WO2003058270A1 - Dispositif et procede de suppression de signaux radioelectriques pulses - Google Patents

Dispositif et procede de suppression de signaux radioelectriques pulses Download PDF

Info

Publication number
WO2003058270A1
WO2003058270A1 PCT/FR2002/004509 FR0204509W WO03058270A1 WO 2003058270 A1 WO2003058270 A1 WO 2003058270A1 FR 0204509 W FR0204509 W FR 0204509W WO 03058270 A1 WO03058270 A1 WO 03058270A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
pulsed signals
filters
filter
signal
Prior art date
Application number
PCT/FR2002/004509
Other languages
English (en)
Inventor
Estelle Kirby
Alain Renard
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to AU2002365019A priority Critical patent/AU2002365019A1/en
Priority to US10/467,625 priority patent/US7161528B2/en
Priority to CA002439563A priority patent/CA2439563A1/fr
Priority to EP02806033A priority patent/EP1463954A1/fr
Publication of WO2003058270A1 publication Critical patent/WO2003058270A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/21Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/71Interference-related aspects the interference being narrowband interference
    • H04B1/7102Interference-related aspects the interference being narrowband interference with transform to frequency domain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/78Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted discriminating between different kinds of targets, e.g. IFF-radar, i.e. identification of friend or foe
    • G01S13/785Distance Measuring Equipment [DME] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70715Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation with application-specific features

Definitions

  • the invention relates to a method for suppressing in a radio signal received by a receiver, pulsed signals, in particular those emitted by civilian distance measurement equipment, "Distance Measuring Equipment or DME" in English, between an aircraft and a ground beacon.
  • pulsed signals in particular those emitted by civilian distance measurement equipment, "Distance Measuring Equipment or DME" in English, between an aircraft and a ground beacon.
  • one of the problems posed by the transmission of data by radio spectrum signals is the sensitivity of the receivers to the jammers taking into account the low powers involved and the large distances separating the transmitters and receivers.
  • the signal in the frequency bands for civil GPS III is obtained by the modulation of a carrier by a first signal, "pilot channel”, producing a modulation spectrum with a width of the order of 20 MHz and by a second quadrature signal modulated by the navigation message, "given channel”, producing a second modulation spectrum of 20 MHz.
  • FIG. 1 represents an example of a pulsed signal emitted by a distance measuring equipment (DME) between a beacon on the ground and an aircraft. We will call this signal thereafter, DME signal.
  • Figures 2a and 2b respectively represent the frequency aspect of a pulse and a pair of pulses.
  • the DME signal comprises two pulses spaced apart by a predetermined time t0 depending on the mode (ARINC 709 A standard). For example, in the X mode of ground beacons, this time t0 of spacing between the pulses is of the order of 12 ⁇ S.
  • the pair of pulses is repeated with a frequency of the order of 2700 pairs of pulses per second.
  • Each pulse has a Gaussian shape envelope and a carrier frequency depending on the tag.
  • Each beacon on the ground is recognized by the aircraft interrogating the beacon by the frequency of the pulse transmission channel.
  • a database in the aircraft makes it possible to obtain the position and the frequency of each beacon.
  • the DME transmission channels for the various beacons are in 1 MHz steps.
  • the GPS receiver can receive in its frequency band a multitude of DME pulsed signals from several beacons located on the ground. These signals emitted at random times and at frequencies spaced at 1 MHz, cause a deterioration of the signal to noise ratio of the GPS receiver and, consequently, measurement errors.
  • the effects of the interference of the signals drawn on the receivers depend on many factors among which one can quote, the peak power, the duty cycle, the width of the pulse.
  • GPS receivers in particular work with very low wanted signal levels of the order of -130dBm, the level of the noise floor of the receiver.
  • the type of coded digital modulation used in GPS receivers allows extraction of the signal useful for these low reception levels.
  • a low level pulse at the input of the GPS receiver of the order of 10 dB above the noise floor, can produce saturation of the input stages radio frequency and saturation of the receiver's analog-to-digital converter.
  • Analog solutions can be developed to avoid these saturations.
  • the radiofrequency input stages and the analog-to-digital converter must be dimensioned in order to avoid this saturation taking into account the interference environment.
  • a simple solution would consist in reassigning the frequencies of DME, but if this solution is possible in the United States of America, it is not possible in Europe or in Japan because of the high density radio beacons.
  • the interference pulse is easily detectable by the fact that the signal normally received by the receiver GPS is located at the level of thermal noise.
  • the detection of the pulse can be carried out by the relative analog measurement of radio signal strength or, more simply, when the received signal is digitized by an analog-digital converter, by an analysis of the histogram of the digital levels. in real time. In the latter case, the pulses are deleted by setting the digital output of the converter to zero at the time of the pulses.
  • the “blanking” method is a simple technique but which has a major drawback, in fact, it produces a degradation important of the signal-to-noise ratio of the receiver because the useful signal is completely cut off for the entire duration of the pulses.
  • the useful signal cuts can be numerous at high altitude because of the large number of DME beacons on the ground for aircraft and the repetition frequency of the DME pulses.
  • the invention proposes a method of suppressing pulsed signals in particular of DME or TACAN type present in radio signals. received by a radio frequency receiver, characterized in that the receiver reception frequency band is divided into frequency sub-bands corresponding to the channels of transmission of the pulsed signals, in that the presence of the pulsed signals is detected and the transmission channel of said signals drawn from the frequency sub-bands, and in that the frequency subband comprising the detected pulsed signals is filtered, for the duration of the pulsed signal, in order to eliminate said pulsed signals.
  • This invention can use the knowledge of the interference to be treated.
  • DMEs are modulated by an integer frequency spaced in steps of 1 MHz: for example, 1174 MHz, 1175 MHz, 1176MHz ....
  • the number of DME channels that can be considered as annoying in the L5 band is a maximum of twenty . It is possible to consider fewer channels: the disturbance of the central frequencies of the spread radio navigation signal has much more consequences than the disturbance of the lateral frequencies. Twenty channels will be taken as an example.
  • Figure 3 shows a block diagram of the invention.
  • the first operation of the process is to determine the unknown parameters of the pulsed signals and then eliminate them.
  • the invention also relates to a device for implementing the method according to the invention.
  • the cutting of the reception frequency band into twenty sub-bands is carried out by a battery of detection filters FD1, FD2, ... FD20 adapted to the form d 'wave.
  • this battery of detection filters can also be a battery of band-pass filters if no knowledge is used a priori on the form of the interference or a battery of filters with impulse response adapted to the form of the interference in each band, which amounts to making an intercorrelation.
  • the signal Ue to be processed enters this filter bank via a common input E1, it comes out at the respective outputs S1, S2 .... S20 of the filters, twenty bandwidth signals approximately 0.3MHz.
  • Each signal at the output of the band pass filter FD1, FD2, .... FD20 attacks a respective detection device DD1, DD2, .... DD20 for each sub-band.
  • the detection device can be based on a simple measurement of the power of the signal at the output of the detection filter. This power measurement is filtered and then compared to a threshold for each sub-band. The decision of the detection device is determined for each sub-band.
  • the detection device can be adapted to the shape of the signal in order to improve the detection performance. From the information coming from the detection devices DD1, DD2, .... DD20, a calculation Cg of the frequency mask to be eliminated and a calculation Cf of the rejector filter to be used are carried out.
  • the signals received Ue, after having undergone a delay Tr, are processed by an adaptive filter Fa of parameters originating from the calculation Cf of the rejector filter.
  • FIG. 5 is a first variant of the device of Figure 4;
  • FIG. 6 constitutes a second variant of the device of FIG. 4.
  • FIG. 4 represents a possible embodiment of the invention.
  • the battery of detection filters FD1, FD2 ... FD20 comprises a common input E1 attacked by the received signal Ue, of bandwidth 20MHz, interfered with by the DMEs.
  • At the outputs S1, S2 .... S20 of the detection filters there are the channels containing the useful signal, the thermal noise and any DME interference.
  • Each channel output S1, S2 .... S20 attacks its respective detection device DD1, DD2, ..., DD20.
  • Each detection device DD1, DD2, ..., DD20 makes it possible to measure and filter the power of the signals on each channel. The comparison with respect to a threshold makes it possible to determine the presence or not of DME interference in the twenty channels observed.
  • the decisions of the detection device make it possible to determine the outputs of the isolation filters FI1, FI2, .... FI20 respective to each channel to be used in the result of the filtering through the respective switches 11, ..., I20 controlled by their respective detection devices DD1, DD2, ..., DD20.
  • the input signal Ue is delayed by the delay Tr before attacking the isolation filters.
  • the result of the isolation FI1, FI2 ?? FI20 is the sum, by the summator Sm, of the signals at the output of the isolation filters.
  • the isolation filters FI1, FI2 ?? FI20 applied to the signal Ue to be processed are a battery of 20 bandpass isolation filters.
  • the size of the isolation filters is adapted to the spectrum of the signal to be eliminated.
  • the decisions of the detection devices make it possible to determine whether or not to use the output of each isolation filter. If the useful signal is not disturbed, the result of the isolation is the sum of the signals at the output of the isolation filters. If the detection device has seen one or more disturbed frequencies in the useful signal, the result of the isolation is the sum of the filters for isolating the undisturbed sub-bands. In order not to deteriorate the signal in the absence of interference, the sum of the outputs of all the filters (signal Us) is equal to the input signal Ue.
  • the transfer functions of the insulation filters must therefore be complementary.
  • the set of devices FD1, FD2, ..., FD20 of FIG. 3 is a battery of twenty filters, each filter having a bandwidth Bs adapted to the DME / TACAN signal substantially equal to 0.3 MHz.
  • Figure 5 is a first variant of the device of Figure 4. In this first variant, the detection devices are also used for insulation. In this case, this device is of the blanking type.
  • the input signal Ue being applied to all of the detection filters FD1, FD2, ..., FD20, each output S1, S2 .... S20 of the filters attack on the one hand , a respective detection and isolation device DDI1, DDI2 Vietnamese DDI20 and, on the other hand, the respective inputs es1, es2, ... es20 of a summator Sm through the delay Tr and a respective switch 11, 12, ..., 120 controlled by the associated detection and isolation device DDI1, DDI2, .... DDI20.
  • FIG. 6 constitutes a second variant of the device of FIG. 4.
  • the isolation filter bank is replaced by a convolutional adaptive filter Fad of the RIF type whose impulse response is the sum of the impulse responses corresponding to each frequency band, except those disturbed.
  • each output S1, S2 .... S20 of each detection filter FD1, FD2, ..., FD20 attacks its respective detection device DD1, DD2, .. ., DD20.
  • the input signal Ue is applied on the one hand to the inputs of the detection filters and, on the other hand, to the input of the convolutional adaptive filter Fad of the RIF type through the delay Tr.
  • the interference suppression method according to the invention is optimized due to the taking into account of the characteristics of DME / TACAN.
  • One of the advantages of the method and of the devices for implementing the method according to the invention lies in the fact that a small part of the received band is suppressed in the presence of the pulses, of the order of 1 MHz (DME channel) on the 20 MHz bandwidth of the received signal and only for very short times corresponding to the durations of the DME / TACAN pulse (a few microseconds), the signal received in the sub-band considered between two consecutive pulses not being cut. In this way, the signal is received by the receiver between the pulses, therefore for almost all of the time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Noise Elimination (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

L'invention concerne un procédé de suppression de signaux pulsés notamment de type DME ou TACAN présents dans les signaux radioélectriques reçus (Ue) par un récepteur radiofréquences, caractérisé en ce que la bande de fréquences de réception du récepteur est découpée en sous-bandes de fréquences correspondant aux canaux d'émission des signaux pulsés, en ce que l'on détecte la présence des signaux pulsés et le canal d'émission desdits signaux pulsés dans les sous-bandes de fréquences, et en ce que l'on filtre, pendant la durée du signal pulsé, la sous­bande de fréquence comportant les signaux pulsés détectés, pour éliminer lesdits signaux pulsés. Applications : protéction des récepteurs radioélectriques type GPS ou GALILEO contre les perturbateurs radioélectriques de type pulse DME/TACAN.

Description

DISPOSITIF ET PROCEDE DE SUPPRESSION DE SIGNAUX RADIOELECTRIQUES PAULSES
L'invention concerne un procédé permettant de supprimer dans un signal radioélectrique reçu par un récepteur, des signaux puisés, notamment ceux émis par des équipements civils de mesure de distance, «Distance Measuring Equipment ou DME » en langue anglaise, entre un avion et une balise au sol.
L'utilisation de la bande de fréquences radioélectrique L5 pour le système mondial de radiorepérage ou GPS (dénomination anglaise pour
« Navstar Global Positioning System ») dans le domaine civil ou, de la bande E5 pour le système européen GALILEO pose le problème de compatibilité avec les signaux émis.par les DME.
En effet, un des problèmes posés par la transmission de données par signaux radioélectriques à spectre étalé, comme ceux des signaux GPS ou ceux de GALILEO, est la sensibilité des récepteurs aux brouilleurs compte tenu des faibles puissances mises en jeu et des distances importantes séparant les émetteurs et les récepteurs.
Le signal dans les bandes de fréquence pour le GPS III civil est obtenu par la modulation d'une porteuse par un premier signal, « voie pilote », produisant un spectre de modulation d'une largeur de l'ordre de 20MHz et par un deuxième signal en quadrature modulé par le message de navigation, « voie donnée », produisant un second spectre de modulation de 20MHz.
La figure 1 représente un exemple de signal puisé émis par un équipement de mesure de distance (DME) entre une balise au sol et un aéronef. Nous appellerons par la suite ce signal, signal DME. Les figures 2a et 2b représentent respectivement l'aspect fréquentiel d'une impulsion et d'une paire d'impulsions.
Le signal DME comporte deux impulsions espacées d'un temps tO prédéterminé dépendant du mode (standard ARINC 709 A). Par exemple, dans le mode X des balises au sol, ce temps tO d'espacement entre les impulsions est de l'ordre de 12μS. La paire d'impulsions est répétée avec une fréquence de l'ordre de 2700 paires d'impulsions par seconde. Chaque impulsion a une enveloppe de forme Gaussienne et une fréquence porteuse dépendant de la balise.
Chaque balise au sol est reconnue par l'aéronef interrogeant la balise par la fréquence du canal d'émission des impulsions. Une base de données dans l'aéronef permet d'obtenir la position et la fréquence de chaque balise. Les canaux d'émission des DME pour les différentes balises sont au pas de 1 MHz.
Du fait de sa couverture importante, le récepteur GPS peut recevoir dans sa bande de fréquence une multitude de signaux puisés DME provenant de plusieurs balises situées au sol. Ces signaux émis à des instants aléatoires et à des fréquences espacées de 1 MHz, provoquent une dégradation du rapport signal à bruit du récepteur GPS et, par conséquent, des erreurs de mesure.
Dans le cas général, les effets des interférences des signaux puisées sur les récepteurs dépendent de nombreux facteurs parmi lesquels on peut citer, la puissance crête, le rapport cyclique, la largeur de l'impulsion.
Les récepteurs GPS en particulier travaillent avec des niveaux de signaux utiles très bas de l'ordre de -130dBm, du niveau du plancher de bruit du récepteur. Le type de modulation numérique codée utilisée dans les récepteurs GPS permet une extraction du signal utile pour ces faibles niveaux de réception. Dans ces conditions, de très faible puissance de signal utile reçue, une impulsion de faible niveau à l'entrée du récepteur GPS, de l'ordre de 10 dB au-dessus du plancher du bruit, peut produire la saturation des étages d'entrée radiofréquence et la saturation du convertisseur analogique-numérique du récepteur. Des solutions analogiques peuvent être développées pour éviter ces saturations. Pour pouvoir développer une solution numérique, les étages d'entrée radiofréquence et le convertisseur analogique numérique doivent être dimensionner afin d'éviter cette saturation en tenant compte de l'environnement d'interférences. Pour éviter ce type de perturbations par les DME une solution simple consisterait à réaffecter les fréquences des DME, mais si cette solution est possible aux Etats Unis d'Amérique, elle n'est pas possible en Europe ou au Japon du fait de la haute densité de balises radioélectriques.
Il existe actuellement des nombreux dispositifs et méthodes utilisant des traitements anti-interférences permettant de détecter et d'éliminer d'un signal reçu, des interférences de manière à récupérer en sortie du récepteur un signal épuré utilisable par un récepteur GPS standard. Parmi ces méthodes, on peut citer celle consistant à modifier le diagramme de rayonnement de l'antenne de réception pour créer un creux de réception (ou un zéro) dans la direction des perturbateurs, technique connue sous la dénomination en langue anglaise de « Controled Réception Pattern Antenna » ou en abrégé CRPA.
D'autres méthodes sont basées sur des estimations qui sont d'autant plus précises qu'elles sont réalisées sur des durées relativement longues pendant lesquelles les interférences sont présentes. Ces méthodes présentent des inconvénients majeurs, d'une part, elles sont mal adaptées aux interférences intermittentes et, d'autre part, elles nécessitent pour fonctionner, dans ce dernier cas de figure, que l'interférence soit observée sur un intervalle de temps suffisamment long, donc en particulier, qu'elle soit géographiquement stable ce qui n'est pas le cas pour les interférences puisées.
D'autres méthodes comme le « filtrage adaptatif dans le domaine fréquence » ou celle consistant à détecter l'impulsion et à couper le récepteur pendant la durée de l'impulsion (« puise blanking » en langue anglaise) sont des solutions potentielles. L'inconvénient de la première solution basée sur des techniques numériques de filtrage est lié au fait de la nécessité d'une trop grande puissance de calcul.
Dans la méthode de « puise blanking », consistant à couper le récepteur pendant la durée des impulsions DME lorsqu'elles sont détectées dans le signal reçu, l'impulsion d'interférence est facilement détectable par le fait que le signal normalement reçu par le récepteur GPS se situe au niveau du bruit thermique. Par exemple, la détection de l'impulsion peut être effectuée par la mesure relative analogique de puissance du signal radioélectrique ou, plus simplement, lorsque le signal reçu est numérisé par un convertisseur analogique-numérique, par une analyse de l'histogramme des niveaux numériques en temps réel. Dans ce dernier cas, la suppression des d'impulsions s'effectue en mettant à zéro, au moment des l'impulsions, la sortie numérique du convertisseur.
La méthode de « blanking » est une technique simple mais qui comporte un inconvénient majeur, en effet, elle produit une dégradation importante du rapport signal à bruit du récepteur du fait que, pendant toute la durée des l'impulsions, le signal utile est totalement coupé. Dans le cas des récepteurs de type GPS ou GALILEO, les coupures de signal utile peuvent être nombreuses à haute altitude du fait du grand nombre de balises DME au sol en vue des aéronefs et de la fréquence de répétition des impulsions DME.
Les mêmes problèmes se posent pour les récepteurs à bande étalée recevant des impulsions utilisées dans le domaine militaire, telles que celles des équipements tactiques de navigation aérienne « Tactical Air Navigation ou TACAN » en langue anglaise
Afin de pallier les inconvénients des dispositifs anti-interférences de l'art antérieur dans des récepteurs radioélectriques notamment ceux des GPS III ou de GALILEO, l'invention propose un procédé de suppression de signaux puisés notamment de type DME ou TACAN présents dans les signaux radioélectriques reçus par un récepteur radiofréquences, caractérisé en ce que la bande de fréquences de réception du récepteur est découpée en sous-bandes de fréquences correspondant aux canaux d'émission des signaux puisés, en ce que l'on détecte la présence des signaux puisés et le canal d'émission desdits signaux puisés dans les sous-bandes de fréquences, et en ce que l'on filtre, pendant la durée du signal puisé, la sousbande de fréquence comportant les signaux puisés détectés, pour éliminer lesdits signaux puisés. Cette invention peut utiliser la connaissance des interférences à traiter.
Les DME sont modulées par une fréquence de nombre entier espacés par pas de 1 MHz : par exemple, 1174 MHz, 1175 MHz, 1176MHz.... Le nombre de canaux DME pouvant être considérés comme gênants dans la bande L5 est au maximum de vingt. Il est possible de considérer moins de canaux : la perturbation des fréquences centrales du signal étalé de radionavigation a beaucoup plus de conséquences que la perturbation des fréquences latérales. Vingt canaux seront pris pour exemple. La figure 3 montre un synoptique de l'invention.
La première opération du procédé est de déterminer les paramètres inconnus des signaux puisés puis de les éliminer.
L'invention concerne aussi un dispositif de mise en œuvre du procède selon l'invention. Dans une mise en œuvre du procédé de suppression des signaux puisés, le découpage de la bande de fréquence de réception en vingt sous- bandes est effectué par une batterie de filtres de détection FD1 , FD2,....FD20 adaptés à la forme d'onde. Par exemple, cette batterie de filtres de détection peut être aussi une batterie de filtres passe-bande si aucune connaissance n'est utilisée a priori sur la forme de l'interférence ou une batterie de filtres à réponse impulsionnelle adaptée à la forme de l'interférence dans chaque bande, ce qui revient à faire une intercorrélation. Le signal Ue à traiter entre dans cette batterie de filtres par une entrée commune E1 , il en ressort aux respectives sorties S1 , S2.... S20 des filtres, vingt signaux de bande passante environ 0.3MHz.
Chaque signal en sortie du filtre passe bande FD1 , FD2,....FD20, attaque un respectif dispositif de détection DD1 , DD2,.... DD20 pour chaque sous-bande. Le dispositif de détection peut être basé sur une simple mesure de puissance du signal en sortie du filtre de détection. Cette mesure de puissance est filtrée puis comparée à un seuil pour chaque sous-bande. La décision du dispositif de détection est déterminée pour chaque sous-bande.
Avantageusement, le dispositif de détection peut être adapté à la forme du signal afin d'améliorer les performances de détection. A partir des informations issues des dispositifs de détection DD1 , DD2,.... DD20 on effectue un calcul Cg de gabarit de fréquences à éliminer et un calcul Cf du filtre rejecteur à utiliser. Les signaux reçus Ue, après avoir subi un retard Tr, sont traités par un filtre adaptatif Fa de paramètres issus du calcul Cf du filtre rejecteur. L'invention sera mieux comprise à l'aide d'exemples de réalisations de dispositifs de suppression de signaux radioélectriques puisés selon l'invention, en référence aux dessins annexés, dans lesquels :
- la figure 1 , déjà décrite, représente un exemple de signal puisé ;
- les figures 2a et 2b, déjà décrites, représentent respectivement l'aspect fréquentiel d'une impulsion et d'une paire d'impulsions.
- la figure 3, déjà décrite, montre un synoptique de l'invention ;
- la figure 4 représente une réalisation possible de l'invention ;
- la figure 5 constitue une première variante du dispositif de la figure 4 ; - la figure 6 constitue une deuxième variante du dispositif de la figure 4.
La figure 4 représente une réalisation possible de l'invention. La batterie de filtres de détection FD1 , FD2 ... FD20 comporte une entrée commune E1 attaquée par le signal reçu Ue, de bande passante 20MHz, brouillé par les DME. Aux sorties S1 , S2....S20 des filtres de détection, on trouve les canaux contenant le signal utile, le bruit thermique et les interférences DME éventuelles. Chaque sortie S1 , S2.... S20 de canal attaque son respectif dispositif de détection DD1 , DD2, ..., DD20. Chaque dispositif de détection DD1 , DD2, ..., DD20 permet de mesurer et de filtrer la puissance des signaux sur chaque canal. La comparaison par rapport à un seuil permet de déterminer la présence ou non d'interférence DME dans les vingt canaux observés. Les décisions du dispositif de détection permettent de déterminer les sorties des filtres d'isolation FI1, FI2,....FI20 respectif à chaque canal à utiliser dans le résultat du filtrage au travers des respectifs interrupteurs 11 , ... , I20 commandés par leurs respectifs dispositifs de détection DD1 , DD2, ..., DD20. Le signal d'entrée Ue est retardé par le retard Tr avant d'attaquer les filtres d'isolation. Le résultat de l'isolation FI1 , FI2.....FI20 est la somme, par le sommateur Sm, des signaux en sortie des filtres d'isolation.
Les filtres d'isolation FI1 , FI2.....FI20 appliqués au signal Ue à traiter sont une batterie de 20 filtres d'isolation passe-bande. Le gabarit des filtres d'isolation est adapté au spectre du signal à éliminer. Les décisions des dispositifs de détection permettent de déterminer l'utilisation ou non de la sortie de chaque filtre d'isolation. Si le signal utile n'est pas perturbé, le résultat de l'isolation est la somme des signaux en sortie des filtres d'isolation. Si le dispositif de détection a vu une ou plusieurs fréquences perturbées dans le signal utile, le résultat de l'isolation est la somme des filtres d'isolation des sous-bandes non perturbées. Afin de ne pas détériorer le signal en absence d'interférences, la somme des sorties de tous les filtres (signal Us) est égale au signal d'entrée Ue. Les fonctions de transfert des filtres d'isolation doivent, pour cela, être complémentaires.
L'ensemble des dispositifs FD1 , FD2, ... , FD20 de la figure 3 est une batterie de vingt filtres, chaque filtre ayant une bande passante Bs adaptée au signal DME/TACAN sensiblement égale à 0.3MHz. La figure 5 constitue une première variante du dispositif de la figure 4. Dans cette première variante, les dispositifs de détection servent aussi à l'isolation. Dans ce cas, ce dispositif est de type blanking.
Dans la variante de la figure 5, le signal d'entrée Ue étant appliqué l'ensemble des filtres de détection FD1 , FD2, ... , FD20, chaque sortie S1 , S2....S20 des filtres attaquent d'une part, un respectif dispositif de détection et d'isolation DDI1 , DDI2.....DDI20 et, d'autre part, les respectives entrées es1 , es2,...es20 d'un sommateur Sm à travers le retard Tr et un respectif interrupteur 11, 12,... , 120 commandé par le dispositif de détection et d'isolation associé DDI1 , DDI2, .... DDI20.
La figure 6 constitue une deuxième variante du dispositif de la figure 4. Le banc de filtres d'isolation est remplacé par un filtre adaptatif convolutionnel Fad de type RIF dont la réponse impulsionnelle est la somme des réponses impulsionnelles correspondant à chaque bande de fréquence, sauf celles perturbées.
Dans la réalisation de la deuxième variante, montrée à la figure 6, chaque sortie S1 , S2....S20 de chaque filtre de détection FD1 , FD2, ... , FD20 attaque son respectif dispositif de détection DD1 , DD2, ..., DD20. Le signal d'entrée Ue est appliqué d'une part aux entrées des filtres de détection et, d'autre part, à l'entrée du filtre Fad adaptatif convolutionnel de type RIF à travers le retard Tr. Chaque réponse impulsionnelle RM, RI2.....RI20, correspondant à chaque bande de canal, est appliquée à travers son respectif interrupteur 11 , 12 I20 commandé par son respectif dispositif de détection DD1, DD2, ..., DD20 à un sommateur Sp effectuant la somme des réponses impulsionnelles correspondant à chaque bande de fréquence, sauf celles perturbées, la réponse impulsionnelle du filtre Fad étant celle fournie par le sommateur Sp. .
Le procédé de suppression d'interférences selon l'invention est optimisé du fait de la prise en compte des caractéristiques des DME/TACAN. Un des avantages du procédé et des dispositifs de mise en œuvre du procédé selon l'invention réside dans le fait qu'une faible partie de la bande reçue est supprimée en présence des impulsions, de l'ordre de 1 MHz (canal DME) sur les 20 MHz de bande passante du signal reçu et seulement pendant des temps très courts correspondant aux durées de l'impulsion DME/TACAN (quelques microsecondes), le signal reçu dans la sous-bande considérée entre deux d'impulsions consécutives n'étant pas coupé. De cette façon, le signal est reçu par le récepteur entre les impulsions donc pendant la quasi-totalité du temps.
Avec un code aléatoire de modulation tel qu'utilisé dans les récepteurs de type GPS ou GALILEO, ces trous dans la bande de réception de courte durée ne produisant pratiquement pas d'erreur de mesure dans le récepteur. La probabilité de bloquer complètement le signal reçu est quasiment nulle par rapport au dispositif de « puise blanking » de l'art antérieur qui supprime la totalité du signal reçu par le récepteur pendant la durée des signaux puisés.

Claims

REVENDICATIONS
1. Procédé de suppression de signaux puisés notamment de type DME ou TACAN présents dans les signaux radioélectriques reçus (Ue) par un récepteur radiofréquences, caractérisé en ce que la bande de fréquences de réception du récepteur est découpée en sous-bandes de fréquences correspondant aux canaux d'émission des signaux puisés, en ce que l'on détecte la présence des signaux puisés et le canal d'émission desdits signaux puisés dans les sous-bandes de fréquences, et en ce que l'on filtre, pendant la durée du signal puisé, la sous-bande de fréquence comportant les signaux puisés détectés, pour éliminer lesdits signaux puisés.
2. Procédé de suppression de signaux puisés selon la revendication 1 , caractérisé en ce que le découpage de la bande de fréquence de réception est effectué par une batterie de filtres de détection (FD1 , FD2.....FD20) adaptés à la forme d'onde.
3. Procédé de suppression de signaux puisés selon l'une des revendication 2, caractérisé en ce que chaque signal en sortie du filtre de détection (FD1 , FD2,.-...FD20), attaque un respectif dispositif de détection (DD1 , DD2,.... DD20) pour chaque sous-bande.
4. Procédé de suppression de signaux puisés selon l'une des revendications 2 ou 3, caractérisé en ce que la batterie de filtres de détection (FD1 , FD2.....FD20) est une batterie de filtres passe-bande.
5. Procédé de suppression de signaux puisés selon l'une des revendications 2 ou 3, caractérisé en ce que la batterie de filtres de détection (FD1 , FD2,....FD20) est une batterie de filtres à réponse impulsionnelle.
6. Procédé de suppression de signaux puisés selon l'une des revendications 1 à 5, caractérisé en ce que le dispositif de détection est basé sur une simple mesure de puissance du signal en sortie du filtre de détection (FD1 , FD2.....FD20), cette mesure de puissance étant filtrée puis comparée à un seuil pour chaque sous-bande, la décision du dispositif de détection (DD1 , DD2 DD20) étant déterminée pour chaque sous-bande.
7. Procédé de suppression de signaux puisés selon l'une des revendications 3 à 6, caractérisé en ce qu'à partir des informations issues des dispositifs de détection (DD1 , DD2,.... DD20) on effectue un calcul Cg de gabarit de fréquences à éliminer et un calcul Cf du filtre rejecteur à utiliser, les signaux reçus (Ue), après avoir subi un retard Tr, étant traités par un filtre adaptatif (Fa) de paramètres issus du calcul Cf du filtre rejecteur.
8. Procédé" de suppression de signaux puisés selon l'une des revendications 1 à 7, caractérisé en ce que la bande de fréquences de réception du récepteur est découpée en vingt sous-bandes.
9. Dispositif de suppression de signaux puisés notamment de type DME ou TACAN présents dans les signaux radioélectriques reçus (Ue) par un récepteur radiofréquences, la bande de fréquences de réception du récepteur étant découpée en sous-bandes de fréquences correspondant aux canaux d'émission des signaux puisés, caractérisé en ce qu'il comporte une batterie de filtres de détection (FD1 , FD2 ... FD20) comportant une entrée commune E1 attaquée par le signal reçu (Ue) et des sorties (S1 , S2....S20) de canal, chaque sortie de canal attaquant un respectif dispositif permettant de filtrer et de mesurer la puissance des signaux sur chaque canal, la comparaison par rapport à un seuil permet de déterminer la présence ou non d'interférence DME dans les canaux observés.
10. Dispositif de suppression de signaux puisés selon la revendication 9, caractérisé en ce que chaque sortie de canal (S1 , S2....S20) attaque un respectif dispositif de détection (DD1 , DD2, ..., DD20), les décisions du dispositif de détection permettant de déterminer les sorties de filtres d'isolation (FI1 , FI2.....FI20) respectif à chaque canal à utiliser dans le résultat du filtrage au travers de respectifs interrupteurs (11 , 12,... , I20) commandés par leur respectifs dispositifs de détection (DD1 , DD2, ..., DD20), le signal reçu (Ue) étant retardé par un retard Tr avant d'attaquer les filtres d'isolation, le résultat de l'isolation étant la somme, par le sommateur Sm, des signaux en sortie des filtres d'isolation.
11. Procédé de suppression de signaux puisés selon la revendication 10, caractérisé en ce que les fonctions de transfert des filtres d'isolation (FI1 , FI2.....FI20) sont complémentaires.
12. Dispositif de suppression de signaux puisés selon la • revendication 9, caractérisé en ce que chaque sortie (S1 , S2.... S20) de canal des filtres de détection attaquent d'une part, un respectif dispositif de détection et d'isolation (DDI1 , DDI2 DDI20) et, d'autre part, des respectives entrées (es1 , es2,... es20) d'un sommateur Sm à travers un retard Tr et un respectif interrupteur (11 , 12,... , I20) commandé par le dispositif de détection et d'isolation associé (DDI1 , DDI2, ..., DDI20).
13. Dispositif de suppression de signaux puisés selon la revendication 9, caractérisé en ce que la respective sortie (S1 , S2.... S20) de chaque filtre de détection (FD1, FD2, ... , FD20) attaque son respectif dispositif de détection (DD1 , DD2, ..., DD20), le signal d'entrée Ue étant appliqué d'une part aux entrées des filtres de détection et d'autre part à l'entrée d'un filtre Fad adaptatif convolutionnel de type RIF à travers le retard Tr, chaque réponse impulsionnelle (RI1, RI2.....RI20), correspondant à chaque bande de canal, étant appliquée à travers son respectif interrupteur (11 , 12,... , I20) commandé par son respectif dispositif de détection (DD1 , DD2, ..., DD20), à un sommateur Sp effectuant la somme des réponses impulsionnelles, correspondant à chaque bande de fréquence, sauf celles perturbées, la réponse impulsionnelle du filtre Fad étant celle fournie par le sommateur Sp.
14. Dispositif de suppression de signaux puisés selon l'une des revendications 9 à 13, caractérisé en ce que l'ensemble des filtres de détection ( FD1, FD2, ... , FD20 ) est une batterie de vingt filtres, chaque filtre ayant une bande passante Bs adaptée au signal DME/TACAN sensiblement égale à 0.3MHz.
PCT/FR2002/004509 2002-01-08 2002-12-20 Dispositif et procede de suppression de signaux radioelectriques pulses WO2003058270A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2002365019A AU2002365019A1 (en) 2002-01-08 2002-12-20 Device and method for the suppression of pulsed wireless signals
US10/467,625 US7161528B2 (en) 2002-01-08 2002-12-20 Device and method for the suppression of pulsed wireless signals
CA002439563A CA2439563A1 (fr) 2002-01-08 2002-12-20 Dispositif et procede de suppression de signaux radioelectriques pulses
EP02806033A EP1463954A1 (fr) 2002-01-08 2002-12-20 Dispositif et procede de suppression de signaux radioelectriques pulses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0200163A FR2834563B1 (fr) 2002-01-08 2002-01-08 Procede de suppression de signaux radioelectriques pulses et dispositif de mise en oeuvre du procede
FR02/00163 2002-01-08

Publications (1)

Publication Number Publication Date
WO2003058270A1 true WO2003058270A1 (fr) 2003-07-17

Family

ID=8871195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/004509 WO2003058270A1 (fr) 2002-01-08 2002-12-20 Dispositif et procede de suppression de signaux radioelectriques pulses

Country Status (6)

Country Link
US (1) US7161528B2 (fr)
EP (1) EP1463954A1 (fr)
AU (1) AU2002365019A1 (fr)
CA (1) CA2439563A1 (fr)
FR (1) FR2834563B1 (fr)
WO (1) WO2003058270A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2916538A1 (fr) * 2007-05-25 2008-11-28 Thales Sa Traitement des interferences d'un signal radiofrequence par inversion de puissance
CN104316936A (zh) * 2014-11-01 2015-01-28 中国民航大学 一种综合的dme脉冲干扰抑制方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2867620B1 (fr) 2004-03-12 2008-10-24 Thales Sa Dispositif de decalage de frequence dans un chemin optique a source laser continue
FR2867619B1 (fr) * 2004-03-12 2006-06-23 Thales Sa Dispositif de decalage de frequence dans un chemin optique a source laser pulsee
FR2917179B1 (fr) * 2007-06-08 2010-05-14 Thales Sa Procede et dispositif de determination de l'angle de relevement dans un systeme de radionavigation
JP4664947B2 (ja) * 2007-07-02 2011-04-06 株式会社東芝 Dme地上装置
US7541972B1 (en) 2007-12-07 2009-06-02 Src, Inc. RF attenuation circuit
JP5398366B2 (ja) * 2009-06-11 2014-01-29 株式会社東芝 パルス検出装置
US8089402B2 (en) * 2009-08-26 2012-01-03 Raytheon Company System and method for correcting global navigation satellite system carrier phase measurements in receivers having controlled reception pattern antennas
US8044857B2 (en) * 2009-08-26 2011-10-25 Raytheon Company System and method for correcting global navigation satellite system pseudorange measurements in receivers having controlled reception pattern antennas
US8154445B2 (en) 2010-03-30 2012-04-10 Raytheon Company System and method for frequency domain correction of global navigation satellite system pseudorance measurements in receivers having controlled reception pattern antennas
CN102508264B (zh) * 2011-11-23 2013-04-17 中国民航大学 一种用于卫星导航系统的脉冲干扰抑制方法
US9099980B2 (en) * 2013-05-06 2015-08-04 Pratt & Whitney Canada Corp Dynamically detecting resonating frequencies of resonating structures
US11016170B2 (en) 2019-01-14 2021-05-25 Honeywell International Inc. Fixed low intermediate frequency approach to distance measurement transmitter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0987829A2 (fr) * 1998-09-14 2000-03-22 Terayon Communication Systems, Inc. Procédé et appareil pour l'excision d'un signal d'interférence à bande étroite d'un signal à AMRC
US6141371A (en) * 1996-12-18 2000-10-31 Raytheon Company Jamming suppression of spread spectrum antenna/receiver systems
WO2001077705A2 (fr) * 2000-04-05 2001-10-18 Symmetricom, Inc. Recepteur de systeme mondial de localisation fonctionnant en presence d'interferences

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2445660A1 (fr) * 1978-12-28 1980-07-25 Pissard Andre Procede et circuit de transmission de type mic differentiel a prediction adaptive, utilisant un filtrage par sous-bandes et une analyse spectrale
DE3118473A1 (de) * 1981-05-09 1982-11-25 TE KA DE Felten & Guilleaume Fernmeldeanlagen GmbH, 8500 Nürnberg Verfahren zur aufbereitung elektrischer signale mit einer digitalen filteranordnung
FR2628918B1 (fr) * 1988-03-15 1990-08-10 France Etat Dispositif annuleur d'echo a filtrage en sous-bandes de frequence
US5561667A (en) * 1991-06-21 1996-10-01 Gerlach; Karl R. Systolic multiple channel band-partitioned noise canceller
US5425105A (en) * 1993-04-27 1995-06-13 Hughes Aircraft Company Multiple adaptive filter active noise canceller
US5561668A (en) * 1995-07-06 1996-10-01 Coherent Communications Systems Corp. Echo canceler with subband attenuation and noise injection control
US6650271B1 (en) * 1997-11-24 2003-11-18 Raytheon Company Signal receiver having adaptive interfering signal cancellation
CA2239675C (fr) * 1998-06-04 2007-11-13 Tet Hin Yeap Suppression du brouillage radioelectrique et du bruit impulsif dans les canaux de radiotelecommunications
JP3159176B2 (ja) * 1998-06-11 2001-04-23 日本電気株式会社 帯域分割適応フィルタによる未知システム同定方法及び装置
US6628781B1 (en) * 1999-06-03 2003-09-30 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for improved sub-band adaptive filtering in echo cancellation systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141371A (en) * 1996-12-18 2000-10-31 Raytheon Company Jamming suppression of spread spectrum antenna/receiver systems
EP0987829A2 (fr) * 1998-09-14 2000-03-22 Terayon Communication Systems, Inc. Procédé et appareil pour l'excision d'un signal d'interférence à bande étroite d'un signal à AMRC
WO2001077705A2 (fr) * 2000-04-05 2001-10-18 Symmetricom, Inc. Recepteur de systeme mondial de localisation fonctionnant en presence d'interferences

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LANDRY R ET AL: "Analysis of potential interference sources and assessment of present solutions for GPS/GNSS receivers", INS INTERNATIONAL CONFERENCE ON INTEGRATED NAVIGATION, SAINT-PETERSBURG, RUSSIA, MAY 26-28, 1997, XP002214744, Retrieved from the Internet <URL:http://www.ele.etsmtl.ca/profs/rlandry/cv/Documents/Papjam_St_Peter97.PDF> [retrieved on 20020925] *
ROTURIER B: "Report on DME interference on GPS/L5 (third version, July 99)", REPORT BY EUROCONTROL (EATMP, SMA), 3 September 2001 (2001-09-03), XP002214743, Retrieved from the Internet <URL:http://www.eurocontrol.int/sma/studies.htm> [retrieved on 20020925] *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2916538A1 (fr) * 2007-05-25 2008-11-28 Thales Sa Traitement des interferences d'un signal radiofrequence par inversion de puissance
EP2000815A1 (fr) * 2007-05-25 2008-12-10 Thales Traitement des interférences d'un signal radiofréquence par inversion de puissance
US8135054B2 (en) 2007-05-25 2012-03-13 Thales Processing of interference on a radiofrequency signal by power inversion
CN104316936A (zh) * 2014-11-01 2015-01-28 中国民航大学 一种综合的dme脉冲干扰抑制方法

Also Published As

Publication number Publication date
FR2834563B1 (fr) 2004-04-02
US7161528B2 (en) 2007-01-09
FR2834563A1 (fr) 2003-07-11
AU2002365019A1 (en) 2003-07-24
CA2439563A1 (fr) 2003-07-17
EP1463954A1 (fr) 2004-10-06
US20050104767A1 (en) 2005-05-19

Similar Documents

Publication Publication Date Title
WO2003058270A1 (fr) Dispositif et procede de suppression de signaux radioelectriques pulses
Musumeci et al. Use of the wavelet transform for interference detection and mitigation in global navigation satellite systems
FR2916538A1 (fr) Traitement des interferences d&#39;un signal radiofrequence par inversion de puissance
FR2913291A1 (fr) Systemes et procedes de determination de seuils de detection d&#39;une technique de detection de spectre multi-resolution (mrss) pour les systemes de radios cognitives (cr)
EP1998441A2 (fr) Controle automatique de gain asservi sur la densité de probabilité de puissance reçue
EP2469707B1 (fr) Dispositif de contrôle automatique de gain pour récepteur de positionnement par satellites
EP3157181B1 (fr) Detection de signal ultra large bande
EP2336800B1 (fr) Procédé et récepteur pour supprimer un signal de brouillage
FR2960364A1 (fr) Systeme de telecommunication par satellite comportant un mecanisme de separation de messages emis par une pluralite d&#39;emetteurs
EP1461634A1 (fr) Procede de detection et de traitement de signaux pulses dans un signal radioelectrique
EP2706676A1 (fr) Méthode de caractérisation d&#39;une antenne de transmission d&#39;un satellite en orbite et système associé
EP3111247B1 (fr) Dispositif radar apte a equiper un systeme de surveillance cotiere, et systeme de surveillance cotiere integrant un tel dispositif
FR2946482A1 (fr) Procede de detection d&#39;un message emis par un interrogateur ou un repondeur en mode s
CA3003495C (fr) Procede et dispositif de suppression de signal parasite dans un signal de charge utile d&#39;un satellite
EP2661637B1 (fr) Procede protocole oriente de traitement des signaux stationnaires, partiellement stationnaires, ou cyclo-stationnaires
KR102180759B1 (ko) 수신기를 위한 간섭 완화
FR2954871A1 (fr) Dispositif de detection de signaux impulsionnels a sensibilite amelioree
Vallés et al. Phase tracking with a cognitive Antijam Receiver System (CARS)
FR3007146A1 (fr) Procede d&#39;optimisation d&#39;un recepteur gnss et dispositif d&#39;estimation du rapport interferences a bruit d&#39;un recepteur gnss
EP4016118A1 (fr) Procédé de traitement d&#39;un signal radio perturbé par un signal radar
Dafesh et al. Cognitive antijam receiver system (CARS) for GNSS
FR2781887A1 (fr) Procede de restitution de la sensibilite d&#39;un radar en presence d&#39;une pollution electromagnetique impulsionnelle
WO2002035786A1 (fr) Dispositifs d&#39;identification d&#39;un signal brouilleur d&#39;un signal radioelectrique a module sensiblement constant

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 10467625

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2439563

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002806033

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002806033

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP