JP2008135327A - Manganese dry cell - Google Patents

Manganese dry cell Download PDF

Info

Publication number
JP2008135327A
JP2008135327A JP2006321673A JP2006321673A JP2008135327A JP 2008135327 A JP2008135327 A JP 2008135327A JP 2006321673 A JP2006321673 A JP 2006321673A JP 2006321673 A JP2006321673 A JP 2006321673A JP 2008135327 A JP2008135327 A JP 2008135327A
Authority
JP
Japan
Prior art keywords
insulating gasket
current collector
manganese dry
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006321673A
Other languages
Japanese (ja)
Inventor
Tsutomu Ishida
努 石田
Yasutaka Hara
康隆 原
Yasuo Mukai
保雄 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006321673A priority Critical patent/JP2008135327A/en
Priority to PCT/JP2007/072895 priority patent/WO2008066056A1/en
Publication of JP2008135327A publication Critical patent/JP2008135327A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/08Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with cup-shaped electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/198Sealing members characterised by the material characterised by physical properties, e.g. adhesiveness or hardness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/171Lids or covers characterised by the methods of assembling casings with lids using adhesives or sealing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • H01M50/188Sealing members characterised by the disposition of the sealing members the sealing members being arranged between the lid and terminal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manganese dry cell which has a rupture preventing safety mechanism formed on a sealing body, which safety mechanism has a simple structure, and operates steadily and stably through prevention of the destabilization of the actuating pressure of the safety mechanism that is caused by the irregularity of a mechanism in a manufacturing process and the deterioration of a material quality arising under a service environment. <P>SOLUTION: According to the manganese dry cell 1, a positive electrode cap 4 is caulked to seal an opening 3 of a negative electrode zinc can 2 via an insulating gasket 5 (sealing body). The insulating gasket 5 is made into an almost tabular shape in a sectional view. At the center of the insulating gasket, a current collector insertion hole 5a is formed to allow a current collector 6 to be inserted therein. The periphery 5b of the insulating gasket is bent upward in a state of contact with the negative electrode zinc can 2, and is caulked together with the positive electrode cap 4 at the opening end 2a of the negative electrode zinc can 2. On a plane between a contact portion 5c between the insulating gasket 5 and the negative electrode zinc can 2, and the current collector insertion hole 5a, at least one projection 7 is formed, which partially improves the deformation strength of the insulating gasket 5 at its periphery. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、マンガン乾電池、特にその封口構造に関するものである。   The present invention relates to a manganese dry battery, and more particularly to a sealing structure thereof.

外装缶を使用しない円筒形マンガン乾電池では、ケースを兼ねた負極亜鉛缶で封口体を締め付けて電池を密閉しており、封口体に破裂防止機構を備えていない場合、誤って電池を充電して電池内部で水素ガスが発生すると、電池内部の圧力が急激に上昇し、電池の内部圧力が電池の封口耐圧よりも大きくなった場合には、電池の封口部が緩み、破裂を招く場合がある。したがって、この対策として、外装缶を使用しない円筒形マンガン乾電池の封口体には、破裂防止のための安全対策が施されている。   In cylindrical manganese dry batteries that do not use an outer can, the battery is sealed by tightening the sealing body with a negative electrode zinc can that also serves as a case.If the sealing body does not have a burst prevention mechanism, the battery is accidentally charged. When hydrogen gas is generated inside the battery, the internal pressure of the battery suddenly rises, and if the internal pressure of the battery becomes higher than the sealing pressure of the battery, the sealing part of the battery may loosen and cause explosion. . Therefore, as a countermeasure against this, a sealing measure for a cylindrical manganese dry battery that does not use an outer can is provided with a safety measure for preventing bursting.

例えば、下記特許文献1に記載の円筒形電池では、図5に示すように、内筒部11と外筒部12とが連結部13により連結されて一体的に連結成形されたガスケット10(封口体)を用い、内筒部11の内周面11aに上下に延びる溝14を形成するとともに、この溝14の途中で上下に仕切る薄肉の弁部15を設け、内筒部11に炭素集電棒を挿通してこの薄肉弁部15を炭素集電棒に密着させるとともに、集電棒の外周面に予め塗布したシール剤を内筒部11と集電棒との継ぎ目部分に介在させた封口構造が開示されている。このように構成された円筒形電池では、シール剤は薄肉弁部15と集電棒に確実に密着し、薄肉弁部15と集電棒とシール剤との間に空気が閉じ込められることはなく、空気の膨張収縮によりシール剤に穴が開いてしまうということが防止され、封口構造の気密性と信頼性を向上させることができるとしている。   For example, in the cylindrical battery described in Patent Document 1 below, as shown in FIG. 5, a gasket 10 (sealing) integrally formed by connecting an inner tube portion 11 and an outer tube portion 12 by a connecting portion 13. Body) is formed in the inner peripheral surface 11a of the inner cylinder portion 11 with a vertically extending groove 14 and a thin valve portion 15 that is vertically divided in the middle of the groove 14 is provided. A sealing structure is disclosed in which the thin valve portion 15 is brought into close contact with the carbon current collector rod and a sealing agent previously applied to the outer peripheral surface of the current collector rod is interposed at the joint portion between the inner cylinder portion 11 and the current collector rod. ing. In the cylindrical battery configured as described above, the sealing agent securely adheres to the thin valve portion 15 and the current collecting rod, and air is not confined between the thin valve portion 15, the current collecting rod, and the sealing agent. It is said that the sealing agent is prevented from opening a hole due to the expansion and contraction, and the airtightness and reliability of the sealing structure can be improved.

また、下記特許文献2に記載のアルカリ電池の技術では、図6に示すように、有底円筒形容器の開口部を封口するためのエンドキャップアセンブリ20の中に、絶縁シールディスク21(封口体)を組み込み、その一部(絶縁シールディスクの中間部分の領域内)に一体に形成された破裂可能膜22が設けられ、この破裂可能膜22は電池内部のガス圧が所定のレベルに達したときに破裂するよう構成されている。そして、この絶縁シールディスク21(破裂可能膜22)はポリアミド樹脂(ナイロン)を用いて構成されている。
実用新案登録第2600931号公報 特表2002−516462号公報
In the alkaline battery technique described in Patent Document 2 below, as shown in FIG. 6, an insulating seal disk 21 (sealing body) is provided in an end cap assembly 20 for sealing an opening of a bottomed cylindrical container. ), And a rupturable membrane 22 formed integrally therewith (within the region of the intermediate portion of the insulating seal disk) is provided. The rupturable membrane 22 has a gas pressure inside the battery reaching a predetermined level. Sometimes configured to rupture. The insulating seal disk 21 (ruptureable film 22) is made of polyamide resin (nylon).
Utility Model Registration No. 2600931 JP-T-2002-516462

特許文献1に開示された円筒形電池では、薄肉弁部15からなる安全機構を封口体(ガスケット10)の炭素棒挿入部(内筒部11)に有しているが、薄肉弁部が小さく、マンガン乾電池で一般的に使用されているポリエチレン樹脂等を用いてこの封口体(薄肉弁部)を形成すると、特に高温環境下で劣化しやすく、封口性能ならびに破裂防止に対する信頼性の低いものになるという欠点を有していた。   In the cylindrical battery disclosed in Patent Document 1, the carbon rod insertion part (inner cylinder part 11) of the sealing body (gasket 10) has a safety mechanism including the thin valve part 15, but the thin valve part is small. When this sealing body (thin valve part) is formed using polyethylene resin or the like generally used in manganese dry batteries, it is likely to deteriorate particularly under high temperature environment, and the sealing performance and the reliability against explosion prevention are low. Had the disadvantage of becoming.

また、特許文献2に記載されている電池はアルカリ電池であり、したがって、上記の絶縁シールディスク21(破裂可能膜22)にポリアミド樹脂が用いられているが、この絶縁シールディスク21をポリエチレン樹脂等を用いて形成すると、ポリエチレン樹脂はポリアミド樹脂に比べて使用温度範囲が狭く、特に高温環境下では劣化しやすいため、破裂可能膜が伸びてしまい、破裂防止機構が正常に作動しないという問題点がある。   The battery described in Patent Document 2 is an alkaline battery. Therefore, a polyamide resin is used for the insulating seal disk 21 (ruptureable film 22). The insulating seal disk 21 is made of a polyethylene resin or the like. When used to form a polyethylene resin, the operating temperature range of the polyethylene resin is narrower than that of the polyamide resin, and it tends to deteriorate particularly in a high temperature environment.Therefore, the ruptureable film stretches and the rupture prevention mechanism does not operate normally. is there.

すなわち、ポリエチレン樹脂等を用いて形成される従来の薄肉弁(あるいは膜)構造では、特に高温(45〜60℃)で劣化しやすく、封口性能に対する信頼性が低いものであった。また、薄肉弁構造は、薄肉部が変形し、破れることにより、破裂を防止する構造であるが、薄肉部の厚みのバラツキが破裂防止のための作動圧に影響し、そのため、破裂防止に対する信頼性が十分とはいえなかった。   That is, the conventional thin-walled valve (or membrane) structure formed using polyethylene resin or the like is likely to deteriorate particularly at high temperatures (45 to 60 ° C.) and has low reliability with respect to sealing performance. In addition, the thin valve structure is a structure that prevents the burst by deforming and tearing the thin wall, but the variation in the thickness of the thin wall affects the operating pressure for preventing the burst, and therefore the reliability for preventing the burst. Sex was not enough.

本発明は、封口体に設けられる破裂防止のための安全機構を簡単な構成としながら、製造時の機構部のバラツキや使用環境下での材質劣化に伴いその作動圧が不安定となるのを防止して、確実に且つ安定して作動する安全機構を有するマンガン乾電池を提供することを目的とする。   The present invention has a simple structure of a safety mechanism for preventing burst provided in a sealing body, and its operating pressure becomes unstable due to variations in the mechanism part during production and material deterioration under the usage environment. An object of the present invention is to provide a manganese dry battery having a safety mechanism that is prevented and operates reliably and stably.

本発明の請求項1に係るマンガン乾電池は、負極亜鉛缶の開口部に、正極キャップが絶縁ガスケットを介してかしめ封口されたマンガン乾電池であって、絶縁ガスケットは、断面視略平板状に形成されて、その中央部に集電体が挿通される集電体挿通孔が設けられるとともに、その周縁部が負極亜鉛缶に当接して上方に屈曲されて、正極キャップと共に負極亜鉛缶の開口端でかしめられ、絶縁ガスケットの負極亜鉛缶との当接部と集電体挿通孔と間の平面上に、この絶縁ガスケットの変形強度をその周辺部で部分的に向上させる突状部が少なくとも一つ形成されていることを特徴とするものである。   A manganese dry battery according to claim 1 of the present invention is a manganese dry battery in which a positive electrode cap is caulked and sealed with an insulating gasket at an opening of a negative electrode zinc can, and the insulating gasket is formed in a substantially flat plate shape in cross section. In addition, a current collector insertion hole through which the current collector is inserted is provided at the center portion thereof, and a peripheral portion thereof is bent upwardly in contact with the negative electrode zinc can, and at the open end of the negative electrode zinc can together with the positive electrode cap. At least one projecting portion that is caulked and partially improves the deformation strength of the insulating gasket at the periphery thereof on the plane between the contact portion of the insulating gasket with the negative electrode zinc can and the current collector insertion hole. It is characterized by being formed.

請求項1に係るマンガン乾電池によれば、絶縁ガスケット(封口体)において突状部が形成されている円周方向の領域(以下、領域Aという)周辺では、絶縁ガスケットの変形強度が高くなり、その変形が抑制されるため、電池内圧が上昇した時には、突状部が形成されていない円周方向の領域(以下、領域Bという)で、絶縁ガスケットが電池内圧により上方に押し上げられるように変形される。これにより、この領域Bにおいて、絶縁ガスケットの集電体挿通孔に臨む内側面と集電体挿通孔に挿通された集電体との間に隙間が生じ、電池内部のガスがこの隙間を通して電池外部に放出されることになる。   According to the manganese dry battery of claim 1, the deformation strength of the insulating gasket is increased around the circumferential region (hereinafter referred to as region A) where the protruding portion is formed in the insulating gasket (sealing body), Since the deformation is suppressed, when the battery internal pressure rises, the insulation gasket is deformed so as to be pushed upward by the battery internal pressure in a circumferential region where no protruding portion is formed (hereinafter referred to as region B). Is done. As a result, in this region B, a gap is generated between the inner surface facing the current collector insertion hole of the insulating gasket and the current collector inserted into the current collector insertion hole, and the gas inside the battery passes through this gap to cause the battery to pass through the battery. It will be released to the outside.

しかも、上記の絶縁ガスケットでは、薄肉で構成される弁構造を採っていないため、製造時において突状部の形状・寸法にバラツキが多少あっても、ガスを排出する際の作動圧にさほど影響を与えず、ポリエチレン樹脂等を用いて構成しても、高温環境下での材質劣化を引き起こすことなく、したがって、作動圧にバラツキを生じることもない。   Moreover, since the above-mentioned insulating gasket does not have a thin valve structure, even if there is some variation in the shape and dimensions of the protrusions during production, the operating pressure when discharging the gas is greatly affected. Even if it is configured using polyethylene resin or the like, the material does not deteriorate under a high temperature environment, and therefore the operating pressure does not vary.

このように、本発明に係るマンガン乾電池は、封口体に設けられる破裂防止のための安全機構を簡単な構成としながら、製造時の機構部のバラツキや使用環境下での材質劣化に伴いその作動圧が不安定となるのを防止して、確実に且つ安定して作動する安全機構を有するものである。   As described above, the manganese dry battery according to the present invention operates in accordance with variations in the mechanism part during manufacture and material deterioration under the usage environment, with a simple structure of the safety mechanism for preventing burst provided in the sealing body. It has a safety mechanism that prevents the pressure from becoming unstable and operates reliably and stably.

また、本発明の請求項2に係るマンガン乾電池は、請求項1に記載のマンガン乾電池において、突状部の集電体に対向する側面が、この集電体に対して離間しているものである。   Moreover, the manganese dry battery according to claim 2 of the present invention is the manganese dry battery according to claim 1, wherein a side surface of the protruding portion facing the current collector is separated from the current collector. is there.

請求項2に係るマンガン乾電池によれば、突状部の集電体挿通孔に対向する側面が集電体に対して離間させることにより、電池内圧が上昇したときに、領域Bの絶縁ガスケットが変形する際に摺動抵抗によってその進行が阻害されず、より確実な作動圧力で円滑に内部ガスを排出することができる。   According to the manganese dry battery of claim 2, when the internal pressure of the battery rises when the side surface of the protruding portion facing the current collector insertion hole is separated from the current collector, the insulating gasket in the region B is When deforming, the progress is not hindered by the sliding resistance, and the internal gas can be discharged smoothly with a more reliable operating pressure.

さらに、本発明の請求項3に係るマンガン乾電池は、請求項1または2に記載のマンガン乾電池において、突状部の上面が、対向する正極キャップの下面に対して0.1mm〜0.6mmの隙間を介して離間しているものである。   Furthermore, the manganese dry battery according to claim 3 of the present invention is the manganese dry battery according to claim 1 or 2, wherein the upper surface of the protruding portion is 0.1 mm to 0.6 mm with respect to the lower surface of the opposing positive electrode cap. They are separated via a gap.

請求項3に係るマンガン乾電池によれば、突状部の上面を対向する正極キャップの下面に対して適度に離間させることにより、ガス排出時の作動圧(防爆強度)にバラツキが生じるのを防止することができる。すなわち、隙間が0.1mm未満で小さい場合、絶縁ガスケットを少し変形させながら正極キャップに嵌め込む組立工程において、突状部の頂部(上面)が正極キャップの下面に当接して精度良く嵌め込むことができないといった不具合が生じる可能性があり、このような不具合が起こると、ガス排出時の作動圧にバラツキを生じる原因にもなる。また、隙間が0.6mmを越えて大きいと、突状部の頂部が正極キャップの下面に当接せずに、領域Aでの絶縁ガスケットの変形が十分に抑制されないことも起こり得る。このような場合にも、ガス排出時の作動圧のバラツキを生じることになる。   According to the manganese dry battery of the third aspect, the operating pressure (explosion-proof strength) at the time of gas discharge is prevented from being varied by appropriately separating the upper surface of the protruding portion from the lower surface of the opposing positive electrode cap. can do. That is, when the gap is less than 0.1 mm, the top (upper surface) of the projecting portion is in contact with the lower surface of the positive electrode cap in the assembly step of fitting the insulating gasket into the positive electrode cap while slightly deforming. There is a possibility that a problem such as inability to occur may occur, and if such a problem occurs, it may cause a variation in the operating pressure during gas discharge. Further, if the gap is larger than 0.6 mm, the top of the projecting portion may not contact the lower surface of the positive electrode cap, and the deformation of the insulating gasket in the region A may not be sufficiently suppressed. Even in such a case, the operating pressure varies when the gas is discharged.

また、本発明の請求項4に係るマンガン乾電池は、請求項1〜3のいずれか一項に記載のマンガン乾電池において、少なくとも一つの前記突状部の上面が、対向する前記正極キャップの下面に当接しているものである。   Moreover, the manganese dry battery which concerns on Claim 4 of this invention is a manganese dry battery as described in any one of Claims 1-3. WHEREIN: The upper surface of at least 1 said protrusion part is the lower surface of the said positive electrode cap which opposes. It is in contact.

請求項4に係るマンガン乾電池によれば、少なくとも一つの突状部の上面を対向する正極キャップの下面に当接させることにより、この突状部周辺での絶縁ガスケットの変形強度が高くなり、電池内圧が上昇したときに変形が抑制され、領域Bの絶縁ガスケットが変形するのに引きずられることなく、領域Bの絶縁ガスケットが速やかに変形するのを助けるとともに、電池内圧の上昇により排出されたガスを突状部の側面に沿って逃し、ガスの排出を円滑に進行させることができる。   According to the manganese dry battery of claim 4, the deformation strength of the insulating gasket around the protruding portion is increased by bringing the upper surface of at least one protruding portion into contact with the lower surface of the opposing positive electrode cap. The deformation is suppressed when the internal pressure is increased, and the insulating gasket in the region B is not dragged to be deformed, and the insulating gasket in the region B is quickly deformed, and the gas discharged by the increase in the battery internal pressure is discharged. Is allowed to escape along the side surface of the protruding portion, and the gas can be smoothly discharged.

さらに、本発明の請求項5に係るマンガン乾電池は、請求項1〜4のいずれか一項に記載のマンガン乾電池において、突状部の集電体に対向する側面に摺接突部が形成され、この摺接突部の頂部が集電体に当接しているものである。   Furthermore, the manganese dry battery according to claim 5 of the present invention is the manganese dry battery according to any one of claims 1 to 4, wherein a sliding contact protrusion is formed on a side surface of the protrusion that faces the current collector. The top of this sliding contact protrusion is in contact with the current collector.

請求項5に係るマンガン乾電池によれば、突状部側面に形成された摺接突部が、電池内圧が上昇したときに、領域Bの絶縁ガスケットが変形するのに引きずられて集電体表面に沿って摺動することで、領域Bの絶縁ガスケットが速やかに変形するのを助けるとともに、電池内圧の上昇により排出されたガスを突状部の側面に沿って逃し、ガスの排出を円滑に進行させることができる。   According to the manganese dry battery of claim 5, the sliding contact protrusion formed on the side surface of the protrusion is dragged to deform the insulating gasket in the region B when the battery internal pressure rises, and the surface of the current collector By sliding along the side, the insulating gasket in the region B is helped to be quickly deformed, and the gas discharged by the rise of the battery internal pressure is released along the side surface of the projecting portion, thereby smoothly discharging the gas. Can be advanced.

本発明によれば、封口体に設けられる破裂防止のための安全機構を簡単な構成としながら、製造時の機構部のバラツキや使用環境下での材質劣化に伴いその作動圧が不安定となるのを防止して、確実に且つ安定して作動する安全機構を有するマンガン乾電池を提供することができる。   According to the present invention, a safety mechanism for preventing rupture provided in a sealing body has a simple configuration, and its operating pressure becomes unstable due to variations in the mechanism part during manufacture and material deterioration under the usage environment. Thus, a manganese dry battery having a safety mechanism that operates reliably and stably can be provided.

以下、本発明のマンガン乾電池に係る最良の実施の形態について、図1〜図4に基づき詳細に説明する。図1は、本発明に係るマンガン乾電池の封口構造を説明するための断面図であり、(a)は絶縁ガスケットが正規の位置にある状態、(b)は絶縁ガスケットの突状部が形成されていない部分が電池内圧の上昇により変形した状態を示している。また、図2は、本発明に係るマンガン乾電池の、円弧状の突状部が形成された絶縁ガスケットの形状を説明するための斜視図である。図3は、本発明に係るマンガン乾電池の絶縁ガスケットに形成される突状部についての種々の形態を説明するための平面図であり、図4は、本発明に係るマンガン乾電池の絶縁ガスケットに形成される円弧状の突状部について、その具体的態様を説明するための平面図(上段の図)と側面図(下段の図)である。なお、下記に開示される実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の技術的範囲は、実施の形態で開示された内容ではなく、特許請求の範囲の記載によって示され、さらに、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれると解されるべきである。   BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best mode for carrying out a manganese dry battery of the present invention will be described in detail with reference to FIGS. 1A and 1B are cross-sectional views for explaining a sealing structure of a manganese dry battery according to the present invention, in which FIG. 1A shows a state in which an insulating gasket is in a normal position, and FIG. 1B shows a protruding portion of the insulating gasket. The part which is not shown has shown the state deform | transformed by the raise of the battery internal pressure. FIG. 2 is a perspective view for explaining the shape of the insulating gasket in which arc-shaped protrusions are formed in the manganese dry battery according to the present invention. FIG. 3 is a plan view for explaining various forms of protrusions formed on the insulating gasket of the manganese dry battery according to the present invention, and FIG. 4 is formed on the insulating gasket of the manganese dry battery according to the present invention. FIG. 4 is a plan view (upper view) and a side view (lower view) for explaining a specific aspect of the arc-shaped projecting portion. It should be understood that the embodiments disclosed below are illustrative in all respects and are not restrictive. The technical scope of the present invention is shown not by the content disclosed in the embodiment but by the description of the scope of claims, and further includes all modifications within the meaning and scope equivalent to the scope of claims. Should be understood.

本発明に係るマンガン乾電池1は、図1(a)に示すように、負極亜鉛缶2の開口部3(開口端2a)に正極キャップ4が絶縁ガスケット5を介してかしめ封口されたものである。絶縁ガスケット5は、断面視略円形平板状のポリエチレン樹脂により形成され、その中央部に炭素棒集電体6(集電体)が挿通される集電体挿通孔5aが設けられているとともに、その周縁部5bが負極亜鉛缶2に当接して上方に屈曲されて、正極キャップ4と共に負極亜鉛缶2の開口端2aでかしめられている。そして、絶縁ガスケット5の負極亜鉛缶2との当接部5cと集電体挿通孔5aと間の平面(以下、円環部Cという)上に、この絶縁ガスケット5の変形強度をその周辺部で部分的に向上させる突状部7が形成されている。   A manganese dry battery 1 according to the present invention is one in which a positive electrode cap 4 is caulked and sealed with an insulating gasket 5 at an opening 3 (opening end 2a) of a negative electrode zinc can 2 as shown in FIG. . The insulating gasket 5 is formed of a polyethylene resin having a substantially circular flat plate shape in cross section, and a current collector insertion hole 5a through which the carbon rod current collector 6 (current collector) is inserted is provided at the center thereof. The peripheral edge 5 b abuts on the negative electrode zinc can 2 and is bent upward, and is caulked together with the positive electrode cap 4 at the open end 2 a of the negative electrode zinc can 2. Then, the deformation strength of the insulating gasket 5 is measured on its peripheral portion on a plane (hereinafter referred to as an annular portion C) between the contact portion 5c of the insulating gasket 5 with the negative electrode zinc can 2 and the current collector insertion hole 5a. The protrusion 7 is partially improved.

本実施の形態の一例として、図2に示すように、円弧状に形成された突状部7が、集電体挿通孔5aの軸心(炭素棒集電体6の軸心)を中心とした円周上に、その内側面7aが対向する炭素棒集電体6に対して若干の隙間Gを隔てた(離間した)状態で、かつ、その頂部にある上面7bがそれに対向する正極キャップ4の下面に対して若干の隙間Hを隔てた(離間した)状態で形成されている。そして、このような突状部7を絶縁ガスケット5の円環部Cに形成することにより、領域Aにおける絶縁ガスケットの肉厚を実質的に大きくして、領域A周辺の絶縁ガスケット5の円周方向および直径方向の剛性を高め、その変形強度を向上させることができる。   As an example of the present embodiment, as shown in FIG. 2, the projecting portion 7 formed in an arc shape is centered on the axis of the current collector insertion hole 5a (the axis of the carbon rod current collector 6). A positive electrode cap whose inner surface 7a is spaced apart from (spacing) a small gap G with respect to the opposite circumference, and the top surface 7b at the top of the current collector is opposed thereto. 4 is formed with a slight gap H (separated) from the lower surface of 4. Then, by forming such a protruding portion 7 in the annular portion C of the insulating gasket 5, the thickness of the insulating gasket in the region A is substantially increased, and the circumference of the insulating gasket 5 around the region A is increased. The rigidity in the direction and the diameter direction can be increased and the deformation strength can be improved.

絶縁ガスケット5は、素材としてポリエチレン、ポリプロピレン等のポリオレフィン系樹脂を用いて成形されたものであり、負極亜鉛缶2の周側面と当接する絶縁ガスケット5の外周部(当接部5c)で上方に屈曲され、その上端部(周縁部5b)が正極キャップ4と共に負極亜鉛缶2の開口端2aでかしめられているが、この当接部5cと炭素棒集電体6と接する集電体挿通孔5aとの間(突状部7を除いた部分)が円盤状の平板形状からなっている。そして、集電体挿通孔5aに挿通された炭素棒集電体6と負極亜鉛缶2との接触部分は、封止素材としてポリブテンからなる封止剤8を用いて封止されている。   The insulating gasket 5 is formed using a polyolefin-based resin such as polyethylene or polypropylene as a material, and is upward at the outer peripheral portion (contact portion 5 c) of the insulating gasket 5 that contacts the peripheral side surface of the negative electrode zinc can 2. The bent upper end portion (peripheral portion 5b) is caulked together with the positive electrode cap 4 at the open end 2a of the negative electrode zinc can 2, but the current collector insertion hole is in contact with the contact portion 5c and the carbon rod current collector 6. A portion between 5a (a portion excluding the projecting portion 7) has a disk-like flat plate shape. The contact portion between the carbon rod current collector 6 inserted into the current collector insertion hole 5a and the negative electrode zinc can 2 is sealed with a sealant 8 made of polybutene as a sealing material.

正極キャップ4は、薄肉厚のニッケルめっき板を用いて成形されたものであり、上面4aに円形状の平坦面を有する断面視略コ字状に成形され、さらにその上面4aに凹部4bが下方に開口して形成されて、絶縁ガスケット5の集電体挿通孔5aに挿通された炭素棒集電体6の上端部がこの凹部4bに嵌め込まれている。そして、この凹部4bの上面が正極端子部となっている。また、正極キャップ4の周側部4cはその下方で外方に向けて屈曲されて展伸され、さらに外方の縁部で上方に向けて屈曲されて展伸されている。このようにして形成された正極キャップ4周縁の鍔部4dが、上記の上方に向けて屈曲された絶縁ガスケット5の周縁部5bに抱き包まれるように、負極亜鉛缶2の開口端2aでかしめ封口されている。   The positive electrode cap 4 is formed using a thin nickel-plated plate, and is formed into a substantially U-shaped cross-sectional view having a circular flat surface on the upper surface 4a, and a recess 4b is formed on the upper surface 4a. The upper end portion of the carbon rod current collector 6 that is formed in the insulating gasket 5 and is inserted into the current collector insertion hole 5a of the insulating gasket 5 is fitted into the recess 4b. And the upper surface of this recessed part 4b is a positive electrode terminal part. Further, the peripheral side portion 4c of the positive electrode cap 4 is bent and extended outward at the lower side, and further bent and extended upward at the outer edge portion. The flange 4d on the periphery of the positive electrode cap 4 formed in this way is caulked at the open end 2a of the negative electrode zinc can 2 so as to be surrounded by the peripheral portion 5b of the insulating gasket 5 bent upward. It is sealed.

また、負極亜鉛缶2は、有底の円筒形容器であり、正極合剤等が封入された後、上記のように、その開口端2aが絶縁ガスケット5を介して正極キャップ4と共にかしめ封口されている。そして、負極亜鉛缶2の周側部2b外面(負極亜鉛缶2の底部を除いて開口端2aに至る範囲)は熱収縮性の外装チューブ9で覆われている。   Further, the negative electrode zinc can 2 is a bottomed cylindrical container, and after the positive electrode mixture or the like is sealed, the open end 2a thereof is caulked and sealed together with the positive electrode cap 4 through the insulating gasket 5 as described above. ing. The outer surface of the peripheral side portion 2b of the negative electrode zinc can 2 (the range reaching the open end 2a excluding the bottom portion of the negative electrode zinc can 2) is covered with a heat-shrinkable outer tube 9.

このように構成されたマンガン乾電池1において、電池内圧が上昇したときには、図1(b)に示されるように、領域A周辺における絶縁ガスケット5の変形が抑えられて、領域Bの絶縁ガスケット5が優先的に変形することにより、絶縁ガスケット5の領域Bにおける集電体挿通孔5aの下部が封止剤8から離間して、集電体挿通孔5aの内周面と炭素棒集電体6の外表面との間に隙間Sが生じ、この隙間Sを介して確実に電池内部のガスを排出することができる。なお、このガスを排出するときの防爆強度は、1.5MPa以上、4.5MPa以下に設定されている。   In the manganese dry battery 1 configured as described above, when the battery internal pressure increases, the deformation of the insulating gasket 5 around the region A is suppressed as shown in FIG. By preferentially deforming, the lower part of the current collector insertion hole 5a in the region B of the insulating gasket 5 is separated from the sealant 8, and the inner peripheral surface of the current collector insertion hole 5a and the carbon rod current collector 6 are separated. A gap S is formed between the outer surface of the battery and the gas inside the battery can be reliably discharged through the gap S. The explosion-proof strength when discharging this gas is set to 1.5 MPa or more and 4.5 MPa or less.

絶縁ガスケットの円環部Cにおける肉厚tは、上記の防爆強度を得るよう、0.8mm〜2.0mmの範囲に設定されている。この肉厚tが0.8mm未満であると、集電体挿通孔5aの内周面において絶縁ガスケット5と炭素棒集電体6との接触面積が小さくなり、絶縁ガスケット5と炭素棒集電体6との間における封口状態が維持できなくなり、肉厚tが2.0mmを越えると、電池内圧が上昇したときに、領域Bの絶縁ガスケット5で十分な変形が生じず、防爆強度が高くなる。   The wall thickness t in the annular portion C of the insulating gasket is set in the range of 0.8 mm to 2.0 mm so as to obtain the above explosion-proof strength. When the wall thickness t is less than 0.8 mm, the contact area between the insulating gasket 5 and the carbon rod current collector 6 is reduced on the inner peripheral surface of the current collector insertion hole 5a, and the insulating gasket 5 and the carbon rod current collector are reduced. If the sealing state with the body 6 cannot be maintained and the wall thickness t exceeds 2.0 mm, the insulation gasket 5 in the region B does not deform sufficiently when the battery internal pressure rises, and the explosion-proof strength is high. Become.

絶縁ガスケット5の円環部Cにおける肉厚tは、この絶縁ガスケット5上に形成される突状部7の大きさ、すなわち、円周方向の長さ、その垂直方向の幅および高さ(突出量)、および個数などに応じて、上記の範囲で適宜設定されるものであり、絶縁ガスケット5の領域Aと領域Bとで異なるように設定されてもよい。例えば、領域Aの絶縁ガスケット5の肉厚tA を厚く(領域Bの肉厚tB を薄く)して、領域Bの絶縁ガスケット5での変形が生じやすいように設定してもよいし、領域Aの絶縁ガスケット5の肉厚tA を薄く(領域Bの肉厚tB を厚く)して、突状部の形状・寸法および個数により領域Aの絶縁ガスケット5の変形強度を補ってもよい。また、領域Aと領域Bとで絶縁ガスケット5の肉厚tA 、tB を異なるように設定する場合、段差を設けて異なる肉厚tA 、tB を設定してもよいが、領域Bでの穏やかな変形を促すため、傾斜部を設けて異なる肉厚tA 、tB を設定するのが望ましい。 The thickness t at the annular portion C of the insulating gasket 5 is the size of the protruding portion 7 formed on the insulating gasket 5, that is, the circumferential length, the vertical width and height (protrusion). The amount is appropriately set in the above range according to the amount), the number, and the like, and may be set differently in the region A and the region B of the insulating gasket 5. For example, the thickness t A of the insulating gasket 5 in the region A thicker to (reduce the wall thickness t B of the area B), may be set so prone to deformation by an insulating gasket 5 in the region B, Even if the thickness t A of the insulating gasket 5 in the region A is made thin (thickness t B in the region B is made thick) and the deformation strength of the insulating gasket 5 in the region A is compensated by the shape, size and number of protrusions. Good. Further, when the thicknesses t A and t B of the insulating gasket 5 are set differently in the region A and the region B, different thicknesses t A and t B may be set by providing a step, but the region B In order to promote gentle deformation in the case, it is desirable to provide inclined portions and set different wall thicknesses t A and t B.

突状部7は、絶縁ガスケット5の負極亜鉛缶2との当接部5cと集電体挿通孔5aと間(円環部C)の平面上に立設するような形で、絶縁ガスケット5に一体として形成されており、樹脂成形する際に同じ金型を用いて絶縁ガスケット5と同時に成形されるものである。突状部7の形状・寸法については、適応される種々の形態に対応して、領域Aの絶縁ガスケット5の変形を抑制するとともに、領域Bの絶縁ガスケット5において変形し、その隙間Sから電池内部のガスが排出されるように適宜設定されればよい。また、突状部7の個数も、同様の観点から適宜設定されればよい。   The projecting portion 7 is formed so as to stand on a plane between the contact portion 5c of the insulating gasket 5 with the negative electrode zinc can 2 and the current collector insertion hole 5a (annular portion C). And is formed at the same time as the insulating gasket 5 using the same mold when resin molding. Regarding the shape and dimensions of the projecting portion 7, the deformation of the insulating gasket 5 in the region A is suppressed and the deformation is deformed in the insulating gasket 5 in the region B in accordance with various forms to be applied. What is necessary is just to set suitably so that internal gas may be discharged | emitted. Further, the number of the protruding portions 7 may be appropriately set from the same viewpoint.

突状部7の形態については、図3(a)〜(d)に示すように、(a)略円柱形状に形成されるもの(7A)、(b)集電体挿通孔の軸心を中心とする放射線方向に長辺を有する平面視略長方形状に形成されるもの(7B)、(c)集電体挿通孔の軸心を中心とする放射線方向に垂直な方向に長辺を有する平面視略長方形状に形成されるもの(7C)、(d)集電体挿通孔の軸心を中心とする円周方向に円弧を有する平面視略帯状形状に形成されるもの(7D)、などが挙げられる。以下、これらの形態について、具体的に説明する。なお、図3において、破線で表示した突状部7は、複数個形成される場合の突状部7A〜7Dを示している。   About the form of the protrusion part 7, as shown to Fig.3 (a)-(d), (a) What is formed in a substantially cylindrical shape (7A), (b) The axial center of a collector insertion hole is used. (7B) formed in a substantially rectangular shape in plan view having a long side in the central radiation direction, and (c) has a long side in a direction perpendicular to the radial direction centering on the axis of the current collector insertion hole (7C) formed in a substantially rectangular shape in plan view, (d) formed in a substantially band-like shape in plan view having an arc in the circumferential direction around the axis center of the current collector insertion hole (7D), Etc. Hereinafter, these forms will be specifically described. In FIG. 3, protruding portions 7 indicated by broken lines indicate protruding portions 7 </ b> A to 7 </ b> D when a plurality of protruding portions 7 are formed.

まず、(a)の略円柱形状に形成される突状部7Aは、水平方向の断面が円形あるいは楕円形で構成され、その頂部が平面または上方に凸形状の曲面で形成されたものである。このような突状部7Aを絶縁ガスケット5の負極亜鉛缶2との当接部5cと集電体挿通孔5aと間の平面上に1個形成することにより、突状部7Aが形成された絶縁ガスケット5の周辺部において、その変形強度を部分的に向上させることができる。さらに、このような突状部7Aを複数個、望ましくは集電体挿通孔5aの軸心を中心とする略円周線上に並設することにより、複数個の突状部7Aが形成された絶縁ガスケット5の変形強度をその並設された領域全体で向上させることができる。   First, the projecting portion 7A formed in a substantially cylindrical shape of (a) is configured such that the horizontal cross section is circular or elliptical, and the top is formed with a flat or upwardly convex curved surface. . By forming one such protruding portion 7A on the plane between the contact portion 5c of the insulating gasket 5 with the negative electrode zinc can 2 and the current collector insertion hole 5a, the protruding portion 7A is formed. The deformation strength can be partially improved at the periphery of the insulating gasket 5. Furthermore, a plurality of such projecting portions 7A are formed by arranging a plurality of such projecting portions 7A, preferably on a substantially circumferential line centering on the axis of the current collector insertion hole 5a. The deformation strength of the insulating gasket 5 can be improved over the entire region.

次に、(b)の集電体挿通孔の軸心を中心とする放射線方向に長辺を有する平面視略長方形状に形成される突状部7B、および(c)の集電体挿通孔の軸心を中心とする放射線方向に垂直な方向に長辺を有する平面視略長方形状に形成される突状部7Cは、垂直方向の断面が略正方形あるいは縦方向または横方向に長辺を有する略長方形として構成され、その頂部が平面または上方に凸形状の曲面で形成されたものである。このような突状部7A、7Bを絶縁ガスケット5の負極亜鉛缶2との当接部5cと集電体挿通孔5aと間の平面上に1個形成することにより、突状部7A、7Bが形成された絶縁ガスケット5の周辺部において、(b)の突状部7Bの場合は、特に放射線方向の変形強度を、(c)の突状部7Cの場合は、特に放射線方向に垂直な方向の変形強度を、部分的に向上させることができる。さらに、このような突状部7A、7Bを複数個、望ましくは集電体挿通孔5aの軸心を中心とする略円周線上に並設することにより、複数個の突状部7A、7Bが形成された絶縁ガスケット5の変形強度をその並設された領域全体で向上させることができる。   Next, a projecting portion 7B formed in a substantially rectangular shape in plan view having a long side in the radial direction centering on the axis of the collector insertion hole of (b), and the collector insertion hole of (c) The projecting portion 7C formed in a substantially rectangular shape in plan view having a long side in a direction perpendicular to the radiation direction centered on the axis of the vertical section has a substantially square or a long side in the vertical or horizontal direction. It is comprised as a substantially rectangular shape, and its top is formed as a flat or upwardly curved surface. By forming one such protruding portion 7A, 7B on the plane between the contact portion 5c of the insulating gasket 5 with the negative electrode zinc can 2 and the current collector insertion hole 5a, the protruding portions 7A, 7B are formed. In the peripheral portion of the insulating gasket 5 formed with the protrusion 7B in FIG. 5B, the deformation strength in the radial direction is particularly high, and in the case of the protrusion 7C in FIG. The deformation strength in the direction can be partially improved. Further, by arranging a plurality of such protruding portions 7A and 7B, preferably on a substantially circumferential line centering on the axis of the current collector insertion hole 5a, a plurality of protruding portions 7A and 7B are provided. The deformation strength of the insulating gasket 5 formed with can be improved over the entire region.

また、(d)の集電体挿通孔の軸心を中心とする円周方向に円弧を有する平面視略帯状形状に形成される突状部7Dは、垂直方向の断面が略正方形あるいは縦方向または横方向に長辺を有する略長方形として構成され、その頂部が平面または上方に凸形状の曲面で形成されたものである。このような突状部7Dを絶縁ガスケット5の負極亜鉛缶2との当接部5cと集電体挿通孔5aと間の平面上に1個形成することにより、突状部7Dが形成された絶縁ガスケット5の周辺部において、特に円周方向の変形強度を部分的に向上させることができる。さらに、このような突状部7Dを複数個、望ましくは集電体挿通孔5aの軸心を中心とする略円周線上に並設することにより、複数個の突状部7Dが形成された絶縁ガスケット5の変形強度をその並設された領域全体で向上させることができる。   Further, the protrusion 7D formed in a substantially band shape in plan view having an arc in the circumferential direction around the axis center of the current collector insertion hole in (d) has a substantially square or vertical cross section in the vertical direction. Or it is comprised as a substantially rectangular shape which has a long side in a horizontal direction, The top part is formed in the curved surface of convex shape in the plane or upward. By forming one such protruding portion 7D on the plane between the contact portion 5c of the insulating gasket 5 with the negative electrode zinc can 2 and the current collector insertion hole 5a, the protruding portion 7D is formed. Especially in the peripheral part of the insulating gasket 5, the deformation strength in the circumferential direction can be partially improved. Further, a plurality of the protruding portions 7D are formed by arranging a plurality of such protruding portions 7D, preferably on a substantially circumferential line centering on the axis of the current collector insertion hole 5a. The deformation strength of the insulating gasket 5 can be improved over the entire region.

さらに、このような突状部7を1個、絶縁ガスケット5の円環部Cに形成する場合、領域A周辺における絶縁ガスケット5の変形を抑え、領域Bの絶縁ガスケット5を優先的に変形させるためには、図4(a)、(b)に示されるように、その円周の1/6円弧以上の範囲に形成されているのが望ましく、また、図4(c)に示されるように、突状部7が設けられていない部分(領域B)がその円周の1/6円弧以上占めていることが望ましい。また、複数個の突状部7を絶縁ガスケット5の円環部Cの、集電体挿通孔5aの軸心を中心とする略同一円周線上に形成する場合、図4(d)に示されるように、それぞれの突状部7が互いに隣接した状態で配置されてもよく、また、図4(e)に示されるように、互いに離れた状態で配置されてもよい。このような場合であっても、隣接する突状部7相互の間が、その円周の1/6円弧以上離れていることが望ましい。図4では、円弧状に形成される平面視略帯状形状の突状部7Dについて例示しているが、他の突状部7A〜7Cについても同様である。複数個の突状部7を互いに隣接して、あるいは互いに離して配置すると、全体として同じ領域に設けられる1個の長い突状部7を形成した場合と同等の変形強度の抑制効果が得られるとともに、絶縁ガスケット5の成形に用いる樹脂素材の量を節減することができ、望ましい。   Furthermore, when one such protruding portion 7 is formed in the annular portion C of the insulating gasket 5, the deformation of the insulating gasket 5 around the region A is suppressed, and the insulating gasket 5 in the region B is preferentially deformed. For this purpose, as shown in FIGS. 4 (a) and 4 (b), it is desirable that it be formed in a range of 1/6 arc or more of the circumference, as shown in FIG. 4 (c). In addition, it is desirable that a portion (region B) where the protruding portion 7 is not provided occupies 1/6 arc or more of the circumference. Further, when the plurality of projecting portions 7 are formed on substantially the same circumferential line around the axis of the current collector insertion hole 5a of the annular portion C of the insulating gasket 5, as shown in FIG. As shown in FIG. 4E, the protrusions 7 may be arranged adjacent to each other, or may be arranged apart from each other as shown in FIG. Even in such a case, it is desirable that the adjacent protrusions 7 are separated from each other by 1/6 arc or more of the circumference. Although FIG. 4 illustrates the protrusion 7D having a substantially band shape in plan view formed in an arc shape, the same applies to the other protrusions 7A to 7C. When the plurality of protrusions 7 are arranged adjacent to each other or apart from each other, the same deformation strength suppression effect as that obtained when one long protrusion 7 provided in the same region as a whole is obtained. At the same time, the amount of resin material used for forming the insulating gasket 5 can be reduced, which is desirable.

突状部7の炭素棒集電体6に対向する内側面7aが、炭素棒集電体6に当接していても構わないが、炭素棒集電体6に対して隙間Gを介して離間しているのが望ましい。この隙間Gは任意の寸法に設定されてよい。突状部7の内側面7aが炭素棒集電体6に当接していると、電池内圧が上昇して領域Bの絶縁ガスケット5が変形する際に、摺動抵抗によってその変形が円滑に進行しないことも懸念され、そのような場合には、ガス排出動作に遅延を生じたり、作動圧力(防爆強度)にバラツキを生じたりする原因になる。したがって、突状部7の内側面7aを炭素棒集電体6に対して離間させることにより、電池内圧が上昇したときに、より確実な作動圧力で円滑に内部ガスを排出することができる。   The inner surface 7 a of the protruding portion 7 facing the carbon rod current collector 6 may be in contact with the carbon rod current collector 6, but is separated from the carbon rod current collector 6 through the gap G. It is desirable to do. This gap G may be set to an arbitrary dimension. When the inner surface 7a of the projecting portion 7 is in contact with the carbon rod current collector 6, when the battery internal pressure rises and the insulating gasket 5 in the region B is deformed, the deformation smoothly proceeds due to the sliding resistance. In such a case, the gas discharge operation may be delayed or the operating pressure (explosion-proof strength) may vary. Therefore, by separating the inner side surface 7a of the protruding portion 7 from the carbon rod current collector 6, the internal gas can be smoothly discharged with a more reliable operating pressure when the battery internal pressure increases.

また、上記(b)〜(d)の集電体挿通孔の軸心を中心とする放射線方向または垂直な方向に長辺を有する平面視略長方形状に形成される突状部7B、7C、あるいは、円周方向に円弧を有する平面視略帯状形状に形成される突状部7Dにおいて、突状部7の内側面7aを炭素棒集電体6に当接させない場合、この突状部7の内側面7aに摺接突部7c(図2、図4(a)参照)が設けられ、この摺接突部7cの頂部が炭素棒集電体6に当接しているのが望ましい。摺接突部7cは、突状部7の円周方向における端部近くに設けられるのが望ましく、炭素棒集電体6に当接する頂部が曲面で構成され、炭素棒集電体6に対して点接触しているのが望ましい。このような摺接突部7cが突状部7の内側面7aに設けられていると、本来的に変形強度の高い領域Aの端部が、領域Bの絶縁ガスケット5が変形するのに引きずられて炭素棒集電体6表面に沿って摺動することで、領域Bの絶縁ガスケット5が速やかに変形するのを助けるとともに、電池内圧の上昇により排出された電池内部のガスの流路を突状部7の内側面7aにも広げて、ガスを内側面7aに沿って逃し、ガスの排出を円滑に進行させることができる。   Projections 7B, 7C formed in a substantially rectangular shape in plan view having a long side in the radial direction or the vertical direction centered on the axis of the current collector insertion hole of (b) to (d) above. Alternatively, in the projecting portion 7D formed in a substantially band shape in plan view having an arc in the circumferential direction, when the inner surface 7a of the projecting portion 7 is not brought into contact with the carbon rod current collector 6, this projecting portion 7 It is desirable that a sliding contact protrusion 7c (see FIGS. 2 and 4A) is provided on the inner side surface 7a of the inner surface 7a, and the top of the sliding contact protrusion 7c is in contact with the carbon rod current collector 6. The slidable contact protrusion 7 c is preferably provided near the end of the protrusion 7 in the circumferential direction, and the top that contacts the carbon rod current collector 6 is formed of a curved surface. It is desirable to make point contact. When such a sliding contact protrusion 7c is provided on the inner surface 7a of the protrusion 7, the end portion of the region A, which inherently has high deformation strength, is dragged while the insulating gasket 5 in the region B is deformed. By sliding along the surface of the carbon rod current collector 6, the insulating gasket 5 in the region B is helped to be quickly deformed, and the flow path of the gas inside the battery discharged by the rise of the battery internal pressure is reduced. The gas can be extended along the inner side surface 7a of the projecting portion 7 so that the gas can escape along the inner side surface 7a, and the gas can be smoothly discharged.

なお、上記(a)の略円柱状に形成される突状部7Aの場合には、その円周面が炭素棒集電体の外周面に当接していてもよく、その円周面に摺接突部が設けられていなくてもよい。突状部7Aが炭素棒集電体6に当接していても、その炭素棒集電体6に対向する側面が円弧状に形成されて、炭素棒集電体6には線接触で当接しているため、電池内圧が上昇して領域Bの絶縁ガスケット5が変形する際に、摺動抵抗によってその変形の進行を阻害することがない。また、電池内圧の上昇により排出されたガスをその円弧状の側面に沿って逃し、ガスの排出を円滑に進行させることができる。   In the case of the projecting portion 7A formed in the substantially cylindrical shape of (a) above, its circumferential surface may be in contact with the outer circumferential surface of the carbon rod current collector, and it slides on the circumferential surface. The contact protrusion may not be provided. Even if the protruding portion 7A is in contact with the carbon rod current collector 6, the side surface facing the carbon rod current collector 6 is formed in an arc shape, and is in contact with the carbon rod current collector 6 by line contact. Therefore, when the battery internal pressure rises and the insulating gasket 5 in the region B is deformed, the progress of the deformation is not hindered by the sliding resistance. Moreover, the gas discharged by the rise in the battery internal pressure can escape along the arc-shaped side surface, and the gas discharge can be smoothly advanced.

さらに、上記(b)〜(d)の平面視略長方形状または円弧形状に形成されている突状部7(7B〜7D)の場合には、突状部7の頂部(上面7b)が対向する正極キャップ4の下面に対して0.1mm〜0.6mmの隙間Hを介して離間しているのが望ましい。より好ましい隙間Hは0.2〜0.5mmであり、製造時の寸法バラツキを考慮すると、0.3mm前後の隙間Hが形成されるように突状部7の高さ(突出量)を設定するのがよい。隙間Hが0.1mm未満で小さい場合、絶縁ガスケット5を少し変形させながら正極キャップ4に嵌め込む組立工程において、突状部7の頂部(上面7b)が正極キャップ4の下面に当接して精度良く嵌め込むことができないといった不具合が生じる可能性がある。このような不具合が起こると、ガス排出時の作動圧(防爆強度)にバラツキを生じる原因にもなる。また、電池内圧が上昇したときに、必ずしも突状部7の上面7bを対向する正極キャップ4の下面に当接せずとも、領域Bの絶縁ガスケット5の変形を抑制することができるが、突状部7の上面7bを正極キャップ4の下面に当接するように突状部7の高さを設定しておくと、より確実に領域Bの絶縁ガスケット5の変形を阻止することができる。隙間Hが0.6mmを越えて大きいと、電池内圧が上昇したときに、突状部7の頂部が正極キャップ4の下面に当接せずに、領域Aでの絶縁ガスケット5の変形が十分に抑制されないことも起こり得る。このような場合にも、ガス排出時の作動圧のバラツキを生じることになる。   Furthermore, in the case of the protrusions 7 (7B to 7D) formed in a substantially rectangular shape or arcuate shape in plan view of (b) to (d) above, the top (upper surface 7b) of the protrusion 7 is opposed. It is preferable that the positive electrode cap 4 is spaced from the lower surface of the positive electrode cap 4 via a gap H of 0.1 mm to 0.6 mm. The more preferable gap H is 0.2 to 0.5 mm, and considering the dimensional variation during manufacturing, the height (projection amount) of the protruding portion 7 is set so that the gap H is about 0.3 mm. It is good to do. When the gap H is less than 0.1 mm, the top portion (upper surface 7 b) of the projecting portion 7 is in contact with the lower surface of the positive electrode cap 4 in the assembly process of fitting the insulating gasket 5 into the positive electrode cap 4 while being slightly deformed. There is a possibility that problems such as inability to fit well occur. When such a malfunction occurs, it also causes variations in the operating pressure (explosion proof strength) during gas discharge. Further, when the battery internal pressure rises, the deformation of the insulating gasket 5 in the region B can be suppressed without necessarily contacting the upper surface 7b of the protruding portion 7 with the lower surface of the opposing positive electrode cap 4. If the height of the protruding portion 7 is set so that the upper surface 7b of the protruding portion 7 is in contact with the lower surface of the positive electrode cap 4, the deformation of the insulating gasket 5 in the region B can be more reliably prevented. If the gap H is larger than 0.6 mm, the top of the projecting portion 7 does not come into contact with the lower surface of the positive electrode cap 4 when the battery internal pressure rises, and the deformation of the insulating gasket 5 in the region A is sufficient. It is also possible that it will not be suppressed. Even in such a case, the operating pressure varies when the gas is discharged.

なお、上記(a)の略円柱形状に形成されている突状部7(7A)や、上記の(b)〜(d)の突状部7(7B〜7D)であっても、その平面視の断面積が小さい場合には、突状部7の頂部(上面7b)が対向する正極キャップ4の下面に当接していてもよい。このような略円柱状の突状部7が複数個並設される場合には、むしろ、そのいずれか1個以上の突状部7の上面7bが正極キャップ4の下面に当接しているのが望ましい。これは、電池内圧が上昇したときに、突状部7の頂部が正極キャップ4の下面に当接し、領域A周辺の絶縁ガスケット5の変形を確実に抑えて、領域Bの絶縁ガスケットを変形させることにより、確実に電池内部のガスを排出して破裂を防止するためである。特に、複数個の突状部7が並設される場合、製造上のバラツキでいずれの突状部7も正極キャップ4の下面に当接していないと、急激な電池内圧の上昇に対応できないことも懸念され、いずれかの突状部7が正極キャップ4の下面に当接していることにより、ガス排出時の作動の確実性を向上させることができる。   In addition, even if it is the protrusion part 7 (7A) formed in the substantially cylindrical shape of said (a) and said protrusion part 7 (7B-7D) of said (b)-(d), the plane When the cross-sectional area in view is small, the top portion (upper surface 7 b) of the projecting portion 7 may be in contact with the lower surface of the positive electrode cap 4 that is opposed. In the case where a plurality of such substantially cylindrical protrusions 7 are arranged side by side, the upper surface 7b of any one or more of the protrusions 7 is in contact with the lower surface of the positive electrode cap 4. Is desirable. This is because when the internal pressure of the battery rises, the top of the projecting portion 7 comes into contact with the lower surface of the positive electrode cap 4 to reliably suppress the deformation of the insulating gasket 5 around the region A and deform the insulating gasket in the region B. This is because the gas inside the battery is surely discharged to prevent explosion. In particular, when a plurality of protrusions 7 are arranged side by side, if any protrusion 7 does not come into contact with the lower surface of the positive electrode cap 4 due to manufacturing variations, it is impossible to cope with a sudden increase in battery internal pressure. There is also a concern, and since any one of the protruding portions 7 is in contact with the lower surface of the positive electrode cap 4, the certainty of the operation at the time of gas discharge can be improved.

本発明に係るマンガン乾電池の封口構造を説明するための断面図であり、(a)は絶縁ガスケットが正規の位置にある状態、(b)は絶縁ガスケットの突状部が形成されていない部分が電池内圧の上昇により変形した状態を示す。It is sectional drawing for demonstrating the sealing structure of the manganese dry battery which concerns on this invention, (a) is the state which has an insulation gasket in a regular position, (b) is the part in which the protrusion part of an insulation gasket is not formed. The state which deform | transformed by the raise of battery internal pressure is shown. 本発明に係るマンガン乾電池の、円弧状の突状部が形成された絶縁ガスケットの形状を説明するための斜視図である。It is a perspective view for demonstrating the shape of the insulating gasket in which the arc-shaped protrusion part was formed of the manganese dry battery which concerns on this invention. 本発明に係るマンガン乾電池の絶縁ガスケットに形成される突状部についての種々の形態を説明するための平面図であり、(a)は略円柱形状に形成されたもの、(b)は集電体挿通孔の軸心を中心とする放射線方向に長辺を有する平面視略長方形状に形成されたもの、(c)は集電体挿通孔の軸心を中心とする放射線方向に垂直な方向に長辺を有する平面視略長方形状に形成されたもの、(d)集電体挿通孔の軸心を中心とする円周方向に円弧を有する平面視略帯形状に形成されたものである。It is a top view for demonstrating the various form about the protrusion part formed in the insulating gasket of the manganese dry battery which concerns on this invention, (a) is what was formed in the substantially cylindrical shape, (b) is current collection. Formed in a substantially rectangular shape in plan view having a long side in the radiation direction centered on the axis of the body insertion hole, (c) is a direction perpendicular to the radiation direction centered on the axis of the current collector insertion hole (D) formed in a substantially band shape in plan view having an arc in a circumferential direction centering on the axial center of the current collector insertion hole. . 本発明に係るマンガン乾電池の絶縁ガスケットに形成される円弧状の突状部について、その具体的態様を説明するための平面図(上段の図)と側面図(下段の図)であり、(a)は略1/4円弧状の突状部が1個形成されたもの、(b)は略1/6円弧状の突状部が1個形成されたもの、(c)は略5/6円弧状の突状部が1個形成されたもの、(d)は略1/4円弧状の突状部と略1/5円弧状の突状部とが各1個形成され、田願に隣接した状態で配置されたもの、(e)は略1/4円弧状の突状部が2個形成され、互いに離れた状態で配置されたものである。It is the top view (upper figure) and the side view (lower figure) for demonstrating the specific aspect about the arc-shaped protrusion part formed in the insulating gasket of the manganese dry battery which concerns on this invention, (a ) Is formed with one approximately 1/4 arc-shaped protrusion, (b) is formed with one approximately 1/6 arc-shaped protrusion, and (c) is approximately 5/6. One arc-shaped projecting portion is formed, (d) is a substantially 1/4 arc-shaped projecting portion and one approximately 1/5 arc-shaped projecting portion each, In the state of being arranged adjacent to each other, (e) is one in which two approximately 1/4 arc-shaped protrusions are formed and are separated from each other. 従来の円筒形電池の封口構造を説明するための断面図である。It is sectional drawing for demonstrating the sealing structure of the conventional cylindrical battery. 従来のアルカリ電池の封口構造を説明するための断面図である。It is sectional drawing for demonstrating the sealing structure of the conventional alkaline battery.

符号の説明Explanation of symbols

1 マンガン乾電池
2 負極亜鉛缶
3 開口部
4 正極キャップ
5 絶縁ガスケット
5a 集電体挿通孔
5c 当接部
6 炭素棒集電体(集電体)
7 突状部
7a 内側面
7b 上面
7c 摺接突部
DESCRIPTION OF SYMBOLS 1 Manganese battery 2 Negative electrode zinc can 3 Opening part 4 Positive electrode cap 5 Insulation gasket 5a Current collector insertion hole 5c Contact part 6 Carbon rod current collector (current collector)
7 Protruding part 7a Inner side surface 7b Upper surface 7c Sliding contact part

Claims (5)

負極亜鉛缶の開口部に、正極キャップが絶縁ガスケットを介してかしめ封口されたマンガン乾電池であって、
前記絶縁ガスケットは、断面視略平板状に形成されて、その中央部に集電体が挿通される集電体挿通孔が設けられるとともに、その周縁部が前記負極亜鉛缶に当接して上方に屈曲されて、前記正極キャップと共に前記負極亜鉛缶の開口端でかしめられ、
前記絶縁ガスケットの前記負極亜鉛缶との当接部と前記集電体挿通孔と間の平面上に、該絶縁ガスケットの変形強度をその周辺部で部分的に向上させる突状部が少なくとも一つ形成されていることを特徴とするマンガン乾電池。
A manganese dry battery in which a positive electrode cap is caulked and sealed through an insulating gasket at the opening of a negative electrode zinc can,
The insulating gasket is formed in a substantially flat plate shape in cross-section, and a current collector insertion hole through which a current collector is inserted is provided at the center thereof, and a peripheral portion thereof is in contact with the negative electrode zinc can and is located upward. Bent and caulked at the open end of the negative electrode zinc can with the positive electrode cap,
On the plane between the contact portion of the insulating gasket with the negative electrode zinc can and the current collector insertion hole, there is at least one protruding portion that partially improves the deformation strength of the insulating gasket at the periphery thereof. A manganese dry battery characterized by being formed.
前記突状部の前記集電体に対向する側面が、前記集電体に対して離間している請求項1に記載のマンガン乾電池。   The manganese dry battery according to claim 1, wherein a side surface of the projecting portion that faces the current collector is separated from the current collector. 前記突状部の上面が、対向する前記正極キャップの下面に対して0.1mm〜0.6mmの隙間を介して離間している請求項1または2に記載のマンガン乾電池。   3. The manganese dry battery according to claim 1, wherein an upper surface of the protruding portion is separated from a lower surface of the opposing positive electrode cap via a gap of 0.1 mm to 0.6 mm. 少なくとも一つの前記突状部の上面が、対向する前記正極キャップの下面に当接している請求項1〜3のいずれか一項に記載のマンガン乾電池。   4. The manganese dry battery according to claim 1, wherein an upper surface of at least one of the projecting portions is in contact with a lower surface of the opposing positive electrode cap. 前記突状部の前記集電体に対向する側面に摺接突部が形成され、該摺接突部の頂部が前記集電体に当接している請求項1〜4のいずれか一項に記載のマンガン乾電池。   The sliding contact protrusion is formed on the side surface of the protruding portion that faces the current collector, and the top of the sliding contact protrusion is in contact with the current collector. The manganese dry battery described.
JP2006321673A 2006-11-29 2006-11-29 Manganese dry cell Pending JP2008135327A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006321673A JP2008135327A (en) 2006-11-29 2006-11-29 Manganese dry cell
PCT/JP2007/072895 WO2008066056A1 (en) 2006-11-29 2007-11-28 Manganese dry cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006321673A JP2008135327A (en) 2006-11-29 2006-11-29 Manganese dry cell

Publications (1)

Publication Number Publication Date
JP2008135327A true JP2008135327A (en) 2008-06-12

Family

ID=39467844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006321673A Pending JP2008135327A (en) 2006-11-29 2006-11-29 Manganese dry cell

Country Status (2)

Country Link
JP (1) JP2008135327A (en)
WO (1) WO2008066056A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511651Y2 (en) * 1987-11-25 1993-03-23
JP4080131B2 (en) * 2000-03-10 2008-04-23 松下電器産業株式会社 Manganese battery

Also Published As

Publication number Publication date
WO2008066056A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
US5080985A (en) High pressure seal for alkaline cells
JP4421896B2 (en) Electrochemical cell with vent current collector and seal assembly
EP1104585B1 (en) End cap assembly for an alkaline cell
JP2005514730A6 (en) Electrochemical cell with vent current collector and seal assembly
JP5220003B2 (en) Battery can with vent and asymmetric weld cover
JP2011192636A (en) Gasket for cylindrical battery, and cylindrical battery
EP1082767B1 (en) End cap assembly for an alkaline cell
US9356263B2 (en) Lithium secondary battery including a gasket having an adhesive layer
JP2005079021A (en) Alkaline dry cell and its sealing gasket
KR101093957B1 (en) Secondary battery
WO2014017091A1 (en) Secondary battery
US20120315513A1 (en) Lithium secondary battery
US20090197165A1 (en) Alkaline battery
US20110117398A1 (en) Cap-up plate and secondary battery having the same
JP2005056648A (en) Sealed battery
JP4166938B2 (en) Snap-through gasket for Galivani batteries
JP2009289654A (en) Cylinder battery, and manufacturing method thereof
JP4357839B2 (en) End seal assembly for alkaline batteries
JP4080131B2 (en) Manganese battery
JP2008135327A (en) Manganese dry cell
US20230395909A1 (en) Cylindrical battery gasket, method for producing cylindrical battery using same, and cylindrical battery
US20080085450A1 (en) End cap seal assembly for an electrochemical cell
KR101175008B1 (en) Cylinderical Rechargeable Battery
JP2005285637A (en) Battery and method for forming its sealed body
JP2008108603A (en) Cylindrical alkaline battery