WO2003061686A1 - Application therapeutique des facteurs g-csf, gm-csf et scf - Google Patents

Application therapeutique des facteurs g-csf, gm-csf et scf Download PDF

Info

Publication number
WO2003061686A1
WO2003061686A1 PCT/FR2003/000014 FR0300014W WO03061686A1 WO 2003061686 A1 WO2003061686 A1 WO 2003061686A1 FR 0300014 W FR0300014 W FR 0300014W WO 03061686 A1 WO03061686 A1 WO 03061686A1
Authority
WO
WIPO (PCT)
Prior art keywords
csf
factor
scf
use according
growth factor
Prior art date
Application number
PCT/FR2003/000014
Other languages
English (en)
Inventor
Didier Pourquier
Didier Moukoko
Original Assignee
Didier Pourquier
Didier Moukoko
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Didier Pourquier, Didier Moukoko filed Critical Didier Pourquier
Publication of WO2003061686A1 publication Critical patent/WO2003061686A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/193Colony stimulating factors [CSF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like

Definitions

  • the invention relates to a new therapeutic application of G-CSF, GM-CSF and SCF, and more particularly their use for the preparation of a medicament useful in human or veterinary medicine.
  • G-CSF (abbreviation of "Granulocyte Colony-Stimulating Factor”, ie “Stimulation Factor of Granulocyte Colonies”)
  • GM-CSF abbreviation of "Granulocyte- Macrophage Colony-Stimulating Factor”
  • SCF abbreviation of "Stem Cell Factor", ie “Stem Cell Factor”
  • CSFs are a family of glycoproteins with vital functions in the formation of blood cells.
  • G-CSF stimulates the production of hematopoietic cells and predominantly the production of polymorphonuclear cells.
  • G-CSF is a glycoprotein and the product of the expression of a gene located on chromosome 17. It is produced by different cells, such as fibroblasts, macrophages, endothelial cells, epithelial cells. G-CSF is detectable in the blood, it can be purified from supernatants from human tumor cell cultures.
  • Biological engineering also makes it possible to produce a human allotype of G-CSF, the recombinant human G-CSF (rHuG-CSF).
  • the current indications for G-CSF in human therapy are the treatment of severe chronic neutropenia, the reduction of neutropenia induced by myelotoxic anticancer chemotherapy treatments, the reduction of neutropenia induced by myelosupressive therapy (chemotherapy or radiotherapy) followed by transplant marrow in the treatment of cancers or leukemias, the mobilization of hematopoietic stem cells to constitute a graft for a bone marrow transplant (autograft or allograft).
  • the objective of the treatment is to remove the hematopoietic stem cells from the bone marrow and to pass them into the circulating blood. These stem cells are then collected by successive cytapheresis and will constitute the graft. It is therefore a question of mobilizing as much as possible towards the circulating blood this contingent of hematopoietic stem cells which, in the normal state, are found in very reduced quantity in the circulating blood, which does not make it possible to constitute a graft of sufficient quality. (this is summarized in the term "mobilization" of the bone marrow).
  • This technique of graft collection by cytapheresis after mobilization of stem cells came to replace advantageously the direct collection of the bone marrow by cytopuncture which requires anesthesia of the patient and multiple punctures of marrow.
  • the graft thus formed is then transfused to the patient, whose own marrow has been destroyed by chemotherapy or radiotherapy; he then constitutes the new source of production of blood cells.
  • G-CSF is used daily for these different indications. Its widely recognized safety allows it to also be used in healthy people to constitute bone marrow transplants in the context of allografts.
  • GM-CSF stimulates both the production of polynuclear cells and also that of macrophages.
  • the gene controlling the production of GM-CSF is located on chromosome 5.
  • Biological engineering makes it possible to produce a recombinant human form of GM-CSF, rHuGM-CSF.
  • the clinical indications for rHuGM-CSF are identical to those for G-CSF.
  • rHuGM-CSF is available in the form of Leucomax® (Molgramostime, distributed by the Shering-Plow / Novartis laboratory). It is used intravenously or subcutaneously at a dose of 5 ⁇ g to 10 ⁇ g per kilogram of body weight per day.
  • the SCF (abbreviation of "Stem Cell Factor”, ie “Stem Cell Factor”) is also a growth factor. It acts in particular as a growth factor on hematopoietic progenitors, and can mobilize stem cells from the marrow to the blood. It also acts on the differentiation and functioning of mast cells. It acts through a specific receptor of the family of type III tyrosine kinases (c-KIT). The gene coding for the production of SCF is located on chromosome 12.
  • SCF is not in daily clinical use, it is available for therapeutic trials in the form of a human recombinant (Ancestim, Recombinant-methionyl Human Stem Cell Factor (R-metHuSCF) ⁇ English name ⁇ under the name of Stemgen® ⁇ English name ⁇ , product of the company Amgen).
  • G-CSF G-CSF mobilized allogeneic peripheral blood stem cells in rabbits. Bone Marrow Transplant 1995; 16 (1): 63-68); Nohynek GJ et al: Comparison of potency of glycosylated and non glycosylated recombinant human granulocyte colony-stimulating factors in neutropenic and non neutropenic CD rats (Cancer Chemother Pharmacol. 1997; 39: 259 ⁇ 266).
  • the G-CSF itself has an indirect mobilizing power of the cord in addition to its proliferative effect on the hematopoietic line (Levesque JP et col: Vascular cell adhesion molecule-l (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 2001; 98-: 1289-1297). It should be remembered that the bone marrow, distributed in the different bones of the body, is the place of production of mature blood cells (erythrocytes, platelets, polymorphonuclear cells, monocytes, lymphocytes).
  • CSH Hematopoietic Stem Cell
  • bone marrow stem cell also constitutes, in the normal state, a very reduced contingent of the cellular elements of the bone marrow but presents the capacity to differentiate in multiple directions of conjunctive nature (bone, cartilage, fibrotendon, muscle, fat ) (Pittenger et col: Multilineage potential of human mesenchymal stem cells. Science 1999; 284: 143-147; Dennis et col: A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse.
  • endot éliale (Shi Q and col: Evidence for circulating bone marrow-derived endothelial cells. Blood 1998; 92: 362-367; Asahara T et col: Bone marrow origin of endothelial progenitor cells responsible for post natal vasculogenesis in physiological and pathological neovascularization. Cire Res 1999; 85: 221-228) or hepatic (Lagasse E and col: Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nature Médecine. 2000; 6: 1229-1234).
  • Bone marrow as a particularly powerful source of pluripotent stem cells is clearly indicated by the recent work of Krause et al. (Krause D et al: Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 2001 ; 105: 369-377), with in this last study a reseeding of the entire hematopoietic tissue from a single grafted cell, and very numerous differentiation pathways in vivo with "daughter" cells found in multiple organs (liver, digestive tract, lung, skin). These stem cells are called pluripotent stem cells (abbreviation "CSP”) or also adult stem cells as opposed to stem cells from embryos.
  • CSP pluripotent stem cells
  • bone marrow is not the only source of stem cells.
  • Certain areas of the brain can give pluripotent stem cells (Bjornson CRR and col: Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 1998; 283: 534-537; Rietze RL et col: Purification of a pluripotent neural stem cell from the adult mouse brain. Nature 2001; 412: 736-739), as well as muscle (Jackson KJ et al: Hematopoietic potential of stem cells isolated from murine skeletal muscle.
  • the bone marrow is to date the best known source of stem cells, and also the most easily “manipulable” source pharmacologically, in particular because of the great clinical experience acquired in the field of hematology and oncology. .
  • This stem cell population is currently the subject of intense research activity, in particular in the fields of bone repair, cardiology, neurology, hematology, this in the context of the emerging fields of tissue engineering and cell therapy.
  • these stem cells initially constituting a particularly small quantity of cells, the techniques used most often call for an in vitro passage.
  • the bone marrow is collected, then in vitro the quota of the stem cells is separated from the rest of the cells of the marrow, and these cells are then cultivated and multiplied always in vitro. Possibly they are also artificially pushed in the direction of a specific differentiation.
  • a dilapidated tissue which can be a bone (Bruder et col: Bone regeneration by implantation of purified culture-expended human mesenchymal stem cells. J Ortho Res 1998; 16 (2): 155-162) or a tendon (Awad HA and col: Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng 1999; 5: 267-277; Butler DL and col: Perspectives on cell and collagen composites for tendon repair.
  • VEGF Vascular Endothelial Growth Factor
  • Asahara T et col VEGF contributes to postnatal neovascularisation by mobilizing bone marrow- derived endothelial progenitor cells.
  • Moore MA et al Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector- mediated elevation of serum levels of SDF-1, VEGF, and angiopoie in-l.
  • This latest work could indicate that a process of mobilization of stem cells from the bone marrow is a pathophysiological mechanism already used by the body in certain pathological situations.
  • CSPCs are a support for gene transfer (Bodine DM and col: Efficient retrovirus transduction of mouse pluripotent hematopoietic stem cell mobilized into the peripheral blood by treatment by granulocyte colony-stimulating factor and stem cell factor. Blood 1994; 84: 1482-1491).
  • the basal cells of the epidermis thus contribute to the repair of the skin
  • the satellite cells of the muscle contribute to even in muscle repair
  • the cellular elements of the basal layer of the periosteum classically contribute to bone reconstruction.
  • Certain tissues such as the bone in the event of a fracture or the skin in the event of a superficial burn are capable of reconstitution "ad integrum".
  • Eglitis MA and col Targeting of bone marrow- derived astrocytes to the ischemia brain.Neurore- portl999; 10: 1289-1292; Lu D et col: Intraarterial administration of marrow stromal cells in a rat model of traumatic brain injury. J Neurotrauma 2001; 18: 813-819; Chen J et col: Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerbral ischemia in rats. J Neurol Sci. 2201; 189: 49-57); Mahmood A et al: Intracranial bone marrow transplantation after traumatic brain injury improving functional outeome in adult rats. J Neurosurg 2001; 94: 589-595).
  • the bone marrow constitutes a major reserve of cells. pluripotent strains. These stem cells are found in the circulating blood, the number of CSPC can be increased by the use of growth factors such as G-CSF, GM-CSF or SCF by mobilization of these stem cells from the bone marrow to the blood. This process of mobilization of stem cells from the marrow to the blood could exist in its natural state as a response mechanism to situations of suffering or tissue aggression. A natural recruitment mechanism for CSPCs is also discussed, in particular in the process of fibrocicatricial repair, but has also been suggested in experimental models of tissue suffering and specific pathological models.
  • the Applicants have widely exposed in the context of osteoarticular pathology the advantage of the mobilization of stem cells from the bone marrow by G-CSF and the existence of a recruitment of these cells into the tissue spaces of reconstruction of the bone.
  • G-CSF, GM-CSF and SCF have a powerful proliferative and mobilizing power on the bone marrow.
  • the hematopoietic lineage is mainly concerned by this power proliferative, the contingent of pluripotent stem cells is also concerned; these various growth factors by increasing the number of CSPCs in the circulating blood can make available to the tissue reconstruction process a number of stem cells greater than that which nature could have provided in its natural state.
  • the usefulness of G-CSF as an adjuvant treatment to the bone and cartilage repair process was demonstrated in the work of the Applicants.
  • G-CSF and GM-CSF and SCF as defined above. It was discovered, as a result of this work, that G-CSF and GM-CSF and SCF could be used in the preparation of a medicament for the adjuvant treatment to the process of skin reconstruction in a living being , the medicament being intended for administration by general route.
  • burns of the skin of thermal or chemical origin constitute, depending on their extent and depth, a serious pathology involving the survival of patients or major aesthetic and functional sequelae.
  • Standard treatment includes medical resuscitation measures to compensate for water losses, infection control measures with the use of sterile rooms, and techniques for "covering" burnt integuments, the use of skin grafts is also in common use.
  • a first group (A) (control group) included 20 young adult rats, and a large, calibrated burn was performed on the back of each animal when it came to its surface and its intensity. A “covering” was then made of the burnt integuments using suitable dressings.
  • a second group (B) had the same number of animals of the same age and the same weight and the same type of burn was carried out. However, immediately after the intervention and for four days following the intervention, rmetHuG-CSF (Neupogen® ⁇ filgrastime ⁇ Amgen Inc California USA / Roche France Products) was injected subcutaneously at a dose of 10 ⁇ g (1MU) per kilogram of body weight.
  • rmetHuG-CSF Neuropogen® ⁇ filgrastime ⁇ Amgen Inc California USA / Roche France Products
  • the invention therefore relates more particularly to the use of at least one of the factors chosen from G-CSF, GM-CSF and SCF in the preparation of a medicament for the adjuvant treatment in tissue reconstruction processes skin. It thus finds a new and interesting application in surgical and / or medical therapeutics used in the context of burns.
  • G-CSF, GM-CSF, SCF can be used as a medicament in the treatment of burns of the skin.
  • the G-CSF .. the GM-CSF and the SCF are intended for general administration.
  • G-CSF G-CSF
  • GM-CSF G-CSF
  • SCF SCF
  • G-CSF granulocyte colony stimulating factor
  • GM-CSF granulocytemacrophage colony stimulating factor
  • SCF stem cell factor
  • BMP Breast Cell Factor
  • FGF fibroblast growth factor
  • EGF epidermal growth factor
  • IGF insulin-like growth factor
  • Insulin KGF (keratinocyte growth factor)
  • TGF transforming growth factor
  • Interferon Interleukin
  • VEGF vascular endothelial growth factor
  • TNF tumor necrosing factor
  • GDNF glial cell line-derived neurotrop ic factor
  • NGF neurotrophin nerve growth factor
  • HGF hepatocyte growth factor
  • PDGF platelet-derived growth factor
  • Hepane Sulfate Prostaglandins
  • Osteoglycin osteoinductive factor
  • BCDF B cell differentia ion factor
  • GDF-5 GDF-5
  • G-CSF, GM-CSF, SCF are advantageously a human recombinant (for human medicine), or Filgrastime, Lénograstime, Molgramostime, Ancestim.
  • the G-CSF, GM-CSF and SCF used will preferably be of a human allotype in the context of the treatment of a human.
  • the dosage used will generally be 0.1 to 1000 ⁇ q per kilogram of body weight per day.
  • a dose of 5 to 10 ⁇ q per kilogram of body weight per day will be used.
  • the principle of the invention is that G-CSF, GM-CSF, SCF are administered by general route, which means that G-CSF, GM-CSF, SCF, enter the general blood circulation.
  • the mode of delivery for administration by general route may include a mode by direct intravascular injection, a mode by subcutaneous injection, by intramuscular injection, by intra-articular injection, a delivery by digestive route, intraperitoneal injection, transpulmonary delivery, transcutaneous, transbuccal, transnasal, transrectal, transconjunctival, intraspinal.
  • the biological principle of the invention is to mobilize CSPs from the bone marrow to the circulating blood. This increase in the number of stem cells in the bloodstream allows the biological process of reconstruction of the nervous tissue to recruit an amount of CSPC greater than the amount of CSPC that nature could have provided in the physiological state.
  • the adjuvant treatment will include a first dose of 10 ⁇ q
  • G-CSF Neurogen®, Filgrastime

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

L'invention concerne une nouvelle application thérapeutique de l'un au moins des facteurs choisis parmi le G-CSF (Facteur de Stimulation des Colonies de Granulocytes), le GM-CSF (Facteur de Stimulation des Colonies de Granulocytes et de Macrophages) et le SCF (Facteur des Cellules Souches). Ce facteur est utilisé dans la préparation d'un médicament utile comme traitement adjuvant dans un processus de reconstruction de la peau, le médicament étant destiné à l'administration par voie générale. Le G-CSF, le GM-CSF et le SCF sont utiles notamment comme médicament dans le traitement des brûlures de la peau.

Description

APPLICATION THERAPEUTIQUE DES FACTEURS G-CSF, GM-CSF ET SCF
L'invention concerne une nouvelle application thérapeutique du G-CSF, du GM-CSF et du SCF, et plus particulièrement leur utilisation pour la préparation d'un médicament utile en médecine humaine ou vétérinaire.
Le G-CSF (abréviation de "Granulocyte Colony-Stimulating Factor", c'est à dire "Facteur de Stimulation des Colonies de Granulocytes"), le GM-CSF (abréviation de "Granulocyte- Macrophage Colony-Stimulating Factor", c'est à dire "Facteur de Stimulation des Colonies de Granulocytes et de Macrophages") et le SCF (abréviation de "Stem Cell Factor", c'est à dire "Facteur des Cellules Souches") sont des facteurs de croissance. Ils correspondent à trois des classes de cyto i- nes appelées facteurs de croissance hématopoïétique ou CSF (Colony-Stimulating Factors). Les CSF forment une famille de glycoprotéines ayant des fonctions capitales dans la formation des cellules sanguines.
Le G-CSF stimule la production des cellules hématopoïétiques et de manière prédominante la production de polynucléaires. Le G-CSF est une glycoprotéine et le produit de l'expression d'un gène situé sur le chromosome 17. Il est produit par différentes cellules, telles que les fibroblastes, macrophages, cellules endothéliales, cellules épithéliales. Le G-CSF est détectable dans le sang, il peut être purifié à partir de surnageants de cultures de cellules tumorales humaines.
Le génie biologique permet aussi de produire un allotype humain de G-CSF, le G-CSF recombinant humain (rHuG-CSF).
En France deux médicaments appartenant à la classe du G-CSF sont disponibles : le Neupogen® (r-metHuG-CSF, Filgrastime, commercialisé par Amgen/Produits Roche), et le Granocyte® (rHuG-CSF, Lénograstime, commercialisé par les Laboratoires Aventis/Chugai) . Ces deux médicaments sont utilisés par voie d'injection sous-cutanée ou par perfusion intraveineuse, pour une administration systémique, à des doses généralement comprises entre 5 et 10 μg par kilogramme de poids corporel et par jour.
Les indications actuelles du G-CSF en thérapeutique humaine sont le traitement des neutropénies chroniques sévères, la réduction des neutropénies induites par les traitements chimiotherapiques anticancéreux myelotoxiques, la réduction des neutropénies induites par les thérapeutiques myélosup- pressives (chimiothérapie ou radiothérapie) suivies de greffe de moelle dans le traitement des cancers ou des leucémies, la mobilisation des cellules souches hématopoïétiques pour constitution d'un greffon en vue d'une greffe de moelle (autogreffe ou allogreffe).
Il est à souligner que, dans cette dernière utilisation, l'objectif du traitement est de faire sortir de la moelle osseuse les cellules souches hématopoïétiques et de les faire passer dans le sang circulant. Ces cellules souches sont alors recueillies par cytaphérèses successives et vont constituer le greffon. Il s'agit donc de mobiliser au maximum vers le sang circulant ce contingent de cellules souches hématopoïétiques qui, à l'état normal, se trouvent en quantité très réduite dans le sang circulant, ce qui ne permet pas de constituer un greffon de qualité suffisante (ceci est résumé dans le terme "mobilisation" de la moelle osseuse) .
Cette technique de recueil du greffon par cytaphérèse après mobilisation des cellules souches est venue remplacer avantageusement le recueil direct de la moelle osseuse par cytoponction qui nécessite une anesthésie du patient et de multiples ponctions de moelle. Le greffon ainsi constitué est ensuite transfusé au patient, dont la propre moelle a été détruite par la chimiothérapie ou la radiothérapie ; il constitue alors la nouvelle source de production des cellules sanguines.
Le G-CSF est utilisé de manière quotidienne pour ces diffé- rentes indications. Son innocuité largement reconnue permet de l'utiliser aussi chez des personnes en bonne santé pour constituer des greffons de moelle dans le cadre des allo- greffes.
Le GM-CSF stimule à la fois la production de polynucléaires mais aussi celle des macrophages. Le gène contrôlant la production du GM-CSF est situé sur le chromosome 5. Le génie biologique permet de produire une forme recombinante humaine du GM-CSF, le rHuGM-CSF. Les indications cliniques du rHuGM- CSF sont identiques à celles de G-CSF. En France le rHuGM-CSF est disponible sous la forme du Leucomax® (Molgramostime, distribué par le laboratoire Shering-Plough/Novartis ) . Il est utilisé par voie intraveineuse ou sous cutanée à la dose de 5μg à lOμg par kilogramme de poids corporel et par jour.
Le SCF (abréviation de "Stem Cell Factor", c'est à dire "Facteur de Cellules Souches") est lui aussi un facteur de croissance. Il agit en particulier comme facteur de croissance sur les progéniteurs hématopoïétiques, et peut mobili- ser les cellules souches de la moelle vers le sang. Il agit aussi sur la différenciation et le fonctionnement des mastocytes. Il agit par le biais d'un récepteur spécifique de la famille des tyrosines kinases de type III(c-KIT). Le gène codant la production du SCF est situé sur le chromosome 12. En France le SCF n'est pas d'usage clinique quotidien, il est disponible pour des essais thérapeutiques sous forme de recombinant humain (Ancestim, Recombinant-methionyl Human Stem Cell Factor (R-metHuSCF) {dénomination anglaise} sous la dénomination de Stemgen®{dénomination anglaise}, produit de la société Amgen) .
Il est à noter que les recombinants humains du G-CSF sont efficaces sur d'autres espèces animales (Gratwohl et col : Transplantation of G-CSF mobilized allogeneic peripheral blood stem cells in rabbits. Bone Marrow Transplant 1995 ;16(1) :63-68) ; Nohynek GJ et col: Comparison of potency of glycosylated and non glycosylated recombinant human granulocyte colony-stimulating factors in neutropenic and non neutropenic CD rats (Cancer Chemother Pharmacol.1997;39:259~ 266).
Il est à noter que de nouvelles classes de molécule peuvent augmenter le pouvoir mobilisateur des facteurs de croissance sur la moelle osseuse (Kronenwett R et col: The rôle of cytokines and adhésion molécules for mobilisation of peri- pheral blood stem cells. Stem Cells 2000;18:320-330 ; Pless M et col:. Synergy of growt factors during mobilization of peripheral blood precursors cells with recombinant Flt3- ligand and granulocyte colony-stimulating factor in rabbits. Exp Hematol 1999;27:155-161 ; Kikuta T et col: Mobilization of hematopoietic primitive and commited progenitor cells into blood in mice by anti-vascular adhésion molecule-1 antibody alone or in combination with granulocyte colony-stimulating factor. Exp Hematol.2000;28:311-317 ; Sweeney EA et col:Increase in circulating SDF-1 after treatment with sulfated glycans. The rôle of SDF-1 in mobilization. Ann N Y Acad Sci 2001;938:48-52 ; Papayannopoulou R et col: Synergistic mobilization of hematopoietic progenitor cells using conçurent betal and beta2 integrin blockade or beta2- deficient mice. Blood 2001;97:1282-1288 ; Christ O et col: Combining G-CSF with a blockade of adhésion strongly improves the reconstitutive capacity of mobilized hematopoietic progenitor cells. (Exp Hematol 2001;29:380-390). Cependant le G-CSF lui même possède un pouvoir mobilisateur indirect de la moelle en plus de son effet prolifëratif sur la lignée hématopoïétique (Levesque JP et col: Vascular cell adhésion molecule-l(CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobiliza- tion by granulocyte colony-stimulating factor. Blood 2001; 98- :1289-1297). Il convient de rappeler que la moelle osseuse, répartie dans les différents os de l'organisme, est le lieu de production des cellules sanguines matures (érythrocytes, plaquettes, polynucléaires, monocytes, lymphocytes). La production de ces cellules sanguines s'effectue à partir de la multiplication et de la différenciation d'une population de cellules souches (Cellule Souche Hématopoïétique, en abréviation "CSH" ) . Ces dernières représentent quantitativement une fraction très réduite de la population cellulaire de la moelle osseuse. Elles sont classiquement caractérisées par l'expression d'un marqueur cellulaire appelé CD34 (Cluster de Différenciation 34).
Cependant il a été décrit un autre type de cellules souches de la moelle osseuse. Cette population de cellules souches constitue, elle aussi, à l'état normal un contingent très réduit des éléments cellulaires de la moelle osseuse mais présente la capacité de se différencier dans de multiples directions de nature conjonctive (os, cartilage, fibrotendon, muscle, graisse) (Pittenger et col: Multilineage potential of human mesenchymal stem cells. Science 1999 ; 284 : 143-147; Dennis et col: A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse. J Bone Miner Res 1999 ; 14(5): 700-709 ; Seshi et col: Human bone marrow stromal cell: coexpression of markers spécifie for multiple mesenchymal stem lineage. Blood Cell Mol Dis 2000(3): 234- 246), mais aussi de nature nerveuse ( oodbury D et col: Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 2000;61:364-370 ; Sanchez-Ramos J et col: Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol.2000; 164:247-256 ; Mezey E et col: Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Sience 2000;290:1672-1674 ; Azizi SA et col: Engraftment and migration of human bone marrow stromal cells implanted in brains of albino rats -similarities to astrocytes graft. Proc Nat Acad Sci.1998;95:3908-3913 ; Kopen GC et col: Marrow stromal cells migrate throuhout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Nat Acad Sci.1999; 96; 10171-10716; Brazelton TR et col: From marrow to brain: expression of neuronal phenotypes in adult mice. Science 2000 ; 290 : 1775- 1779), endot éliale (Shi Q et col: Evidence for circulating bone marrow-derived endothelial cells. Blood 1998;92:362-367; Asahara T et col: Bone marrow origin of endothelial progenitor cells responsible for post natal vasculogenesis in physiological and pathological neovascularization. Cire Res 1999;85:221-228) ou encore hépatique (Lagasse E et col: Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nature Médecine.2000; 6: 1229-1234) . La moelle osseuse en tant que source particulièrement puissante de cellules souches pluripotentes est clairement indiquée par le récent travail de Krause et collaborateurs (Krause D et col: Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 2001; 105:369-377), avec dans cette dernière étude un réensemencement de la totalité du tissu hématopoietique à partir d'une unique cellule greffée, et des voies de differentiations in vivo très nombreuses avec des cellules "filles" retrouvées dans de multiples organes (foie, tube digestif, poumon, peau). Ces cellules souches sont appelées cellules souches pluripotentes (en abréviation "CSP") ou aussi cellules souches adultes par opposition aux cellules souches provenant d'embryons.
Il est à noter que la moelle osseuse n'est pas l'unique source de cellules souches. Certaines zones du cerveau peuvent donner des cellules souches pluripotentes (Bjornson CRR et col: Turning brain into blood : a hematopoietic fate adopted by adult neural stem cells in vivo. Science 1998;283:534-537 ; Rietze RL et col: Purification of a pluripotent neural stem cell from the adult mouse brain. Nature 2001;412:736-739), de même que le muscle (Jackson KJ et col: Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci USA.1999; 96: 14482- 14486),ou la peau (Fu X et col: Dedifferentiation of epidermal cells to stem cells in vivo; Lancet 2001;358: 1067- 1068 ; Toma JG et col: Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 2001;3:778-784) .
Cependant la moelle osseuse est à ce jour la source la mieux connue de cellules souches, et aussi la source la plus aisément "manipulable" pharmacologiquement, en particulier à cause de la grande expérience clinique acquise dans le domaine de l'hématologie et de la cancérologie.
Cette population de cellules souches est l'objet actuellement d'une activité de recherche intense, en particulier dans les domaines de la réparation osseuse, de la cardiologie, de la neurologie, de l'hématologie, ceci dans le cadre des domaines émergents de la médecine que sont l'ingénierie tissulaire et la thérapie cellulaire. Cependant, ces cellules souches constituant au départ une quantité de cellules particulière ment faible, les techniques utilisées font le plus souvent appel à un passage in vitro. Pour résumer, on recueille la moelle osseuse, puis in vitro on sépare le contingent des cellules souches du reste des cellules de la moelle, et ces cellules sont ensuite cultivées et multipliées toujours in vitro. Eventuellement elles sont aussi poussées artificiellement dans le sens d'une différenciation spécifique. Par la suite elles sont réinjectées ou réimplantées dans un site anatomique où elles contribuent à la reconstitution d'un tissu délabré, qui peut être un os (Bruder et col: Bone régénération by implantation of purified culture-expended human mesenchymal stem cells. J Ortho Res 1998 ; 16(2) : 155- 162) ou bien un tendon (Awad HA et col: Autologous mesenchy- mal stem cell-mediated repair of tendon. Tissue Eng 1999; 5:267-277 ; Butler DL et col: Perspectives on cell and collagen composites for tendon repair. Clin Orthop 1999; 367 Suppl : S 324-332), du muscle cardiaque (Jackson KA et col: Régénération of ischémie cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001; 107: 1395- 1402 ; Orlic D et col: Bone marrow cells regenerate infarcted myocardium. Nature 2001;410:702-705). Ces techniques nécessitent cependant une collaboration avec des laboratoires très spécialisés, ce qui limite leur usage clinique quotidien. Les cellules souches de la moelle sont aussi d'un grand intérêt dans le cadre de la thérapie génique où elles peuvent servir de support au transfert de gènes. De multiples domaines de la pathologie sont concernés (Schwarz EJ et col:Multipotential marrow stroma cells transducted to produce L-DOPA: engraftment in rat model of Parkinson disease. Hum Gène Ther 1999;10:2539-2545 ; Ding L et col:Bone marrow stromal cells as a vehicle for gène transfer. Gène Ther 1999;6:1611-1616).
Bien qu'ayant initialement prêté à discussions (Purton LE et col: Monocytes are the likely candidate "stromal" cell in G- CSF-mobilized peripheral blood. Bone Marrow Transplant.1998;21: 1075-1076) , la présence d'un contingent circulant de cellules souches pluripotentes (Cellules Souches Pluripotentes Circulantes en abréviation "CSPC" ) est actuellement de mieux en mieux documenté (Huss R et col: Evidence of peripheral blood-derived, plastic-adhérent CD34(-/low) hematopoietic stem cell clones with mesenchymal stem cell characteristics. Stem Cell 2000 ; 18(4) : 252-260 ; Zvaifler NJ et col :Mesenchymal precursor cells in blood of normal individuals; Arthritis Res 2000;2:477-488 ; Lange et col : Hematopoietic reconstruction of syngenic mice with a periph eral blood-derived, monoclonal CD34-, Sca-1+, Thyl(low), c- kit+ stem cell ligne. J Hematother Stem Cell Res. 1999 ; 8(4): 335-342 ; Kuznetsov SA et col:Circulating skelatal stem cells: J Cell Biol 2001;153:1133-1140). La voie de différe- ciation endothéliale de ces cellules est aussi explorée (Rafii S: Circulating endothelial precursors:mystery, reality and promise. J Clin Invest 2000;105:17-19, Boyer M et col: Isolation of endothelial cells and their progenitor cells from human peripheral blood. J Vase Surg 2000;31:181-189). La mobilisation de cellules souches depuis la moelle osseuse vers le sang par l'ischémie des tissus (Takahashi T et col: Ischemia-and cytokine-indueed mobilization of bone marrow- derived endothelial progenitor cells for neovascularization Nature Médecine 1999; 5:434-438), les traumatismes vasculai- res ou les brûlures est aussi documenté (Gi11 M et col: Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Cir Res 2001;88:167-174). Le VEGF (Vascular Endothelial Growth Factor) serait un des médiateurs impliqués dans le processus de mobilisation(Asahara T et col: VEGF contributes to postnatal neovascularisation by mobilizing bone marrow- derived endothelial progenitor cells. EMBO J 1999; 18: 1364- 1372 ; Moore MA et col: Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector- mediated élévation of sérum levels of SDF-1,VEGF, and angiopoie in-l.Ann N Y Acad Sci 2001;938:36-45). Ces derniers travaux pourraient indiquer qu'un processus de mobilisation des cellules souches de la moelle osseuse est un mécanisme physiopathologique déjà utilisé par l'organisme dans certaines situations pathologiques.
De même que pour les cellules souches de la moelle, les CSPC sont un support au transfert de gènes (Bodine DM et col: Efficient retrovirus transduction of mouse pluripotent hematopoietic stem cell mobilized into the peripheral blood by treatment by granulocyte colony-stimulating factor and stem cell factor. Blood 1994;84:1482-1491).
Des travaux récents sont aussi venus suggérer un mécanisme de recrutement des CSPC dans les processus de cicatrisation fibroconjonctive sur des modèles animaux in vivo (Abe R et col: Peripheral blood fibrocytes: Différenciation patways and migration to wound sites. The J Immunol 2001;166:7556-7562 ; Bucala R et col: Circulating fibrocytes define a new leukocyte subpopulation that médiates tissue repair. Mol Med.1994; 1: 71-81) . Les CSPC sont aussi soupçonnées de participer à la pathogénèse de processus de fibrose pathologique (sclérodermie) (Chesney J et col: Peripheral blood fibrocytes:mesenchymal precursor cells and the pathogenesis of fibrosis. Curr Rheumatol Rep.200;2:501-505) . L'implication de ces cellules souches circulantes était cependant soupçonnée depuis longtemps dans certaines patho- logies spécifiques (Labat ML et col: Monocytic origin of fibroblasts:spontaneous transformation of blood monocytes into neofibroblastic structures in osteomyeloslerosis and Engelmann's disease. Biomed Pharmacother.1991;45:289-299 ;
Labat ML et col: Possible monocytic origin of chondrosarcoma: in vitro transdifferenciation of blood monocytes-like cells from a patient with chondrosarcoma into chondrocyte-like cell. Biomed Pharmacother 1997 ; 51:79-93). Des mécanismes immunologiques originaux viendraient aussi contrôler la prolifération et la différenciation de ces CSPC (Labat M L et col: Régulation by phagic T-lymphocytes of a (pluripotent?-
)organ stem cell présent in adult human blood. A bénéficiai exception to self-tolérance. Biomed Pharmacother 2001 ; 55:79-
90)
A rappeler aussi qu'au cours des processus de réparation tissulaire, il existe d'une manière générale une contribution de cellules souches locales, les cellules basales de l'épiderme contribuent ainsi à la réparation de la peau, les cellules satellites du muscle contribuent de même à la réparation musculaire, les éléments cellulaires de la couche basale du périoste contribuent classiquement à la recons- truction osseuse. Certains tissus comme l'os en cas de fracture ou la peau en cas de brûlure superficielle sont capables d'une reconstitution "ad integrum" .
D'autres tissus, comme le coeur et le cerveau, étaient jusqu'à maintenant réputés incapables de se régénérer après leur destruction (infarctus du myocarde ou accident vascu- laire cérébral). Cependant des travaux récents ont montré en fait une certaine capacité du tissu cardiaque à se régénérer à partir des cellules de la bordure des zones lésées (Bel- trami AP et col: Evidence that human cardiac myocytes divide after myocardial infarction. New Engl J Med 2001 ; 344: 1750- 1757). L'activation de cellules souches déjà présentes au niveau du cerveau est aussi discutée (Kondo T et col: Oligodendrocytes precursor cells reprogrammed to become multipotential CNS stem cells: Science 2000;289:1754-1757), remettant en cause des concepts anciens, en particulier le caractère irréversible de la différenciation cellulaire. La place des CSPC dans ces processus de régénération est encore discutée mais les travaux de thérapie cellulaire récents indiquent des possibilités importantes pour le coeur (Jackson KA et col: Régénération of ischémie cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001;107:1395-1402 ; Orlic D et col: Bone marrow cells regenerate infarcted myocardium. Nature 2001;410:702-705 ; Kocher AA et col: Neovascularisation of ischémie myocardium by human bone-marrow-derived angioblast prevents cardio yocyte apoptosis, reduces remodeling and improves cardiac function. Nature Médecine. 2001;7:430-436). Il est à remarquer que dans le cas des travaux de Kocher AA et col, le "greffon" de cellules souches se fait non pas à partir d'un prélèvement direct de moelle, mais à partir des cellules souches mobilisées depuis la moelle osseuse vers le sang, suggérant le même potentiel biologique pour les CSPC que pour les CSP de la moelle osseuse. Le travail de Jackson KA et col est aussi d'un grand intérêt puisque après irradiation et greffe de moelle de cellules souches marquées, ces travaux indiquent aussi une migration des cellules souches marquées vers le site intracardiaque de l'infarctus du myocarde. On retrouve ici la notion de recrutement spécifique des cellules souches circulantes dans l'espace tissulaire en cours de reconstruction.
Dans le domaine de la pathologie cérébrale, la délivrance locale de cellules souches semble apporter un bénéfice thérapeutique (Eglitis MA et col: Targeting of bone marrow- derived astrocytes to the ischémie brain.Neurore- portl999; 10: 1289-1292 ; Lu D et col: Intraarterial administration of marrow stromal cells in a rat model of traumatic brain injury. J Neurotrauma 2001;18:813-819 ; Chen J et col: Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerbral ischemia in rats. J Neurol Sci. 2201;189:49-57) ; Mahmood A et col: Intracranial bone marrow transplantation after traumatic brain injury improving functional outeome in adult rats. J Neurosurg 2001 ; 94: 589- 595) .
Au total il ressort de l'ensemble de ces observations que la moelle osseuse constitue une réserve majeure de cellules souches pluripotentes. Ces cellules souches sont retrouvées dans le sang circulant, le nombre de CSPC peut être augmenté par l'utilisation de facteurs de croissance tels que le G- CSF, le GM-CSF ou le SCF par mobilisation de ces cellules souches de la moelle osseuse vers le sang. Ce processus de mobilisation des cellules souches de la moelle vers le sang pourrait exister à l'état naturel comme mécanisme de réponse à des situations de souffrance ou d'agression tissulaire. Un mécanisme de recrutement à l'état naturel des CSPC est aussi discuté, en particulier dans les processus de réparation fibrocicatriciel, mais a aussi été suggéré sur des modèles expérimentaux de souffrance tissulaire et des modèles pathologiques spécifiques.
Les Demandeurs ont largement exposé dans le cadre de la pathologie ostéo-articulaire l'intérêt de la mobilisation des cellules souches de la moelle osseuse par le G-CSF et l'existence d'un recrutement de ces cellules dans les espaces tissulaires de reconstruction de l'os.
Différents travaux des Demandeurs ont déjà indiqué que, dans le domaine de la pathologie ostéoarticulaire, un mécanisme de recrutement local des CSPC au cours des fractures osseuses était mis en oeuvre en particulier par le biais de l'activation du périoste. Ces cellules souches, en sortant des vaisseaux, sont mises à la disposition du processus de reconstruction tissulaire local comme des "briques" contribuant à la construction d'un édifice et viennent compléter l'apport direct des cellules souches locales. En terme quantitatif, l'importance du recrutement local de CSPC est cependant dépendante du nombre de cellules souches présentes dans le courant sanguin au niveau des vaisseaux situés dans la zone de reconstruction tissulaire. Comme déjà mentionné, cette population de cellules souches est, chez le sujet en bonne santé, quantitativement très réduite dans la moelle osseuse et le sang circulant. Cependant, le G-CSF, le GM-CSF et le SCF possèdent un puissant pouvoir prolifératif et de mobilisation sur la moelle osseuse. Bien que la lignée hématopoïétique soit surtout concernée par ce pouvoir prolifératif, le contingent de cellules souches pluripotentes est aussi concerné ; ces différents facteurs de croissance en augmentant le nombre de CSPC dans le sang circulant peuvent mettre à la disposition du processus de reconstruction tissulaire un nombre de cellules souches supérieur à celui que la nature aurait pu fournir à l'état naturel. A partir de la même hypothèse physiopathologique l'utilité du G-CSF comme traitement adjuvant au processus de réparation osseuse et cartilagineuse était démontré dans les travaux des Deman- deurs. Les travaux récents menés dans le domaine de la pathologie cardiaque semblent conforter cette hypothèse avec un bénéfice thérapeutique du G-CSF combiné au SCF pour le traitement de l'infarctus du myocarde en réduisant la surface finale de l'infarctus et en préservant la fonction cardia- que. (Orlic D et col: Mobilized bone marrow cells repair the infarcted heart, improving function and survival Proc Natl Acad Sci USA 2001 ;98 : 10344-10349) .
Dans ce contexte, les Demandeurs ont testé in vivo l'influence d'un traitement par facteurs de croissance sur des lésions de brûlure de la peau. Il est à souligner à nouveau que les brûlures semblent induire une mobilisation des cellules souches de la moelle (dans la variante des précurseurs endothéliaux) (Gill M et col: Vascular trauma induces rapid but transient mobilization of VEGFR2 (+)AC133(+) endothelial precursor cells. Cir Res 2001;88:167-174). Il est à noter aussi que les brûlures étaient déjà connues pour modifier le processus d'hématopoïèse ( allner S et col : The haematopoietic response to burning in an animal model. Burns Incl Therm Inj 1984; 10 : 236-251 ; Gamelli RL et col : Effect of burn injury on granulocyte and macrophage production. J Trauma 1985 ; 25 : 615-619 ; Santangelo S et col :Myeloid commitment shifts toward monocytopoiesis after thermal injury and sepsis. Annals of Surgery 2001 ; 233 : 97-106), ce qui soulève la question d'une réponse de la moelle osseuse à l'agression de la peau. Le M-CSF (macrophage colony-stimula ting factor) pourrait être impliqué (Fukusawa K et col : Thermal injury increases macrophage colony-stimulating factor levels in plasma and injured skin in mice (abstract). American Association for the Surgery of Trauma. 1997 ; 75 : 293) dans ce processus. Sur la base des données précédentes, les Demandeurs ont étudié l'influence de la stimulation de la moelle osseuse par le G-CSF, le GM-CSF et le SCF sur le processus de réparation de la peau.
Les Demandeurs ont trouvé, de manière surprenante, une nouvelle application thérapeutique du G-CSF et du GM-CSF et du SCF tel que définis plus haut. Il a été découvert, à la suite de ces travaux, que le G-CSF et le GM-CSF et le SCF pouvaient être utilisés dans la préparation d'un médicament pour le traitement adjuvant au processus de reconstruction de la peau chez un être vivant, le médicatment étant destiné à l'administration par voie générale.
Conformément à l'invention, on peut utiliser l'un au moins de ces trois facteurs, c'est-à-dire soit un seul facteur, soit deux facteurs, soit les trois facteurs'.
II est à rappeler que les brûlures de la peau d'origine thermique ou chimique constituent en fonction de leur étendue et de leur profondeur une pathologie grave impliquant la survie des patients ou des séquelles esthétiques et fonctionnelles majeures. Le traitement standard comporte des mesures de réanimation médicales destinées à compenser les pertes hydriques, des mesures de lutte contre l'infection avec l'utilisation des chambres stériles, et des techniques de "couverture" des téguments brûlés, l'utilisation de greffes de peau est aussi d'usage courant.
On décrira maintenant un exemple expérimental.
Deux groupes d'animaux ont été constitués:
Un premier groupe (A) (groupe témoin) comportait 20 rats adultes jeunes, et on réalisait sur le dos de chaque animal une large brûlure calibrée quand à sa surface et son intensité. On réalisait ensuite une "couverture" des téguments brûlés à l'aide de pansements adaptés. Un deuxième groupe (B) comportait un nombre identique d'animaux de même âge et de même poids et on réalisait le même type de brûlure. Cependant, immédiatement après l'intervention et les quatre jours suivant l'intervention, on procédait à une injection de rmetHuG-CSF (Neupogen® {fil- grastime} Amgen Inc Californie USA/ Produits Roche France) par voie sous cutanée à la dose de 10 μg (1MU) par kilogramme de poids corporel.
Afin de travailler véritablement "en aveugle" et dans le but de ne pas influencer la qualité de la brûlure et des procédures de mise en place des pansements le chirurgien ignorait si l'animal opéré appartenait au groupe A ou au groupe B.
Les deux groupes d'animaux étaient ensuite laissés sans autre traitement, hormis l'apport en eau et nourriture nécessaire aux besoins vitaux. Quinze jours suivant la date de l'intervention on évaluait la qualité de la cicatrisation dans chaque groupe d'animaux. On relevait un bénéfice significatif dans le groupe B.
L'invention concerne donc plus particulièrement l'utilisation de l'un au moins des facteurs choisis parmi le G-CSF, le GM- CSF et le SCF dans la préparation d'un médicament pour le traitement adjuvant dans des processus de reconstruction du tissu cutané. Il trouve ainsi une application nouvelle et intéressante dans les thérapeutiques chirurgicales et/ou médicales utilisées dans le cadre des brûlures.
Conformément à l'invention, le G-CSF, le GM-CSF, le SCF peuvent être utilisés comme médicament dans le traitement des brûlures de la peau. Dans cette application, le G-CSF.. le GM- CSF et le SCF sont destinés à l'administration par voie générale.
Il entre également dans le cadre de l'invention d'utiliser le G-CSF, le GM-CSF, ou le SCF comme médicament destiné à 1 ' administration par voie générale et de le combiner à au moins un autre facteur destiné à l'administration locale ou par voie générale. L'expression "administration locale" signifie que l'administration du principe thérapeutique s'effectue sur le site anatomique où l'on souhaite recons- truire le tissu nerveux.
Cet autre facteur est avantageusement choisi parmi l'un au moins des facteurs suivants : G-CSF (granulocyte colony stimulating factor), le GM-CSF ( granulocytemacrophage colony stimulating factor), le SCF (stem cell factor), BMP (Bone Morphogenetic Protein), FGF (fibroblast growth factor), EGF (epidermal growth factor), IGF (insuline-like growth factor), Insuline, KGF (keratinocyte growth factor), TGF (transforming growth factor), Interféron, Interleukine, VEGF (vascular endothelial growth factor), TNF (tumor necrosing factor), GDNF (glial cell ligne-derived neurotrop ic factor), NGF (neurotrophin nerve growth factor), , HGF (hepatocyte growth factor), Erythropoïetine, PDGF (platelet-derived growth factor), Héparane Sulfate, Prostaglandines, Ostéoglycine (osteoinductive factor), BCDF (B cell differentia ion factor), GDF-5 (growth and differentiation factor-5), Hormone de Croissance ; M-CSF (macrophage colony stimulating factor) ; ou tout facteur de croissance connu d'origine humaine ou animale, d'extraction ou recombinant ; tout facteur biologi- que renforçant le pouvoir de mobilisation des cellules souches de la moelle osseuse vers le sang circulant.
Pour la mise en oeuvre de l'invention, le G-CSF, le GM-CSF, le SCF sont avantageusement un recombinant humain (pour la médecine humaine), ou la Filgrastime, la Lénograstime, la Molgramostime, l'Ancestim.
Le G-CSF, le GM-CSF et le SCF utilisés seront de préférence d'un allotype humain dans le cadre du traitement d'une personne humaine. Le dosage utilisé sera généralement de 0,1 à 1000 μq par kilogramme de poids corporel et par jour. De manière préférentielle on utilisera une dose de 5 à 10 μq par kilogramme de poids corporel et par jour. Le principe de l'invention veut que le G-CSF, le GM-CSF, le SCF soient administrés par voie générale, ce qui signifie que le G-CSF, le GM-CSF, le SCF, entrent dans la circulation sanguine générale. Le mode de délivrance pour obtenir une administration par voie générale peut comprendre un mode par injection intravasculaire directe, un mode par injection sous-cutanée, par injection intramusculaire, par injection intra-articulaire, une délivrance par voie digestive, injection intrapéritonéale, délivrance transpulmonaire, transcutanée, transbuccale, transnasale, transrectale, transconjonctivale, intrarachidienne.
Le principe biologique de l'invention est de mobiliser les CSP de la moelle osseuse vers le sang circulant. Cette augmentation du nombre de cellules souches dans la circulation sanguine permet au processus biologique de reconstruction du tissu nerveux de recruter une quantité de CSPC supérieure à la quantité de CSPC que la nature aurait pu fournir à l'état physiologique.
L'invention sera maintenant décrite en référence à un exemple clinique.
Dans le cadre du traitement des brûlures, on utilisera le traitement standard de réanimation médicale, de prévention des infections, de couverture des téguments brûlés.
Le traitement adjuvant comportera une première dose de 10 μq
(1 MU) par kilogramme de poids corporel de G-CSF (Neupogen®, Filgrastime) qui sera injectée par voie sous-cutanée au patient dès son admission à l'hôpital. La même dose sera injectée de manière quotidienne pendant les quatre jours suivants .
Bien entendu l'exemple ci-dessus est donné seulement à titre illustratif et n'entend pas limiter la portée de l'invention.

Claims

Revendications
1. Utilisation de l'un au moins des facteurs choisis parmi le G-CSF (Facteur de Stimulation des Colonies de Granulocytes), le GM-CSF (Facteur de Stimulation des Colonies de Granulocy tes et de Macrophages) et le SCF (Facteur des Cellules Souches), pour la préparation d'un médicament utile comme traitement adjuvant dans un processus de reconstruction de la peau chez un être vivant, le médicament étant destiné à l'administration par voie générale.
2. Utilisation selon la revendication 1, caractérisée en ce que le G-CSF, le GM-CSF, le SCF sont utilisés comme médica- ment dans le traitement des brûlures de la peau.
3. Utilisation selon l'une des revendications 1 et 2, caractérisée en ce que le G-CSF, le GM-CSF, le SCF sont utilisés comme médicament destiné à l'administration par voie générale et sont combinés à au moins un autre facteur destiné à l'administration locale ou par voie générale.
4. Utilisation selon la revendication 3, caractérisée en ce que cet autre facteur est choisi parmi l'un au moins des facteurs suivants : BMP (bone morphogenetic protein) , FGF (fibroblast growth factor), EGF (epidermal growth factor), IGF (insuline-like growth factor), Insuline, KGF (keratino- cyte growth factor), TGF (transforming growth factor), Interféron, Interleukine, VEGF (vascular endothelial growth factor), TNF (tumor necrosing factor), GDNF (glial cell ligne-derived neurotrophic factor) , NGF (neurotrophin nerve growth factor), HGF (hepatocyte growth factor), Erythropoïé- tine, PDGF (platelet-derived growth factor), Héparane Sulfate, Prostaglandines, Ostéoglycine (osteoinductive factor), BCDF (B cell differentiation factor), GDF-5 (growth and differentiation factor-5), Hormone de Croissance ; M-CSF (macrophage colony stimulating factor) ; tout facteur de croissance connu d'origine humaine ou animale, d'extraction ou recombinant ; tout facteur biologique renforçant le pouvoir de mobilisation des cellules souches de la moelle osseuse vers le sang circulant.
5. Utilisation selon l'une des revendications 1 à 4, caractérisée en ce que le G-CSF, le GM-CSF, le SCF sont des recombinants humains.
6. Utilisation selon l'une des revendication 1 à 4, caracté risée en ce que le G-CSF est la Filgrastime.
7. Utilisation selon l'une des revendications 1 à 4, caractérisée en ce que le G-CSF est la Lénograstime.
8. Utilisation selon l'une des revendications 1 à 4, carac- térisée en ce que le GM-CSF est la Molgramostime.
9. Utilisation selon l'une des revendications 1 à 4, caractérisée en ce que le SCF est l'Ancestim.
10. Utilisation selon l'une des revendications 1 à 9, caractérisée en ce que le médicament est utilisé avec un dosage en G-CSF, en GM-CSF, en SCF de 0,1 à 1000 μq, de préférence de 5 à 10 μq , par kilogramme de poids corporel et par jour.
11. Utilisation selon l'une des revendications 1 à 9, caractérisée en ce que le médicament est utilisé en médecine humaine.
12. Utilisation selon l'une des revendications 1 à 9, caractérisée en ce que le médicament est utilisé en médecine vétérinaire .
PCT/FR2003/000014 2002-01-18 2003-01-06 Application therapeutique des facteurs g-csf, gm-csf et scf WO2003061686A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02/00611 2002-01-18
FR0200611A FR2834899B1 (fr) 2002-01-18 2002-01-18 Nouvelle application therapeutique des facteurs g-csf, gm-csf et scf

Publications (1)

Publication Number Publication Date
WO2003061686A1 true WO2003061686A1 (fr) 2003-07-31

Family

ID=27589517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/000014 WO2003061686A1 (fr) 2002-01-18 2003-01-06 Application therapeutique des facteurs g-csf, gm-csf et scf

Country Status (2)

Country Link
FR (1) FR2834899B1 (fr)
WO (1) WO2003061686A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008116116A2 (fr) * 2007-03-20 2008-09-25 Harold Brem Compositions gm-csf cosméceuticales et leurs procédés d'utilisation
US11608486B2 (en) 2015-07-02 2023-03-21 Terumo Bct, Inc. Cell growth with mechanical stimuli
US11613727B2 (en) 2010-10-08 2023-03-28 Terumo Bct, Inc. Configurable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system
US11624046B2 (en) 2017-03-31 2023-04-11 Terumo Bct, Inc. Cell expansion
US11629332B2 (en) 2017-03-31 2023-04-18 Terumo Bct, Inc. Cell expansion
US11634677B2 (en) 2016-06-07 2023-04-25 Terumo Bct, Inc. Coating a bioreactor in a cell expansion system
US11667876B2 (en) 2013-11-16 2023-06-06 Terumo Bct, Inc. Expanding cells in a bioreactor
US11667881B2 (en) 2014-09-26 2023-06-06 Terumo Bct, Inc. Scheduled feed
US11685883B2 (en) 2016-06-07 2023-06-27 Terumo Bct, Inc. Methods and systems for coating a cell growth surface
US11795432B2 (en) 2014-03-25 2023-10-24 Terumo Bct, Inc. Passive replacement of media
US11965175B2 (en) 2016-05-25 2024-04-23 Terumo Bct, Inc. Cell expansion
US12043823B2 (en) 2021-03-23 2024-07-23 Terumo Bct, Inc. Cell capture and expansion

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992014480A1 (fr) * 1991-02-22 1992-09-03 Amgen Inc. Utilisation de gm-csf et g-csf pour favoriser une cicatrisation acceleree
US5556620A (en) * 1985-02-05 1996-09-17 Cetus Oncology Corporation Use of recombinant colony stimulating factor-1 to enhance wound healing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5556620A (en) * 1985-02-05 1996-09-17 Cetus Oncology Corporation Use of recombinant colony stimulating factor-1 to enhance wound healing
WO1992014480A1 (fr) * 1991-02-22 1992-09-03 Amgen Inc. Utilisation de gm-csf et g-csf pour favoriser une cicatrisation acceleree

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
D. ORLIC ET AL.: "Mobilized bone marrow cells repair the infarcted heart, improving function and survival.", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 98, no. 18, 28 August 2001 (2001-08-28), WASHINGTON, US, pages 10344 - 10349, XP002216659 *
G. MASUCCI: "New linical pplications of granulocyte-macrophage colony-stimlating factor.", MEDICAL ONCOLOGY, vol. 13, no. 3, 1996, LONDON, GB, pages 149 - 154, XP008009505 *
KAPLAN G ET AL: "NOVEL RESPONSES OF HUMAN SKIN TO INTRADERMAL RECOMBINANT GRANULOCYTE/MACROPHAGE-COLONY-STIMULATING FACTOR: LANGERHANS CELL RECRUITMENT, KERATINOCYTE GROWTH, AND ENHANCED WOUND HEALING", JOURNAL OF EXPERIMENTAL MEDICINE, TOKYO, JP, vol. 175, no. 6, 1 June 1992 (1992-06-01), pages 1717 - 1728, XP000673999, ISSN: 0022-1007 *
M. GILL ET AL.: "Vascular trauma induces rapid but transient mobilization of VEGFR2+ AC133+ endothelial precursor cells.", CIRCULATION RESEARCH, vol. 88, 2 February 2001 (2001-02-02), pages 167 - 174, XP002217420 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008116116A3 (fr) * 2007-03-20 2008-12-18 Harold Brem Compositions gm-csf cosméceuticales et leurs procédés d'utilisation
US8673859B2 (en) 2007-03-20 2014-03-18 New York University GM-CSF cosmeceutical compositions and methods of use thereof
WO2008116116A2 (fr) * 2007-03-20 2008-09-25 Harold Brem Compositions gm-csf cosméceuticales et leurs procédés d'utilisation
US11773363B2 (en) 2010-10-08 2023-10-03 Terumo Bct, Inc. Configurable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system
US11746319B2 (en) 2010-10-08 2023-09-05 Terumo Bct, Inc. Customizable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system
US11613727B2 (en) 2010-10-08 2023-03-28 Terumo Bct, Inc. Configurable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system
US11708554B2 (en) 2013-11-16 2023-07-25 Terumo Bct, Inc. Expanding cells in a bioreactor
US11667876B2 (en) 2013-11-16 2023-06-06 Terumo Bct, Inc. Expanding cells in a bioreactor
US11795432B2 (en) 2014-03-25 2023-10-24 Terumo Bct, Inc. Passive replacement of media
US12065637B2 (en) 2014-09-26 2024-08-20 Terumo Bct, Inc. Scheduled feed
US11667881B2 (en) 2014-09-26 2023-06-06 Terumo Bct, Inc. Scheduled feed
US11608486B2 (en) 2015-07-02 2023-03-21 Terumo Bct, Inc. Cell growth with mechanical stimuli
US11965175B2 (en) 2016-05-25 2024-04-23 Terumo Bct, Inc. Cell expansion
US11685883B2 (en) 2016-06-07 2023-06-27 Terumo Bct, Inc. Methods and systems for coating a cell growth surface
US11634677B2 (en) 2016-06-07 2023-04-25 Terumo Bct, Inc. Coating a bioreactor in a cell expansion system
US11999929B2 (en) 2016-06-07 2024-06-04 Terumo Bct, Inc. Methods and systems for coating a cell growth surface
US12077739B2 (en) 2016-06-07 2024-09-03 Terumo Bct, Inc. Coating a bioreactor in a cell expansion system
US11702634B2 (en) 2017-03-31 2023-07-18 Terumo Bct, Inc. Expanding cells in a bioreactor
US11629332B2 (en) 2017-03-31 2023-04-18 Terumo Bct, Inc. Cell expansion
US11624046B2 (en) 2017-03-31 2023-04-11 Terumo Bct, Inc. Cell expansion
US12043823B2 (en) 2021-03-23 2024-07-23 Terumo Bct, Inc. Cell capture and expansion

Also Published As

Publication number Publication date
FR2834899A1 (fr) 2003-07-25
FR2834899B1 (fr) 2005-06-10

Similar Documents

Publication Publication Date Title
EP2277529B1 (fr) Application thérapeutique du SCF
Niu et al. Modulating macrophage activities to promote endogenous bone regeneration: Biological mechanisms and engineering approaches
US8343479B2 (en) Methods and compositions for the repair and/or regeneration of damaged myocardium
Liang et al. Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives
Fraser et al. Adult stem cell therapy for the heart
US20060110374A1 (en) Method to accelerate stem cell recruitment and homing
Günter et al. New strategies in clinical care of skin wound healing
WO2014126931A1 (fr) Compositions stables de plasma riche en plaquettes et leurs procédés d'utilisation
TR201802122T4 (tr) HMGB1 fragmanı kullanarak kardiyak infarksiyonun tedavisine yönelik yeni yöntem.
EP2902483B1 (fr) Procédé de prolifération in vitro d'une population cellulaire contenant des cellules appropriées pour traiter une maladie ischémique
CA2423592A1 (fr) Procedes et compositions permettant la reparation et/ou la regeneration de myocarde endommage
WO2003061686A1 (fr) Application therapeutique des facteurs g-csf, gm-csf et scf
D’Amario et al. Granulocyte colony-stimulating factor for the treatment of cardiovascular diseases: An update with a critical appraisal
RU2248216C2 (ru) Композиция и способ увеличения количества стволовых клеток и/или гематопоэтических клеток-предшественников в циркуляции в периферической крови млекопитающих
WO2014018259A1 (fr) Implants et procédures pour favoriser la croissance de cellules souches autologues
Drapeau et al. The therapeutic potential of stimulating endogenous stem cell mobilization
O'Malley et al. Somatic gene therapy in otolaryngology—head and neck surgery
EP2101795A2 (fr) Préparations cellulaires pour une utilisation comme agent stimulant la revascularisation
EP1365795B1 (fr) Utilisation du g-csf comme traitement adjuvant dans la reconstruction de tissus conjonctifs
Abu-El-Rub et al. Mesenchymal stem cells derived secretome as an innovative cell-free therapeutic approach
WO2019135407A1 (fr) Méthode de traitement et/ou de prévention d'une douleur neuropathique
Soukiasian et al. A novel sub-population of bone marrow derived myocardial stem cells: potential autologus cell therapy in myocardial infarction
Sano et al. Recent innovation in pretreatment for skin grafts using regenerative medicine in the East
WO2005097170A1 (fr) Promoteur d’angiogenie et therapie angiogene
Li et al. Angiogenesis Induced by Intramyocardial Implantation of Autologous Bone Marrow Mononuclear Cells for the Treatment of Ischemic Heart Disease

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP