JPH09320562A - Sealed cylindrical nonaqueous secondary battery - Google Patents

Sealed cylindrical nonaqueous secondary battery

Info

Publication number
JPH09320562A
JPH09320562A JP8270412A JP27041296A JPH09320562A JP H09320562 A JPH09320562 A JP H09320562A JP 8270412 A JP8270412 A JP 8270412A JP 27041296 A JP27041296 A JP 27041296A JP H09320562 A JPH09320562 A JP H09320562A
Authority
JP
Japan
Prior art keywords
battery
sealing body
explosion
secondary battery
proof valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8270412A
Other languages
Japanese (ja)
Inventor
Takao Ogura
孝夫 小倉
Mutsumi Tsujiide
睦 辻出
Shinji Saito
慎治 斉藤
Akira Imoto
章 井元
Toshizo Kameishi
敏造 亀石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wako Electronics Co Ltd
Resonac Corp
Original Assignee
Wako Electronics Co Ltd
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Electronics Co Ltd, Shin Kobe Electric Machinery Co Ltd filed Critical Wako Electronics Co Ltd
Priority to JP8270412A priority Critical patent/JPH09320562A/en
Publication of JPH09320562A publication Critical patent/JPH09320562A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sealed cylindrical nonaqueous secondary battery excellent in leakage resistance characteristic by completely shutting off current inside the battery at the initial stage of the buildup of the battery internal pressure if the battery has failed. SOLUTION: A group of electrodes 5 is enclosed, together with an electrolyte, inside a metallic, cylindrical battery outer case 1 serving also as a negative terminal, the battery outer case 1 is connected to the negative side of the group of electrodes 5, an insulative gasket 3 is placed on the inner periphery of an opening in the battery outer case 1, and the battery outer case 1 is closed by a disc-shaped plug 17 serving also as a positive terminal supported against the gasket 3; the plug 17 includes a metallic plug main body 4 electrically connected to the group of electrodes 5, a metallic terminal cap 2 insulated from the plug main body 4 and locked in place, a return switch 8 having a contact part 8a that establishes electrical conduction from the plug main body 4 to the terminal cap 2, and a non-return explosion-proof valve 10 that is displaced outward as the pressure within the battery outer case 1 builds up.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電池内圧が上昇し
た時に電池内部の電流経路を遮断することができる密閉
円筒型非水二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed cylindrical non-aqueous secondary battery capable of interrupting a current path inside the battery when the internal pressure of the battery rises.

【0002】[0002]

【従来の技術】近年、電子機器の高性能化、小型化、ポ
ータブル化により、その電源として使用される電池は、
より高いエネルギー密度のものが要求されるようになっ
てきている。充放電サイクルにより長期間使用できる二
次電池においては、従来のシール鉛蓄電池やニッケルカ
ドミウム電池から、最近、負極に水素吸蔵合金を用いた
ニッケル水素電池、あるいは正極負極間で軽金属の挿入
放出をさせる密閉型非水二次電池の開発が行われ、新し
い電子機器の電源としてその市場は急速に拡大しつつあ
る。特に後者の代表としては、軽金属にリチウムを使用
したリチウムイオン二次電池があり、この電池は、電池
電圧が3.6Vと高く、高エネルギー密度で、自己放電
も少なくサイクル特性に優れることから、今後更にポー
タブル化される電子機器の電源として広く使用されるも
のと予測されている。
2. Description of the Related Art In recent years, due to the high performance, miniaturization, and portability of electronic equipment, the battery used as the power source is
Higher energy densities are required. For rechargeable batteries that can be used for a long time by charge / discharge cycles, conventional sealed lead-acid batteries or nickel-cadmium batteries have recently been replaced with nickel-hydrogen batteries that use a hydrogen storage alloy for the negative electrode, or light metal insertion and release between the positive and negative electrodes. With the development of sealed non-aqueous secondary batteries, the market is rapidly expanding as a power source for new electronic devices. Particularly, as a representative of the latter, there is a lithium ion secondary battery using lithium as a light metal. This battery has a high battery voltage of 3.6 V, high energy density, low self-discharge, and excellent cycle characteristics. It is predicted that it will be widely used as a power source for portable electronic devices in the future.

【0003】一般に、密閉円筒型非水二次電池は、正極
と負極をセパレータの介在によって隔離した電極群が、
負極又は正極端子を兼ねる金属製円筒状の電池外装缶内
に電解液と共に収納され、該電池外装缶の開口部の内周
に絶縁性を有するガスケットが配されて該ガスケットに
支持された正極又は負極端子を兼ねるディスク状の封口
体により、前記電池外装缶が閉塞されてなるものであ
り、この電池の安全性を保証するには、電池に内蔵され
た電解液の漏液対策及び電池異常時の発熱に伴う電池内
圧上昇対策が極めて重要となる。漏液の発生する箇所と
しては、第1に封口体内部から外部に通じる排気孔、第
2に封口体とガスケットとの界面、第3に電池外装缶と
ガスケットとの界面が考えられる。また、電池内圧上昇
をもたらす状況としては、外部短絡、内部短絡、或いは
過充電が考えられ、これらの場合、電池自身の温度が上
昇し、内蔵する電解液の気化により電池内圧が上昇す
る。従って、この状態が継続すると電池が破裂し、周辺
機器に対して損害を与える惧れがある。
Generally, in a sealed cylindrical non-aqueous secondary battery, an electrode group in which a positive electrode and a negative electrode are separated by a separator is used.
A positive electrode supported by the gasket is housed together with an electrolytic solution in a metal cylindrical battery outer can that also serves as a negative electrode or a positive electrode terminal, and an insulating gasket is arranged on the inner periphery of the opening of the battery outer can. The battery outer can is closed by the disk-shaped sealing body that also serves as the negative electrode terminal. To ensure the safety of this battery, measures to prevent leakage of the electrolyte solution contained in the battery and when the battery is abnormal It is extremely important to take measures against the rise in the internal pressure of the battery due to the heat generation. Possible locations of liquid leakage are firstly an exhaust hole communicating from the inside of the sealing body to the outside, secondly the interface between the sealing body and the gasket, and thirdly the interface between the battery case and the gasket. In addition, as a situation in which the battery internal pressure rises, an external short circuit, an internal short circuit, or overcharge may be considered. In these cases, the temperature of the battery itself rises and the internal pressure of the battery rises due to the vaporization of the electrolytic solution contained therein. Therefore, if this state continues, the battery may explode, possibly damaging peripheral equipment.

【0004】そこでこの種の電池では、漏液対策とし
て、前記電池外装缶とガスケットとの界面及び封口体と
ガスケットとの界面に、電解液の漏液を防ぐ封止剤を塗
布することが行われている。また電池異常時の対策とし
ては、封口体内に、所定の電池内圧に達すると電池内部
のガスを外部へ放出することができる防爆弁が備えられ
ている。この封口体の構造としては、特開平2−112
151号公報や実開平5−62956号公報記載のよう
に、電池内圧上昇により防爆弁が破断することで電池内
圧の解放と電流経路の遮断とを同時に兼ねて行うもの
と、特開平7−320711号公報記載のように、電池
内圧の解放と電流経路の遮断とを別機構で行うものとし
て、電池内圧上昇により防爆弁が変形することで非復帰
型スイッチを作動させて電流経路の遮断を行い、更に前
記防爆弁が破断して電池内圧を解放しても電流経路が復
帰しないようになっているものがある。
Therefore, in this type of battery, as a measure against liquid leakage, a sealant for preventing liquid leakage of the electrolytic solution may be applied to the interface between the battery outer can and the gasket and the interface between the sealing body and the gasket. It is being appreciated. Further, as a measure against battery abnormality, an explosion-proof valve capable of releasing gas inside the battery to the outside when a predetermined battery internal pressure is reached is provided in the sealing body. The structure of this sealing body is described in Japanese Patent Application Laid-Open No. 2-112.
No. 151 and Japanese Utility Model Application Laid-Open No. 5-62956 disclose that the explosion-proof valve is broken due to an increase in battery internal pressure to simultaneously release the battery internal pressure and interrupt the current path, and JP-A-7-320711. As described in the publication, the release of the battery internal pressure and the interruption of the current path are performed by different mechanisms.The explosion-proof valve is deformed by the increase in the battery internal pressure and the non-reset type switch is activated to interrupt the current path. Further, there is one in which the current path is not restored even if the explosion-proof valve is broken to release the battery internal pressure.

【0005】[0005]

【発明が解決しようとする課題】特開平2−11215
1号公報や実開平5−62956号公報記載のものは、
それぞれ図3及び図4に示すように、電池内圧の解放が
防爆弁10の破断部10bの破断により行われ、破断と
同時に電流が遮断される構造であり、防爆弁10自体が
電流経路の遮断スイッチになっているために、防爆弁1
0破断時の電解液の付着や破断部10bの浮遊状態での
接触により、電流経路の遮断が完全に達成されず、特に
過充電時においては、電池反応が継続して電池温度の急
激な上昇による発火の惧れがある。また、図3に示す特
開平2−112151号公報記載のものは、電池の通常
使用状態においても防爆弁10の電極群5側が電解液雰
囲気に晒されているため、電解液が防爆弁10と封口体
本体4との界面から浸透漏液する惧れがある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The ones described in Japanese Patent Publication No. 1 and Japanese Utility Model Publication No. 5-62956 are
As shown in FIGS. 3 and 4, the battery internal pressure is released by breaking the breakage portion 10b of the explosion-proof valve 10, and the current is cut off at the same time as the breakage. The explosion-proof valve 10 itself cuts off the current path. Explosion-proof valve 1 because it is a switch
Due to the attachment of the electrolyte solution at the time of zero breakage and the contact of the breakage portion 10b in a floating state, the interruption of the current path is not completely achieved, and especially during overcharge, the battery reaction continues and the battery temperature rises sharply. There is a risk of fire. Further, in the one described in Japanese Patent Application Laid-Open No. 2-112151 shown in FIG. 3, since the electrode group 5 side of the explosion-proof valve 10 is exposed to the electrolytic solution atmosphere even in the normal use state of the battery, the electrolytic solution is regarded as the explosion-proof valve 10. There is a risk of permeation and leakage from the interface with the sealing body 4.

【0006】また、特開平7−320711号公報記載
のものは、図5及び図6に示すように、電池内圧上昇に
より防爆弁10が電池外側方向に膨れる変形(図5は変
形前を、図6は変形後をそれぞれ示す)をすることで、
電池外側方向にある非復帰型スイッチ18の動作ピン7
を押して該非復帰型スイッチ18のバネを反転ロックさ
せ、非復帰型スイッチの接点部18aを切って電流経路
の遮断を行い、更に前記防爆弁10の破断部10bが破
断して電池内圧を解放しても非復帰型スイッチ18はロ
ックされていて接点部18aの切れた状態を維持するよ
うになっているものであるために、以下の問題点が危惧
される。即ち、第1に、非復帰型スイッチ18がニッケ
ルメッキを施した鋼板のような比較的堅いばね材料で製
作されており、しかも反転ロックさせるように用いるた
め、スイッチの作動圧力(バネ定数)が比較的高くな
る。第2に、電池内圧の直接圧力を受ける防爆弁10の
変形力よりも、二次側である非復帰型スイッチ18の作
動圧力を優先して設計するのが困難である。第3に、電
池内部圧力の上昇に伴い非復帰型スイッチの接点部18
aの接触圧力が減少していくため、電流経路の通電が不
安定になる。
Further, in the one disclosed in Japanese Patent Laid-Open No. 7-320711, as shown in FIGS. 5 and 6, the explosion-proof valve 10 is deformed to bulge outward in the battery due to an increase in the internal pressure of the battery (FIG. 6 shows after the deformation respectively),
Operation pin 7 of the non-reset type switch 18 facing the outside of the battery
By pressing, the spring of the non-returning type switch 18 is reversely locked, the contact portion 18a of the non-returning type switch is cut off to interrupt the current path, and further, the breaking portion 10b of the explosion-proof valve 10 is broken to release the battery internal pressure. However, since the non-returning type switch 18 is locked and the contact portion 18a is maintained in the disconnected state, the following problems may occur. That is, first, since the non-reset type switch 18 is made of a relatively hard spring material such as a nickel-plated steel plate and is used to reverse lock, the operating pressure (spring constant) of the switch is It will be relatively high. Secondly, it is difficult to design the operating pressure of the non-reset type switch 18 on the secondary side with priority over the deforming force of the explosion-proof valve 10 that receives the direct pressure of the battery internal pressure. Thirdly, as the internal pressure of the battery rises, the contact portion 18 of the non-reset type switch
Since the contact pressure of a decreases, the energization of the current path becomes unstable.

【0007】更に、電池の通常使用状態においても、防
爆弁10と封口体本体4との界面からの漏液の惧れがあ
り、また、封口体本体4から端子キャップ2までが5層
乃至6層の積層構造となっているため、該積層部とガス
ケット3との界面や積層部の層間にて浸透漏液の惧れが
ある。
Further, even when the battery is normally used, there is a risk of liquid leakage from the interface between the explosion-proof valve 10 and the sealing body 4, and the sealing body 4 to the terminal cap 2 have 5 to 6 layers. Since it has a laminated structure of layers, there is a risk of permeation leakage at the interface between the laminated part and the gasket 3 or between the layers of the laminated part.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、正極と負極をセパレータの介在によって
隔離した電極群が、負極又は正極端子を兼ねる金属製円
筒状の電池外装缶内に電解液と共に収納され、該電池外
装缶の開口部の内周に絶縁性を有するガスケットが配さ
れて該ガスケットに支持された正極又は負極端子を兼ね
るディスク状の封口体により、前記電池外装缶が閉塞さ
れてなる密閉円筒型非水二次電池であって、前記封口体
は、前記電極群に電気的接続された金属製の封口体本体
と、該封口体本体から絶縁されて固定された金属製の端
子キャップと、前記封口体本体から端子キャップへの電
気的導通の接点部を有する復帰型スイッチと、前記電池
外装缶内の圧力上昇に伴って外側方向に変位する非復帰
型の防爆弁とを備え、前記接点部は、前記防爆弁の外側
方向への変位に押されて離れ、前記端子キャップへの電
気的導通を遮断するものである、ことを特徴とする。
In order to solve the above-mentioned problems, the present invention relates to a metal cylindrical battery outer can in which an electrode group in which a positive electrode and a negative electrode are separated by interposing a separator also serves as a negative electrode or a positive electrode terminal. The battery outer can is housed together with an electrolytic solution in the inside of the battery outer can, and an insulating gasket is arranged on the inner periphery of the opening of the battery outer can, and the disk-shaped sealing body supported by the gasket also serves as a positive or negative electrode terminal. A sealed cylindrical non-aqueous secondary battery, in which the sealing body is a metal sealing body electrically connected to the electrode group, and is insulated and fixed from the sealing body. A metallic terminal cap, a resettable switch having a contact portion for electrical conduction from the sealing body to the terminal cap, and a non-restoration type explosion-proof which is displaced outward in accordance with a pressure increase in the battery outer can. Equipped with valve , The contact portion, the away pushed outward displacement of the direction of the explosion-proof valve, the is to cut off the electrical conduction to the terminal cap, it is characterized.

【0009】[0009]

【発明の実施の形態】封口体は、前記電極群に電気的接
続された金属製の封口体本体と、該封口体本体から絶縁
されて固定された金属製の端子キャップと、前記封口体
本体から端子キャップへの電気的導通の接点部を有する
復帰型スイッチと、前記電池外装缶内の圧力上昇に伴っ
て外側方向に変位する非復帰型の防爆弁とを備えてお
り、前記接点部は、前記防爆弁の外側方向への変位に押
されて離れ、前記端子キャップへの電気的導通を遮断す
るものであることにより、電池異常時に電池内部圧力が
上昇した場合、非復帰型の防爆弁が外側方向に変位し、
復帰型スイッチを押し上げ接点部の電気的導通を切っ
て、電池内圧上昇の初期に電池反応を停止させ、安全を
確保することができる。このとき前記防爆弁が非復帰型
であるため、この防爆弁の作動圧力を決定すれば、復帰
型スイッチの作動即ち電流遮断時の作動圧力を一義的に
決定することができる。
BEST MODE FOR CARRYING OUT THE INVENTION A sealing body comprises a metal sealing body body electrically connected to the electrode group, a metal terminal cap insulated and fixed from the sealing body body, and the sealing body body. From the terminal cap to a resettable switch having a contact point for electrical conduction, and a non-resettable explosion-proof valve that is displaced outward in response to a rise in pressure inside the battery outer can, the contact point section comprising: When the internal pressure of the battery rises when the battery malfunctions, the non-reset type explosion-proof valve is pressed by the outward displacement of the explosion-proof valve to separate from the terminal cap and cut off the electrical continuity to the terminal cap. Is displaced outward,
It is possible to secure safety by pushing up the resettable switch to cut off the electrical continuity of the contact portion and stopping the battery reaction at the initial stage of the rise in the battery internal pressure. At this time, since the explosion-proof valve is a non-reset type, if the operating pressure of the explosion-proof valve is determined, the operating pressure of the reset-type switch, that is, the operating pressure when the current is cut off can be uniquely determined.

【0010】前記封口体本体は、前記電池外装缶内から
封口体内へ連通する開口部を有するものであり、前記端
子キャップは、前記封口体内から外気へ連通する排気孔
を有するものであり、前記防爆弁は、前記封口体本体の
開口部を封じるように配置されており、前記電池外装缶
内の圧力上昇に伴って外側方向に変位したときに反転ロ
ックする非復帰型スプリングディスクと、過度の圧力上
昇で破断する破断部とを有するものであり、前記復帰型
スイッチは、前記防爆弁の非復帰型スプリングディスク
のバネ定数に比して小さなバネ定数を有し、前記防爆弁
の外側方向への変位に追随するものであることにより、
前記防爆弁が、前記非復帰型スプリングディスクの反転
ロックによる復帰型スイッチの作動即ち電流遮断と、前
記破断部の破断による電池内圧解放との二つの機能を持
ち、この電流遮断と電池内圧解放の作動圧力を防爆弁の
構造優先で設計できる。前記非復帰型スプリングディス
クは、変形作動時に非復帰動作となるよう、ニッケル
板、ニッケルメッキ鋼板又はステンレス等の含ニッケル
合金のような金属材料を用いて厚さを調整し、変形作動
は電池内部圧力の上昇0.2〜1.2MPa、好ましく
は0.4〜0.6MPaの範囲の中で起こるように設定
するのがよい。非復帰型スプリングディスクは、その反
転ロックによって初めて復帰型スイッチを作動させ電流
遮断をするので、前記反転ロックの前に電流経路の通電
が不安定になることはない。
The sealing body has an opening communicating from the inside of the battery case to the sealing body, and the terminal cap has an exhaust hole communicating from the sealing body to outside air. The explosion-proof valve is arranged so as to seal the opening of the sealing body, and has a non-returning spring disc that reversely locks when it is displaced outward due to a pressure increase in the battery outer can, and an excessive The breakable portion that breaks due to a pressure increase, the resettable switch has a spring constant smaller than the spring constant of the non-returnable spring disk of the explosion-proof valve, and is directed outward of the explosion-proof valve. By following the displacement of
The explosion-proof valve has two functions, that is, the operation of the resettable switch by reversing lock of the non-returnable spring disk, that is, current interruption, and the battery internal pressure release due to the breakage of the breaking portion. The working pressure can be designed by giving priority to the structure of the explosion-proof valve. The non-returning spring disk has a thickness adjusted by a metal material such as a nickel plate, a nickel-plated steel plate or a nickel-containing alloy such as stainless steel so that the non-returning operation is performed during the deformation operation. It is preferable to set it so that the pressure rise occurs in the range of 0.2 to 1.2 MPa, preferably 0.4 to 0.6 MPa. Since the non-returning type spring disk operates the return type switch for the first time by the reversal lock to cut off the current, the energization of the current path does not become unstable before the reversal lock.

【0011】また、前記非復帰型スプリングディスクの
作動圧力に比して小さな作動力(バネ定数)で前記復帰
型スイッチを作動させるために、該復帰型スイッチの材
質はアルミニウム又は銅もしくはこれらの合金、あるい
はこれらの金属材料に銀等のメッキを施したものが好ま
しい。
In order to operate the resettable switch with an operating force (spring constant) smaller than the operating pressure of the non-resettable spring disk, the material of the resettable switch is aluminum, copper, or an alloy thereof. Alternatively, those obtained by plating these metal materials with silver or the like are preferable.

【0012】前記封口体本体と前記復帰型スイッチとの
間又は該復帰型スイッチと前記端子キャップとの間に、
正温度特性サーミスタを電気的に介在させたことによ
り、電池の異常温度上昇又は大電流通電のような異常時
に際して電流遮断でき、電池内圧が上昇時したときの復
帰型スイッチによる電流遮断作用と合わせて電池の安全
性を確保できる。
Between the sealing body and the reset type switch or between the reset type switch and the terminal cap,
Positive temperature characteristic Thermistor electrically intervenes to interrupt the current in the event of abnormal temperature rise of the battery or high current conduction, and combined with the current interrupt action by the reset type switch when the battery internal pressure rises. Battery safety.

【0013】前記防爆弁の周囲と封口体本体との間に、
ガスケットを備えていることによって、封口体内部にお
ける電解液の浸透漏れを防ぎ、電解液漏液による腐食か
ら復帰型スイッチを有効に保護することができ、また電
池外部からの水分等の浸透も防ぐことができる。前記ガ
スケットとしては、Oリングのようなリング状の一体成
形ゴムが好ましく、材料としてはオレフィン系ゴム、フ
ッ素系ゴム、ブチル系ゴム等が使用可能である。
Between the periphery of the explosion-proof valve and the sealing body,
By providing a gasket, it is possible to prevent the electrolyte from penetrating and leaking inside the sealing body, effectively protecting the resettable switch from corrosion due to electrolyte leaking liquid, and also preventing the permeation of water etc. from the outside of the battery. be able to. The gasket is preferably a ring-shaped integrally molded rubber such as an O-ring, and materials such as olefin rubber, fluorine rubber, and butyl rubber can be used.

【0014】前記破断部は、通気性の悪い薄膜からなる
もので、金属箔又は樹脂膜あるいは金属と樹脂の組み合
わせからなるものであり、金属箔の場合は該金属箔が電
解液又は他種金属部との接触による腐食等の発生を防
ぎ、防爆弁の作動圧力及び破断部の破断圧力が常時適正
な値で作動するようにするために、金属箔に樹脂の薄膜
層を塗工又はラミネート加工等して重ね合わせたものが
望ましい。金属箔としてはアルミ箔、銅箔が好ましく、
破断部の破断が、好ましくは電池内部圧力の上昇1.3
〜2.5MPaの範囲の中で起こるように設定する。非
復帰型の防爆弁の外側方向への変位により復帰型スイッ
チを押し上げ接点部の電気的接続を切った後にも、さら
に電池内部圧力の上昇が続いた場合に、破断部の破断が
起こる。
The ruptured portion is formed of a thin film having poor air permeability, and is formed of a metal foil or a resin film or a combination of metal and resin. In the case of a metal foil, the metal foil is an electrolytic solution or another kind of metal. In order to prevent the occurrence of corrosion due to contact with the parts, and to ensure that the operating pressure of the explosion-proof valve and the breaking pressure of the breaking part always operate at appropriate values, coating or laminating a thin film layer of resin on the metal foil It is desirable that they be superposed. The metal foil is preferably aluminum foil or copper foil,
The rupture of the rupture portion preferably increases the internal pressure of the battery by 1.3.
Set to occur in the range of ~ 2.5 MPa. If the internal pressure of the battery continues to rise even after the resettable switch is pushed up by the outward displacement of the non-resettable explosion-proof valve to disconnect the electrical connection of the contact part, the breakage of the breakage occurs.

【0015】前記破断部は、前記薄膜が前記非復帰型ス
プリングディスクの中央近傍に設けられた開口を塞ぐよ
うに固定されており、前記防爆弁の外側方向への変位方
向に突出していることにより、急激な圧力上昇の際に、
前記薄膜の破断が瞬時に起きないようにすることができ
る。
The breaking portion is fixed so that the thin film closes an opening provided in the vicinity of the center of the non-returning type spring disc, and is projected in the outward displacement direction of the explosion-proof valve. During a sudden pressure increase,
It is possible to prevent the breakage of the thin film from occurring instantly.

【0016】[0016]

【実施例】以下に実施例を挙げて本発明を詳しく説明す
る。図1は、本発明に基づいて製作した密閉円筒型非水
二次電池の要素断面図である。正極と負極をセパレータ
の介在によって隔離した電極群5が、負極端子を兼ねた
金属製円筒状の電池外装缶1内に電解液と共に収納さ
れ、電池外装缶1は、電極群5の負極側と繋がってお
り、電池外装缶1の開口部の内周に絶縁性を有するガス
ケット3が配されて該ガスケット3に支持された正極端
子を兼ねるディスク状の封口体17により、電池外装缶
1が閉塞されたもので、封口体17は、電極群5に電気
的接続された金属製の封口体本体4と、該封口体本体4
から絶縁されて固定された金属製の端子キャップ2と、
封口体本体4から端子キャップ2への電気的導通の接点
部8aを有する復帰型スイッチ8と、電池外装缶1内の
圧力上昇に伴って外側方向に変位する非復帰型の防爆弁
10とを備えており、接点部8aは、防爆弁10の外側
方向への変位に押されて離れ、端子キャップ2への電気
的導通を遮断するものである。
The present invention will be described below in detail with reference to examples. FIG. 1 is an element cross-sectional view of a sealed cylindrical non-aqueous secondary battery manufactured according to the present invention. The electrode group 5 in which the positive electrode and the negative electrode are separated by the interposition of the separator is housed together with the electrolytic solution in the metal cylindrical battery outer can 1 that also serves as the negative electrode terminal, and the battery outer can 1 is connected to the negative electrode side of the electrode group 5. The battery outer can 1 is closed by a disk-shaped sealing body 17 which is connected to the inner periphery of the opening of the battery outer can 1 and has an insulating property, and which is supported by the gasket 3 and also serves as a positive electrode terminal. The sealing body 17 includes a metallic sealing body body 4 electrically connected to the electrode group 5, and the sealing body body 4
A metal terminal cap 2 which is insulated and fixed from
A resettable switch 8 having a contact portion 8a for electrical conduction from the sealing body 4 to the terminal cap 2 and a non-restoration type explosion-proof valve 10 which is displaced outward in accordance with a pressure increase in the battery case 1 are provided. The contact portion 8a is pushed by the displacement of the explosion-proof valve 10 in the outward direction, and is separated from the contact portion 8a to cut off the electrical conduction to the terminal cap 2.

【0017】封口体本体4は、電池外装缶1内から封口
体17内へ連通する開口部18を有し、端子キャップ2
は、封口体17内から外気へ連通する排気孔11を有
し、防爆弁10は、封口体本体4の開口部18を封じる
ように配置されており、電池外装缶1内の圧力上昇に伴
って外側方向に変位したときに反転ロックする非復帰型
スプリングディスク10aと、過度の圧力上昇で破断す
る破断部10bとを有するものであり、復帰型スイッチ
8は、防爆弁10の非復帰型スプリングディスク10a
のバネ定数に比して小さなバネ定数を有し、防爆弁10
の外側方向への変位に追随するもので、接点部8aと円
周部8bからなり、接点部8aの中央には、非復帰型ス
プリングディスク10aの外側方向への変位を受けて接
点部8aを変位させる動作ピン7を有する。
The sealing body 4 has an opening 18 communicating from the inside of the battery outer can 1 to the inside of the sealing body 17, and the terminal cap 2
Has an exhaust hole 11 that communicates from the inside of the sealing body 17 to the outside air, and the explosion-proof valve 10 is arranged so as to seal the opening 18 of the sealing body main body 4, so that the pressure inside the battery outer can 1 rises. Has a non-returning spring disk 10a that reversely locks when it is displaced outward, and a breaking portion 10b that breaks due to excessive pressure rise. The returning switch 8 is a non-returning spring of the explosion-proof valve 10. Disk 10a
Explosion-proof valve 10 has a spring constant smaller than that of
Of the contact point portion 8a and the circumferential portion 8b. The contact portion 8a is formed at the center of the contact portion 8a in response to the outward displacement of the non-returning spring disk 10a. It has an operating pin 7 to be displaced.

【0018】使用した電池外装缶1は、外径が18ミリ
メートルの有底円筒であり、電解液は、溶媒としてプロ
ピレンカーボネートとジエチルカーボネートを1対1v
ol%で混合したものに、溶質として6フッ化リン酸リ
チウムを約1mol%投入したものである。また、電池
外装缶1とガスケット3との界面及びガスケット3と封
口体本体4との界面に封止剤16を塗布しており、ここ
でガスケット3の材料としては、フッ素樹脂(パーフル
オロアルコキシレジン)を用い、封止剤16としては、
ピッチと天然ゴムの混合物を用いている。
The battery outer can 1 used was a bottomed cylinder having an outer diameter of 18 mm, and the electrolytic solution used was propylene carbonate and diethyl carbonate in a ratio of 1: 1 v.
About 1 mol% of lithium hexafluorophosphate was added as a solute to a mixture of ol%. Further, the sealant 16 is applied to the interface between the battery outer can 1 and the gasket 3 and the interface between the gasket 3 and the sealing body 4, and the gasket 3 is made of a fluororesin (perfluoroalkoxy resin). ) Is used as the sealant 16.
It uses a mixture of pitch and natural rubber.

【0019】封口体17の構造を詳しく説明すると、電
池最内部側のアルミニウム一体成形の封口体本体4は、
電極群5の正極から取り出したタブ端子6が溶接接合さ
れており、封口体本体4の中央部にはガス抜き用の開口
部18を有し、開口部18を中心に電池内側方向に陥没
した凹部を有し、該凹部には、中央部が電池内側方向に
突出した円盤状の防爆弁10を有する。防爆弁10は、
中央部に設けられた中央穴19が電池内側方向に突出す
るようにわん曲した非復帰型スプリングディスク10a
と、その中央穴19を塞ぐようにアルミニウム箔が電池
内側方向から貼付られた破断部10bとからなり、破断
部10bは、中央穴19から電池外側方向に突出してい
る。更に破断部10bは、ポリプロピレン製のフィルム
でラミネート加工されて、電解液との接触又は異種金属
との接触による腐食を防止している。防爆弁10と封口
体本体4との間には、電解液の封止を主目的としたEP
DM製のリング型のガスケット3’を有し、ガスケット
3’は、密着性を高めるために、封口体本体4の前記凹
部の中で圧縮保持されている。防爆弁10は、ガスケッ
ト3’とリング形状をした正温度特性サーミスタ9の間
で保持され、封口体17の内部は、リング形状の正温度
特性サーミスタ9の上に、同外径の銀メッキを施した銅
製の接点リング12と、絶縁板13と、銅合金に銀メッ
キを施した復帰型スイッチ8の円周部8bと、端子キャ
ップ2とが順に積層されており、これら全体は、その外
周が円筒形状のポリプロピレン製の絶縁リング14で封
口体本体4から絶縁された状態で、封口体本体4の周縁
部の折り曲げにより圧縮カシメされている。
Explaining the structure of the sealing body 17 in detail, the aluminum integrally molded sealing body body 4 on the innermost side of the battery is as follows.
The tab terminal 6 taken out from the positive electrode of the electrode group 5 is welded and joined, the opening main body 4 has an opening 18 for degassing, and the opening 18 is depressed toward the inner side of the battery. It has a concave portion, and in the concave portion, a disk-shaped explosion-proof valve 10 having a central portion protruding inward of the battery is provided. Explosion-proof valve 10
A non-returning spring disk 10a in which a central hole 19 provided in the central portion is bent so as to project inward of the battery.
And a rupture portion 10b in which an aluminum foil is attached from the inside of the battery so as to close the center hole 19, and the rupture portion 10b projects from the center hole 19 toward the outside of the battery. Further, the breaking portion 10b is laminated with a polypropylene film to prevent corrosion due to contact with an electrolytic solution or contact with a dissimilar metal. Between the explosion-proof valve 10 and the sealing body 4, an EP mainly intended to seal the electrolytic solution.
It has a ring-shaped gasket 3'made of DM, and the gasket 3'is compressed and held in the concave portion of the sealing body 4 in order to improve the adhesion. The explosion-proof valve 10 is held between the gasket 3'and the ring-shaped positive temperature characteristic thermistor 9, and the inside of the sealing body 17 is plated with silver of the same outer diameter on the ring-shaped positive temperature characteristic thermistor 9. A contact ring 12 made of copper, an insulating plate 13, a circumferential portion 8b of a resettable switch 8 made of silver-plated copper alloy, and a terminal cap 2 are laminated in this order, and the whole of the outer circumference thereof. Is insulated from the sealing body 4 by a cylindrical polypropylene insulating ring 14, and is crimped by bending the peripheral edge of the sealing body 4.

【0020】図2は、過充電による電池内圧の上昇に伴
い防爆弁10のスプリングディスク10aが電池外側方
向に反転ロックし、復帰型スイッチ8の中央に設けられ
た動作ピン7を押し上げ、接点部8aが離れて電流経路
が遮断された状態を示している。スプリングディスク1
0aは、電池内圧が0.5MPaになったときに電池外
側方向に反転ロックするように設定した。また、破断部
10bは、電池内圧が1.5MPaになったときに破壊
されるように設定した。
In FIG. 2, the spring disk 10a of the explosion-proof valve 10 reversely locks toward the outside of the battery as the internal pressure of the battery rises due to overcharging, and pushes up the operating pin 7 provided at the center of the resettable switch 8 to contact the contact portion. 8a shows the state in which the current path is cut off by separating. Spring disc 1
0a was set to reverse lock in the outward direction of the battery when the internal pressure of the battery reached 0.5 MPa. Further, the breakage portion 10b was set so as to be broken when the internal pressure of the battery reached 1.5 MPa.

【0021】以上の構造の封口体をもつ本発明電池を実
施例1とし、実施例1の電池から封口体17内部のガス
ケット3’を除いた電池を実施例2とし、図4に示す従
来の電池を従来例1とし、図5に示す従来の電池を従来
例2として、各20個の電池の3経路からの漏液の有無
を試験した。ここで、経路1は封口体17内部から排気
孔11、経路2は封口体17とガスケット3との間、経
路3はガスケット3と電池外装缶1との間とし、試験条
件は次の2条件としたときの漏液した電池個数の百分率
表示を表1に示す。 試験1. 常温、常湿度で倒立(封口体側が下向き)放
置100日 試験2. 60度、湿度90%で倒立(封口体側が下向
き)放置30日 これらの結果から、実施例1と実施例2は、従来例1と
従来例2に比べ良好な耐漏液性が得られた。
The battery of the present invention having a sealing body having the above structure is referred to as Example 1, and a battery obtained by removing the gasket 3'inside the sealing body 17 from Example 1 is referred to as Example 2 and the conventional battery shown in FIG. Using the battery as the conventional example 1 and the conventional battery shown in FIG. 5 as the conventional example 2, the presence or absence of liquid leakage from three paths of 20 batteries was tested. Here, the path 1 is from the inside of the sealing body 17 to the exhaust hole 11, the path 2 is between the sealing body 17 and the gasket 3, the path 3 is between the gasket 3 and the battery outer can 1, and the test conditions are the following two conditions. Table 1 shows the percentage display of the number of leaked batteries. Test 1. Inverted at room temperature and humidity (closed side facing down) 100 days test 2. 30 days of standing upside down (sealing body side facing down) at 60 ° C. and 90% humidity 30 days From these results, better leakage resistance was obtained in Example 1 and Example 2 as compared with Conventional Example 1 and Conventional Example 2.

【0022】[0022]

【表1】 [Table 1]

【0023】図7は、本発明電池について、常温常湿度
の下、電池定格容量の20%の電流値で定電流にて連続
充電した過充電の場合における電池内部圧力の上昇と、
その時の充電量を電池定格容量の満充電時を100%と
して表した図である。発熱等電池の安全性を考慮すれ
ば、電池定格容量の約350%の充電容量(過充電率は
約250%)までに電流経路が遮断されるのが好ましい
ので、本発明電池では、図7中の矢印Aで示す範囲すな
わち電池内部圧力が0.2〜1.2MPaの範囲の所望
の圧力値で非復帰型スプリングディスクが反転ロックし
て作動する防爆弁を選択することにより容易に、所望の
作動圧力での電流遮断ができる。
FIG. 7 shows the increase in the internal pressure of the battery of the present invention in the case of overcharging when continuously charged at a constant current at a current value of 20% of the battery rated capacity under normal temperature and normal humidity.
It is the figure which expressed the charge amount at that time as 100% at the time of full charge of a battery rated capacity. In consideration of the safety of the battery such as heat generation, it is preferable that the current path is cut off until the charging capacity of the battery rated capacity is about 350% (overcharge rate is about 250%). By selecting an explosion-proof valve that operates when the non-returning type spring disc reversely locks at a desired pressure value in the range indicated by the arrow A in the figure, that is, the battery internal pressure is in the range of 0.2 to 1.2 MPa, the desired value can be easily selected. The current can be cut off at the operating pressure of.

【0024】次に、実施例1において、正温度特性サー
ミスタ9の外径を小さくし、それによってできた空隙に
絶縁性でリング状のスペーサ20(ポリテトラフルオロ
エチレン製)を介在させた構成にした(実施例3)。図
9は、その様子を示したものである。この構成は、復帰
型スイッチ8の円周部8bと端子キャップ2との間に、
正温度特性サーミスタを電気的に介在させ、当該正温度
特性サーミスタの外径を小さくしてできた空隙に絶縁性
でリング状のスペーサ(ポリテトラフルオロエチレン
製)を介在させた構成と等価である。また、封口体本体
4と復帰型スイッチ8の円周部8bとの間に、正温度特
性サーミスタ9を電気的に介在させ(正温度特性サーミ
スタ9は封口体本体4に当接して位置する)、当該正温
度特性サーミスタ9の外径を小さくしてできた空隙に、
封口体本体4と端子キャップ2の間の絶縁手段、すなわ
ち、絶縁リング14の縁を延長し介在させた構成とした
(実施例4)。図10は、その様子を示したものであ
る。
Next, in the first embodiment, the outer diameter of the positive temperature characteristic thermistor 9 is reduced, and an insulating ring-shaped spacer 20 (made of polytetrafluoroethylene) is interposed in the void formed thereby. (Example 3). FIG. 9 shows the situation. This configuration is such that between the circumferential portion 8b of the resettable switch 8 and the terminal cap 2,
It is equivalent to a structure in which a positive temperature characteristic thermistor is electrically interposed, and an insulating ring-shaped spacer (made of polytetrafluoroethylene) is interposed in a void formed by reducing the outer diameter of the positive temperature characteristic thermistor. . Further, a positive temperature characteristic thermistor 9 is electrically interposed between the sealing body 4 and the circumferential portion 8b of the resettable switch 8 (the positive temperature characteristic thermistor 9 is positioned in contact with the sealing body 4). In the void formed by reducing the outer diameter of the positive temperature characteristic thermistor 9,
The insulating means between the sealing body 4 and the terminal cap 2, that is, the edge of the insulating ring 14 is extended and interposed (Example 4). FIG. 10 shows the situation.

【0025】表2に、実施例1,3,4の電池(それぞ
れ5個)を定格容量の3倍の電流値で定電流で過充電
し、そのときに正温度特性サーミスタが作動するまでの
時間を示した。実施例1の電池は、正温度特性サーミス
タが作動するものとしないものがあった。もう一つの安
全対策として防爆弁があるため、正温度特性サーミスタ
が作動しなくても電池破裂等の心配はなかったが、復帰
型スイッチの誤作動等を考慮すると、より高い安全性が
望ましい。一方、実施例3,4の電池は、正温度特性サ
ーミスタの作動開始時間が各電池ともほぼ一定であっ
た。これは、スペーサ20や絶縁リング14の縁を延長
した部分の存在により、正温度特性サーミスタが過度に
加圧されず、正常に作動するからである。正温度特性サ
ーミスタの正常な作動を確保できることから安全性がよ
り高まる。
In Table 2, the batteries of Examples 1, 3 and 4 (5 each) were overcharged with a constant current at a current value three times the rated capacity, at which time the positive temperature characteristic thermistor was activated. Showed the time. In the batteries of Example 1, the positive temperature characteristic thermistor was operated and not operated. Since there is an explosion-proof valve as another safety measure, there was no concern about the battery exploding even if the positive temperature characteristic thermistor did not operate, but higher safety is desirable considering the malfunction of the resettable switch. On the other hand, in the batteries of Examples 3 and 4, the operation start time of the positive temperature characteristic thermistor was almost constant in each battery. This is because the positive temperature characteristic thermistor does not excessively pressurize and operates normally due to the presence of the extended portion of the spacer 20 or the edge of the insulating ring 14. The positive temperature characteristic thermistor ensures the normal operation, which further enhances safety.

【0026】[0026]

【表2】 [Table 2]

【0027】非復帰型の防爆弁10の外側方向への変位
は、電池内部圧力の上昇が0.2〜1.2MPa、好ま
しくは0.4〜0.6MPaの範囲の中で起こるように
するのがよい。このことを確認するために、実施例1に
おいて、非復帰型スプリングディスク10aを種々変更
し、電池内部圧力の上昇が表3の各値になったときに非
復帰型スプリングディスク10aが変形作動(反転ロッ
ク)するように設定した。そして、電池定格容量と同じ
電流で充電した(この充電電流では、正温度特性サーミ
スタは作動しない)。過充電時の電池破裂の有無をそれ
ぞれの電池5個について表3に示した。尚、非復帰型ス
プリングディスク10aの変更による影響を明確にする
ために、破断部10bは電池内部圧力の上昇が3.0M
Paに達したときに破断するように設定した。表3から
明らかなように、電池内部圧力の上昇が0.6MPa以
下では電池破裂は起こらなかった。これは、電池内部圧
力の上昇0.6MPa以下で非復帰型スプリングディス
ク10aが変形作動して充電電流が切れるとそのときの
電池温度の上昇もわずかであるが、非復帰型スプリング
ディスク10aが変形作動して充電電流が切れても、そ
のときの電池内部圧力の上昇が1.2MPaを越えてい
るような状態では、既に電池内部で温度上昇や電解液の
分解が起こっており、その化学反応の熱によりさらに温
度が上昇して電池破裂に至るものが発生すると推測され
る。
The outward displacement of the non-reset type explosion-proof valve 10 is such that the internal pressure of the battery rises within the range of 0.2 to 1.2 MPa, preferably 0.4 to 0.6 MPa. Is good. In order to confirm this, in Example 1, the non-returning type spring disk 10a was variously changed, and the non-returning type spring disk 10a was deformed when the increase in the battery internal pressure reached each value shown in Table 3. It was set to reverse lock. Then, the battery was charged at the same current as the battery rated capacity (the positive temperature characteristic thermistor does not operate at this charging current). The presence or absence of battery rupture during overcharge is shown in Table 3 for each of the five batteries. In addition, in order to clarify the influence of the change of the non-returning type spring disk 10a, the breakage portion 10b has a rise in the battery internal pressure of 3.0M.
It was set to break when reaching Pa. As is clear from Table 3, the battery did not burst when the internal pressure of the battery increased by 0.6 MPa or less. This is because when the internal pressure of the battery rises below 0.6 MPa, the non-recoverable spring disk 10a deforms and the charging current is cut off, the battery temperature rises only slightly, but the non-recoverable spring disk 10a deforms. Even if the charging current is cut off due to operation, if the internal pressure of the battery rises above 1.2 MPa at that time, the temperature has already risen inside the battery and decomposition of the electrolyte has already occurred. It is presumed that the temperature of the battery further rises due to the heat of the battery and causes the battery to burst.

【0028】[0028]

【表3】 [Table 3]

【0029】破断部10bの破断は、電池内部圧力の上
昇が1.3〜2.5MPa、好ましくは1.3〜1.5
MPaの範囲の中で起こるようにするのがよい。このこ
とを確認するために、実施例1において、破断部10b
を種々変更し、電池内部圧力の上昇が表4の各値になっ
たときに破断部10bが破断するように設定した。そし
て、電池定格容量と同じ電流で充電した(この充電電流
では、正温度特性サーミスタは作動しない)。過充電時
の電池破裂の有無をそれぞれの電池5個について表4に
示した。電池内部圧力の上昇が1.5MPa以下で破断
部10bが破断するように設定したものでは、電池破裂
は勿論のこと、電池外装缶の変形も起こらなかった。電
池内部圧力の上昇が1.5MPaを越えたときに破断部
10bが破断するように設定したものであっても、電池
内部圧力の上昇が2.5MPa以下で破断部10bが破
断するように設定したものでは、電池破裂に至るものは
なかったが、電池外装缶底部に変形が見られた。電池内
部圧力の上昇が3.0MPaで破断部10bが破断する
ように設定したものでは、電池破裂に至るものが発生し
た。これは、電池内部圧力が高くなり過ぎ、電池温度が
異常に上昇したためと推測される。尚、破断部10bの
破断が起こる電池内部圧力上昇の下限値の設定1.3M
Paは、非復帰型スプリングディスク10aの変形作動
が起こる電池内部圧力の上昇では、破断部10bの破断
が起こらないようにする配慮である。
The breaking of the breaking portion 10b is performed by increasing the internal pressure of the battery by 1.3 to 2.5 MPa, preferably 1.3 to 1.5.
It is better to occur in the range of MPa. In order to confirm this, in Example 1, the fractured portion 10b
Was changed variously, and the breakage portion 10b was set to break when the increase in the internal pressure of the battery reached each value in Table 4. Then, the battery was charged at the same current as the battery rated capacity (the positive temperature characteristic thermistor does not operate at this charging current). The presence or absence of battery rupture during overcharge is shown in Table 4 for each of the five batteries. In the case where the breakage portion 10b was set to break when the increase in the internal pressure of the battery was 1.5 MPa or less, not only the battery burst but also the deformation of the battery outer can did not occur. Even if the breakage portion 10b is set to break when the increase in the battery internal pressure exceeds 1.5 MPa, the breakage portion 10b is set to break when the increase in the battery internal pressure is 2.5 MPa or less. Although the battery did not explode, the bottom of the battery outer can was deformed. In the case where the breakage portion 10b was set to break when the increase in the internal pressure of the battery was 3.0 MPa, there were some cases in which the battery burst. It is presumed that this is because the battery internal pressure became too high and the battery temperature increased abnormally. It should be noted that the lower limit value of the internal pressure rise of the battery at which the breakage of the breakage part 10b occurs 1.3M
Pa is a consideration to prevent breakage of the breakage portion 10b due to an increase in battery internal pressure that causes the non-returning spring disk 10a to deform.

【0030】[0030]

【表4】 [Table 4]

【0031】[0031]

【発明の効果】上述したように、本発明による密閉円筒
型非水二次電池は、電池異常時の電池内圧上昇時におい
て、外側方向に変位する非復帰型の防爆弁が、この変位
に追随する復帰型のスイッチを外側方向へ押して接点部
を離し、端子キャップへの電流経路を遮断するようにし
たことにより、所望の圧力値で作動する防爆弁を決定す
れば、所望の作動圧力での電流遮断が容易にでき、電池
内圧が上昇した初期段階においても確実に電気的導通を
遮断することができる。更に、電流経路の遮断スイッチ
の作動圧力を従来困難であった0.2MPa程度の低値
にまで設計できる共に、電池の耐漏液特性を優れたもの
とすることができる。
As described above, in the sealed cylindrical non-aqueous secondary battery according to the present invention, the non-return type explosion-proof valve which is displaced outward when the internal pressure of the battery rises when the battery is abnormal, follows this displacement. When the explosion-proof valve that operates at the desired pressure value is determined by pressing the return-type switch to the outward direction to release the contact and disconnecting the current path to the terminal cap, The current can be easily cut off, and the electric conduction can be surely cut off even in the initial stage when the battery internal pressure rises. Further, the operating pressure of the break switch of the current path can be designed to a low value of about 0.2 MPa, which was difficult in the past, and the liquid leakage resistance of the battery can be made excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における密閉円筒型非水二次
電池の要部断面図である。
FIG. 1 is a cross-sectional view of essential parts of a sealed cylindrical non-aqueous secondary battery according to an embodiment of the present invention.

【図2】図1における非復帰型の防爆弁と復帰型スイッ
チが作動した状態を示す要部断面図である。
FIG. 2 is a cross-sectional view of essential parts showing a state in which a non-reset type explosion-proof valve and a reset type switch in FIG. 1 are operated.

【図3】従来の密閉円筒型二次電池の一例を示す要部断
面図である。
FIG. 3 is a cross-sectional view of an essential part showing an example of a conventional sealed cylindrical secondary battery.

【図4】従来の密閉円筒型二次電池の一例を示す要部断
面図である。
FIG. 4 is a cross-sectional view of essential parts showing an example of a conventional sealed cylindrical secondary battery.

【図5】従来の密閉円筒型二次電池の一例を示す要部断
面図である。
FIG. 5 is a cross-sectional view of an essential part showing an example of a conventional sealed cylindrical secondary battery.

【図6】図5における防爆弁と非復帰型スイッチが作動
した状態を示す要部断面図である。
FIG. 6 is a cross-sectional view of essential parts showing a state in which the explosion-proof valve and the non-reset type switch in FIG.

【図7】本発明の一実施例における密閉円筒型非水二次
電池について、過充電の場合の電池内部圧力の上昇と、
その時の充電量を電池定格容量の満充電時を100%と
して表した図である。
FIG. 7 shows a rise in internal pressure of a battery in the case of overcharging of a sealed cylindrical non-aqueous secondary battery according to an embodiment of the present invention,
It is the figure which expressed the charge amount at that time as 100% at the time of full charge of a battery rated capacity.

【図8】図8は図1の拡大図である。FIG. 8 is an enlarged view of FIG. 1.

【図9】本発明の他の実施例における密閉円筒型非水二
次電池の要部断面図である。
FIG. 9 is a cross-sectional view of essential parts of a sealed cylindrical non-aqueous secondary battery according to another embodiment of the present invention.

【図10】本発明のさらに他の実施例における密閉円筒
型非水二次電池の要部断面図である。
FIG. 10 is a cross-sectional view of essential parts of a sealed cylindrical non-aqueous secondary battery according to still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1は電池外装缶、2は端子キャップ、3,3'はガスケッ
ト、4封口体本体、5は電極群、6はタブ端子、7は動
作ピン、8は復帰型スイッチ、8aは接点部、8bは円
周部、9は正温度特性サーミスタ、10は防爆弁、10
aは非復帰型スプリングディスク、10bは破断部、1
1は排気孔、12は接点リング、13は絶縁板、14は
絶縁リング、15はインシュレータ、16は封止剤、1
7は封口体、18は開口部、19は中央穴、20はスペ
ーサ
1 is a battery outer can, 2 is a terminal cap, 3 and 3'is a gasket, 4 is a sealing body, 5 is an electrode group, 6 is a tab terminal, 7 is an operating pin, 8 is a reset switch, 8a is a contact part, 8b Is a circumferential portion, 9 is a positive temperature characteristic thermistor, 10 is an explosion-proof valve, 10
a is a non-returnable spring disk, 10b is a fractured part, 1 is
1 is an exhaust hole, 12 is a contact ring, 13 is an insulating plate, 14 is an insulating ring, 15 is an insulator, 16 is a sealant, 1
7 is a sealing body, 18 is an opening, 19 is a central hole, 20 is a spacer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斉藤 慎治 東京都中央区日本橋本町2丁目8番7号 新神戸電機株式会社内 (72)発明者 井元 章 奈良県御所市玉手380番地 ワコー電子株 式会社御所事業所内 (72)発明者 亀石 敏造 奈良県御所市玉手380番地 ワコー電子株 式会社御所事業所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Shinji Saito, Shinko Saito Electric Co., Ltd. 2-8-7 Nihonbashihonmachi, Chuo-ku, Tokyo (72) Inventor Akira Imoto 380 Tamate, Gosho-shi, Nara Waco Electronic Co., Ltd. Inside the Gosho Office (72) Inventor Toshizo Kameishi 380 Tamate, Gosho City, Nara Prefecture Waco Electronics Co., Ltd. Inside the Gosho Office

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】正極と負極をセパレータの介在によって隔
離した電極群が、負極又は正極端子を兼ねる金属製円筒
状の電池外装缶内に電解液と共に収納され、該電池外装
缶の開口部の内周に絶縁性を有するガスケットが配され
て該ガスケットに支持された正極又は負極端子を兼ねる
ディスク状の封口体により、前記電池外装缶が閉塞され
てなる密閉円筒型非水二次電池であって、 前記封口体は、前記電極群に電気的接続された金属製の
封口体本体と、該封口体本体から絶縁されて固定された
金属製の端子キャップと、前記封口体本体から端子キャ
ップへの電気的導通の接点部を有する復帰型スイッチ
と、前記電池外装缶内の圧力上昇に伴って外側方向に変
位する非復帰型の防爆弁とを備えており、 前記接点部は、前記防爆弁の外側方向への変位に押され
て離れ、前記端子キャップへの電気的導通を遮断するも
のである、ことを特徴とする密閉円筒型非水二次電池。
1. An electrode group in which a positive electrode and a negative electrode are separated by a separator interposed between them is housed together with an electrolytic solution in a metal cylindrical battery outer can that also serves as a negative electrode or a positive electrode terminal, and inside the opening of the battery outer can. A sealed cylindrical non-aqueous secondary battery in which a battery-like outer can is closed by a disk-shaped sealing body having an insulating gasket disposed around its periphery and also serving as a positive electrode or a negative electrode terminal supported by the gasket. The sealing body includes a metal sealing body body electrically connected to the electrode group, a metal terminal cap insulated and fixed from the sealing body body, and the sealing body body to the terminal cap. A resettable switch having an electrically conductive contact portion and a non-resettable explosion-proof valve that is displaced outward in accordance with a rise in pressure inside the battery outer can are provided, and the contact portion is of the explosion-proof valve. Change outward The pressed apart, it is to cut off the electrical conduction to the terminal cap, a closed cylindrical nonaqueous secondary battery, characterized in that.
【請求項2】前記封口体本体は、前記電池外装缶内から
封口体内へ連通する開口部を有するものであり、 前記端子キャップは、前記封口体内から外気へ連通する
排気孔を有するものであり、 前記防爆弁は、前記封口体本体の開口部を封じるように
配置されており、前記電池外装缶内の圧力上昇に伴って
外側方向に変位したときに反転ロックする非復帰型スプ
リングディスクと、過度の圧力上昇で破断する破断部と
を有するものであり、 前記復帰型スイッチは、前記防爆弁の非復帰型スプリン
グディスクのバネ定数に比して小さなバネ定数を有し、
前記防爆弁の外側方向への変位に追随するものである、
ことを特徴とする請求項1記載の密閉円筒型非水二次電
池。
2. The sealing body has an opening communicating from the inside of the battery outer can to the sealing body, and the terminal cap has an exhaust hole communicating from the sealing body to outside air. The explosion-proof valve is arranged so as to seal the opening of the sealing body, and a non-returning spring disc that reversely locks when displaced outward due to a pressure increase in the battery outer can, It has a breaking portion that breaks due to excessive pressure rise, the reset switch has a small spring constant as compared to the spring constant of the non-return spring disc of the explosion-proof valve,
To follow the outward displacement of the explosion-proof valve,
The sealed cylindrical type non-aqueous secondary battery according to claim 1.
【請求項3】前記封口体本体と前記復帰型スイッチとの
間又は該復帰型スイッチと前記端子キャップとの間に、
正温度特性サーミスタを電気的に介在させたことを特徴
とする請求項1記載の密閉円筒型非水二次電池。
3. Between the sealing body and the reset type switch, or between the reset type switch and the terminal cap,
The sealed cylindrical non-aqueous secondary battery according to claim 1, wherein a positive temperature characteristic thermistor is electrically interposed.
【請求項4】前記防爆弁の周囲と封口体本体との間に、
ガスケットを備えたことを特徴とする請求項1記載の密
閉円筒型非水二次電池。
4. Between the periphery of the explosion-proof valve and the sealing body,
The sealed cylindrical non-aqueous secondary battery according to claim 1, further comprising a gasket.
【請求項5】前記破断部は、通気性の悪い薄膜からなる
もので、金属箔又は樹脂膜あるいは金属と樹脂の組み合
わせからなるものであることを特徴とする請求項2記載
の密閉円筒型非水二次電池。
5. The closed cylindrical non-shape according to claim 2, wherein the broken portion is formed of a thin film having poor air permeability, and is formed of a metal foil, a resin film, or a combination of metal and resin. Water secondary battery.
【請求項6】前記破断部は、前記薄膜が前記非復帰型ス
プリングディスクの中央近傍に設けられた開口を塞ぐよ
うに固定されており、前記防爆弁の外側方向への変位方
向に突出していることを特徴とする請求項5記載の密閉
円筒型非水二次電池。
6. The breaking portion is fixed so that the thin film closes an opening provided in the vicinity of the center of the non-returning type spring disc, and projects in the outward displacement direction of the explosion-proof valve. The sealed cylindrical type non-aqueous secondary battery according to claim 5.
【請求項7】正温度特性サーミスタの外径を小さくし、
それによってできた空隙に絶縁性のスペーサを介在させ
た請求項3記載の密閉円筒型非水二次電池。
7. A positive temperature characteristic thermistor is reduced in outer diameter,
The sealed cylindrical non-aqueous secondary battery according to claim 3, wherein an insulating spacer is interposed in the void formed thereby.
【請求項8】前記封口体本体と前記復帰型スイッチとの
間に、正温度特性サーミスタを電気的に介在させ、当該
正温度特性サーミスタの外径を小さくしてできた空隙
に、前記封口体本体と金属製の端子キャップの間の絶縁
手段を延長し介在させたことを特徴とする請求項1記載
の密閉円筒型非水二次電池。
8. A positive temperature characteristic thermistor is electrically interposed between the main body of the sealing body and the reset type switch, and the sealing body is placed in a space formed by reducing the outer diameter of the thermistor having the positive temperature characteristic. The sealed cylindrical non-aqueous secondary battery according to claim 1, wherein an insulating means is extended and interposed between the main body and the metal terminal cap.
【請求項9】非復帰型の防爆弁の外側方向への変位が、
電池内部圧力の上昇0.2〜1.2MPaの範囲の中で
起こるようにした請求項1又は2記載の密閉円筒型非水
二次電池。
9. The displacement of the non-reset type explosion-proof valve in the outward direction is
The sealed cylindrical non-aqueous secondary battery according to claim 1, wherein the internal pressure of the battery is raised within a range of 0.2 to 1.2 MPa.
【請求項10】非復帰型の防爆弁の外側方向への変位
が、電池内部圧力の上昇0.6MPa以下で起こるよう
にした請求項9記載の密閉円筒型非水二次電池。
10. The sealed cylindrical non-aqueous secondary battery according to claim 9, wherein the outward displacement of the non-reset type explosion-proof valve occurs when the internal pressure of the battery increases by 0.6 MPa or less.
【請求項11】破断部の破断が、電池内部圧力の上昇
1.3〜2.5MPaの範囲の中で起こるようにした請
求項2、9、10のいずれかに記載の密閉円筒型非水二
次電池。
11. The closed cylindrical non-aqueous liquid according to claim 2, wherein the breakage of the breakage portion occurs within the range of an increase in the internal pressure of the battery of 1.3 to 2.5 MPa. Secondary battery.
【請求項12】破断部の破断が、電池内部圧力の上昇
1.5MPa以下で起こるようにした請求項11記載の
密閉円筒型非水二次電池。
12. The sealed cylindrical non-aqueous secondary battery according to claim 11, wherein the breakage of the breakage portion occurs when the internal pressure of the battery increases by 1.5 MPa or less.
JP8270412A 1996-03-28 1996-10-14 Sealed cylindrical nonaqueous secondary battery Pending JPH09320562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8270412A JPH09320562A (en) 1996-03-28 1996-10-14 Sealed cylindrical nonaqueous secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7397396 1996-03-28
JP8-73973 1996-03-28
JP8270412A JPH09320562A (en) 1996-03-28 1996-10-14 Sealed cylindrical nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JPH09320562A true JPH09320562A (en) 1997-12-12

Family

ID=26415119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8270412A Pending JPH09320562A (en) 1996-03-28 1996-10-14 Sealed cylindrical nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH09320562A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048801A (en) * 1998-07-28 2000-02-18 Samsung Display Devices Co Ltd Cap assembly of secondary battery and circuit breaker of secondary battery
KR100314495B1 (en) * 1999-05-27 2001-11-15 전형구 Sealing Structure of Capacitor
US6878481B2 (en) 2000-10-20 2005-04-12 Rayovac Corporation Method and apparatus for regulating charging of electrochemical cells
JP2006012604A (en) * 2004-06-25 2006-01-12 Toshiba Corp Non-aqueous electrolyte secondary battery
US7859220B2 (en) 2001-10-19 2010-12-28 Rovcal, Inc. Method and apparatus for charging electrochemical cells
CN106920903A (en) * 2015-12-24 2017-07-04 三星Sdi株式会社 Secondary cell
WO2020137547A1 (en) 2018-12-28 2020-07-02 三洋電機株式会社 Gasket and cylindrical battery
WO2020137373A1 (en) 2018-12-27 2020-07-02 三洋電機株式会社 Cylindrical battery
CN115117527A (en) * 2022-06-06 2022-09-27 宜兴市泰宇汽车零部件有限公司 Compound EPP battery apron with fire-retardant dampproofing effect ventilates

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048801A (en) * 1998-07-28 2000-02-18 Samsung Display Devices Co Ltd Cap assembly of secondary battery and circuit breaker of secondary battery
KR100314495B1 (en) * 1999-05-27 2001-11-15 전형구 Sealing Structure of Capacitor
US6878481B2 (en) 2000-10-20 2005-04-12 Rayovac Corporation Method and apparatus for regulating charging of electrochemical cells
US7288920B2 (en) 2000-10-20 2007-10-30 Spectrum Brands, Inc. ( Fka Rayovac Corporation) Method and apparatus for regulating charging of electrochemical cells
US7859220B2 (en) 2001-10-19 2010-12-28 Rovcal, Inc. Method and apparatus for charging electrochemical cells
JP2006012604A (en) * 2004-06-25 2006-01-12 Toshiba Corp Non-aqueous electrolyte secondary battery
JP4580699B2 (en) * 2004-06-25 2010-11-17 株式会社東芝 Nonaqueous electrolyte secondary battery
CN106920903A (en) * 2015-12-24 2017-07-04 三星Sdi株式会社 Secondary cell
CN106920903B (en) * 2015-12-24 2021-09-07 三星Sdi株式会社 Secondary battery
WO2020137373A1 (en) 2018-12-27 2020-07-02 三洋電機株式会社 Cylindrical battery
WO2020137547A1 (en) 2018-12-28 2020-07-02 三洋電機株式会社 Gasket and cylindrical battery
CN115117527A (en) * 2022-06-06 2022-09-27 宜兴市泰宇汽车零部件有限公司 Compound EPP battery apron with fire-retardant dampproofing effect ventilates
CN115117527B (en) * 2022-06-06 2024-03-08 宜兴市泰宇汽车零部件有限公司 Composite EPP battery cover plate with ventilation, flame retardance and moisture resistance effects

Similar Documents

Publication Publication Date Title
JP2970340B2 (en) Explosion-proof sealing plate for sealed batteries
JP4391467B2 (en) Lithium secondary battery
JP4187685B2 (en) Secondary battery
US20040126650A1 (en) Electrode assembly for lithium ion cell and lithium cell using the same
EP1705735B1 (en) Sealed storage battery with safety device
JP2005285770A (en) Cap assembly and secondary battery with the same
JP2000048801A (en) Cap assembly of secondary battery and circuit breaker of secondary battery
JP2000504479A (en) Sealed electrochemical cell with circuit break terminal
KR20180018279A (en) Cap assembly of excellent electrical safety for a secondary battery and the battery inclusive of the same
JP2000082457A (en) Electric/electronic equipment and part safeguard, sealed battery safeguard using it and sealed battery using it
US6900616B2 (en) Current interrupt device for rechargeable cells
JPH08153536A (en) Sealed nonaqueous secondary battery
JP2003051304A (en) Nonaqueous electrolyte secondary battery
JPH09320562A (en) Sealed cylindrical nonaqueous secondary battery
JP2014235943A (en) Secondary battery
JP2000323114A (en) Sealed battery
JPH0864197A (en) Safety device of secondary battery
JPH05205727A (en) Safety device for sealed battery
KR101243529B1 (en) Lithium rechargeable battery
JPH06231743A (en) Non-aqueous electrolyte battery
KR20170053394A (en) Beading-less cap assembly with modifed gasket material
JPH11191404A (en) Explosion-proof sealing plate for sealed battery
JP3380693B2 (en) Method of manufacturing explosion-proof sealing plate for battery
KR20060037832A (en) Secondary battery
KR20060112732A (en) Secondary battery and pack battery of using the same