plate side of an alkaline battery to which a sealing gasket according to a first embodiment of the present invention is assembled,
  • FIGS. 2 (a) to 2 (c) are perspective views showing three modified examples of the sealing gasket according to the first embodiment of the present invention.
  • FIGS. 3 (a) to 3 (c) are half sectional views showing the operating state of the safety valve portion of the sealing gasket shown in FIG. 1,
  • FIG. 5 is a partial cross-sectional view showing a part on the negative electrode terminal plate side of an alkaline battery to which a sealing gasket according to a second embodiment of the present invention is assembled
  • FIG. 6 is a perspective view of a sealing gasket according to a third embodiment of the present invention.
  • FIG. 7 is an explanatory view of a gasket used for a performance test of a sealing gasket according to a third embodiment of the present invention.
  • FIG. 8 is a partial cross-sectional view showing a portion on the negative electrode terminal plate side of an alkaline battery in which a conventional sealing gasket is assembled
  • 9 (a) to 9 (c) are half sectional views showing the operating state of the safety valve portion of the conventional sealing gasket.
  • the sealing gasket 6 is interposed between the open end of the positive electrode can 2 of the alkaline battery 1 and the negative electrode terminal plate 3, and is different from the conventional example.
  • a cylindrical boss part 61 fitted to the rod-shaped current collector 5, a thin safety valve part 62 formed around the boss part, and a safety valve part 62 from the outer peripheral end of the gasket.
  • the connecting portion 63 toward the direction, the buffer ring 65 having an inverted U-shaped cross section, the flat portion 66 contacting the inner bottom surface of the negative electrode terminal plate, and the outer end of the negative electrode terminal plate 3 by the open end of the positive electrode can It has a fastening portion 67 to be crimped.
  • the outer peripheral portion above the boss portion 61 that is, from the safety valve portion 62, the negative terminal plate.
  • a passage portion 61a is formed in the outer peripheral portion of the third side edge by reducing the diameter of the portion, and a connecting portion 63 is formed as shown in FIG. 2 (a).
  • the six ribs 64 protrude from the negative electrode terminal plate 2 side at equal angular intervals (60 ° intervals) on the circumference.
  • the loose ring 65 has six ventilation grooves 65a formed at regular angular intervals (60 ° intervals) on the circumference.
  • the ribs 64 and the ventilation grooves 65a are arranged on the same straight line in the radial direction, and the circumferential width of each rib 64 is smaller than the circumferential width of each ventilation groove 65a. It is formed.
  • the sealing gasket 6 Since the sealing gasket 6 has the above configuration, when the internal pressure of the battery 1 rises and reaches a predetermined pressure, as shown in FIGS. 3 (a) to (c), Since the safety valve portion 62 of the sealing gasket 6 is broken and the connecting portion 63 is deformed toward the negative terminal plate 3, the gas escapes from the gap between the safety valve 62 and the boss portion 61 to release the internal pressure. At this time, The gap between the break portion of the safety valve portion 62 and the boss portion 61 is sufficiently ensured by the passage portion 61a having the boss portion reduced in diameter.
  • the presence of the plurality of ribs 64 that are separated in the circumferential direction prevents the connecting portion 63 from completely contacting the inner surface of the negative electrode terminal plate 3 and blocking the gas discharge path as in the related art. Can move to the outer peripheral side of the negative electrode terminal plate. Even if the inverted U-shaped buffer ring 65 is pressed against the inner surface of the terminal plate 3 by internal pressure, a plurality of ventilation grooves 65 a are formed in the buffer ring so as to be separated in the circumferential direction. Therefore, the gas passes through the ventilation groove 65 a without interruption and is discharged from the exhaust port 4 formed in the outer peripheral portion of the terminal plate 3. Therefore, rupture due to abnormal internal pressure due to misuse of the alkaline battery 1 and the like can be avoided, and a highly safe alkaline battery 1 can be provided.
  • the number of the ribs 64 is reduced to three so that the circumferential spacing of these ribs 64 is made non-uniform, and some of the ribs 6 4 And a part of the ventilation groove 65 a are arranged on the same straight line in the radial direction, and-the remaining rib 64 and the remaining ventilation groove 65 a are arranged on different straight lines in the radial direction. It is also possible.
  • FIGS. 4 and 5 show a second embodiment of the present invention, this is Te second embodiment odors are changing heights of the plurality of ribs 6 4 of the first embodiment partially.
  • the number of ribs 64 is four, and two adjacent ribs 64a of the four ribs are larger than the other two ribs 64b.
  • the height in the direction of the negative electrode terminal plate from the base is increased.
  • the shape of the ribs 64 is a rectangular parallelepiped. However, the shape may be an arc as in the first embodiment.
  • the reason for changing the height of the lip in this way is that, for example, when the battery generates heat due to the reverse of the battery, the gasket softens and the internal pressure of the battery increases, and when the rib heights are all the same, The gasket is extended and the thin safety valve section 62 does not break, and the upper surface shown in the figure of the gasket approaches the negative terminal plate without breaking, and all the ribs 6 4 abut the lower surface of the negative terminal plate 3 at the same time.
  • the flat surface of the connecting portion 63 between the ribs may be in close contact with the negative electrode terminal plate, and at the same time, the safety valve portion 62 may be broken.
  • the connecting portion 63 of the gasket 6 which is in close contact with the negative electrode terminal plate 3 makes the internal gas discharge passage. This will block the road and cause the battery to explode.
  • the gasket softens and the internal pressure of the battery rises as described above.
  • the connecting portion 63 approaches the negative terminal plate, first, the high ribs 64a contact the inner surface of the terminal plate, and the further rise is stopped.
  • the thin safety valve portion 62 between the high rib 64a and the low rib 64b is formed by the thinner rib. The rib 64b is pulled obliquely by the rise of the rib 64b, whereby the thin safety valve portion 62 is surely broken.
  • two ribs 64 a of the four ribs 64 are higher than the remaining two ribs 64 b, and these are arranged in the circumferential direction of the sealing gasket 1.
  • the example in which the ribs are formed at equal intervals has been described.
  • the angular intervals in the circumferential direction of the ribs 64a and 64b can be made nonuniform.
  • one high rib 64a and one low rib 64b can be used.
  • a is the width of the rib 64 in the circumferential direction (short side)
  • b indicates the width (long side) of the rib in the radial direction
  • c indicates the height of the rib
  • d indicates the distance from the base of the rib to the inner surface of the terminal plate as shown in FIG.
  • the height of at least one of the ribs was 1 Z 3 or more, which is the distance between the negative electrode terminal and the base of the rib, among the 40 in the 8 direct test, bursting occurred. Has been reduced to two or less.
  • the sealing gasket for an alkaline dry battery when the sealing gasket is softened by heat, the high rib contacts the negative electrode terminal.
  • the opposite side near the lower rib ensures that the safety valve breaks, and the connecting part of the gasket around the lower rib is in close contact with the inner surface of the negative electrode terminal plate and blocks the gas escape path. (Nearby) Since gas is released from the power, a sealing gasket for alkaline batteries that is highly safe even at high temperatures can be provided.
  • FIG. 6 and 7 show a third embodiment of the present invention using a nylon resin as the sealing gasket.
  • the gasket penetrates from the inner surface to the outer surface, and then travels along the outer surface of the gasket onto the negative electrode terminal plate and combines with moisture (OH-I) to cause a liquid leakage phenomenon (hydrational aqueous solution It was presumed that it would appear as (generation), and improvements were made.
  • a circumference is formed between the ventilation grooves 65 a on the upper surface of the inverted U-shaped buffer ring 65 on the side of the negative electrode terminal plate 3.
  • Six first chevron projections 68 are formed at equal intervals in the direction, and eight second chevron projections are formed on the upper surface of the flat portion 66 contacting the inner bottom surface of the outer periphery of the negative electrode terminal plate 3. 69 are formed physically.
  • the portion where the gasket contacts the negative electrode terminal plate except for the outer peripheral fastening portion 67 is only the upper end face of the first angle projection 68 and the second angle projection 69. Therefore, the amount of permeated ions passing through the nylon gasket 5 is extremely small, and leakage of the electrolytic solution to the surface of the negative electrode terminal plate can be substantially prevented.
  • the correlation between the width of the chevron and the leakage of electrolyte to the outer surface of the negative electrode terminal plate was confirmed by experiments.
  • the first projection 68 of the buffer ring 65 of the gasket made of NIPPON was designed so that the first projection 68 did not directly contact the inner bottom surface of the negative electrode terminal plate 3. Only the eight second protrusions 69 of the flat portion 66 contacting the inner bottom of the terminal plate are in contact with the inner bottom surface of the negative terminal plate 3. Then, as shown in FIG. 7, the ratio of the total width L (LX 8) of the upper end of the second protrusion 69 abutting on the negative electrode terminal plate 3 (LX 8) to the circumference 2 ⁇ r passing through the center of the protrusion 69. ((LX 8) / 2 ⁇ r) was varied and the number of liquid leaks on the surface of the negative electrode terminal plate was counted over time. The results are shown in Table 2. The number of samples was 40 each.
  • the gasket is formed of a resin, and a plurality of projections 69 are formed on the surface of a relatively thin portion of the gasket.
  • the socket 6 comes into contact with the inner surface of the negative electrode terminal plate 3.
  • the force of the electrolyte solution in the dry battery only permeates the nylon gasket at the narrow projections that come into contact with the inner surface of the negative electrode terminal plate, the amount of the permeation is reduced and the electrolytic ions on the surface of the terminal plate are reduced. Liquid leakage can be prevented.
  • the gap between the broken portion of the safety valve portion 62 and the boss portion 61 is sufficiently widened.
  • the gas escapes from the ventilation groove 65 a force without interruption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

A sealing gasket installed between the positive pole can and the negative terminal plate of an alkali battery, comprising a cylindrical boss part fitted to a bar-like collector fixed to the center inner surface of the negative pole terminal plate, a thin-walled safety valve part formed around the boss part, a connection part facing from the safety valve part toward the outer peripheral end of the gasket, a buffer ring of reverse U-shape in cross section, a flat part in contact with the outer peripheral inner bottom surface of the negative pole terminal plate, and a tightening part crimped to the outer peripheral end of the negative pole terminal plate by the opening end of the positive pole can, wherein a passage part forming a vent part when the safety valve part is operated is formed at the outer peripheral part of the boss part on a side nearer the terminal plate than the safety valve part, a plurality of ribs are projectedly installed on the connection part on the negative pole terminal plate side along the circumferential direction thereof, and a plurality of circumferentially separated vent grooves are formed in the buffer ring.

Description

糸田 ¾ アルカリ電池用の封口ガスケット 技術分野  Itoda 口 Seal gasket for alkaline batteries
本発明は、 アルカリ電池の正極缶と負極端子板との間に介装される合成樹脂製の 封口ガスケットに関するものである。  The present invention relates to a synthetic resin sealing gasket interposed between a positive electrode can and a negative electrode terminal plate of an alkaline battery.
. 背景技術 Background technology
従来のアルカリ電池を第 8図及び第 9図を参照にして説明すると、 アルカリ電池 1の正極缶 2の開口端部がガスケット 6を介して負極端子板 3にて封口され、 負極 端子板 3の周縁部にはガス排出口 4が穿設され、 また内面中央部には棒状集電体 5 の上端が溶接されている。 ガスケット 6は棒状集電体 5に嵌着されている円筒状の ボス部 6 1と、 ボス部の周囲に形成された薄肉の安全弁部 6 2と、 更に安全弁部 6 2からガスケットの外周端方向に向けて連結部 6 3と、 断面逆 U字形の緩衝リング 6 5と、 負極端子板の外周内底面に接する平坦部 6 6と、 正極缶の開口端によって 負極端子板 3外周端に圧着される締付部 6 7とを有している。  A conventional alkaline battery will be described with reference to FIGS. 8 and 9. The open end of the positive electrode can 2 of the alkaline battery 1 is sealed with the negative electrode terminal plate 3 through the gasket 6, and the negative electrode terminal plate 3 is closed. A gas outlet 4 is formed in the periphery, and the upper end of a rod-shaped current collector 5 is welded to the center of the inner surface. The gasket 6 has a cylindrical boss portion 61 fitted to the rod-shaped current collector 5, a thin safety valve portion 62 formed around the boss portion, and further from the safety valve portion 62 toward the outer peripheral end of the gasket. The connection part 63, a buffer ring 65 having an inverted U-shaped cross section, a flat part 66 contacting the inner bottom surface of the negative terminal plate, and the outer end of the negative terminal plate 3 are crimped by the open end of the positive electrode can. And a fastening portion 67.
安全弁部 6 2はアル力リ電池 1の誤使用などによる異常内圧に起因する破裂を避 けるために電池内の圧力が所定圧力に達した時に破断するように肉厚が設定されて いる。 さらに断面逆 U字形の緩衝リング 6 5はアル力リ電池 1の組立時に安全弁部 6 2を破断するような応力がかからないよう形成されたものである。  The thickness of the safety valve portion 62 is set such that the safety valve portion 62 is broken when the pressure in the battery reaches a predetermined pressure in order to avoid rupture due to abnormal internal pressure due to misuse of the battery 1 or the like. Further, the buffer ring 65 having an inverted U-shaped cross section is formed so as not to apply a stress that would break the safety valve portion 62 when the battery 1 is assembled.
そして、アルカリ電池 1の内圧が上昇して所定の圧力に達した場合には、図 9 ( a ) 〜 (c ) に示すように、 封口ガスケット 6の安全弁部 6 2が破断し、 連結部 6 3が 内圧方向に変形するため、 安全弁部 6 2とボス部 6 1との隙間からガスが逃げ、 排 出口 4を通して内圧が開放される機構となっている。  Then, when the internal pressure of the alkaline battery 1 increases and reaches a predetermined pressure, as shown in FIGS. 9A to 9C, the safety valve portion 62 of the sealing gasket 6 is broken, and the connecting portion 6 Since 3 is deformed in the direction of the internal pressure, gas escapes from the gap between the safety valve portion 62 and the boss portion 61, and the internal pressure is released through the discharge port 4.
し力 し、 このような構造では次のような不都合があった。 第 1に、 安全弁部 6 2 が破断してもボス部 6 1との隙間がもともと狭小であることに加えて、 連結部 6 3 が内圧方向に変形しても、 安全弁部 6 2の破断部はボス部 6 1の外周に沿って移動 するため、 安全弁部 6 2とボス部 6 1との隙間はあまり広がらないので、 アルカリ 電池 1内のガスを十分に逃がすことができない。 第 2に、 連結部 6 3は最終的に負極端子板 2に当接して止まるため、 この部分で もガスの抜けが妨げられ、 特にガス流量が多い場合は内圧の開放が遅れてアル力リ 電池 1が破裂してしまう恐れがある。 However, such a structure had the following disadvantages. First, even if the safety valve section 62 breaks, the gap between the safety valve section 62 and the boss section 61 is originally narrow. Since the gas moves along the outer periphery of the boss portion 61, the gap between the safety valve portion 62 and the boss portion 61 is not so widened, so that the gas in the alkaline battery 1 cannot be sufficiently released. Secondly, since the connecting portion 63 finally comes into contact with the negative electrode terminal plate 2 and stops, gas escape is also prevented at this portion. Battery 1 may explode.
本発明は、 このような事情に鑑み、 ガスを十分に逃がすことができると同時に、 ガス流量が多くても異常内圧を即座に開放して破裂を回避することが可能なアル力 リ電池用の封口ガスケットを提供することを目的とする。 発明の開示  In view of such circumstances, the present invention provides a battery for an alkaline battery that can sufficiently release gas and, at the same time, can release an abnormal internal pressure immediately even if the gas flow rate is large to avoid rupture. It is intended to provide a sealing gasket. Disclosure of the invention
上記の目的を達成するため、 本発明では前記ボス部 6 1の前記安全弁部 6 2より 前記端子板 3に近い側の外周部に前記安全弁部が作動したときに通気部となる通路 部を形成し、 前記連結部 6 3に周方向に沿って複数個のリプを前記負極端子板側に 突設し、 前記緩衝リング 6 5に周方向に分離して複数個の通気溝を形成したのであ る。  In order to achieve the above object, in the present invention, a passage portion which becomes a ventilation portion when the safety valve portion is operated is formed on an outer peripheral portion of the boss portion 61 closer to the terminal plate 3 than the safety valve portion 62. A plurality of lips are provided on the connecting portion 63 along the circumferential direction so as to protrude toward the negative electrode terminal plate, and a plurality of ventilation grooves are formed in the buffer ring 65 by being circumferentially separated. You.
ボス部 6 1の外周に通路部を形成する好適な方法は、 ボス部を部分的に縮径する ことである。  A preferred method of forming the passage on the outer periphery of the boss 61 is to partially reduce the diameter of the boss.
こうした構成を採用することにより、 アル力リ電池の内圧上昇によつて安全弁部 6 2が破断して連結部 6 3が内圧方向に変形すると、 安全弁部 6 2の破断部とボス 部 6 1との隙間が十分に広がるとともに、 リブが負極端子板に当接して止まっても ガスが滞りなく通気溝から抜けるように作用する。 図面の簡単な説明  By adopting such a configuration, when the internal pressure of the battery increases and the safety valve portion 62 is broken and the connecting portion 63 is deformed in the internal pressure direction, the broken portion of the safety valve portion 62 and the boss portion 61 become The gap between the ribs is sufficiently widened, and even if the ribs come into contact with the negative electrode terminal plate and stop, the gas acts to escape from the ventilation groove without interruption. BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明の第 1の実施形態に係る封口ガスケットが組み付けられたアル力 リ電池の負極端子板側の部分を示す部分断面図、  FIG. 1 is a partial cross-sectional view showing a portion on the negative electrode terminal plate side of an alkaline battery to which a sealing gasket according to a first embodiment of the present invention is assembled,
第 2図 (a ) 〜 (c ) は本発明の第 1の実施形態に係る封口ガスケットの 3つの 変形例を示す斜視図、  2 (a) to 2 (c) are perspective views showing three modified examples of the sealing gasket according to the first embodiment of the present invention,
第 3図 (a ) 〜 (c ) は第 1図に示す封口ガスケットの安全弁部の作動状態を示 す半断面図、  FIGS. 3 (a) to 3 (c) are half sectional views showing the operating state of the safety valve portion of the sealing gasket shown in FIG. 1,
第 4図 (a ) 〜 (c ) は本発明の第 2の実施形態に係る封口ガスケットの 3つの 変形例を示す斜視図、 第 5図は本発明の第 2の実施形態に係る封口ガスケットが組み付けられたアル力 リ電池の負極端子板側の部分を示す部分断面図、 4 (a) to 4 (c) are perspective views showing three modified examples of the sealing gasket according to the second embodiment of the present invention. FIG. 5 is a partial cross-sectional view showing a part on the negative electrode terminal plate side of an alkaline battery to which a sealing gasket according to a second embodiment of the present invention is assembled,
第 6図は本発明の第 3の実施形態に係る封口ガスケットの斜視図、  FIG. 6 is a perspective view of a sealing gasket according to a third embodiment of the present invention,
第 7図は本発明の第 3の実施形態に係る封口ガスケットの性能テストに用いたガ スケットの説明図、  FIG. 7 is an explanatory view of a gasket used for a performance test of a sealing gasket according to a third embodiment of the present invention,
第 8図は従来の封口ガスケットが組み付けられたアル力リ電池の負極端子板側の 部分を示す部分断面図、  FIG. 8 is a partial cross-sectional view showing a portion on the negative electrode terminal plate side of an alkaline battery in which a conventional sealing gasket is assembled,
第 9図 ( a ) 〜 ( c ) は従来の封口ガスケットの安全弁部の作動状態を示す半断 面図である。 発明を実施するための最良の形態  9 (a) to 9 (c) are half sectional views showing the operating state of the safety valve portion of the conventional sealing gasket. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係る封口ガスケット 6は、 第 1図に示すように、 アルカリ電池 1の正極 缶 2の開口端部と負極端子板 3との間に介装されるものであり、 従来例の場合と同 様に、 棒状集電体 5に嵌着されている円筒状のボス部 6 1と、 ボス部の周囲に形成 された薄肉の安全弁部 6 2と、 更に安全弁部 6 2からガスケットの外周端方向に向 けて連結部 6 3と、 断面逆 U字形の緩衝リング 6 5と、 負極端子板の外周内底面に 接する平坦部 6 6と、 正極缶の開口端によって負極端子板 3外周端に圧着される締 付部 6 7とを有している。  As shown in FIG. 1, the sealing gasket 6 according to the present invention is interposed between the open end of the positive electrode can 2 of the alkaline battery 1 and the negative electrode terminal plate 3, and is different from the conventional example. Similarly, a cylindrical boss part 61 fitted to the rod-shaped current collector 5, a thin safety valve part 62 formed around the boss part, and a safety valve part 62 from the outer peripheral end of the gasket. The connecting portion 63 toward the direction, the buffer ring 65 having an inverted U-shaped cross section, the flat portion 66 contacting the inner bottom surface of the negative electrode terminal plate, and the outer end of the negative electrode terminal plate 3 by the open end of the positive electrode can It has a fastening portion 67 to be crimped.
そして、 本発明ではボス部 6 1の上方外周部、 即ち安全弁部 6 2より負極端子板 In the present invention, the outer peripheral portion above the boss portion 61, that is, from the safety valve portion 62, the negative terminal plate.
3側の端縁外周部、 には当該部分を縮径することによつて通路部 6 1 aが形成され ており、 また、 連結部 6 3には、 第 2図 (a ) に示すように、 6個のリブ 6 4が円 周上に等角度間隔 (6 0 ° 間隔) で負極端子板 2側に突設されている。 また、 緩種 ί リング 6 5には 6個の通気溝 6 5 aが円周上に等角度間隔 (6 0 ° 間隔) で形成さ れている。 ここで、 リブ 6 4と通気溝 6 5 aとは径方向の同一直線上に配置してお り、 各リブ 6 4の周方向の幅は各通気溝 6 5 aの周方向の幅より小さく形成されて いる。 A passage portion 61a is formed in the outer peripheral portion of the third side edge by reducing the diameter of the portion, and a connecting portion 63 is formed as shown in FIG. 2 (a). The six ribs 64 protrude from the negative electrode terminal plate 2 side at equal angular intervals (60 ° intervals) on the circumference. The loose ring 65 has six ventilation grooves 65a formed at regular angular intervals (60 ° intervals) on the circumference. Here, the ribs 64 and the ventilation grooves 65a are arranged on the same straight line in the radial direction, and the circumferential width of each rib 64 is smaller than the circumferential width of each ventilation groove 65a. It is formed.
封口ガスケット 6は以上のような構成を有するので、 アル力リ電池 1の内圧が上 昇して所定の圧力に達した場合には、 第 3図 (a ) 〜 (c ) に示すように、 封ロガ スケット 6の安全弁部 6 2が破断し、連結部 6 3が負極端子板 3側に変形するため、 安全弁 6 2とボス部 6 1との隙間からガスが逃げて内圧が開放される。 このとき、 安全弁部 6 2の破断部とボス部 6 1との隙間がボス部の縮径した通路部 6 1 aによ つて十分に確保される。 また、 周方向に分離した複数個のリブ 6 4の存在によって 従来のように連結部 6 3が負極端子板 3内面に全面的に接触してガスの排出路を塞 ぐことがないので、 ガスは負極端子板の外周側に移動できる。 そしてまた、 逆 U字 状の緩衝リング 6 5が内圧によつて端子板 3の内面に圧着していても、 緩衝リング には周方向に分離して複数個の通気溝 6 5 aが形成されているので、 ガスは滞りな く通気溝 6 5 aを通り、 端子板 3の外周部に穿設された排気口 4から排出される。 したがって、 アルカリ電池 1の誤使用などによる異常内圧に起因する破裂を回避す ることができ、 安全性の高いアル力リ電池 1を提供することが可能となる。 Since the sealing gasket 6 has the above configuration, when the internal pressure of the battery 1 rises and reaches a predetermined pressure, as shown in FIGS. 3 (a) to (c), Since the safety valve portion 62 of the sealing gasket 6 is broken and the connecting portion 63 is deformed toward the negative terminal plate 3, the gas escapes from the gap between the safety valve 62 and the boss portion 61 to release the internal pressure. At this time, The gap between the break portion of the safety valve portion 62 and the boss portion 61 is sufficiently ensured by the passage portion 61a having the boss portion reduced in diameter. In addition, the presence of the plurality of ribs 64 that are separated in the circumferential direction prevents the connecting portion 63 from completely contacting the inner surface of the negative electrode terminal plate 3 and blocking the gas discharge path as in the related art. Can move to the outer peripheral side of the negative electrode terminal plate. Even if the inverted U-shaped buffer ring 65 is pressed against the inner surface of the terminal plate 3 by internal pressure, a plurality of ventilation grooves 65 a are formed in the buffer ring so as to be separated in the circumferential direction. Therefore, the gas passes through the ventilation groove 65 a without interruption and is discharged from the exhaust port 4 formed in the outer peripheral portion of the terminal plate 3. Therefore, rupture due to abnormal internal pressure due to misuse of the alkaline battery 1 and the like can be avoided, and a highly safe alkaline battery 1 can be provided.
なお、 上述の実施形態においては、 第 2図 (a ) に示すように、 リブ 6 4と通気 溝 6 5 aとを径方向の同一直線上に配置した封口ガスケット 6について説明した力 第 2図 (b ) に示すように、 リブ 6 4と通気溝 6 5 aとを径方向の互いに異なる直 線上に配設しても構わない。 或いはまた、 第 2図 (c ) に示すように、 リブ 6 4の 個数を 3個に減らして、 これらのリブ 6 4の円周方向の間隔を不均一なものとし、 一部のリブ 6 4と一部の通気溝 6 5 aとを径方向の同一直線上に配設するとともに、 -残部のリブ 6 4と残部の通気溝 6 5 aとを径方向の互いに異なる直線上に配設する ことも可能である。  In the above-described embodiment, as shown in FIG. 2 (a), the force described for the sealing gasket 6 in which the ribs 64 and the ventilation grooves 65a are arranged on the same straight line in the radial direction. As shown in (b), the ribs 64 and the ventilation grooves 65a may be arranged on different radial lines. Alternatively, as shown in FIG. 2 (c), the number of the ribs 64 is reduced to three so that the circumferential spacing of these ribs 64 is made non-uniform, and some of the ribs 6 4 And a part of the ventilation groove 65 a are arranged on the same straight line in the radial direction, and-the remaining rib 64 and the remaining ventilation groove 65 a are arranged on different straight lines in the radial direction. It is also possible.
第 4図及び第 5図は本発明の第 2の実施形態を示し、 この第2の実施形態におい ては第 1の実施形態における複数のリブ 6 4の高さを部分的に変えている。 FIGS. 4 and 5 show a second embodiment of the present invention, this is Te second embodiment odors are changing heights of the plurality of ribs 6 4 of the first embodiment partially.
第 4図 (a ) においては、 リブ 6 4の個数を 4個とし、 その 4個のリブのうちの隣 接する 2個のリブ 6 4 aを他の隣接する 2個のリブ 6 4 bよりも基部から負極端子 板方向の高さを高くしている。 なお、 この実施形態ではリブ 6 4の形状を直方体状 としているが、 この形状は第 1実施形態のような円弧状でもかまわない。  In FIG. 4 (a), the number of ribs 64 is four, and two adjacent ribs 64a of the four ribs are larger than the other two ribs 64b. The height in the direction of the negative electrode terminal plate from the base is increased. In this embodiment, the shape of the ribs 64 is a rectangular parallelepiped. However, the shape may be an arc as in the first embodiment.
このようにリプの高さを変えた理由は、 例えば電池の逆揷等によって電池が発熱 してガスケットが軟化すると共に電池の内圧が上昇した場合、 リブの高さが全て同 じ場合には、 ガスケットが伸びて薄肉な安全弁部 6 2が破断することなくガスケッ トの図に示した上面が負極端子板に近づき、 全てのリブ 6 4が同時に負極端子板 3 の下面に当接し、 更に極端な場合にはリブの間の連結部 6 3の平坦な面が負極端子 板に密着し、 これとほぼ同時に安全弁部 6 2が破断する場合が生じうる。 このよう な場合、 負極端子板 3に密着したガスケット 6の連結部 6 3が内部のガスの排出通 路を塞ぐことになり、 電池が破裂する原因となる。 これに対して、 第 4図 (a ) 及 び第 5図に示したように、 リブ 6 4の高さを変えた場合、 上記のようにガスケット が軟化して電池の内圧が上昇し、 ガスケットの連結部 6 3が負極端子板に近づいた 場合、 先ず最初に高さの高いリブ 6 4 aが端子板内面に接触し、 それ以上の上昇は P且止される。 一方、 低い方のリブ 6 4 bは更に端子板 3に向かって上昇を続けるの で、 高いリブ 6 4 aと低いリブ 6 4 bとの間の薄肉な安全弁部 6 2はその薄肉な方 のリブ 6 4 bの上昇によって斜め方向に引っ張れられ、 これによつて薄肉な安全弁 部 6 2の破断が確実に発生するようになる。 The reason for changing the height of the lip in this way is that, for example, when the battery generates heat due to the reverse of the battery, the gasket softens and the internal pressure of the battery increases, and when the rib heights are all the same, The gasket is extended and the thin safety valve section 62 does not break, and the upper surface shown in the figure of the gasket approaches the negative terminal plate without breaking, and all the ribs 6 4 abut the lower surface of the negative terminal plate 3 at the same time. In this case, the flat surface of the connecting portion 63 between the ribs may be in close contact with the negative electrode terminal plate, and at the same time, the safety valve portion 62 may be broken. In such a case, the connecting portion 63 of the gasket 6 which is in close contact with the negative electrode terminal plate 3 makes the internal gas discharge passage. This will block the road and cause the battery to explode. On the other hand, as shown in FIGS. 4 (a) and 5, when the height of the ribs 64 is changed, the gasket softens and the internal pressure of the battery rises as described above, When the connecting portion 63 approaches the negative terminal plate, first, the high ribs 64a contact the inner surface of the terminal plate, and the further rise is stopped. On the other hand, since the lower rib 64b continues to rise further toward the terminal plate 3, the thin safety valve portion 62 between the high rib 64a and the low rib 64b is formed by the thinner rib. The rib 64b is pulled obliquely by the rise of the rib 64b, whereby the thin safety valve portion 62 is surely broken.
したがって、 この封口ガスケット 1を用いれば、 高温下においても安全性の高い アルカリ電池を組み立てることができる。  Therefore, by using this sealing gasket 1, an alkaline battery having high safety even at high temperatures can be assembled.
また、 低いリブ 6 4 bの周囲のガスケットの連結部 6 3が負極端子板の内面に密 着してガスの抜け道を塞いでも反対側(高いリ 6 4 b付近)からガスが抜けるので、 アル力リ電池の誤使用などによるガス破裂を避けることが可能となる。  Even if the gasket connecting portion 63 around the low ribs 64b adheres tightly to the inner surface of the negative electrode terminal plate and blocks the gas escape path, the gas escapes from the opposite side (near the high rib 64b). Gas rupture due to misuse of a rechargeable battery or the like can be avoided.
なお、 上述した実施形態にぉレ、ては、 4個のリブ 6 4のうち 2個のリブ 6 4 aを 残り 2個のリブ 6 4 bより高くし、 これらを封口ガスケット 1の周方向に等間隔で 形成した例について説明したが、 第 4図 (b ) に示すように、 これらリブ 6 4 a、 6 4 bの円周方向の角度間隔を不均一とすることもできる。更にまた、第 4図(c ) に示すように、 1個の高いリブ 6 4 aと 1個の低いリブ 6 4 bとすることもできる。 上述した効果を確かめるべく、 各種の封口ガスケット 1を用いた 9種類の単 1型 アルカリ電池 (比較例 1、 2、 実施例 1〜 7 ) を 4 0個ずつ試作し、 温度 6 0 で 4個直列 2 4時間連続ショート試験 (以下、 4直試験と略記) および 8個直列 2 4 時間連続ショート試験 (以下、 8直試験と略記) を実施した。 その結果をまとめて 表 1に示す。 In the embodiment described above, two ribs 64 a of the four ribs 64 are higher than the remaining two ribs 64 b, and these are arranged in the circumferential direction of the sealing gasket 1. The example in which the ribs are formed at equal intervals has been described. However, as shown in FIG. 4 (b), the angular intervals in the circumferential direction of the ribs 64a and 64b can be made nonuniform. Furthermore, as shown in FIG. 4 (c), one high rib 64a and one low rib 64b can be used. To confirm the above-mentioned effects, 40 prototypes of 9 types of AA alkaline batteries (Comparative Examples 1 and 2 and Examples 1 to 7) using various types of sealing gaskets 1 were manufactured at a temperature of 60. A series 24 hour continuous short test (hereinafter abbreviated as 4 direct test) and 8 series 24 hour continuous short test (hereinafter abbreviated as 8 direct test) were conducted. Table 1 summarizes the results.
比較例 実施 例 Comparative example Example
試作 No.  Prototype No.
1 2 1 2 3 4 5 6 7 高 0 4 2 2 2 2 2 1 1 リブ数  1 2 1 2 3 4 5 6 7 High 0 4 2 2 2 2 2 1 1 Number of ribs
低 0 0 2 2  Low 0 0 2 2
a 1 1 1 1 1 1 1. 5 1 n  a 1 1 1 1 1 1 1.5 1 n
b 2 I 2 ί n 1 2 2 リプ寸法 c 1 1 1 L 0. 75 1 1 1 a 1 1  b 2 I 2 ί n 1 2 2 Lip dimension c 1 1 1 L 0.75 1 1 1 a 1 1
低 b 2 2  Low b 2 2
c 0. 5 0. 75  c 0.5 0.5. 75
c / d 0 1/3 1/3 1/3 1/3 1/4 1/3 1/3 1/3 低リブ/高リブ 高さ 1/2 3/4 c / d 0 1/3 1/3 1/3 1/3 1/4 1/3 1/3 1/3 Low rib / High rib Height 1/2 3/4
負極端子側の面積 0 8 8 8 4 4 2 3 2Negative terminal area 0 8 8 8 4 4 2 3 2
4直試験 10/40 4/40 0/40 0/40 0/40 0/40 0/40 0/40 0/404 Direct test 10/40 4/40 0/40 0/40 0/40 0/40 0/40 0/40 0/40
8直試験 5/40 5/40 0/40 1/40 0/40 3/40 1/40 0/40 2/40 なお、 表 1において aはリブ 6 4の周方向の幅 (短辺) 、 bはリブの半径方向の 幅 (長辺) 、 cはリブの高さ、 dは図 5に示すようにリブの基部から端子板内面ま での距離を示している。 8 Direct test 5/40 5/40 0/40 1/40 0/40 3/40 1/40 0/40 2/40 In Table 1, a is the width of the rib 64 in the circumferential direction (short side), b indicates the width (long side) of the rib in the radial direction, c indicates the height of the rib, and d indicates the distance from the base of the rib to the inner surface of the terminal plate as shown in FIG.
表 1から明らかなように、 リブを形成していない比較例 1においては、 4直試験 で 4 0個のうち 1 0個(2 5 %)が破裂(蒸気圧による破裂を含む。以下同様) し、 8直試験で 4 0個のうち 5個 (1 2 . 5 %) が破裂した。 また、 同じ高さを有する 4個のリブを 9 0 ° 間隔で配設した比較例 2においては、 4直試験で 4 0個のうち 4個(1 0 %) が破裂し、 8直試験で 4 0個のうち 5個(1 2 . 5 %)が破裂した。 これらに対し、高いリブと低いリブが 2個ずつ混在する実施例 1、 2においては、 4直試験でガス破裂を起こしたものは皆無であり、 8直試験で 4 0個のうち破裂し たのは 1個以下であった。 特に、 高いリブが低いリブの 2倍以上の高さである実施 例 1では、 8直試験でもガス破裂を起こしたものは皆無であった。  As is clear from Table 1, in Comparative Example 1 in which no ribs were formed, 10 out of 40 (25%) burst in the 4 direct test (including burst due to vapor pressure. The same applies hereinafter). However, 5 out of 40 pieces (12.5%) burst in the eight straight test. Also, in Comparative Example 2 in which four ribs having the same height were arranged at 90 ° intervals, four out of the 40 (10%) burst in the 4 direct test, and 8 in the 8 direct test. Five out of 40 (12.5%) burst. On the other hand, in Examples 1 and 2 in which two high ribs and two low ribs were mixed, none of the gas ruptures occurred in the 4-direct test, and it burst out of 40 in the 8-direct test. There were no more than one. In particular, in Example 1, in which the high ribs were twice as high as the low ribs, none of the eight straight tests had gas rupture.
また、 1〜2個のリブを不均一な角度間隔で配設した実施例 3〜 7におレ、ては、 4直試験でガス破裂を起こしたものは皆無であり、 8直試験で 4 0個のうち破裂し たのは 3個以下であった。 とりわけ、 少なくとも 1個のリブの高さが負極端子とそ のリブの基部との間隔の 1 Z 3以上である実施例 3、 5〜7では、 8直試験で 4 0 個のうち破裂したのは 2個以下に減少した。  Also, in Examples 3 to 7 in which one or two ribs were arranged at non-uniform angular intervals, there was no gas rupture in the 4 direct test, and 4 Less than three of the 0 ruptured. In particular, in Examples 3, 5 to 7 in which the height of at least one of the ribs was 1 Z 3 or more, which is the distance between the negative electrode terminal and the base of the rib, among the 40 in the 8 direct test, bursting occurred. Has been reduced to two or less.
以上説明したように、 本発明の第 2の実施形態に係るアル力リ乾電池用ガスケッ トによれば、 封口ガスケットが熱で軟化した場合、 高いリブが負極端子に当接する と反対側 (低いリブ付近) が安全弁部の破断を確実なものとし、 また、 低いリブ周 囲のガスケットの連結部が負極端子板内面に密着してガスの抜け道を塞いでも反対 側 (高いリブ付近) 力 らガスが抜けることから、 高温下においても安全性の高いァ ルカリ電池用の封口ガスケットを提供することができる。 As described above, according to the gasket for an alkaline dry battery according to the second embodiment of the present invention, when the sealing gasket is softened by heat, the high rib contacts the negative electrode terminal. The opposite side (near the lower rib) ensures that the safety valve breaks, and the connecting part of the gasket around the lower rib is in close contact with the inner surface of the negative electrode terminal plate and blocks the gas escape path. (Nearby) Since gas is released from the power, a sealing gasket for alkaline batteries that is highly safe even at high temperatures can be provided.
第 6図及び第 7図は封口ガスケットとしてナイロン樹脂を使用した本発明の第 3 の実施形態を示している。  6 and 7 show a third embodiment of the present invention using a nylon resin as the sealing gasket.
従来よりナイ口ン樹脂製のガスケットを使用した乾電池の場合には、 そのガスケ ットの比較的肉薄な部分が負極端子板と接触した状態で高温高湿な環境下 7 5 °C 9 0 % R . H (Relative Humidity) に 1週間置くと、 負極端子板の表面に水酸化カリ ゥム力 らなる電解液の漏液が生じることが知られている。  Conventionally, in the case of a dry battery using a gasket made of NIPPON resin, a relatively thin portion of the gasket contacts the negative electrode terminal plate in a high-temperature and high-humidity environment at 75 ° C 90%. It has been known that when placed in R.H (Relative Humidity) for one week, leakage of electrolyte consisting of potassium hydroxide force occurs on the surface of the negative electrode terminal plate.
一方、 ポリプロピレン製のガスケットを用い、 その他の構成は前記の場合と同じ としたアル力リ乾電池を上記同様の高温高湿な環境下に長期間保存しても、 水酸化 力リゥムからなる電解液が負極端子板表面に漏液することはない。  On the other hand, even if an alkaline dry battery using a gasket made of polypropylene and having the same other configuration as the above is stored for a long time in the same high-temperature and high-humidity environment as described above, the electrolytic solution composed of the hydroxide Does not leak to the surface of the negative electrode terminal plate.
また、 ナイロン製のガスケットを使用した上記構成の乾電池の場合でも、 高温高 湿でない環境 (例えば 7 5 °Cドライや常温) で貯蔵した際には上記のような漏液現 象は発生しない。 このようなことから、 本発明者はナイ口ン製のガスケットの比較 的肉薄な部分が高温高湿な環境下で水分を吸収した際に、 電池内部からカリゥムィ オン (K+) が負極端子板との接触部においてガスケット内表面から外表面に透過 し、 その後、 ガスケットの外表面を伝って負極端子板上に移動して水分 (O H一) と結合して漏液現象 (水酸化力リゥム水溶液の生成) として現れるとの推察をする に至り、 改良を行ったのである。  Even in the case of a dry battery of the above configuration using a nylon gasket, the above-described liquid leakage does not occur when stored in a non-high-temperature, high-humidity environment (for example, dry at 75 ° C or normal temperature). Therefore, the present inventor has found that when a relatively thin portion of a gasket made of NIPPON absorbs moisture in a high-temperature and high-humidity environment, the calmion (K +) is connected to the negative terminal plate from inside the battery. At the contact area of the gasket, the gasket penetrates from the inner surface to the outer surface, and then travels along the outer surface of the gasket onto the negative electrode terminal plate and combines with moisture (OH-I) to cause a liquid leakage phenomenon (hydrational aqueous solution It was presumed that it would appear as (generation), and improvements were made.
この実施形態に係るナイロン製のガスケット 6では、 第 6図に示されているよう に、 逆 U字形の緩衝リング 6 5の負極端子板 3側の上面における通気溝 6 5 aの間 に円周方向に等間隔で 6個の第 1の山形突起 6 8がー体的に形成され、 また負極端 子板 3の外周内底面に接する平坦部 6 6の上面に 8個の第 2の山形突起 6 9がー体 的に形成されている。  In the nylon gasket 6 according to this embodiment, as shown in FIG. 6, a circumference is formed between the ventilation grooves 65 a on the upper surface of the inverted U-shaped buffer ring 65 on the side of the negative electrode terminal plate 3. Six first chevron projections 68 are formed at equal intervals in the direction, and eight second chevron projections are formed on the upper surface of the flat portion 66 contacting the inner bottom surface of the outer periphery of the negative electrode terminal plate 3. 69 are formed physically.
ナイロン製のガスケットが直接負極端子板と接触するような構成の乾電池を高温 高湿な環境下で保存すると、 ガスケットの肉厚なボス部は別として、 ガスケットが 負極端子板と接触するボス部より外周の比較的肉薄な部分では水酸化力リゥムから なる電解液のカリウムイオンがナイロン製のガスケットを透過し、 このカリウムィ オンが負極端子板の内面を伝って外表面に現れ水分と結合して電解液の漏液現象が 生じる。 When a dry battery with a nylon gasket that comes into direct contact with the negative electrode terminal plate is stored in a high-temperature, high-humidity environment, the gasket will not contact the negative electrode terminal plate, except for the thick boss. In the relatively thin part of the outer periphery, potassium ions of the electrolytic solution consisting of a hydroxylating lime pass through a nylon gasket, On is transmitted along the inner surface of the negative electrode terminal plate and appears on the outer surface, and is combined with moisture to cause a leakage of the electrolyte.
しかしながら、 本発明の第 3実施形態の乾電池ではガスケットが外周締付部 6 7 を除き負極端子板に当接する部分は第 1の山形突起 6 8と第 2の山形突起 6 9の上 端面だけであるので、 力リゥムイオンがナイロン製ガスケット 5を透過する量は極 めて少なく、 実質的に負極端子板表面への電解液の漏液を阻止することができる。 次に、 山形突起の幅と電解液の負極端子板外表面への漏液の相関関係を実験によ り確認した。 この実験では前記相関関係の確認を容易にするために、 ナイ口ン製ガ スケットの緩衝リング 6 5の第 1の突起 6 8が負極端子板 3の内底面に直接当接し ないようにして負極端子板の外周内底部に接する平坦部 6 6の 8個の第 2の突起 6 9のみが負極端子板 3の内底面に当接するようにした。 そして、 第 7図に示すよう に、 第 2の突起 6 9の負極端子板 3に当接する上端の幅 Lの合計 ( L X 8 ) と突起 6 9の中心を通る円周長 2 π rの比 ((L X 8 ) / 2 π r ) を種々変えて経時的に 負極端子板表面における漏液数を数え、 その結果を表 2に示した。 なお、 試料数は それぞれ 4 0個とした。  However, in the dry battery according to the third embodiment of the present invention, the portion where the gasket contacts the negative electrode terminal plate except for the outer peripheral fastening portion 67 is only the upper end face of the first angle projection 68 and the second angle projection 69. Therefore, the amount of permeated ions passing through the nylon gasket 5 is extremely small, and leakage of the electrolytic solution to the surface of the negative electrode terminal plate can be substantially prevented. Next, the correlation between the width of the chevron and the leakage of electrolyte to the outer surface of the negative electrode terminal plate was confirmed by experiments. In this experiment, in order to make it easy to confirm the correlation, the first projection 68 of the buffer ring 65 of the gasket made of NIPPON was designed so that the first projection 68 did not directly contact the inner bottom surface of the negative electrode terminal plate 3. Only the eight second protrusions 69 of the flat portion 66 contacting the inner bottom of the terminal plate are in contact with the inner bottom surface of the negative terminal plate 3. Then, as shown in FIG. 7, the ratio of the total width L (LX 8) of the upper end of the second protrusion 69 abutting on the negative electrode terminal plate 3 (LX 8) to the circumference 2 π r passing through the center of the protrusion 69. ((LX 8) / 2π r) was varied and the number of liquid leaks on the surface of the negative electrode terminal plate was counted over time. The results are shown in Table 2. The number of samples was 40 each.
表 2  Table 2
Figure imgf000010_0001
以上の実験結果から、 突起の幅を小さくすることによって負極端子板表面におけ る漏液数を減少させることができ、 好ましくはその突起幅の合計値がその突起を通 る全円周長に対して 3 . 0 %以下とすることである。 · 即ち、 本実施形態ではガスケットをナイ口ン樹脂から形成すると共にガスケット の比較的肉薄な部分の表面に複数個の突起 6 9を形成し、 この突起を介
Figure imgf000010_0001
From the above experimental results, it is possible to reduce the number of liquid leaks on the surface of the negative electrode terminal plate by reducing the width of the protrusion, and it is preferable that the total value of the protrusion width be equal to the total circumferential length passing through the protrusion. 3.0% or less. · That is, in the present embodiment, the gasket is formed of a resin, and a plurality of projections 69 are formed on the surface of a relatively thin portion of the gasket.
ット 6が負極端子板 3の内面に接触するようにしてなるのである。 これにより、 乾電池内の電解液の力リゥムイオンは負極端子板の内面に接触する 狭幅の突起部分においてナイロン製ガスケットを透過するのみであるから、 その透 過量を少なくして端子板表面への電解液の漏出を防止することができる。 That is, the socket 6 comes into contact with the inner surface of the negative electrode terminal plate 3. As a result, since the force of the electrolyte solution in the dry battery only permeates the nylon gasket at the narrow projections that come into contact with the inner surface of the negative electrode terminal plate, the amount of the permeation is reduced and the electrolytic ions on the surface of the terminal plate are reduced. Liquid leakage can be prevented.
以上、 本発明の好適な実施形態に基づいて本発明のアルカリ電池用の封口ガスケ ットを説明してきたが、 上記した発明の実施の形態は、 本発明の理解を容易にする ためのものであり、 本発明を限定するものではない。 産業上の利用可能性  As described above, the sealing gasket for an alkaline battery of the present invention has been described based on the preferred embodiment of the present invention. However, the above-described embodiment of the present invention is for facilitating understanding of the present invention. Yes, and does not limit the present invention. Industrial applicability
本発明では、 アル力リ電池の内圧上昇によって安全弁部 6 2が破断して連結部 6 3が内圧方向に変形すると、 安全弁部 6 2の破断部とボス部 6 1との隙間が十分に 広がるとともに、 リブ 6 4が負極端子 3板に当接して止まつてもガスが滞りなく通 気溝 6 5 a力 ら抜ける。  In the present invention, when the internal pressure of the battery increases and the safety valve portion 62 is broken and the connecting portion 63 is deformed in the direction of the internal pressure, the gap between the broken portion of the safety valve portion 62 and the boss portion 61 is sufficiently widened. At the same time, even if the ribs 64 abut against the negative electrode terminal 3 plate and stop, the gas escapes from the ventilation groove 65 a force without interruption.

Claims

請求の範囲 The scope of the claims
1 . アルカリ電池の正極缶と負極端子板との間に介装される封口ガスケットであつ て、  1. A sealing gasket interposed between the positive electrode can of the alkaline battery and the negative electrode terminal plate,
該ガスケットが該負極端子板の中央内面に固着された棒状集電体に嵌着される円 筒状のボス部と、 該ボス部の周囲に形成された薄肉の安全弁部と、 更に該安全弁部 から該ガスケットの外周端方向に向けて連結部と、 断面逆 U字形の緩衝リングと、 該負極端子板の外周内底面に接する平坦部と、 該正極缶の開口端によつて該負極端 子板外周端に圧着される締付部とを有してなり、  A cylindrical boss portion in which the gasket is fitted to a rod-shaped current collector fixed to a central inner surface of the negative electrode terminal plate; a thin safety valve portion formed around the boss portion; A negative electrode terminal by means of a connecting portion extending in the direction of the outer peripheral end of the gasket, a buffer ring having an inverted U-shaped cross section, a flat part in contact with the inner peripheral bottom surface of the negative electrode terminal plate, and an open end of the positive electrode can. And a clamping part to be crimped to the outer peripheral end of the plate,
前記ボス部の前記安全弁部より前記端子板に近い側の外周部に前記安全弁部が作 動したときに通気部となる通路部を形成し、  A passage portion serving as a ventilation portion when the safety valve portion is operated is formed in an outer peripheral portion of the boss portion closer to the terminal plate than the safety valve portion;
前記連結部に周方向に沿って複数個のリブを前記負極端子板側に突設し、 前記緩衝リングに周方向に分離した複数個の通気溝を形成した  A plurality of ribs are provided on the connecting portion along the circumferential direction to protrude toward the negative electrode terminal plate, and a plurality of ventilation grooves separated in the circumferential direction are formed on the buffer ring.
ことを特徴とするアルカリ電池用の封口ガスケット。 A sealing gasket for an alkaline battery.
2 . 前記各リプの周方向の幅を前記各通気溝の周方向の幅より小さくしたことを特 徴とする請求項 1に記載のアル力リ電池用の封口ガスケット。 2. The sealing gasket for an alkaline battery according to claim 1, wherein the circumferential width of each lip is smaller than the circumferential width of each ventilation groove.
3 . 前記リブと前記通気溝とを径方向の同一直線上に配設したことを特徴とする請 求項 1または請求項 2に記載のアル力リ電池用の封口ガスケット。 3. The sealing gasket for an alkaline battery according to claim 1, wherein the rib and the ventilation groove are arranged on the same straight line in a radial direction.
4 . 前記リブと前記通気溝とを径方向の互いに異なる直線上に配設したことを特徴 とする請求項 1または請求項 2に記載のアル力リ電池用の封口ガスケット。 3. The sealing gasket for an alkaline battery according to claim 1, wherein the rib and the ventilation groove are arranged on different straight lines in a radial direction.
5 . 一部の前記リブと一部の前記通気溝とを径方向の同一直線上に配設するととも に、 残部の前記リブと残部の前記通気溝とを径方向の互いに異なる直線上に配設し たことを特徴とする請求項 1または請求項 2に記載のアル力リ電池用の封口ガスケ ッ卜。 5. A part of the ribs and a part of the ventilation grooves are arranged on the same straight line in the radial direction, and the remaining ribs and the remaining ventilation grooves are arranged on different straight lines in the radial direction. 3. The sealing gasket for an alkaline battery according to claim 1, wherein the sealing gasket is provided.
6 . 複数個の前記リブの高さを複数の高さに変えたことを特徴とする請求項 1項に 記載のアル力リ電池用の封口ガスケット。 6. The sealing gasket for an alkaline battery according to claim 1, wherein the height of the plurality of ribs is changed to a plurality of heights.
7 . 複数個の前記リブのうち高いリブを低いリブの 2倍以上の高さとしたことを特 徴とする請求項 6記載のアル力リ電池用の封口ガスケット。 7. The sealing gasket for an alkaline battery according to claim 6, wherein a height of the plurality of ribs is at least twice as high as a height of the low rib.
8 , 周方向に配設した複数個の前記リブの円周方向の間隔を不均一にしたことを特 徴とする請求項 1または 6記載のアル力リ電池用の封口ガスケット。 7. The sealing gasket for an alkaline battery according to claim 1, wherein a circumferential interval of the plurality of ribs arranged in a circumferential direction is made non-uniform.
9 . 複数個の前記リブのうち少なくとも 1個のリプの高さを前記負極端子板と前記 リプの基部との間隔の 1 Z 3以上としたことを特徴とする請求項 6または 7記載の アルカリ電池用の封口ガスケット。 9. The alkali according to claim 6, wherein a height of at least one lip of the plurality of ribs is set to 1 Z 3 or more as a distance between the negative electrode terminal plate and a base of the lip. Seal gasket for batteries.
1 0 . 前記リブの前記端子板側の面積を 3 mm 2以上としたことを特徴とする請求 項 6または 7記載のアル力リ電池用の封口ガスケット。 10. The sealing gasket for an alkaline battery according to claim 6, wherein the area of the rib on the terminal plate side is 3 mm 2 or more.
1 1 . 前記ガスケットをナイロン樹脂から形成すると共に前記ガスケットの前記平 坦部の前記端子板側表面に複数個の小突起を形成し、 該小突起を介して該ガスケッ トが該端子板内面に接触するようにしてなることを特徴とする請求項 1または 6記 載のアルカリ電池用の封口ガスケット。 11. The gasket is formed of a nylon resin, and a plurality of small protrusions are formed on the surface of the flat portion of the gasket on the side of the terminal plate, and the gasket is formed on the inner surface of the terminal plate via the small protrusions. 7. The sealing gasket for an alkaline battery according to claim 1, wherein the sealing gasket is in contact with the sealing gasket.
1 2 . 前記ガスケットの前記緩衝リングの前記端子板側表面に複数個の小突起を形 成し、 該小突起を介して該緩衝リングが該端子板内面に接触するようにしてなるこ とを特徴とする請求項 1 1記載のアル力リ電池用の封口ガスケット。 12. A plurality of small projections are formed on the surface of the gasket on the terminal plate side of the buffer ring, and the buffer ring contacts the inner surface of the terminal plate via the small projections. 11. The sealing gasket for an alkaline battery according to claim 11, wherein
1 3 . 前記ガスケットにおける複数個の前記小突起の円周方向の合計幅値が当該部 における前記ガスケットの円周長の 3 . 0 %以下であることを特徴とする請求項 1 1または 1 2記載のアルカリ電池用の封口ガスケット。 13. The total width value of the plurality of small projections in the gasket in the circumferential direction is not more than 3.0% of the circumferential length of the gasket in the portion. A sealing gasket for an alkaline battery as described above.
1 4 . 前記小突起が前記ガスケットの円周方向に 6個以上等間隔に形成されてなる ことを特徴とする請求項 1 1または 1 2記載のアルカリ電池用の封口ガスケット。 14. The sealing gasket for an alkaline battery according to claim 11, wherein the small projections are formed at equal intervals of 6 or more in a circumferential direction of the gasket.
PCT/JP2003/000493 2002-01-21 2003-01-21 Sealing gasket for alkali battery WO2003063268A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002011409A JP4186468B2 (en) 2002-01-21 2002-01-21 Sealing gasket for alkaline batteries
JP2002-011409 2002-01-21
JP2002-066670 2002-03-12
JP2002066670A JP4186485B2 (en) 2002-03-12 2002-03-12 Sealing gasket for alkaline batteries

Publications (1)

Publication Number Publication Date
WO2003063268A1 true WO2003063268A1 (en) 2003-07-31

Family

ID=27615673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000493 WO2003063268A1 (en) 2002-01-21 2003-01-21 Sealing gasket for alkali battery

Country Status (1)

Country Link
WO (1) WO2003063268A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112421176A (en) * 2020-11-09 2021-02-26 浙江野马电池股份有限公司 Explosion-proof structure of alkaline manganese cell
EP4113706A4 (en) * 2020-02-28 2023-08-30 Panasonic Intellectual Property Management Co., Ltd. Electricity storage device
US11817591B2 (en) 2020-05-22 2023-11-14 Duracell U.S. Operations, Inc. Seal assembly for a battery cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065972U (en) * 1983-10-14 1985-05-10 富士電気化学株式会社 alkaline battery
JPH02201865A (en) * 1989-01-31 1990-08-10 Fuji Elelctrochem Co Ltd Sealing gasket for explosion-proof battery
JPH09120805A (en) * 1995-10-25 1997-05-06 Fuji Elelctrochem Co Ltd Alkaline battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065972U (en) * 1983-10-14 1985-05-10 富士電気化学株式会社 alkaline battery
JPH02201865A (en) * 1989-01-31 1990-08-10 Fuji Elelctrochem Co Ltd Sealing gasket for explosion-proof battery
JPH09120805A (en) * 1995-10-25 1997-05-06 Fuji Elelctrochem Co Ltd Alkaline battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4113706A4 (en) * 2020-02-28 2023-08-30 Panasonic Intellectual Property Management Co., Ltd. Electricity storage device
US11817591B2 (en) 2020-05-22 2023-11-14 Duracell U.S. Operations, Inc. Seal assembly for a battery cell
CN112421176A (en) * 2020-11-09 2021-02-26 浙江野马电池股份有限公司 Explosion-proof structure of alkaline manganese cell

Similar Documents

Publication Publication Date Title
JP7433251B2 (en) Batteries with ventilation holes
WO2003044397A1 (en) Pressure release valve
CA2563661A1 (en) Housing for a sealed electrochemical battery cell
US9692038B2 (en) Cap for electrochemical cell
US6224640B1 (en) V-shaped gasket for galvanic cells
EP1082767B1 (en) End cap assembly for an alkaline cell
JP2010507211A (en) End cap encapsulant for electrochemical cells
JP4615215B2 (en) Electrochemical battery end cap assembly
US11289767B2 (en) Valve assembly for a battery cover
EP2100340A1 (en) End cap seal assembly for an electrochemical cell
WO2003063268A1 (en) Sealing gasket for alkali battery
JP4166938B2 (en) Snap-through gasket for Galivani batteries
JP4357839B2 (en) End seal assembly for alkaline batteries
KR20080035507A (en) Accumaulator
KR20220050455A (en) Cylindrical secondary battery
JP5054866B2 (en) Low profile breathable seal for electrochemical cells
JP2006313715A (en) Pressure release valve
JP2006521678A (en) Seal for pressurized container
JP2010505229A (en) End cap sealing assembly for electrochemical cells
JPH09320562A (en) Sealed cylindrical nonaqueous secondary battery
JP7478027B2 (en) Gasket member for alkaline battery, and alkaline battery
JP4186468B2 (en) Sealing gasket for alkaline batteries
JP2009016079A (en) Sealing structure of cylindrical cell, and alkaline cell
JP2004349017A (en) Sealed battery
JP2008135327A (en) Manganese dry cell

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase