WO2003054324A1 - Floor structure using reclaimed pet material - Google Patents

Floor structure using reclaimed pet material Download PDF

Info

Publication number
WO2003054324A1
WO2003054324A1 PCT/JP2002/013237 JP0213237W WO03054324A1 WO 2003054324 A1 WO2003054324 A1 WO 2003054324A1 JP 0213237 W JP0213237 W JP 0213237W WO 03054324 A1 WO03054324 A1 WO 03054324A1
Authority
WO
WIPO (PCT)
Prior art keywords
recycled pet
layer
molded body
basic structure
floor structure
Prior art date
Application number
PCT/JP2002/013237
Other languages
French (fr)
Japanese (ja)
Inventor
Minoru Yoshida
Hiroshi Yoshida
Takahiko Hirose
Ryoji Miyadera
Original Assignee
Kyodo Ky-Tec Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyodo Ky-Tec Corp. filed Critical Kyodo Ky-Tec Corp.
Publication of WO2003054324A1 publication Critical patent/WO2003054324A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/20Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. moulding inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/0026Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting
    • B29B17/0042Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting for shaping parts, e.g. multilayered parts with at least one layer containing regenerated plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/14Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles in several steps
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/024Sectional false floors, e.g. computer floors
    • E04F15/02405Floor panels
    • E04F15/02417Floor panels made of box-like elements
    • E04F15/02423Floor panels made of box-like elements filled with core material
    • E04F15/02429Floor panels made of box-like elements filled with core material the core material hardening after application
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • B29C2043/3405Feeding the material to the mould or the compression means using carrying means
    • B29C2043/3422Feeding the material to the mould or the compression means using carrying means rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/30Making multilayered or multicoloured articles
    • B29C43/305Making multilayered articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/44Compression means for making articles of indefinite length
    • B29C43/46Rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/26Scrap or recycled material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7158Bottles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/732Floor coverings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a floor structure formed of a composite material with a resin molding material and a method for manufacturing the same, and in particular, a floor structure used as a paving stone for buildings, roads, sidewalks, and the like using recycled PET (polyethylene terephthalate) material.
  • the present invention relates to a floor structure such as a base material, a support structure for a double floor, and a method for producing the same.
  • a curable filler is filled inside a frame formed of resin.
  • a double-floor structure that is formed and installed so that the resin frame is positioned on the outer surface, that is, so as to cover the cured filler from the top surface, that is, the double-floor support The legs are shown.
  • the structure of the support of the free access floor as the floor structure is made of a fluid and hardening filler such as mortar, and the frame covering this material is PP (polypropylene) resin, PVC (polyvinyl chloride) resin, etc. Is used.
  • PP polypropylene
  • PVC polyvinyl chloride
  • the curable filler is alkaline
  • the recycled PET has the property of being weak in alkalinity. This is because the ester bond portion of the recycled PET material is cut by the alkali component and the PET is decomposed, and the two are incompatible, and it is not preferable to use them together. For this reason, in the related art, particularly in the technical field relating to a floor structure and a double floor structure, it has generally been avoided to construct and use the two together.
  • the technology disclosed in the above-mentioned Japanese Patent Publication and JP-A-4-221162 is to form a resin film for preventing the discoloration of the decorative thin veneer on the surface of the decorative interior material due to the force of the inorganic board. It is not a technology for floor structures such as underfloor materials or double-floor components, and it does not use recycled PET materials.
  • An object of the present invention is to provide a floor structure using a recycled PET material capable of effectively using a recycled material, improving its recyclability, and improving strength and reliability of a structure using the recycled material.
  • the body is to provide its manufacturing method-that is.
  • a floor structure using a recycled PET material is a floor structure in which a basic structure including a curable material is stored in a frame, wherein the frame includes a recycled PET material, and the frame and the basic structure An erosion preventive layer for preventing alkali erosion is interposed between the base structure and the base structure, so that the basic structure and the frame do not come into contact with each other.
  • the floor structure includes a floor base material structure and a double floor structural member.
  • a basic structure including a curable material having an alkali component is housed in a molded body, and the molded body includes at least a recycled PET material and an alkali.
  • the recycled PET material is formed on the outer surface and the erosion-preventing material is formed on the inner surface, and inside the molded body on which the erosion-preventing material is formed.
  • the storage of the basic structure prevents contact between the basic structure and the recycled PET material and prevents the components of the basic structure from eroding the recycled PET material.
  • the molded body includes those formed by molding methods such as pressure forming, injection molding, co-extrusion molding as well as molding necessary for forming the floor structure, for example, laminate molding and vacuum molding.
  • an olefin resin such as PP resin or PE resin is formed between a frame as a molded body and a basic structure formed of a hardening material such as concrete. Since the erosion prevention material intervenes to form a layer, the frame is protected from alkali components by the erosion prevention layer and is not affected by it, so that cracks and cracks are prevented from occurring, and durability is improved. Improves performance and reliability.
  • the erosion prevention layer is not limited to the olefin resin. Alternatively, a metal such as titanium may be used.
  • the molded body formed at least in contact with the basic structure including the curable material has at least three layers including a contact prevention material, an olefin adhesive, and a recycled PET material. It has a structure, and the contact prevention material is placed on the upper surface of the basic structure to form the lowermost layer of the molded body so that the recycled PET material does not touch the basic structure.
  • the olefin adhesive is a contact prevention material.
  • the contact-preventing material is placed on the upper surface of the recycled PET material to form an adhesive intermediate layer, and the recycled PET material is placed on the upper surface of the olefin-based adhesive material to form The upper layer is formed.
  • a contact prevention material is in contact with the basic structure to form a layer, an olefin adhesive is laminated on the upper surface thereof, and a recycled PET material is further laminated to form a three-layer structure.
  • the contact-preventing material or the erosion-preventing material may be made of a PE or PP olefin resin.
  • the thickness may be at least substantially in the range of 30 ⁇ to 200 / zm before thermoforming.
  • the contact preventive or erosion preventive is not limited to PE or PP, but may be a sheet or film of another resin.
  • the thickness should theoretically be such that the recycled PET material does not contact the basic structure, that is, in the range of more than ⁇ and not more than approximately 200 ⁇ . Further, the thickness of the recycled PET material before the thermoforming may be at least substantially in the range of 450 ⁇ to 800 ⁇ .
  • the olefin-based bonding portion of the erosion-preventing material or the contact-preventing material is made of an olefin-based bonding material that bonds the recycled PET material to the basic structure. What is necessary is to substantially satisfy the range of 20 ⁇ to 30 / xm (25 ⁇ ⁇ 5 ⁇ ).
  • Such a floor structure may also be a two-layer structure of a molded body including recycled PET material and an erosion prevention layer, the total thickness of which is substantially 480 ⁇ before thermoforming. Or 1,000 ⁇ .
  • the total thickness of the three-layer structure of the molded body including the recycled PET layer, the olefin-based adhesive layer, and the contact prevention layer is substantially 500 111 to 1,030 111 (the Including the case where the thickness of the system adhesive layer is 0 ⁇ m.) Just add it. By setting these thicknesses, it is possible to stabilize the formability, improve the quality level, and maintain stability in a molded body that makes effective use of recycled PET material.
  • the method for producing a floor structure using recycled PET also includes forming a two-layer structure of a recycled PET layer containing recycled PET material and an erosion preventing layer containing Al erosion preventing material.
  • a forming step and a filling step of filling the storage section with a curable material are included.
  • a method for manufacturing a floor structure using a recycled PET material includes a recycled PET sheet forming step of forming a sheet-shaped member from the recycled PET material, and a recycled PET material formed by molding the sheet member.
  • a method of manufacturing a floor structure using recycled PET includes a recycled PET material, a contact preventing material for preventing the recycled PET material from contacting the basic structure, a contact preventing material, and a recycled material.
  • a recycled PET material By co-extrusion molding with the olefin adhesive to enable close contact with the PET material, the uppermost layer and the olefin adhesive are recycled so that the recycled PET material does not contact the basic structure.
  • the method for manufacturing a floor structure using recycled PET further includes a first sheet forming step of forming the recycled PET material into a substantially sheet-shaped recycled PET member, and a method of adhering to the recycled PET member.
  • the top layer so that it does not touch the basic structure, and the intermediate layer that allows the olefin-based adhesive to adhere the recycled PET member to the contact prevention member.
  • the sheet structure is laminated and formed to form a floor structure using recycled PET.
  • the body can be easily manufactured.
  • the upper surface means the upper surface in a state where the molded body is installed so as to cover from above the basic structure.
  • the base structure is installed upside down, the base structure is installed with the molded body covering the lower surface side, and the upper surface means the bottom surface.
  • an erosion prevention layer is formed on the top and bottom parts, which are most important as a floor structure, in other words, on the part that receives the most load and impact, so that cracks and cracks in that part can be prevented. Generation can be prevented and sufficient strength can be secured.
  • FIG. 1 is an explanatory partial cross-sectional view showing a basic structure of a floor structure formed by laminate molding according to an embodiment of the present invention
  • FIG. 2 is an explanatory partial cross-sectional view showing a basic structure of a floor structure by two-type resin co-extrusion molding according to an embodiment of the present invention
  • FIG. 3 is an explanatory partial cross-sectional view showing a basic structure of a floor structure by a painting / coating process according to an embodiment of the present invention
  • FIG. 4 is a schematic partial cross-sectional view showing a specific configuration example of a support as a floor structure according to an embodiment of the present invention
  • FIG. 5 is a schematic partial sectional view showing a configuration example in which an erosion prevention layer according to an embodiment of the present invention is partially formed
  • FIG. 6 is a schematic partial cross-sectional view showing a configuration example of a support formed by coating and coating according to an embodiment of the present invention.
  • FIG. 7 and FIG. 8 are diagrams showing an example of a manufacturing process of a floor structure by laminate molding
  • FIG. 9 is a partial cross-sectional view showing an example of a manufacturing process of a floor structure by laminate molding
  • FIG. 10 is a diagram showing an example of a manufacturing process of a floor structure by laminate molding.
  • FIG. 11 and 12 are schematic partial cross-sectional views showing an example of a completed floor structure.
  • FIG. 13 is a drawing showing a manufacturing process of a floor structure by a coating process.
  • FIG. 14 is a coating process.
  • FIG. 15A and FIG. 15B show an example of a manufacturing process of a floor structure by a coating process.
  • FIG. 16 is a schematic partial cross-sectional view showing an example in which the floor structure according to the embodiment is applied to a double floor structure.
  • FIG. 17 is a schematic plan view showing a configuration example of a double floor structure to which the floor structure of the present invention is applied
  • FIG. 18 is a partial cross-sectional view showing a configuration example of the double floor structure shown in FIG. 17,
  • 19A and 19B are a perspective view and a partial cross-sectional view showing a configuration example of the back surface of the frame of the floor structure according to the embodiment of the present invention.
  • 20A, 20B and 20C are flow charts showing an example of the manufacturing process of the floor structure according to the embodiment.
  • FIG. 21 is a characteristic diagram showing an example of the thickness of the erosion prevention layer in the floor structure according to the example at an optimum formability level.
  • a basic structure 10 is formed of a curable material such as mortar.
  • a material other than mortar various cements and concretes are suitable materials.
  • the resin layer 20 such as a olefin-based resin, preferably PP or PE, or even PVC (polyvinyl chloride), etc.
  • An erosion protection layer 20 is formed.
  • the erosion prevention layer 20 has a role as a contact prevention material for preventing the recycled PET material 30 from contacting the basic structure 10. Therefore, the erosion preventing layer 20 may be any material that can prevent erosion of the basic structure 10 by an alkali component, and may be, for example, a specific resin material, particularly preferably the above-mentioned olefin resin material.
  • the olefin resin material is compatible with each of recycled PET and hardened fillers such as concrete.
  • the resin material is also suitable in terms of adhesiveness and adhesiveness, and is also suitable as a binder. Further, the material is not limited to a resin material, and a metal material such as a titanium material may be used. The same applies to a coating material and a coating material described later.
  • an adhesive / adhesive resin layer 21 such as a modified olefin is provided as an olefin adhesive between the uppermost recycled PET layer 30 and the erosion prevention layer 20.
  • the resin layer 21 is formed as a layer having an intermediate property for further improving the adhesion between the recycled PET layer 30 and the erosion preventing layer 20. Therefore, in the present invention, it is not always necessary to provide such a layer for improving the adhesiveness.
  • the contact prevention material 20 is on the upper surface of the basic structure 10 and forms the lowermost layer of the molded body 50 in which the recycled PET material 30 does not contact the basic structure 10.
  • the olefin adhesive 21 is provided on the upper surface of the contact preventing material 20 and has an adhesive property for securely holding the recycled PET material 30 on the contact preventing material 20 to form an intermediate layer. Further, the recycled PET material 30 is located on the upper surface of the orientation adhesive 21 and forms the uppermost layer of the molded body 50.
  • the above-described function is basically achieved even with a configuration in which the erosion prevention layer 20 is merely interposed between the basic structure 10 and the uppermost recycled PET layer 30.
  • FIG. 3 shows an example in which the erosion prevention layer 20 is formed between the basic structure 10 and the uppermost layer of the recycled PET layer 30 by painting or coating, and its operation is described in FIGS. 1 and 2. It is no different from the composition. That is, the configuration according to the present invention is not limited to the method of forming each layer alone and then laminating each layer as in the configuration shown in FIGS. It can also be achieved by forming a thin resin film or metal film by painting and coating.
  • FIG. 4 shows an example in which the present invention is applied to an actual floor structure. In this figure and the following figures, the thickness of each layer is shown at a different ratio from the actual thickness for easy understanding. That is, the illustrated erosion prevention layer 20 and the recycled PET layer 30 are exaggerated from their actual thickness.
  • FIG. 3 shows an example in which the erosion prevention layer 20 is formed between the basic structure 10 and the uppermost layer of the recycled PET layer 30 by painting or coating, and its operation is described in FIGS. 1 and 2. It is no different from the composition. That is, the configuration according to
  • the support 1 has a basic structure 10 having a desired height as its basic structure, and is formed of a hardening filler such as concrete, cement, mortar, or the like.
  • the support 1 is to be laid under the figure, for example, placed on the floor (not shown) of the building, and the height of the basic structure 10 is set as the support foot of the double floor. In the application example where the function is to work, the height is to secure the wiring space of the double floor.
  • the basic structure 10 is covered with a recycled PET layer 30 that forms a frame that is a molded body that covers the entire structure from above in FIG. Between the recycled PET layer 30 and the basic structure 10, an erosion-preventing layer 20 of an olefin resin, for example, PP or PE resin is interposed as the alkali erosion-preventing material.
  • an olefin resin for example, PP or PE resin
  • FIG. 5 shows another configuration example of the floor structure.
  • the erosion prevention layer 20 interposed between the basic structure 10 and the recycled PET layer 30 is partially provided.
  • the frame In a double-floor support leg or floor base structure, the frame is subjected to a load or impact, such as when moving furniture or walking, on the upper surface of the frame. Durability of 30 is most important. Therefore, in this configuration example, the erosion prevention layer 20 is formed only on the upper surface of each support 1.
  • the erosion prevention layer 20 is formed on the bottom surface.
  • FIG. 6 shows an application example in which the erosion prevention layer 20 is formed by painting or coating. As shown, the layer formed by painting or coating has a small thickness. However, the effect of preventing erosion due to alkalinity is shown in Figs. 4 and 5. Has no inferiority.
  • 7 to 9 show a manufacturing process of a frame housing the basic structure 10 formed of a curable material.
  • a recycled PET layer 30 and an erosion prevention layer 20 of, for example, PE resin are formed, and then the both are passed through a laminator 100 and compressed to form a laminate.
  • Form body 40 That is, the recycled PET layer 30 and the erosion prevention layer 20 are in close contact with each other.
  • the laminate molding 40 is passed between a pair of molds 200-1 and 200-2 to perform vacuum molding. More specifically, the laminated molded body 40 is arranged such that the erosion preventing layer 20 is on the inner surface side of the frame, and the recycled PET layer 30 is on the outer surface side, and a vacuum molding process is performed using a mold.
  • FIG. 9 shows a frame body 50 as a compact formed by vacuum forming in this manner. As shown in the figure, both side surfaces 50b and the connecting portion 50c of the frame body 50 are extended by a pressing operation using the mold 200 and formed in a thin-walled shape as compared with the upper surface region 50a.
  • these molded bodies can function as the support 1 of the floor structure.
  • the frame body 50 serving as such a support is composed of the upper surface region 50a and the side surface 50b as described above, and has a substantially square shape capable of housing the basic structure 10 of the curable filler inside.
  • the present invention is not limited to such a square block shape, but may be another polyhedral shape, in other words, a cylindrical shape or a conical shape.
  • the thickness of each layer of the vacuum molded frame, that is, the laminated molded body 40 will be exemplified. Before the thermoforming, the total thickness is set, for example, to about 0.5 sq. To 1 sword. For example, when the total thickness is 0.725 mm, the recycled PET layer 30 is formed with 650 m, the adhesive / adhesive resin layer (modified olefin) is formed with 25 ⁇ , and the erosion prevention layer 20 is formed with 50 ⁇ .
  • the recycled PET layer 30 is formed with 550 ⁇
  • the modified olefin layer as an adhesive layer is formed with 25 ⁇ m
  • the PE layer 20 as erosion prevention is formed with 50 ⁇ to a total thickness of 625 ⁇ before thermoforming. You have set.
  • the recycled PET layer 30 has 500 ⁇ n! ⁇ 800 ⁇ range, ⁇ layer 20 is theoretically 0 ⁇ ! It was confirmed that the range of ⁇ 150 ⁇ m was the optimum value. This indicates that the formability level depends on the thickness of the protective layer based on the experimental data in Fig. 21. It is clear from the characteristic diagram showing the bell.
  • three types of three-layer structure are mainly used as a measure against alkali in recycled PET, and the protective layer of the laminated sheet before vacuum forming is made of PE. It is the finding of the layer thickness specification.
  • This characteristic diagram is due to the dimensional stability in quality and the bonding of different resins during thermoforming due to the difference in resin molding shrinkage between the recycled PET layer and the PE layer in vacuum molding. Since the thermoformability deteriorates, it shows the essential properties for finding and setting the optimum thickness of both.
  • the thinner the PE layer the better.
  • appearance defects such as cracks and cracks due to molding occur frequently.On the other hand, if the thickness is extremely thick, the cost will increase due to the use of excessive material, so it is necessary to set the optimum thickness. Become.
  • the horizontal axis shows the protective layer such as a PE layer before vacuum forming
  • the vertical axis shows the moldability after vacuum forming.
  • This is a graph plotting the degree of sex.
  • the moldability shown here is obtained by visually checking the appearance quality of a molded product and classifying the molded product in stages, as described later. For example, check the quality level of the corners by checking the sweetness of the molding at the corners, the uniformity of the thin-walled parts, the absence of sink marks, and the non-elongation.
  • levels 10 to 9 are indicated by double circles
  • levels 9 to 7 are indicated by circles.
  • levels 7 to 4 are ranked in the lower category
  • levels 4 to 0 are ranked in the lowest category.
  • the test conditions in this characteristic diagram are as follows.
  • the thickness of the protective layer (PE) assuming a sheet shape before vacuum forming is ⁇ ! Set in multiple steps between ⁇ 300 / m, recycled PET layer 65 0 / ⁇ ⁇ , also the O-les fin layer as a constant value of 25 ⁇ ⁇ , total thickness 675 II! Set to ⁇ 975 / zm.
  • the evaluation criteria are double circles (levels with no problems in thermoformability and appearance quality), circles (levels that require thermoforming time but no problems), and a third rank.
  • the appearance quality was visually checked on the basis of the level at which there was a point that should be partially improved in terms of thermoformability and appearance quality, and the lowest level as a problematic level in terms of thermoformability and appearance quality. However, the appearance quality is that the corner radius is 2 or less, the finished state of the corner, It is based on the sweetness of sex, uniformity of thickness (start-up strength), etc.
  • PE should not exceed around 200 / im. Furthermore, it can be seen that the thickness is less than about 150 ⁇ , which is more stable and suitable for mass production.
  • the thickness of the protective layer is ⁇ , the moldability is the best.
  • the compatibility between the recycled PET layer and the concrete that is the basic structure prevention of erosion
  • the thickness of the protective layer must be at least 30 ⁇ , and preferably 50 ⁇ or more. is there. This thickness is theoretically in the range of more than ⁇ and approximately 30 m or less as long as it is a resin material capable of forming a uniform ultra-thin protective layer by thermoforming or the like. Good.
  • the thickness of the protective layer must be at least 30 ⁇ to 200 ⁇ , and the optimal value is preferably 50 ⁇ m or more and 150 ⁇ m or less. This became clear from the experiment.
  • FIG. 20A corresponds to the work from FIG. 7 to FIG.
  • the total thickness is about 0.5 nm in one example! Set to ⁇ lmm.
  • the thickness of the recycled PET layer 30 is 650 ⁇ m
  • the thickness of the adhesive / adhesive resin layer (modified (Refin) 25 m, Erosion prevention layer 20 is formed with 50 ⁇ .
  • the exposed side of the cured curable material 60 that is, the basic structure 10
  • the exposed side of the cured curable material 60 is cut or sanded in order to finish it sufficiently flat.
  • the surface finishing work is performed mechanically or manually.
  • the completed state is shown in FIG.
  • the basic structure 10 When laying, the basic structure 10 is exposed to the upper side as shown in FIG. 11, or the basic structure 10 is covered from above by the recycled PET layer 30 as shown in FIG. It will be installed on a double-floor structure, etc., as appropriate.
  • FIG. 13 the material of the recycled PET layer 30 formed in a sheet shape is set between a pair of dies 300-1 and 300-2, and this is vacuum-formed to form a sheet.
  • a vacuum formed frame 52 composed of only one layer of the recycled PET layer 30 is formed. The thickness of each portion of the illustrated frame 52 is exaggerated, as described above in connection with FIG.
  • FIGS. 15A and 15B an operation of forming an erosion preventing layer by a painting process or a coating process will be described with reference to FIGS. 15A and 15B. That is, as shown in FIG. 15A, application or spraying of, for example, PP or PE resin or silicon oil as a coating material or a coating material is performed. In FIG. 15A, PP or PE resin is sprayed only on the inner side surface of the upper surface region of the vacuum forming frame 52.
  • the resin is sprayed over the entire surface.
  • Various methods such as a method of applying a PP or PE resin with a brush or the like may be applied to the coating treatment for forming the erosion preventing layer 20.
  • the application or spraying of the PP or PE resin is performed at the stage where the sheet-like recycled PET layer 30 shown in FIG. 13 is formed, that is, at the stage before vacuum forming by the mold 300 is performed. Is also good.
  • FIGS. 13 to 15B correspond to the flow of FIG. 20B.
  • Various processes may be used for the manufacturing process of the floor structure.
  • each of the two kinds of resin materials is injected almost simultaneously from different positions in the above-mentioned mold.
  • the two types of resin that is, the recycled PET layer 30 and the erosion prevention layer 20 can be thermocompression-bonded or heat-welded with a roll coater by heat conduction to form a two-layer thin plate or sheet. It is.
  • the thickness of the recycled PET layer 30 is preferably 650 ⁇ and the thickness of the erosion prevention layer 20 is preferably 50 ⁇ m. It is.
  • the present invention is not limited to this, and it is also possible to form three layers using three kinds of materials, for example, recycled PET, PE or PP, and modified olefin. Further, as a molding method, multi-layer coextrusion molding may be used.
  • the first injection molding with recycled PET material is performed to form a frame, and then, before being cooled, the erosion prevention layer using the erosion prevention material is immediately formed in the second injection molding. Then, by further molding the frame, these are combined by heat during injection molding, and a two-layer frame made of different resin materials is formed.
  • the erosion prevention layer is configured to have a thickness of about about 30 ⁇ to 200 ⁇ . It is suitable. The thickness of each layer only needs to be such that the recycled PET layer can be sufficiently protected from alkali components after the hardening filler is fixed.
  • FIG. 16 is a schematic cross-sectional view of a double-floor structure using such a support 1 as a support leg. As shown in the drawing, a portion 400 corresponding to a connection between the supports 1 is shown. The space above is used as the wiring space S. In order to cover the wiring space S, a wiring cover 70 forming an upper floor surface is laid. Note that reference numerals 402, 404, 406, and 408 in the figure denote wirings installed in the wiring space S.
  • FIG. 17 is a view of the double floor structure using the support as shown in FIG. 16 as viewed from above, and shows a state where the wiring cover 70 is removed. From the figure, it can be seen that a block 410 of the support 1 concentrated in a block shape and a passage portion X for forming a wiring space are formed. Each block is formed with a lattice-shaped rib R1. The rib R1 improves the strength of the upper surfaces of the recycled PET layer 30 and the erosion prevention layer 20, which are formed frames, and improves the strength of the mortar 10. It is also effective in preventing detachment from the frame 50 and falling.
  • FIG. 18 is a partial cross-sectional view of a block-shaped portion of the support 1, and it can be seen that a rib R1 having a predetermined depth is formed as shown.
  • FIG. 19A shows a state in which the frame body 80 is viewed from the back side as a molded body molded from the recycled PET layer 30 and the erosion prevention layer 20.
  • various reinforcing ribs are formed on the rib R1.
  • such a rib composition makes the recycled PET frame formed more flexibly than a conventional frame made of ECR (ethylene copolymer resin) or PVC (polyvinyl alcohol). It can reinforce the strength of the body, especially the upper part.
  • ECR ethylene copolymer resin
  • PVC polyvinyl alcohol
  • a characteristic portion is a cutout portion forming a cutout portion of a rib indicated by reference numeral 90.
  • the cutout portion 90 is formed at a portion where the side wall portion 91 of the block, which is the edge of the floor structure, and the rib 92 that partitions the block as a small block are perpendicular to each other.
  • FIG. 19B shows a cross-sectional shape of each support 1 which is a small block in the present embodiment, and an inner portion of the frame 50 is provided at an edge portion of each frame portion, that is, at a boundary portion between adjacent support members.
  • a bulged portion 94 slightly projecting toward is formed. The bulging portion 94 can effectively prevent the basic structure 10 from dropping or shifting from the frame after the completion of the structure.
  • the recycled PET layer 30 functioning as a frame covering the basic structure 10 is formed of a hardening material such as concrete, cement, and mortar containing an alkali component. Since there is no direct contact with the structure 10, the generation of cracks and cracks due to the decomposition of the recycled PET due to the alkali component is effectively prevented. As a result, the strength of the frame body, for example, the load resistance is improved, and the reliability is improved.
  • the recycled PET layer 30 may optionally contain a small amount of a resin material as a modifier for ensuring strength and flexibility during regeneration.
  • recycled PET materials are used only in mold release molds for molding and partially mixed with molded resin materials, and only from a few percent to tens of percent are being used.
  • the interposition of the erosion prevention layer 20 between the basic structure 10 and the recycled PET layer 30 not only protects the recycled PET layer 30 from alkali components, but also causes shrinkage due to temperature changes in the manufacturing process or storage conditions.
  • the stress between the recycled PET layer 30 and the basic structure 10 due to external factors such as stress, for example, the stress due to the close contact state is also reduced, and it is possible to effectively avoid the occurrence of cracks caused by these stresses. It is possible.
  • the strength can be improved by the use of the modifier and the close contact state as described above, the impact strength can be further improved by adopting a multilayer structure.
  • the basic structure accommodated in the frame which is a molded body formed of the recycled PET material, is used.
  • the alkali component can effectively prevent the adverse effects on recycled PET, improving the possibility of effective use of recycled PET materials in the field of floor substructures and double floor structures, and improving the recyclability of floor structures. In addition, costs can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Floor Finish (AREA)

Abstract

In a floor structure, such as underfloor backing structure or double floor structure member, with a frame body (30) received in a basic structure (10) made of hardenable material, the frame body (30) is made of reclaimed PET material. Interposed between the reclaimed PET material frame body (30) and the basic structure (10) is a corrosion preventive layer that is a corrosion preventive material resistant to alkali so as to prevent the basic structure (10) and the reclaimed PET material frame body (30) from contacting each other. Thereby, the frame body (30) is protected from alkali components by the corrosion preventive layer, thereby preventing the occurrence of cracking or cleaving. Since the reclaimed material is effectively used, recycling is improved and so is the strength and reliability of the structure using the reclaimed material.

Description

明 細 書 再生 PET材を用いた床構造体 技術分野  Description Floor structure using recycled PET
本発明は、 樹脂成形材との複合材にて形成される床構造体およびその製造方法、 とくに、 再生 PET (ポリエチレン テレフタレート)材を用い、 建築物や道路、 歩 道などの舗石として用いられる床下地材、 二重床用の支持構造体等の床構造体お よびその製造方法に関する。  The present invention relates to a floor structure formed of a composite material with a resin molding material and a method for manufacturing the same, and in particular, a floor structure used as a paving stone for buildings, roads, sidewalks, and the like using recycled PET (polyethylene terephthalate) material. The present invention relates to a floor structure such as a base material, a support structure for a double floor, and a method for producing the same.
背景技術 Background art
樹脂成形法により形成される枠体の内部に硬化性充填材を充填して形成された 床下地材は、 建築物の屋上、 道路、 歩道、 舗石などの仕上げとして広く用いられ ている。 このような床下地材構造体は、 敷設面の起伏を許容して設置することが でき、 良好な仕上げ状態を得ることができ、 設置後の歩行性にも優れている。 一方、 二重床構造(フリーアクセスフロア)は、 いわゆる OA機器の導入にあい まって、 一般オフィスなどにおいてその需要が高まり、 広く用いられている。 こ のような二重床構造により、 多種多様な OA機器の設置に伴う床下での配線の処理 が可能となり、 配線マネージメントが良好なものとなっている。 近年ではさらに、 この種のフリ一アクセスフロアは、 樹脂製やコンクリ一ト製などの種々の材質の 製品が提案されている。  BACKGROUND ART Flooring materials formed by filling a curable filler inside a frame formed by a resin molding method are widely used as finishes for building rooftops, roads, sidewalks, paving stones, and the like. Such an underfloor material structure can be installed while permitting the undulation of the laying surface, can obtain a good finish state, and has excellent walking properties after installation. On the other hand, the double-floor structure (free access floor) has been widely used in general offices and the like due to the introduction of so-called OA equipment. Such a double-floor structure makes it possible to process wiring under the floor due to the installation of various types of OA equipment, thus improving wiring management. In recent years, for this kind of free access floor, products of various materials such as resin and concrete have been proposed.
例えば、 日本特許公報、 特公平 7- 99043号の、 例えば第 3頁〜第 4頁、 第 1図 〜第 5図では、 樹脂により形成された枠体の内部に硬化性充填材を充填して形成 され、 その樹脂製の枠体が外表面に位置するように、 すなわち硬化した充填材を 上面から覆った状態となるように設置される二重床用の構造体、 すなわち二重床 の支持脚が示されている。  For example, in Japanese Patent Publication No. 7-99043, for example, pages 3 to 4 and FIGS. 1 to 5, a curable filler is filled inside a frame formed of resin. A double-floor structure that is formed and installed so that the resin frame is positioned on the outer surface, that is, so as to cover the cured filler from the top surface, that is, the double-floor support The legs are shown.
このような種々の床構造体の分野においても、 環境保護、 資源有効活用、 廃棄 物の低減、 リサイクルなどの要請から、 再生材を有効利用するための動きが見ら れている。 このような背景において、 例えば、 広範囲に飲料用容器として利用さ れている、 いわゆるペットボトルなどは、 その使用後におけるリサイクル活用が 注目され、 再生 PET (ポリエチレン テレフタレート)として、 これを利用した新 たな容器などの製品提供に関してめざましい発展を遂げている。 例えば、 日本特 許公開公報、 特開平 11- 116742号「再生樹脂を用いた成形品」の、 例えば第 3頁〜 第 6頁、 第 1図、 よび特開 2000- 281040号「再生多層樹脂ボトル」の、 例えば第 2頁〜第 3頁、 第 1図、 第 2図等を参照。 In the field of various floor structures, demands for environmental protection, effective use of resources, reduction of waste, and recycling have led to movements to effectively use recycled materials. Against this background, for example, so-called PET bottles, which are widely used as beverage containers, are not being recycled after use. Attention has been drawn to the remarkable development of products such as new containers using recycled PET (polyethylene terephthalate). For example, Japanese Patent Application Laid-Open Publication No. 11-116742, "Molded article using recycled resin", for example, from page 3 to page 6, FIG. 1 and JP-A-2000-281040, "Recycled multilayer resin bottle" For example, see pages 2 to 3, FIG. 1, FIG. 2, and the like.
また、 一般建築産業分野においては、 断熱材、 吸音材、 コンクリート打設用型 枠材などにおいて、 再生樹脂などを利用する技術が知られている。 例えば、 日本 特許公開公報、 特開 2000- 314191号「プラスチック材料を用いた改良建築材料」の、 例えば第 5頁〜第 6頁、 第 1図、 第 2図、 および日本実用新案公開公報、 実開平 6- 79953号「プラスチック系型枠材」の、 例えば第 5頁〜第 9頁、 第 1図を参照。 このような傾向は、 上述のフリーアクセスフロア分野においても及ぴ、 再生材 として代表的な再生 PET材の有効利用に関する検討が行われている。 とくに、 PP (ポリプロピレン)樹脂、 ABS (アクリル二トリル ブタジエン スチレン)樹脂 などを単一材料として構成している構造体については、 それらを再生 PET製に変 え、 あるいは再生 PETを一部混合させることが検討されている。  Also, in the general construction industry, a technology that uses recycled resin in heat insulating materials, sound absorbing materials, formwork materials for concrete casting, and the like is known. For example, Japanese Patent Publication, JP-A-2000-314191, "Improved Building Materials Using Plastic Materials", for example, pages 5 to 6, FIG. 1, FIG. 2, and Japanese Utility Model Publication, See FIG. 1 of Kaihei 6-79953, “Plastic Formwork”, for example, pages 5-9. This tendency extends to the above-mentioned free access floor field, and studies are being conducted on the effective use of recycled PET materials as typical recycled materials. In particular, for structures composed of PP (polypropylene) resin, ABS (acrylonitrile butadiene styrene) resin, etc. as a single material, convert them to recycled PET or partially mix recycled PET. Is being considered.
ところで、 従来の技術、 例えば日本特許公開公報、 特開平 4- 221162号「不燃性 天然木化粧内装材及びその製法」の、 例えば第 3頁、 第 4頁、 第 1図、 第 2図に おいて、 硬化性充填材としてのコンクリート、 モルタル、 セメント材料はアル力 リ性であるが、 これに対し再生 PETはアルカリ性に弱いという性質を有すること が知られている。  By the way, for example, on page 3, page 4, FIG. 1, and FIG. 2 of conventional technology, for example, Japanese Patent Laid-Open Publication No. 4-221162, “Non-flammable natural wood decorative interior material and its production method”. Concrete, mortar, and cement materials as hardening fillers are known to have alkaline properties, whereas recycled PET is known to be weak in alkalinity.
また、 日本特許公開公報、 特開 2001- 90318号「建築板及びその製造装置」の、 例 えば第 3頁〜第 6頁、 第 1図においては、 建物の外壁に用いられる裏面の防水機 能を向上させた外壁板についての技術が開示され、 建物の外壁、 外壁板について の分野では、 PE発泡層と再生 PETとをシート状にラミネートして構成した裏打ち 材という構成が知られている。  For example, in Japanese Patent Laid-Open Publication No. 2001-90318, “Building Board and its Manufacturing Apparatus”, for example, from page 3 to page 6 and FIG. 1, the waterproof function of the back surface used for the outer wall of the building is described. In the field of building exterior walls and exterior wall boards, a backing material made by laminating a PE foam layer and recycled PET into a sheet is known.
床構造体としての、 フリーアクセスフロアの支持体の構成は、 モルタルなどの 流動 ·硬化性充填材を材料とし、 これを覆う枠体としては、 PP (ポリプロピレン) 樹脂、 PVC (ポリビニルクロライド)樹脂などが用いられている。 これらの樹脂体 に再生 PET材が混入される場合、 その混入比率によってはリサイクル効率が悪く、 再生材の利用としては効果的でないという問題があった。 The structure of the support of the free access floor as the floor structure is made of a fluid and hardening filler such as mortar, and the frame covering this material is PP (polypropylene) resin, PVC (polyvinyl chloride) resin, etc. Is used. When recycled PET material is mixed into these resin bodies, the recycling efficiency is poor depending on the mixing ratio. There is a problem that the use of recycled materials is not effective.
また、 そのような樹脂材を再生 PET材にすべて置き換えた場合、 そのような枠 体の内部に充填されるコンクリート、 モルタル、 セメント材料がアルカリ性であ ることから(例えば、 前述の日本特許公開公報、 特開平 4-221162号)、 以下のよう な問題点を有していた。  In addition, when all such resin materials are replaced with recycled PET materials, concrete, mortar, and cement materials to be filled in such frames are alkaline (for example, see Japanese Patent Publication No. And Japanese Patent Application Laid-Open No. 4-221162) had the following problems.
すなわち、 上述のように硬化性充填材はアルカリ性であるが、 これに対し再生 PETはアルカリ性に弱いという性質を有する。 これは、 再生 PET材のエステル結合 部分がアルカリ成分で切断され、 PETが分解されることによるもので、 両者は相 性が悪く、 これらを一緒に使用することは好ましくない。 そのため、 従来におい て、 とくに床構造、 二重床構造に係る技術分野では、 両者を一緒に構成して使用 することは、 一般的に敬遠され、行われていなかった。  That is, as described above, the curable filler is alkaline, whereas the recycled PET has the property of being weak in alkalinity. This is because the ester bond portion of the recycled PET material is cut by the alkali component and the PET is decomposed, and the two are incompatible, and it is not preferable to use them together. For this reason, in the related art, particularly in the technical field relating to a floor structure and a double floor structure, it has generally been avoided to construct and use the two together.
したがって、 再生 PETと硬化性充填材とによってフリーアクセスフロアなどの 支持体を構成した場合、 硬化性充填材が再生 PET材と接触することにより、 再生 PETの接触面へアルカリ成分が付着し、 侵食することで、 再生 PET材により構成さ れた支持枠体が割れたり、 クラックが発生したりしていた。  Therefore, when a support such as a free access floor is composed of recycled PET and curable filler, the curable filler contacts the recycled PET material, causing alkali components to adhere to the contact surface of the recycled PET and eroding. As a result, the support frame made of recycled PET material was cracked or cracked.
また、 再生 PET材と硬化性充填材の温度変化等による収縮度の違いによってス トレスが加わり、 再生 PET材の支持枠体にクラックゃ割れが生じるおそれもあつ た。 さらに、 再生 PETの場合には、 例えば温度変化や硬化性充填材との密着状態 等の外的要因によるストレス、 さらには什器の移動や歩行時に加えられる荷重に 対する強度や信頼性の向上が望まれていた。  In addition, stress was added due to a difference in shrinkage due to a temperature change or the like between the recycled PET material and the curable filler, and cracks and cracks might occur in the support frame of the recycled PET material. Furthermore, in the case of recycled PET, it is desired to improve the strength and reliability against the stress caused by external factors such as temperature change and the state of close contact with the curable filler, as well as the load applied when moving or walking the furniture. Was rare.
上述の日本特許公開公報、 特開平 4- 221162号の開示する技術は、 無機質ボード のアル力リによる化粧内装材表面の化粧薄単板の変色を防止する樹脂フィルムを 形成するものではあるが、 床下地材構造体や二重床構成部材などの床構造体につ いての技術ではなく、 また再生 PET材を使用するものでもない。 したがって、 こ の従来技術は、 本願発明に係る床構造体の技術分野における再生材の有効利用と いう具体的側面での目的 ·課題、 主要構成、 作用 ·効果を開示したものではない c また、 前述した日本特許公開公報、 特開 2001- 90318号では、 建物の外壁、 外壁 板の技術において、 PE発泡層と再生 PETとをシート状にラミネートして構成した 裏打ち材という構成により、 建築板の裏面の防水性を向上させたものであるが、 本願発明のような床構造体についての技術分野、 技術内容ではなく、 セメントな どの硬化性充填材のアルカリ成分による悪影響の防止についての技術を提案した ものではない。 したがつてこの従来技術も、 本願発明に係る床構造体の目的 ·課 題、 構成、 作用 ·効果を開示したものではない。 The technology disclosed in the above-mentioned Japanese Patent Publication and JP-A-4-221162 is to form a resin film for preventing the discoloration of the decorative thin veneer on the surface of the decorative interior material due to the force of the inorganic board. It is not a technology for floor structures such as underfloor materials or double-floor components, and it does not use recycled PET materials. Accordingly, the prior art this is the purpose and issues at specific aspect called effective use of recycled materials in the art of floor structure according to the present invention, main components, not disclosed operations and effects c Also, In the above-mentioned Japanese Patent Publication and JP-A-2001-90318, in the technology of the outer wall of a building and the outer wall plate, a backing material formed by laminating a PE foam layer and a recycled PET into a sheet shape is used. Although it has improved waterproofing on the back, It is not a technical field or a technical content of the floor structure as in the present invention, nor does it suggest a technique for preventing an adverse effect of a hardening filler such as cement due to an alkali component. Therefore, this prior art also does not disclose the purpose, the problem, the configuration, the operation, and the effect of the floor structure according to the present invention.
発明の目的 Purpose of the invention
本発明の目的は、 再生材の有効利用を図り、 そのリサイクル性を向上させ、 力 つ、 再生材を用いた構造物の強度および信頼性の向上させることのできる再生 PET材を用いた床構造体おょぴその製造方法を提供する-ことにある。  SUMMARY OF THE INVENTION An object of the present invention is to provide a floor structure using a recycled PET material capable of effectively using a recycled material, improving its recyclability, and improving strength and reliability of a structure using the recycled material. The body is to provide its manufacturing method-that is.
発明の開示 Disclosure of the invention
本発明による再生 PET材を用いた床構造体は、 硬化性材料を含む基本構造体が 枠体内に収納された床構造体において、 枠体は再生 PET材を含み、 枠体と基本構 造体との間には、 アルカリ侵食を防止する侵食防止層が介在し、 これによつて基 本構造体と枠体とが接触しないように構成されている。 なお、 床構造体とは、 床 下地材構造体や二重床構造部材を含む。  A floor structure using a recycled PET material according to the present invention is a floor structure in which a basic structure including a curable material is stored in a frame, wherein the frame includes a recycled PET material, and the frame and the basic structure An erosion preventive layer for preventing alkali erosion is interposed between the base structure and the base structure, so that the basic structure and the frame do not come into contact with each other. The floor structure includes a floor base material structure and a double floor structural member.
本発明によればさらに、 再生 PET材を用いた床構造体は、 アルカリ成分を有す る硬化性材料を含む基本構造体が成形体内に収納され、 成形体は、 少なくとも再 生 PET材とアルカリ侵食を防止する侵食防止材とを成形により、 その外面側に再 生 PET材が、 またその内面側に侵食防止材が位置するように形成され、 侵食防止 材の形成された成形体の内側に基本構造体が収納されることによって、 基本構造 体と再生 PET材との接触を回避して基本構造体のアル力リ成分が再生 PET材に侵食 するのを防止している。 なお、 成形体は、 床構造体を形成するに必要な成形、 例 えばラミネート成形、 真空成形のみならず、 圧空成形、 射出成形、 共押出し成形 等の成形方法で形成されたものを含む。  According to the present invention, further, in the floor structure using the recycled PET material, a basic structure including a curable material having an alkali component is housed in a molded body, and the molded body includes at least a recycled PET material and an alkali. By molding an erosion-preventing material that prevents erosion, the recycled PET material is formed on the outer surface and the erosion-preventing material is formed on the inner surface, and inside the molded body on which the erosion-preventing material is formed. The storage of the basic structure prevents contact between the basic structure and the recycled PET material and prevents the components of the basic structure from eroding the recycled PET material. Note that the molded body includes those formed by molding methods such as pressure forming, injection molding, co-extrusion molding as well as molding necessary for forming the floor structure, for example, laminate molding and vacuum molding.
このような床構造体によれば、 成形体としての枠体と、 例えばコンクリートな どの硬化性材料により形成された基本構造体との間に、 例えばォレフィン系樹脂 の PP樹脂や PE樹脂により形成された侵食防止材が介在して層を形成しているので、 枠体は、 侵食防止層によりアルカリ成分から保護され、 その影響を受けることが なく、 したがってクラックや割れの発生が防止されて、 耐久性およぴ信頼性が向 上する。 なお、 侵食防止層としては、 ォレフィン系樹脂に限定されるものではな く、 チタン等の金属を用いてもよい。 According to such a floor structure, for example, an olefin resin such as PP resin or PE resin is formed between a frame as a molded body and a basic structure formed of a hardening material such as concrete. Since the erosion prevention material intervenes to form a layer, the frame is protected from alkali components by the erosion prevention layer and is not affected by it, so that cracks and cracks are prevented from occurring, and durability is improved. Improves performance and reliability. The erosion prevention layer is not limited to the olefin resin. Alternatively, a metal such as titanium may be used.
本発明による再生 PET材を用いた床構造体は、 硬化性材料を含む基本構造体に 少なくとも接して形成された成形体が、 接触防止材、 ォレフィン系接着材および 再生 PET材を含む少なくとも 3層構造をなし、 接触防止材は、 基本構造体の上面 に載置されて、 再生 PET材が基本構造体に接しないように成形体の最下層を形成 し、 ォレフィン系接着材は、 接触防止材の上面に載置されて、 接触防止材が再生 PET材に密着する接着性を有する中間層を形成し、 再生 PET材は、 ォレフィン系接 着材の上面に載置されて、 成形体の最上層を形成している。  In the floor structure using the recycled PET material according to the present invention, the molded body formed at least in contact with the basic structure including the curable material has at least three layers including a contact prevention material, an olefin adhesive, and a recycled PET material. It has a structure, and the contact prevention material is placed on the upper surface of the basic structure to form the lowermost layer of the molded body so that the recycled PET material does not touch the basic structure. The olefin adhesive is a contact prevention material. The contact-preventing material is placed on the upper surface of the recycled PET material to form an adhesive intermediate layer, and the recycled PET material is placed on the upper surface of the olefin-based adhesive material to form The upper layer is formed.
すなわち、 基本構造体に接触防止材が接して層をなし、 その上面にォレフィン 系接着材が、 さらに再生 PET材が積層されて、 3層構造の成形体が構成されてい る。 この 3層構成により、 基本構造体のアルカリ成分が再生 PETへ接触し侵食さ れるのを確実に防止でき、 成形品質の安定性と製品全体の品質が向上する。  In other words, a contact prevention material is in contact with the basic structure to form a layer, an olefin adhesive is laminated on the upper surface thereof, and a recycled PET material is further laminated to form a three-layer structure. With this three-layer configuration, it is possible to reliably prevent the alkali component of the basic structure from coming into contact with the recycled PET and being eroded, thereby improving the stability of molding quality and the quality of the entire product.
このような床構造体は、 接触防止材または侵食防止材が PEまたは PPのォレフィ ン系樹脂から成ってよい。 その厚さは、 熱成形前の状態で、 少なくも実質的に 30 μ πιないし 200 /z mの範囲を満足すればよい。 接触防止材または侵食防止材は、 PE や PPにかぎらず、 他の樹脂のシートやフィルムでもよい。 その厚さは、 理論的に は、 再生 PET材が基本構造体に接しない程度の厚さ、 すなわち Ο μ ιηを超えてほぼ 200 μ ηι以下の範囲であればよい。 また、 再生 PET材の厚さは、 熱成形前の状態で、 少なくも実質的に 450 μ πιないし 800 μ ιηの範囲を満足すればよい。 さらに、 侵食防 止材または接触防止材のォレフイン系接着部分は、 再生 PET材と基本構造体とを 接着するォレフイン系接着材からなり、 侵食防止層の厚さは、 熱成形前の状態で、 実質的に 20 μ ηιないし 30 /x m (25 μ ηι± 5 μ ιη) の範囲を満足すればよい。  In such a floor structure, the contact-preventing material or the erosion-preventing material may be made of a PE or PP olefin resin. The thickness may be at least substantially in the range of 30 μπι to 200 / zm before thermoforming. The contact preventive or erosion preventive is not limited to PE or PP, but may be a sheet or film of another resin. The thickness should theoretically be such that the recycled PET material does not contact the basic structure, that is, in the range of more than Ομιη and not more than approximately 200μηι. Further, the thickness of the recycled PET material before the thermoforming may be at least substantially in the range of 450 μπι to 800 μιη. Furthermore, the olefin-based bonding portion of the erosion-preventing material or the contact-preventing material is made of an olefin-based bonding material that bonds the recycled PET material to the basic structure. What is necessary is to substantially satisfy the range of 20 μηι to 30 / xm (25 μηι ± 5 μιη).
これらの厚さの設定により、 再生 PET材を利用した成形体において、 熱成形に おける成形性が安定化され、 製品の品質レベルが向上する。  By setting these thicknesses, in a molded body using recycled PET material, the formability in thermoforming is stabilized, and the quality level of the product is improved.
このような床構造体はまた、 再生 PET材と侵食防止層とを含む成形体の 2層構 造であってもよく、 その総厚は、 熱成形前の状態で、 実質的に 480 μ ιηないし 1, 000 μ ιηの範囲を満足すればよい。 また、 再生 PET層、 ォレフィン系接着層およ び接触防止層を含む成形体の 3層構造の総厚は、 熱成形前の状態で、 実質的に 500 111なぃし1, 030 111 (ォレフイン系接着層が 0 μ mの場合を含む。 ) の範囲を満 足すればよい。 これらの厚さの設定により、 再生 PET材を有効利用した成形体に おいて、 成形性の安定化、 品質レベルの向上、 および安定維持を図ることできる。 本発明によればまた、 再生 PETを用いた床構造体の製造方法は、 再生 PET材を含 む再生 PET層とアル力リ侵食防止材を含む侵食防止層との 2層構造体を形成する 2層構造体形成工程と、 2層構造体を成形して侵食防止層が内面側に、 また再生 PET層が外面側となるように基本構造体の収納部を有する成形体を形成する成形 体形成工程と、 この収納部に硬化性材料を充填する充填工程とを含む。 Such a floor structure may also be a two-layer structure of a molded body including recycled PET material and an erosion prevention layer, the total thickness of which is substantially 480 μιη before thermoforming. Or 1,000 μιη. In addition, the total thickness of the three-layer structure of the molded body including the recycled PET layer, the olefin-based adhesive layer, and the contact prevention layer is substantially 500 111 to 1,030 111 (the Including the case where the thickness of the system adhesive layer is 0 μm.) Just add it. By setting these thicknesses, it is possible to stabilize the formability, improve the quality level, and maintain stability in a molded body that makes effective use of recycled PET material. According to the present invention, the method for producing a floor structure using recycled PET also includes forming a two-layer structure of a recycled PET layer containing recycled PET material and an erosion preventing layer containing Al erosion preventing material. A two-layer structure forming step, and a molded body which is formed by molding the two-layer structure to form a molded body having a storage portion for the basic structure such that the erosion prevention layer is on the inner side and the recycled PET layer is on the outer side. A forming step and a filling step of filling the storage section with a curable material are included.
本発明によればまた、 再生 PET材を用いた床構造体の製造方法は、 再生 PET材に てシート状部材を形成する再生 PETシート形成工程と、 このシート部材を成形し て再生 PET材が外面側となるように基本構造体の収納用の成形体を形成する成形 体形成工程と、 成形体の基本構造体の収納部の内側面にアルカリ侵食の防止材と して侵食防止層を形成する侵食防止層形成工程と、 成形体の収納部に硬化性材料 を充填する充填工程とを含む。  According to the present invention, a method for manufacturing a floor structure using a recycled PET material includes a recycled PET sheet forming step of forming a sheet-shaped member from the recycled PET material, and a recycled PET material formed by molding the sheet member. A molded body forming step of forming a molded body for accommodating the basic structure so as to be on the outer surface side, and forming an erosion preventing layer as an alkali erosion preventing material on the inner surface of the housing of the molded body basic structure. And a filling step of filling a curable material into a housing portion of the molded body.
さらに本発明によれば、 再生 PETを用いた床構造体の製造方法は、 再生 PET材と、 基本構造体に再生 PET材が接しないようにするための接触防止材と、 接触防止材 と再生 PET材とが密着可能とするためのォレフィン系接着材とを実質的に同時に 共押出し成形することにより、 再生 PET材が基本構造体に接しないように最上層 を、 またォレフィン系接着材が再生 PET材を接触防止材へ接着可能にする中間層 を、 さらに接触防止材が基本構造体に接するように最下層を、 それぞれ形成して、 少なくとも 3層のシート状部材を形成するシート状成形工程と、 この 3層シート 状部材を熱成形して、 その内側面に接触防止材が形成されるように成形体を形成 する熱成形工程と、 成形体の内側の基本構造体の収納部分に硬化性材料を充填す る充填工程とを含むことを特徴とする。  Furthermore, according to the present invention, a method of manufacturing a floor structure using recycled PET includes a recycled PET material, a contact preventing material for preventing the recycled PET material from contacting the basic structure, a contact preventing material, and a recycled material. By co-extrusion molding with the olefin adhesive to enable close contact with the PET material, the uppermost layer and the olefin adhesive are recycled so that the recycled PET material does not contact the basic structure. A sheet-like forming step of forming at least three layers of sheet-like members by forming an intermediate layer that enables the PET material to adhere to the contact-preventing material and a lowermost layer so that the contact-preventing material contacts the basic structure. A thermoforming step of thermoforming the three-layer sheet-like member to form a molded body such that a contact prevention material is formed on the inner surface thereof; Filling process for filling conductive materials Characterized in that it comprises a.
本発明によればさらに、 再生 PETを用いた床構造体の製造方法は、 再生 PET材を 略シート状の再生 PET部材に形成する第 1のシート形成工程と、 再生 PET部材と密 着可能とするためのォレフィン系接着材を備え、 基本構造体に再生 PET部材が接 しないようにするための接触防止材を略シート状の接触防止部材に形成する第 2 のシート形成工程と、 再生 PET部材が基本構造体に接しないように最上層を、 ま たォレフィン系接着材が再生 PET部材を接触防止部材へ接着可能にする中間層を、 さらに接触防止部材が基本構造体に接するように最下層を、 それぞれ形成するよ うに、 少なくとも 3層の略シート状の層部材を形成する第 3のシート状形成工程 と、 この 3層の層部材を熱成形して、 その内側面に接触防止状部材が形成される ように成形体に形成する熱成形工程と、 成形体の内側の基本構造体の収納部分に 硬化性材料を充填する充填工程とを含む。 According to the present invention, the method for manufacturing a floor structure using recycled PET further includes a first sheet forming step of forming the recycled PET material into a substantially sheet-shaped recycled PET member, and a method of adhering to the recycled PET member. A second sheet forming step of forming a contact-preventing material on the substantially sheet-shaped contact-preventing member, the contact-preventing member being provided with an olefin adhesive for preventing the recycled PET member from contacting the basic structure. The top layer so that it does not touch the basic structure, and the intermediate layer that allows the olefin-based adhesive to adhere the recycled PET member to the contact prevention member. And a third sheet-like forming step of forming at least three substantially sheet-like layer members so that the lowermost layer is formed so that the contact prevention member contacts the basic structure. Thermoforming step of forming a molded body such that a contact-preventing member is formed on the inner surface thereof, and a filling step of filling a curable material into a housing portion of the basic structure inside the molded body. And
このように、 ォレフィン系接着材を含む接触防止シートと再生 PETシートとを シート状成形により 3層に形成する製造方法では、 各シート部材をラミネート成 形することによって、 再生 PETを用いた床構造体を容易に製造することができる。 なお、 上面部とは、 二重床構造の支持体への適用例では、 基本構造体の上方か ら成形体が覆って設置される状態における上面を意味する。 これと上下を反対に して、 床下地材等として設置する適用例では、 基本構造体の下面側を成形体が 覆った状況で設置され、 上面部は底面を意味する。 このような構成により、 床構 造体として最も重要性の高い上面部や底面部、 換言すれば最も荷重や衝撃を受け る部分に侵食防止層を形成することで、 その部分の割れゃクラックの発生を防止 し、 十分な強度を確保することができる。  As described above, in the manufacturing method in which the contact-preventive sheet containing the olefin adhesive and the recycled PET sheet are formed into three layers by sheet-like molding, the sheet structure is laminated and formed to form a floor structure using recycled PET. The body can be easily manufactured. In addition, in the example of application to a support having a double-floor structure, the upper surface means the upper surface in a state where the molded body is installed so as to cover from above the basic structure. In an application example in which the base structure is installed upside down, the base structure is installed with the molded body covering the lower surface side, and the upper surface means the bottom surface. With such a configuration, an erosion prevention layer is formed on the top and bottom parts, which are most important as a floor structure, in other words, on the part that receives the most load and impact, so that cracks and cracks in that part can be prevented. Generation can be prevented and sufficient strength can be secured.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施例によるラミネート成形による床構造体の基本構造を 示す説明的部分断面図、  FIG. 1 is an explanatory partial cross-sectional view showing a basic structure of a floor structure formed by laminate molding according to an embodiment of the present invention,
第 2図は、 本発明の実施例による二種樹脂共押出し成形による床構造体の基本 構造を示す説明的部分断面図、  FIG. 2 is an explanatory partial cross-sectional view showing a basic structure of a floor structure by two-type resin co-extrusion molding according to an embodiment of the present invention,
第 3図は、 本発明の実施例による塗装 ·コーティング処理による床構造体の基 本構造を示す説明的部分断面図、  FIG. 3 is an explanatory partial cross-sectional view showing a basic structure of a floor structure by a painting / coating process according to an embodiment of the present invention,
第 4図は、 本発明の実施例による床構造体としての支持体の具体的構成例を示 す概略部分断面図、  FIG. 4 is a schematic partial cross-sectional view showing a specific configuration example of a support as a floor structure according to an embodiment of the present invention;
第 5図は、 本発明の実施例による侵食防止層を部分的に形成した構成例を示す 概略部分断面図、  FIG. 5 is a schematic partial sectional view showing a configuration example in which an erosion prevention layer according to an embodiment of the present invention is partially formed,
第 6図は、 本発明の実施例による塗装 'コーティング処理により形成した支持 体の構成例を示す概略部分断面図、  FIG. 6 is a schematic partial cross-sectional view showing a configuration example of a support formed by coating and coating according to an embodiment of the present invention.
第 7図および第 8図は、 ラミネート成形による床構造体の製造工程例を示す図、 第 9図は、 ラミネート成形による床構造体の製造工程例を示す部分断面図、 第 10図は、 ラミネート成形による床構造体の製造工程例を示す図、 FIG. 7 and FIG. 8 are diagrams showing an example of a manufacturing process of a floor structure by laminate molding, FIG. 9 is a partial cross-sectional view showing an example of a manufacturing process of a floor structure by laminate molding. FIG. 10 is a diagram showing an example of a manufacturing process of a floor structure by laminate molding.
第 11図および第 12図は、 完成した床構造体の例を示す概略部分断面図、 第 13図は、 塗装 'コーティング処理による床構造体の製造工程を示す図、 第 14図は、 塗装 'コーティング処理による床構造体の製造工程例を示す図、 第 15A図おょぴ第 15B図は、 塗装 'コーティング処理による床構造体の製造工程 例を示す図、  11 and 12 are schematic partial cross-sectional views showing an example of a completed floor structure. FIG. 13 is a drawing showing a manufacturing process of a floor structure by a coating process. FIG. 14 is a coating process. FIG. 15A and FIG. 15B show an example of a manufacturing process of a floor structure by a coating process.
第 16図は、 実施例に係る床構造体を二重床構造に適用した例を示す概略部分断 面図、  FIG. 16 is a schematic partial cross-sectional view showing an example in which the floor structure according to the embodiment is applied to a double floor structure.
第 17図は、 本発明の床構造体を適用した二重床構造の構成例を示す概略平面図、 第 18図は、 第 17図に示す二重床構造の構成例を示す部分断面図、  17 is a schematic plan view showing a configuration example of a double floor structure to which the floor structure of the present invention is applied, FIG. 18 is a partial cross-sectional view showing a configuration example of the double floor structure shown in FIG. 17,
第 19A図および第 19B図は、 本発明の実施例に係る床構造体の枠体の裏面の構成 例を示す斜視図およびその部分断面図、  19A and 19B are a perspective view and a partial cross-sectional view showing a configuration example of the back surface of the frame of the floor structure according to the embodiment of the present invention,
第 20A図、 第 20B図および第 20C図は、 実施例に係る床構造体の製造工程の例を 示すフロー図、  20A, 20B and 20C are flow charts showing an example of the manufacturing process of the floor structure according to the embodiment,
第 21図は、 実施例に係る床構造体における侵食防止層の最適な成形性レベルで の厚さの例を示した特性図である。  FIG. 21 is a characteristic diagram showing an example of the thickness of the erosion prevention layer in the floor structure according to the example at an optimum formability level.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
添付図面を参照して、 本発明の実施例を、 まず簡単に説明する。 第 1図におい て、 基本構造体 10は、 例えばモルタル等の硬化性材料にて形成されている。 モル タル以外の材料としては、 各種のセメントゃコンクリ一ト等が適当な材料である。 基本構造体 10の上面の再生 PET層 30との間には、 アルカリ侵食の防止材としてォ レフイン系樹脂等の樹脂層 20、 好適には PPや PE、 さらには PVC (ポリビニルクロ ライド) 等から成る侵食防止層 20が形成されている。  Embodiments of the present invention will first be briefly described with reference to the accompanying drawings. In FIG. 1, a basic structure 10 is formed of a curable material such as mortar. As a material other than mortar, various cements and concretes are suitable materials. Between the recycled PET layer 30 on the upper surface of the basic structure 10 and the resin layer 20 such as a olefin-based resin, preferably PP or PE, or even PVC (polyvinyl chloride), etc. An erosion protection layer 20 is formed.
侵食防止層 20は、 基本構造体 10に再生 PET材 30が接するのを防止する接触防止 材としての役割を有する。 したがって侵食防止層 20は、 基本構造体 10のアルカリ 成分による侵食を防止できる材料であればよく、 例えば特定の樹脂材、 とくに、 好適には前述したォレフィン系樹脂材でよい。 ォレフィン系樹脂材は、 再生 PET、 およびコンクリート等の硬化充填材のそれぞれに対して相性がよく、 両者との密 着性および接着性の点でも適し、 また、 つなぎ材として好適な樹脂材である。 ま た、 樹脂系に限らず、 例えばチタン系などの金属製材料を適用してもよく、 これ は、 後述するコーティング材ゃ塗装材の場合も同様である。 The erosion prevention layer 20 has a role as a contact prevention material for preventing the recycled PET material 30 from contacting the basic structure 10. Therefore, the erosion preventing layer 20 may be any material that can prevent erosion of the basic structure 10 by an alkali component, and may be, for example, a specific resin material, particularly preferably the above-mentioned olefin resin material. The olefin resin material is compatible with each of recycled PET and hardened fillers such as concrete. The resin material is also suitable in terms of adhesiveness and adhesiveness, and is also suitable as a binder. Further, the material is not limited to a resin material, and a metal material such as a titanium material may be used. The same applies to a coating material and a coating material described later.
本実施例ではさらに、 最上層の再生 PET層 30と侵食防止層 20との間に、 ォレ フィン系接着材として変性ォレフィン等の接着 ·粘着樹脂層 21が設けられている。 この樹脂層 21は、 再生 PET層 30と侵食防止層 20との間の接着性をより高めるため の中間的性質の層として形成されている。 したがって、 本発明としては、 必ずし もこのような接着性向上のための層を設ける必要はないが、 第 1図に示すように、 特定の材料の接触防止材 20、 ォレフィン系接着材 21および再生 PET材 30から成る 少なくとも 3種 3層の構造をなす成形体 50を構成するのが好適である。  In this embodiment, an adhesive / adhesive resin layer 21 such as a modified olefin is provided as an olefin adhesive between the uppermost recycled PET layer 30 and the erosion prevention layer 20. The resin layer 21 is formed as a layer having an intermediate property for further improving the adhesion between the recycled PET layer 30 and the erosion preventing layer 20. Therefore, in the present invention, it is not always necessary to provide such a layer for improving the adhesiveness. However, as shown in FIG. 1, a contact preventing material 20 of a specific material, an olefin-based adhesive 21 and It is preferable to form a molded body 50 made of a recycled PET material 30 and having a structure of at least three types and three layers.
接触防止材 20は、 基本構造体 10の上面にあって、 再生 PET材 30が基本構造体 10 に接しない成形体 50の最下層を形成している。 また、 ォレフィン系接着材 21は、 接触防止材 20の上面にあって、 接触防止材 20に再生 PET材 30を確実に保持する接 着性を有し、 中間層を形成している。 さらに、 再生 PET材 30は、 ォレフィン系接 着材 21の上面に位置し、 成形体 50の最上層を形成している。 これにより、 3種 3 層構造として、 成形体 50の全体的な成形の強度を確保することができ、 ォレフィ ン系接着材 21の介在により確実にアル力リ成分の悪影響を防ぐことできる。  The contact prevention material 20 is on the upper surface of the basic structure 10 and forms the lowermost layer of the molded body 50 in which the recycled PET material 30 does not contact the basic structure 10. The olefin adhesive 21 is provided on the upper surface of the contact preventing material 20 and has an adhesive property for securely holding the recycled PET material 30 on the contact preventing material 20 to form an intermediate layer. Further, the recycled PET material 30 is located on the upper surface of the orientation adhesive 21 and forms the uppermost layer of the molded body 50. As a result, the overall molding strength of the molded body 50 can be ensured as a three-layer three-layer structure, and the adverse effect of the component can be reliably prevented by the interposition of the olefin-based adhesive 21.
第 2図に示すように、 基本構造体 10と最上層の再生 PET層 30の間に侵食防止層 20を介在させるだけの構成でも、 基本的に上述の機能を奏する。  As shown in FIG. 2, the above-described function is basically achieved even with a configuration in which the erosion prevention layer 20 is merely interposed between the basic structure 10 and the uppermost recycled PET layer 30.
第 3図は、 基本構造体 10と最上層の再生 PET層 30との間に塗装やコーティング により侵食防止層 20を形成した例を示すが、 その作用については、 第 1図および 第 2図の構成と何ら変わるものではない。 すなわち、 本発明に係る構成は、 第 1 図および第 2図に示す構成のようにそれぞれの層を単体で形成した後に積層する という方法に限らず、 第 3図に示すように再生 PET層 30に塗装ゃコーティング処 理で薄い樹脂膜や金属膜を形成することによつても、 達成することができる。 第 4図は、 実際の床構造体に本発明を適用した一例を示す。 なお、 本図および 以下の図において、 各層の厚さは、 理解を容易にするため、 実際の厚さとは異な る比率にて表示している。 すなわち、 図示された侵食防止層 20や再生 PET層 30は、 実際の厚さより誇張されている。 第 4図において、 支持体 1は、 所望の高さを有する基本構造体 10をその基本構 造とし、 コンクリート、 セメント、 モルタル等の硬化性充填材により形成されて いる。 支持体 1は、 同図の下方に位置する敷設すべき、 例えば建物の床(図示せ ず)上に载置され、 基本構造体 10の高さは、 二重床の支持脚として支持体 1が機 能する適用例では、 二重床の配線空間を確保するための高さである。 FIG. 3 shows an example in which the erosion prevention layer 20 is formed between the basic structure 10 and the uppermost layer of the recycled PET layer 30 by painting or coating, and its operation is described in FIGS. 1 and 2. It is no different from the composition. That is, the configuration according to the present invention is not limited to the method of forming each layer alone and then laminating each layer as in the configuration shown in FIGS. It can also be achieved by forming a thin resin film or metal film by painting and coating. FIG. 4 shows an example in which the present invention is applied to an actual floor structure. In this figure and the following figures, the thickness of each layer is shown at a different ratio from the actual thickness for easy understanding. That is, the illustrated erosion prevention layer 20 and the recycled PET layer 30 are exaggerated from their actual thickness. In FIG. 4, the support 1 has a basic structure 10 having a desired height as its basic structure, and is formed of a hardening filler such as concrete, cement, mortar, or the like. The support 1 is to be laid under the figure, for example, placed on the floor (not shown) of the building, and the height of the basic structure 10 is set as the support foot of the double floor. In the application example where the function is to work, the height is to secure the wiring space of the double floor.
基本構造体 10は、 その全体を同図の上方から覆う成形体である枠体を構成する 再生 PET層 30で覆われている。 再生 PET層 30と基本構造体 10との間には、 前述のァ ルカリ侵食防止材としてォレフィン系樹脂、 例えば PPや PE榭脂などの侵食防止層 20が介在している。  The basic structure 10 is covered with a recycled PET layer 30 that forms a frame that is a molded body that covers the entire structure from above in FIG. Between the recycled PET layer 30 and the basic structure 10, an erosion-preventing layer 20 of an olefin resin, for example, PP or PE resin is interposed as the alkali erosion-preventing material.
このような構成により、 アルカリ性の基本構造体 10による再生 PET層 30への悪 影響、 すなわちアルカリ成分による再生 PETの分解を防止することができる。 し たがって、 課題となっている二重床構造体を含む種々の床構造体の分野において、 再生 PET材の使用の可能性を向上させることができる。  With such a configuration, it is possible to prevent the alkaline basic structure 10 from adversely affecting the recycled PET layer 30, that is, to prevent decomposition of the recycled PET due to the alkali component. Therefore, the possibility of using recycled PET material in the field of various floor structures including the double floor structure, which is an issue, can be improved.
第 5図は、 床構造体の他の構成例を示す。 図示のように、 基本構造体 10と再生 PET層 30との間に介在する侵食防止層 20は、 部分的に設けられている。 二重床の 支持脚や床下地構造体では、 枠体に対してはその上面部分に、 例えば什器の移動 や歩行時などの荷重や衝撃が加わるので、 その部分における最外層である再生 PET層 30の耐久性が最も重要となる。 そこでこの構成例では、 各支持体 1の上面 部分にのみ侵食防止層 20を形成している。 勿論、 上下を逆にして、 基本構造体 10 が上面に露出するように設置した適用例では、 底面部に侵食防止層 20が形成され る。  FIG. 5 shows another configuration example of the floor structure. As shown, the erosion prevention layer 20 interposed between the basic structure 10 and the recycled PET layer 30 is partially provided. In a double-floor support leg or floor base structure, the frame is subjected to a load or impact, such as when moving furniture or walking, on the upper surface of the frame. Durability of 30 is most important. Therefore, in this configuration example, the erosion prevention layer 20 is formed only on the upper surface of each support 1. Of course, in an application example in which the basic structure 10 is installed upside down so that the basic structure 10 is exposed on the upper surface, the erosion prevention layer 20 is formed on the bottom surface.
これにより、 支持体 1の上面領域における再生 PET層 30の割れゃクラックの発 生を効率的に防止することができ、 再生 PET層 30の上面部分の耐久性や強度の向 上を図ることができる。 また、 このように上面領域にのみ侵食防止層 20を形成す ることにより、 侵食防止層 20を形成するための樹脂材料を有効に利用し、 節約が 可能となる。 As a result, cracks and cracks in the recycled PET layer 30 in the upper surface region of the support 1 can be efficiently prevented, and the durability and strength of the upper surface portion of the recycled PET layer 30 can be improved. it can. Further, the Rukoto to form the erosion layer 2 0 only on the upper surface area as this, by effectively utilizing the resin material for forming the erosion layer 20, savings can be achieved.
第 6図は、 侵食防止層 20を塗装またはコーティングにより形成した適用例を示 す。 図示のように、 塗装やコーティング処理により形成された層は、 厚さが薄い。 しかし、 アルカリ性による侵食防止という作用効果は、 第 4図および第 5図の例 と遜色なく有する。 FIG. 6 shows an application example in which the erosion prevention layer 20 is formed by painting or coating. As shown, the layer formed by painting or coating has a small thickness. However, the effect of preventing erosion due to alkalinity is shown in Figs. 4 and 5. Has no inferiority.
以下に、 上述のような床構造体に適用される支持体 1の製造工程の例を説明す る。 第 7図から第 9図は、 硬化性材料により形成される基本構造体 10を収納する 枠体の製造工程を示す。 まず、 第 7図に示したように、 再生 PET層 30と、 例えば PE榭脂の侵食防止層 20をそれぞれ形成し、 その後、 両者を合わせてラミネータ 100を通過させ、 圧縮することにより、 ラミネート成形体 40を形成する。 すなわ ち、 再生 PET層 30と侵食防止層 20とが密着した状態となっている。  Hereinafter, an example of a manufacturing process of the support 1 applied to the floor structure as described above will be described. 7 to 9 show a manufacturing process of a frame housing the basic structure 10 formed of a curable material. First, as shown in FIG. 7, a recycled PET layer 30 and an erosion prevention layer 20 of, for example, PE resin are formed, and then the both are passed through a laminator 100 and compressed to form a laminate. Form body 40. That is, the recycled PET layer 30 and the erosion prevention layer 20 are in close contact with each other.
次に、 第 8図に示したように、 ラミネート成形体 40を 1対の金型 200-1および 200-2の間に通して真空成形を行う。 より詳細には、 ラミネート成形体 40を侵食 防止層 20が枠体の内面側、 また再生 PET層 30が外面側となるように配置して、 金 型による真空成形工程が行われる。  Next, as shown in FIG. 8, the laminate molding 40 is passed between a pair of molds 200-1 and 200-2 to perform vacuum molding. More specifically, the laminated molded body 40 is arranged such that the erosion preventing layer 20 is on the inner surface side of the frame, and the recycled PET layer 30 is on the outer surface side, and a vacuum molding process is performed using a mold.
第 9図は、 こうして真空成形された成形体として枠体 50が示されている。 図示 のように、 枠体 50の両側面 50bおよび連結部 50cは、 上面領域 50aに比較して、 金 型 200によるプレス動作により伸長し、 薄肉状に形成されている。  FIG. 9 shows a frame body 50 as a compact formed by vacuum forming in this manner. As shown in the figure, both side surfaces 50b and the connecting portion 50c of the frame body 50 are extended by a pressing operation using the mold 200 and formed in a thin-walled shape as compared with the upper surface region 50a.
かくしてこれら成形体すなわち枠体 50は、 床構造体の支持体 1として機能する ことができる。 このような支持体となる枠体 50は、 上述のように上面領域 50aと 側面 50bとから成り、 硬化性充填材の基本構造体 10を内側に収容可能な略方形状 である。 しかし本発明は、 このような方形のプロック体形状に限らず、 その他の 多面体形状、 あいは円柱形状や円錐状にしてもよいことは、 言うまでもない。 ここで、 真空成形枠体すなわちラミネート成形体 40の各層の厚さを例示する。 その熱成形前においては、 総厚を一例では約 0. 5讓〜 1匪に設定する。 例えば、 そ の総厚を 0. 725mmにした場合、 再生 PET層 30を 650 m、 接着 .粘着樹脂層 (変性ォ レフイン) を備える場合 25 μ ηι、 侵食防止層 20を 50 πιで形成する。  Thus, these molded bodies, that is, the frame body 50, can function as the support 1 of the floor structure. The frame body 50 serving as such a support is composed of the upper surface region 50a and the side surface 50b as described above, and has a substantially square shape capable of housing the basic structure 10 of the curable filler inside. However, it goes without saying that the present invention is not limited to such a square block shape, but may be another polyhedral shape, in other words, a cylindrical shape or a conical shape. Here, the thickness of each layer of the vacuum molded frame, that is, the laminated molded body 40 will be exemplified. Before the thermoforming, the total thickness is set, for example, to about 0.5 sq. To 1 sword. For example, when the total thickness is 0.725 mm, the recycled PET layer 30 is formed with 650 m, the adhesive / adhesive resin layer (modified olefin) is formed with 25 μηι, and the erosion prevention layer 20 is formed with 50 πι.
第 21図を参照して、 好適な 1つの態様を説明する。 一例としては、 再生 PET層 30を 550 μ ηι、 接着層としての変性ォレフィン層を 25 μ m、 侵食防止としての PE層 20を 50 μ πιで形成し、 熱成形前の総厚 625 μ πιに設定している。  One preferred embodiment will be described with reference to FIG. As an example, the recycled PET layer 30 is formed with 550 μηι, the modified olefin layer as an adhesive layer is formed with 25 μm, and the PE layer 20 as erosion prevention is formed with 50 μπι to a total thickness of 625 μπι before thermoforming. You have set.
本出願人による実験データに基づく特性図によれば、 再生 PET層 30が 500 μ n!〜 800 μ ιηの範囲、 ΡΕ層 20が理論上、 0 μ η!〜 150 μ mの範囲が最適値であることを確認 した。 このことは、 第 21図の実験データに基づいた保護層の厚さによる成形性レ ベルを示す特性図からみても、 明らかである。 According to the characteristic diagram based on the experimental data by the applicant, the recycled PET layer 30 has 500 μn! ~ 800 μιη range, ΡΕ layer 20 is theoretically 0 μη! It was confirmed that the range of ~ 150 µm was the optimum value. This indicates that the formability level depends on the thickness of the protective layer based on the experimental data in Fig. 21. It is clear from the characteristic diagram showing the bell.
図示の例は、 再生 PETの耐アルカリ対策として 3種 3層構造を主体とし、 真空 成形前のラミネートシート保護層を PEとして、 真空成形後による熱成形性および 外観品質を確認し、 最適な保護層の厚さ仕様を見出したものである。 この特性図 は、 真空成形の場合におい 、 再生 PET層と PE層との間で樹脂成形収縮率が異な ることに起因して、 熱成形時に、 品質における寸法安定性および異なる樹脂の接 合による熱成形性が悪くなることから、 両者の最適な厚さを見出し設定するのに 必要不可欠な特性を示すものである。  In the example shown in the figure, three types of three-layer structure are mainly used as a measure against alkali in recycled PET, and the protective layer of the laminated sheet before vacuum forming is made of PE. It is the finding of the layer thickness specification. This characteristic diagram is due to the dimensional stability in quality and the bonding of different resins during thermoforming due to the difference in resin molding shrinkage between the recycled PET layer and the PE layer in vacuum molding. Since the thermoformability deteriorates, it shows the essential properties for finding and setting the optimum thickness of both.
例えば、 PE層は、 薄ければ薄いほど最適ではある。 しかし、 極端に薄いと、 成 形によるひぴ、 割れ等の外観不良が多発し、 逆に極端に厚くすると、 過剰な材料 の使用によるコストの上昇となるので、 最適な厚さ設定が必要となる。  For example, the thinner the PE layer, the better. However, if the thickness is extremely thin, appearance defects such as cracks and cracks due to molding occur frequently.On the other hand, if the thickness is extremely thick, the cost will increase due to the use of excessive material, so it is necessary to set the optimum thickness. Become.
より詳細には、 横軸に真空成形前の PE層などの保護層を、 また縦軸に真空成形 後の成形性を表すこの特性図は、 PE層の様々な厚さにっレ、て成形性の度合いをプ ロットしたグラフである。 この図から分かるように、 PE層が厚くなればなるほど、 成形性が悪化する勾配特性を呈する。 ここに示す成形性は、 後述するように成形 品の外観品質を目視で確認して、 段階的にレベル分けしたものである。 例えば、 隅部の成形の甘さ、 薄肉部の均一性、 ひけがないこと、 片伸びしてないこと等を チェック項目とし、 これらの目視による品質レベルを総合的に判断し、 良否を 10 段階で区分した。 ここで、 レベル約 10〜 9が二重丸印、 約 9〜 7が丸印で示され ている。 また、 図示されていないが、 レベル約 7〜4がその下の区分、 約 4〜0 が最下位の区分にランク分けされている。  More specifically, the horizontal axis shows the protective layer such as a PE layer before vacuum forming, and the vertical axis shows the moldability after vacuum forming. This is a graph plotting the degree of sex. As can be seen from the figure, the thicker the PE layer is, the more the moldability is deteriorated. The moldability shown here is obtained by visually checking the appearance quality of a molded product and classifying the molded product in stages, as described later. For example, check the quality level of the corners by checking the sweetness of the molding at the corners, the uniformity of the thin-walled parts, the absence of sink marks, and the non-elongation. Classified by Here, levels 10 to 9 are indicated by double circles, and levels 9 to 7 are indicated by circles. Although not shown, levels 7 to 4 are ranked in the lower category, and levels 4 to 0 are ranked in the lowest category.
この特性図における試験条件は、 真空成形前のシート状を想定した保護層(PE) の厚さを Ο μ π!〜 300 / mの間で多段階に設定し、 再生 PET層を 650 /ζ ηι、 またォレ フィン層を 25 μ ιηの一定値として、 総厚 675 II!〜 975 /z mに設定した。 評価基準と しては、 二重丸印 (熱成形性や外観品質で問題なしのレベル) 、 丸印 (熱成形時 間は必要であるが、 問題なしのレベル) 、 さらに、 第 3ランクとして、 熱成形性 や外観品質上、 部分的に改善すべき点があるレベル、 最下位のランクとして、 熱 成形性や外観品質上、 問題ありのレベルを基準に、 外観品質を目視で確認した。 ただし、 外観品質は、 コーナ Rが 2以下であること、 隅部の仕上がり状態、 成形 性の甘さ、 厚さの均一性 (立上げ強度) 等を基準としている。 The test conditions in this characteristic diagram are as follows. The thickness of the protective layer (PE) assuming a sheet shape before vacuum forming is Ομπ! Set in multiple steps between ~ 300 / m, recycled PET layer 65 0 / ζ ηι, also the O-les fin layer as a constant value of 25 μ ιη, total thickness 675 II! Set to ~ 975 / zm. The evaluation criteria are double circles (levels with no problems in thermoformability and appearance quality), circles (levels that require thermoforming time but no problems), and a third rank. The appearance quality was visually checked on the basis of the level at which there was a point that should be partially improved in terms of thermoformability and appearance quality, and the lowest level as a problematic level in terms of thermoformability and appearance quality. However, the appearance quality is that the corner radius is 2 or less, the finished state of the corner, It is based on the sweetness of sex, uniformity of thickness (start-up strength), etc.
同図から、 ほぼレベル 7の近傍 (丸印) 以上が良好な成形性であることが分か る。 そのときの保護層の厚さは、 Ο μ ιηを超えて、 ほぼ 200 μ πι以下であり、 少なく とも 200 /z mを超えない厚さが最適であることを見出した (ただし、 ォレフィン系 接着層を除く) 。  From the figure, it can be seen that good formability is obtained in the vicinity of level 7 (circle). At that time, the thickness of the protective layer exceeded Ομιη and was approximately 200μπι or less, and it was found that a thickness not exceeding at least 200 / zm was optimal. except for) .
第 21図に示す特性図からは、 厚さが 200 μ ιη近傍を超えると、 その特性の勾配の 関係から急激に成形性が悪化することがわかるので、 再生 PET層に対し保護層 From the characteristic diagram shown in Fig. 21, it can be seen that when the thickness exceeds about 200 μιη, the moldability sharply deteriorates due to the relationship of the gradient of the characteristic.
(PE) は 200 /i m付近を超えないことが必要である。 さらに、 約 150 μ πι近傍以下が より安定し、'量産に適した厚さ設定であることが分かる。 (PE) should not exceed around 200 / im. Furthermore, it can be seen that the thickness is less than about 150 μπι, which is more stable and suitable for mass production.
ここで、 保護層の厚さが Ο μ ιηの場合、 最も成形性において良好となるが、 前述 したように、 再生 PET層と基本構造体であるコンクリートとの相性の関係 (侵食 防止) 、 成形のひび、 割れ、 しわ、 変形等の問題が生じるので、 これらを考慮す ると、 保護層の厚さは、 少なくとも 30 μ πι以上は必要不可欠であり、 好適には 50 μ ηι以上が必要である。 この厚さは、 熱成形等により、 均一な極薄の保護層が形 成可能な樹脂材であれば、 理論的には、 Ο μ πιを超えて、 ほぼ 30 m以下の範囲で あってもよい。  Here, when the thickness of the protective layer is Ομιη, the moldability is the best. However, as described above, the compatibility between the recycled PET layer and the concrete that is the basic structure (prevention of erosion), Since cracks, cracks, wrinkles, deformation, and other problems occur, considering these factors, the thickness of the protective layer must be at least 30 μπι, and preferably 50 μηι or more. is there. This thickness is theoretically in the range of more than Ομπι and approximately 30 m or less as long as it is a resin material capable of forming a uniform ultra-thin protective layer by thermoforming or the like. Good.
以上のことから、 本実験データでは、 保護層の厚さは、 少なくとも 30 μ πι以上 〜200 μ ιη以下が必要であり、 好適には 50 μ m以上で 150 μ m以下が最適な値である ことが実験から明らかとなった。  Based on the above, in this experimental data, the thickness of the protective layer must be at least 30 μπι to 200 μιη, and the optimal value is preferably 50 μm or more and 150 μm or less. This became clear from the experiment.
次に、 第 10図を参照して、 この完成した成形体である真空成形枠体 50を用いて 基本構造体 10を形成する工程を説明する。 同図では、 硬化前の硬化性材料 60を充 填する作業が示されている。 図示のように、 真空成形枠体 50は開放部分を上にし て設置されて、 その開放部内に硬化性材料 60が流し込まれる。 この充填作業によ り硬化性材料 60がその開放面まで完全に充填され、 満たされる。 これが充分硬化 するまでの時間、 養生が行われる。 第 20A図のフローがこの第 7図から第 10図ま での作業に相当する。  Next, with reference to FIG. 10, a process of forming the basic structure 10 using the vacuum formed frame 50 as the completed formed body will be described. In the figure, an operation of filling the curable material 60 before curing is shown. As shown in the figure, the vacuum forming frame 50 is installed with the open portion facing upward, and the curable material 60 is poured into the open portion. By this filling operation, the curable material 60 is completely filled to its open surface and is filled. Curing is carried out for a time until this hardens sufficiently. The flow in FIG. 20A corresponds to the work from FIG. 7 to FIG.
真空成形枠体すなわちラミネート成形体 40の各層の厚さについて説明すると、 その熱成形前においては、 総厚を一例では約 0. 5nm!〜 lmmに設定する。 例えば、 そ の総厚を 0. 725mmにした場合、 再生 PET層 30を 650 μ m、 接着 ·粘着樹脂層(変性ォ レフイン)を備える場合 25 m、 侵食防止層 20を 50 μ ιηで形成する。 Explaining the thickness of each layer of the vacuum forming frame, that is, the laminate forming body 40, before the thermoforming, the total thickness is about 0.5 nm in one example! Set to ~ lmm. For example, when the total thickness is 0.725 mm, the thickness of the recycled PET layer 30 is 650 μm, and the thickness of the adhesive / adhesive resin layer (modified (Refin) 25 m, Erosion prevention layer 20 is formed with 50 μιη.
第 11図に戻って、 養生および硬化工程が終了すると、 充分に平らに仕上げるた め、 仕上げ工程として、 硬化した硬化性材料 60すなわち基本構造体 10の露出して いる側を削り、 あるいはサンダー掛けなどをして、 表面仕上げ作業が機械的また は手動で行われる。 こうして完成した状態が第 11図に示されている。  Returning to FIG. 11, after the curing and curing steps are completed, the exposed side of the cured curable material 60, that is, the basic structure 10, is cut or sanded in order to finish it sufficiently flat. The surface finishing work is performed mechanically or manually. The completed state is shown in FIG.
敷設の際は、 第 11図に示すように基本構造体 10が上側に露出する状態、 あるい は第 12図に示したように基本構造体 10が再生 PET層 30で上から覆われた状態のい ずれかとなるように、 二重床構造等に適宜、 設置される。  When laying, the basic structure 10 is exposed to the upper side as shown in FIG. 11, or the basic structure 10 is covered from above by the recycled PET layer 30 as shown in FIG. It will be installed on a double-floor structure, etc., as appropriate.
次に、 第 3図に示した基本構成および第 6図に示した具体的床構造体の構成で ある塗装あるいはコーティング製法による床構造体の製造工程を説明する。 まず、 第 13図に示したように、 シート状に形成した再生 PET層 30の材料を 1対の金型 300 - 1および 300- 2の間にセットし、 これを真空成形することにより、 第 14図に示した ような再生 PET層 30のみの 1層から成る真空成形枠体 52が形成される。 図示した 枠体 52の各部分の厚さは、 第 10図に関連して上述したのと同様に、 誇張した比率 で描かれている。  Next, a description will be given of a manufacturing process of a floor structure by a painting or coating manufacturing method, which is a basic structure shown in FIG. 3 and a specific floor structure shown in FIG. First, as shown in FIG. 13, the material of the recycled PET layer 30 formed in a sheet shape is set between a pair of dies 300-1 and 300-2, and this is vacuum-formed to form a sheet. As shown in FIG. 14, a vacuum formed frame 52 composed of only one layer of the recycled PET layer 30 is formed. The thickness of each portion of the illustrated frame 52 is exaggerated, as described above in connection with FIG.
次に、 塗装処理またはコーティング処理によって侵食防止層を形成する作業を 第 15A図および第 15B図を参照して説明する。 すなわち、 第 15A図に示したように、 塗装材あるいはコーティング材として、 例えば PPもしくは PE樹脂、 またはシリコ ンオイルの塗布もしくは散布が行われる。 第 15A図では、 真空成形枠体 52の上面 領域の内側面のみに PPあるいは PE樹脂が散布される。  Next, an operation of forming an erosion preventing layer by a painting process or a coating process will be described with reference to FIGS. 15A and 15B. That is, as shown in FIG. 15A, application or spraying of, for example, PP or PE resin or silicon oil as a coating material or a coating material is performed. In FIG. 15A, PP or PE resin is sprayed only on the inner side surface of the upper surface region of the vacuum forming frame 52.
また、 第 15B図に示す方法では、 真空成形枠体 52の内側面全域にわたって侵食 防止層 20を形成するため、 その全体に樹脂が散布される。 この侵食防止層 20を形 成するための塗装 'コーティングの処理には、 PPあるいは PE樹脂を刷毛などで塗 る方法など、 種々の方法を適用してよい。 なお、 この PPあるいは PE樹脂の塗布あ るいは散布は、 第 13図に示したシート状の再生 PET層 30を形成した段階、 すなわ ち金型 300による真空成形を行う前の段階で行ってもよい。  In the method shown in FIG. 15B, since the erosion preventing layer 20 is formed over the entire inner surface of the vacuum forming frame 52, the resin is sprayed over the entire surface. Various methods such as a method of applying a PP or PE resin with a brush or the like may be applied to the coating treatment for forming the erosion preventing layer 20. The application or spraying of the PP or PE resin is performed at the stage where the sheet-like recycled PET layer 30 shown in FIG. 13 is formed, that is, at the stage before vacuum forming by the mold 300 is performed. Is also good.
この後、 硬化性材料を充填し、 硬化するまで養生する作業については、 第 10図 に関連して上述した作業と同様でよく、 その説明を省略する。 なお、 この第 13図 から第 15B図までに示した製造工程は、 第 20B図のフローに相当する。 床構造体の製造工程は、 種々の工程をとつてよい。 例えば、 第 20C図のフロー におけるように、 2種類の樹脂材のそれぞれを上述の金型における異なる位置か らほぼ同時に射出する。 これと同時に、 熱伝導によるロールコーターでその 2種 類の樹脂、 すなわち再生 PET層 30と侵食防止層 20とを熱圧着あるいは熱溶着して、 2層の薄板またはシート体として形成することも可能である。 Thereafter, the operation of filling the curable material and curing until it is cured may be the same as the operation described above with reference to FIG. 10, and a description thereof will be omitted. The manufacturing steps shown in FIGS. 13 to 15B correspond to the flow of FIG. 20B. Various processes may be used for the manufacturing process of the floor structure. For example, as shown in the flow of FIG. 20C, each of the two kinds of resin materials is injected almost simultaneously from different positions in the above-mentioned mold. At the same time, the two types of resin, that is, the recycled PET layer 30 and the erosion prevention layer 20 can be thermocompression-bonded or heat-welded with a roll coater by heat conduction to form a two-layer thin plate or sheet. It is.
この 2種樹脂の共押出し方法では、 その厚さは、 成形前において総厚 0. 70讓と した場合、 再生 PET層 30を 650 μ πι、 侵食防止層 20を 50 μ mとするのが好適である。 なお、 2層の例を上述したが、 これに限.らず、 例えば再生 PET、 PEまたは PP、 およ び変成ォレフィンの 3種類の材料による 3層形成も可能である。 また、 成形法とし ては、 多層で共押出し成形してもよい。  In the co-extrusion method of these two resins, when the total thickness before molding is 0.70 70, the thickness of the recycled PET layer 30 is preferably 650 μππ and the thickness of the erosion prevention layer 20 is preferably 50 μm. It is. In addition, although the example of the two layers is described above, the present invention is not limited to this, and it is also possible to form three layers using three kinds of materials, for example, recycled PET, PE or PP, and modified olefin. Further, as a molding method, multi-layer coextrusion molding may be used.
また、 例えば最初に再生 PET材による 1回目の射出金型成形を行って枠体を形成 し、 その後、 冷却される前に、 直ちに侵食防止材による侵食防止層を 2回目の射 出成形で行って、 さらに枠体を成形することで、 これらが射出成形時の熱により 結合され、 異なる樹脂材による 2層の枠体が形成される。 このような射出 2層成 形による場合、 総厚が例えば約 2腿から 5腿で樹脂成形されると、 例えば侵食防止 層は約約 30 μ πιから 200 μ ιηの厚さに構成するのが好適である。 各層の厚さは、 硬 化充填材の固着後におけるアルカリ成分に対して再生 PET層を充分に保護するこ とのできる程度であればよい。  In addition, for example, first, the first injection molding with recycled PET material is performed to form a frame, and then, before being cooled, the erosion prevention layer using the erosion prevention material is immediately formed in the second injection molding. Then, by further molding the frame, these are combined by heat during injection molding, and a two-layer frame made of different resin materials is formed. In the case of such an injection two-layer molding, if the total thickness is resin-molded, for example, from about two to five thighs, for example, the erosion prevention layer is configured to have a thickness of about about 30 μπι to 200 μιη. It is suitable. The thickness of each layer only needs to be such that the recycled PET layer can be sufficiently protected from alkali components after the hardening filler is fixed.
このようにして製造され完成した床構造体を実際に二重床の支持脚として応用 した例について、 以下に説明する。 第 16図は、 そのような支持体 1を支持脚とし て用いた二重床構造体の概略断面図であり、 図示のように、 支持体 1の相互間の 連結部に相当する部分 400の上方の空間が配線空間 Sとして利用される。 配線空間 Sを覆う目的で、 上方側の床面を形成する配線カバー 70が敷設されている。 なお、 同図における参照数字 402、 404、 406および 408は、 配線空間 Sに設置された配線 を示している。  An example in which the floor structure manufactured and completed as described above is actually applied as a supporting leg of a double floor will be described below. FIG. 16 is a schematic cross-sectional view of a double-floor structure using such a support 1 as a support leg. As shown in the drawing, a portion 400 corresponding to a connection between the supports 1 is shown. The space above is used as the wiring space S. In order to cover the wiring space S, a wiring cover 70 forming an upper floor surface is laid. Note that reference numerals 402, 404, 406, and 408 in the figure denote wirings installed in the wiring space S.
第 17図は、 第 16図に示したような支持体を用いた二重床構造体をその上方から 見た図であり、 配線カバー 70を取り外した状態を示している。 同図から、 支持体 1のプロック状に集中した部分 410と配線空間を形成するための通路部分 Xとが形 成されていることが分かる。 各プロックにはそれぞれ格子状のリブ R1が形成されており、 このリブ R1により、 成形された枠体である再生 PET層 30および侵食防止層 20の上面部の強度を向上さ せ、 モルタル 10の枠体 50からの離脱おょぴ落下の防止にも効果がある。 第 18図は、 その支持体 1のブロック状部分の部分断面図であり、 図示のように所定の深さの リブ R1が形成されていることが分かる。 FIG. 17 is a view of the double floor structure using the support as shown in FIG. 16 as viewed from above, and shows a state where the wiring cover 70 is removed. From the figure, it can be seen that a block 410 of the support 1 concentrated in a block shape and a passage portion X for forming a wiring space are formed. Each block is formed with a lattice-shaped rib R1. The rib R1 improves the strength of the upper surfaces of the recycled PET layer 30 and the erosion prevention layer 20, which are formed frames, and improves the strength of the mortar 10. It is also effective in preventing detachment from the frame 50 and falling. FIG. 18 is a partial cross-sectional view of a block-shaped portion of the support 1, and it can be seen that a rib R1 having a predetermined depth is formed as shown.
次に、 第 19A図には、 再生 PET層 30および侵食防止層 20から成形された成形体と して枠体 80を裏面側から見た状態が示されている。 図示のように、 リブ R1を台め 種々の補強用リブが形成されていることが分かる。 本実施例では、 このようなリ ブの开成により、 従来の ECR (エチレンコポリマーレジン)や PVC (ポリビエルク口 ライド)を用いて枠体を構成する場合に比べ、 柔軟に形成された再生 PET枠体の強 度、 とくに上面部の強度を補強することができる。  Next, FIG. 19A shows a state in which the frame body 80 is viewed from the back side as a molded body molded from the recycled PET layer 30 and the erosion prevention layer 20. As shown in the figure, it can be seen that various reinforcing ribs are formed on the rib R1. In the present embodiment, such a rib composition makes the recycled PET frame formed more flexibly than a conventional frame made of ECR (ethylene copolymer resin) or PVC (polyvinyl alcohol). It can reinforce the strength of the body, especially the upper part.
また、 この実施例において特徴的部分としては、 参照符号 90で示したリブの欠 除部分をなす切欠き部である。 このように、 床構造体の縁部であるブロックの側 壁部 91とプロックを小プロックとして仕切るリブ 92とが直交する部分に、 切欠き 部 90が形成されている。 切欠き部 90を設けることにより、 再生 PETを用いた場合、 成形時に再生 PET材の流れがその材質上悪くなることに起因する成形ダレの発生 を有効に防止している。 つまり、 例えば側壁部 91やリブ 92の直交部分に成形ダレ が生じ無用な小突起が生じるのを、 有効に防止している。  Further, in this embodiment, a characteristic portion is a cutout portion forming a cutout portion of a rib indicated by reference numeral 90. In this manner, the cutout portion 90 is formed at a portion where the side wall portion 91 of the block, which is the edge of the floor structure, and the rib 92 that partitions the block as a small block are perpendicular to each other. By providing the cutout portion 90, when recycled PET is used, it is possible to effectively prevent the occurrence of molding sagging due to the deterioration of the flow of the recycled PET material during molding. That is, for example, it is possible to effectively prevent the formation of sagging and the generation of unnecessary small protrusions in the orthogonal portions of the side wall portions 91 and the ribs 92.
第 19B図は、 本実施例における小プロックであるそれぞれの支持体 1の断面形状 を示し、 それぞれの枠体部分の縁部、 すなわち隣接する支持体との境界部分に、 枠体 50の内方に向かって少し張り出した膨出部 94が形成されている。 膨出部 94に より、 構造体の完成後に枠体から基本構造体 10が落ち込んだりずれたりするのを 有効に防止することができる。  FIG. 19B shows a cross-sectional shape of each support 1 which is a small block in the present embodiment, and an inner portion of the frame 50 is provided at an edge portion of each frame portion, that is, at a boundary portion between adjacent support members. A bulged portion 94 slightly projecting toward is formed. The bulging portion 94 can effectively prevent the basic structure 10 from dropping or shifting from the frame after the completion of the structure.
以上説明したように、 本実施例によれば、 基本構造体 10を覆う枠体として機能 する再生 PET層 30が、 アルカリ成分を含むコンクリート、 セメント、 モルタルな どの硬化性材料にて形成された基本構造体 10に直接接触することがないので、 ァ ルカリ成分による再生 PETの分解に起因する割れゃクラックの発生が有効に防止 される。 これにより枠体の強度、 例えば耐荷重性などが向上し、 信頼性が向上す る。 再生 PET層 30には、 必要に応じて再生時における強度や柔軟性を確保するため の改質材として樹脂材を若干含ませてもよい。 また、 床構造体の分野では、 再生 PET材は、 成形用の離型用型枠のみや成形榭脂材に一部混ぜるにとどまり、 数 パーセントから数十パーセントまでしかその利用が図られていなかった。 しかし, この発明を適用することにより、 再生 PET材の利用率が全体の 50%から最大 90%程 度まで向上することが可能である。 As described above, according to the present embodiment, the recycled PET layer 30 functioning as a frame covering the basic structure 10 is formed of a hardening material such as concrete, cement, and mortar containing an alkali component. Since there is no direct contact with the structure 10, the generation of cracks and cracks due to the decomposition of the recycled PET due to the alkali component is effectively prevented. As a result, the strength of the frame body, for example, the load resistance is improved, and the reliability is improved. The recycled PET layer 30 may optionally contain a small amount of a resin material as a modifier for ensuring strength and flexibility during regeneration. Also, in the field of floor structures, recycled PET materials are used only in mold release molds for molding and partially mixed with molded resin materials, and only from a few percent to tens of percent are being used. Was. However, by applying the present invention, it is possible to increase the utilization rate of recycled PET material from 50% of the whole to about 90% at the maximum.
さらに、 基本構造体 10と再生 PET層 30との間の侵食防止層 20の介在により、 ァ ルカリ成分からの再生 PET層 30の保護だけでなく、 製造過程あるいは保管状況に おける温度変化による収縮などの外的要因による再生 PET層 30と基本構造体 10と の間のス トレス、 例えば密着状態によるス トレスの発生も緩和され、 これらス ト レスにより生じるクラックの発生等を有効に回避することが可能である。 また、 上述のような改質材の利用や密着状態により強度向上が図れるが、 多層構造とす ることによつてもさらに衝撃強度は向上する。  Furthermore, the interposition of the erosion prevention layer 20 between the basic structure 10 and the recycled PET layer 30 not only protects the recycled PET layer 30 from alkali components, but also causes shrinkage due to temperature changes in the manufacturing process or storage conditions. The stress between the recycled PET layer 30 and the basic structure 10 due to external factors such as stress, for example, the stress due to the close contact state is also reduced, and it is possible to effectively avoid the occurrence of cracks caused by these stresses. It is possible. In addition, although the strength can be improved by the use of the modifier and the close contact state as described above, the impact strength can be further improved by adopting a multilayer structure.
以上説明したように、 本発明に係る再生 PET材を用いた床構造体およびその製 造方法によれば、 再生 PET材にて形成された成形体である枠体に収容された基本 構造体がそのアルカリ成分により再生 PETに与える悪影響を効果的に防ぐことが でき、 床下地構造や二重床構造の分野における再生 PET材の有効利用の可能性を 向上させ、 床構造体のリサイクル性の向上ならびにコストの低減を図ることがで きる。  As described above, according to the floor structure using the recycled PET material and the method for manufacturing the same according to the present invention, the basic structure accommodated in the frame, which is a molded body formed of the recycled PET material, is used. The alkali component can effectively prevent the adverse effects on recycled PET, improving the possibility of effective use of recycled PET materials in the field of floor substructures and double floor structures, and improving the recyclability of floor structures. In addition, costs can be reduced.
2001.年 12月 21日おょぴ 2002年 12月 16日に出願された日本国特許出願、 それぞれ 特願 2001- 390213号およぴ特願 2002-363482号の明細書、 請求の範囲、 添付図面お よび要約書を含むすべての開示内容は、 この明細書にそのすべてが含まれて、 参 照される。  2001.December 21, 2001 Japanese patent application filed on December 16, 2002, the specifications, claims, and attachments of Japanese Patent Application Nos. 2001-390213 and 2002-363482, respectively. All disclosures, including drawings and abstracts, are hereby incorporated by reference in their entirety.
本発明を特定の実施例を参照して説明したが、 本発明はこれらの実施例に限定 されるものではない。 いわゆる当業者は、 本発明の範囲および概念から逸脱しな い範囲で、 .これらの実施例を変更または修正することができることは、 認識され るべきである。  Although the present invention has been described with reference to particular embodiments, the present invention is not limited to these embodiments. It should be recognized that those skilled in the art can change or modify these embodiments without departing from the scope and concept of the invention.

Claims

請 求 の 範 囲 The scope of the claims
1 . アル力リ成分を有する硬化性材料を含む基本構造体(10)と、 該基本構造 体(10)を収納する成形体(50)とを含む床構造体(1)において、 1. In a floor structure (1) including a basic structure (10) including a curable material having an alkaline component and a molded body (50) accommodating the basic structure (10),
前記成形体(50)は、 少なくとも再生 PET (ポリエチレン テレフタレート)材と アル力リの侵食を防止する侵食防止材(20)とを成形により、 その外面側に再生 PET材が、 またその内面側に侵食防止材(20)が位置するように形成され、  The molded body (50) is obtained by molding at least a recycled PET (polyethylene terephthalate) material and an erosion-preventing material (20) for preventing erosion of aluminum alloy. Erosion control material (20) is formed to be located,
前記成形体(50)の内側に侵食防止材(20)が配設されることによって、 前記基本 構造体(10)と前記再生 PET材との接触で該基本構造体(10)のアルカリ成分が前記 再生 PET材に侵食するのを防止することを特徴とする再生 PET材を用いた床構造体。  By disposing the erosion preventing material (20) inside the molded body (50), the alkali component of the basic structure (10) is reduced by the contact between the basic structure (10) and the recycled PET material. A floor structure using a recycled PET material, wherein the floor structure prevents erosion of the recycled PET material.
2 . 請求の範囲第 1項に記載の床構造体において、 前記侵食防止材(20)はォ レフイン系樹脂を含むことを特徴とする床構造体。  2. The floor structure according to claim 1, wherein the erosion preventing material (20) contains a olefin-based resin.
3 . 床構造体を構成する硬化性材料を含む基本構造体(10)と、 前記基本構造 体(10)に少なくとも接する成形体(50)とを含む床構造体(1)において、  3. A floor structure (1) including a basic structure (10) including a curable material constituting a floor structure, and a molded body (50) at least in contact with the basic structure (10);
前記成形体(50)は、 接触防止材(20)、 接着材(21)および再生 PET (ポリエチレン テレフタレート)材(30)とを含む少なくとも 3層構造をなし、  The molded body (50) has at least a three-layer structure including a contact preventing material (20), an adhesive (21), and a recycled PET (polyethylene terephthalate) material (30);
前記接触防止材(20)は、 前記基本構造体(10)の上面に、 前記再生 PET材(30)が 該基本構造体(10)に接しない前記成形体(50)の最下層を形成し、  The contact preventing material (20) forms a lowermost layer of the molded body (50) on which the recycled PET material (30) does not contact the basic structure (10) on the upper surface of the basic structure (10). ,
前記接着材(21)は、 前記接触防止材(20)の上面に、 該接触防止材(20)が前記再 生 PET材(30)に確実に保持する接着性を有し中間層を形成し、  The adhesive (21) forms an intermediate layer on the upper surface of the contact preventing material (20), which has an adhesive property that the contact preventing material (20) securely holds the recycled PET material (30). ,
前記再生 PET材(30)は、 前記接着材 (21)の上面に、 前記成形体(50)の最上層を 形成することを特徴とする再生 PET材を用いた床構造体。  The floor structure using a recycled PET material, wherein the recycled PET material (30) has an uppermost layer of the molded body (50) formed on an upper surface of the adhesive (21).
4 . 請求の範囲第 3項に記載の床構造体において、 前記成形体(50)には捕強 用のリブ部分が形成され、 該リプ部分から該成形体(50)の縁部領域への移行部分 には、 樹脂溜まり防止用のリブ除去部分 (90)が設けられたことを特徴とする床構 造体。  4. The floor structure according to claim 3, wherein the molded body (50) is formed with a rib portion for capturing, and the rib portion from the lip portion to an edge region of the molded body (50). A floor structure having a rib removal portion (90) provided at a transition portion to prevent accumulation of resin.
5 . 請求の範囲第 3項に記載の床構造体において、 前記成形体(50)が収納さ れる部分の縁部には、 該部分の内方へ膨出した基本構造体安定保持用の膨出部 (94)が形成されたことを特徴とする床構造体。 5. The floor structure according to claim 3, wherein an edge of a portion where the molded body (50) is housed has a bulge for stably retaining the basic structure bulging inward of the portion. A floor structure having a protrusion (94) formed thereon.
6 . 硬化性材料を含む基本構造体(10)が成形体内に収納される床構造体(1) の製造方法において、 該方法は、 6. A method for manufacturing a floor structure (1) in which a basic structure (10) containing a curable material is housed in a molded body, the method comprising:
再生 PET (ポリエチレン テレフタレート)材を含む再生 PET層(30)とアル力リ侵 食防止材を含む侵食防止層(20)との 2層構造体を形成する 2層構造体形成工程と、 該 2層構造体を成形して前記侵食防止層(20)が内面側に、 また前記再生 PET層 (30)が外面側となるように前記基本構造体(10)の収納部を有する成形体(50)を形 成する成形体形成工程と、  A two-layer structure forming step of forming a two-layer structure of a recycled PET layer (30) containing a recycled PET (polyethylene terephthalate) material and an erosion prevention layer (20) containing an anticorrosion material; A molded body (50) having a storage portion for the basic structure (10) is formed by molding a layer structure so that the erosion prevention layer (20) is on the inner surface side and the recycled PET layer (30) is on the outer surface side. A) forming a molded body,
前記収納部に前記硬化性材料を充填する充填工程とを含むことを特徴とする再 生 PETを用いた床構造体の製造方法。  A filling step of filling the storage section with the curable material. A method of manufacturing a floor structure using recycled PET.
7 . 請求の範囲第 6項に記載の方法において、 前記 2層構造体形成工程では、 前記再生 PET層(30)と侵食防止層(20)とをラミネート成形により合体させること を特徴とする床構造体の製造方法。  7. The floor according to claim 6, wherein, in the two-layer structure forming step, the recycled PET layer (30) and the erosion prevention layer (20) are united by laminating. The method of manufacturing the structure.
8 . 請求の範囲第 6項に記載の方法において、 前記成形体形成工程では、 真 空成形により前記成形体(50)を形成することを特徴とする床構造体の製造方法。  8. The method according to claim 6, wherein, in the step of forming a molded body, the molded body (50) is formed by vacuum molding.
9 . 請求の範囲第 6項に記載の方法において、 前記再生 PET材(30)および前記 侵食防材(20)を含む成形体(50)の総厚は、 成形前において、 実質的に 480 μ πιない し ΙΟΟΟ μ πιの範囲を満足することを特徴とする床構造体の製造方法。  9. The method according to claim 6, wherein a total thickness of the molded body (50) including the recycled PET material (30) and the erosion preventing material (20) is substantially 480 μm before molding. A method for producing a floor structure, characterized by satisfying a range of πι or ΙΟΟΟμππ.
10. 硬化性材料を含む基本構造体(10)が成形体内に収納される床構造体(1) の製造方法において、 該方法は、  10. A method for manufacturing a floor structure (1) in which a basic structure (10) containing a curable material is housed in a molded body, the method comprising:
再生 PET (ポリエチレン テレフタレ一ト)材(30)にてシート状部材を形成する 再生 PETシート形成工程と、  Forming a sheet-like member from recycled PET (polyethylene terephthalate) material (30);
前記シート部材を成形して該再生 PET材が外面側となるように前記基本構造体 の収納用の成形体(50)を形成する成形体形成工程と、  A molded body forming step of molding the sheet member to form a molded body (50) for storing the basic structure so that the recycled PET material is on the outer surface side;
前記成形体(50)の前記基本構造体の収納部の内側面全面にアル力リ侵食防止材 (20)として侵食防止層を形成する侵食防止層形成工程と、  An erosion-preventing layer forming step of forming an erosion-preventing layer as an erosion-preventing material (20) on the entire inner surface of the storage portion of the basic structure of the molded body (50);
前記侵食防止層(20)が形成された成形体(50)の前記収納部に前記硬化性材料を 充填する充填工程とを含むことを特徴とする再生 PETを用いた床構造体の製造方 法。  Filling the curable material into the storage section of the molded body (50) on which the erosion prevention layer (20) is formed. A method for manufacturing a floor structure using recycled PET .
11. 請求の範囲第 10項に記載の方法において、 前記侵食防止層(20)を塗装処 理またはコーティング処理によって形成することを特徴とする床構造体の製造方 法。 11. The method according to claim 10, wherein the erosion protection layer (20) is coated by a coating process. A method for producing a floor structure, wherein the floor structure is formed by treatment or coating.
' 12. 請求の範囲第 10項に記載の方法において、 前記侵食防止層形成工程では、 前記収納部の略内側の上面領域のみに前記侵食防止層を形成することを特徴とす る床構造体の製造方法。 '  11. The floor structure according to claim 10, wherein in the erosion prevention layer forming step, the erosion prevention layer is formed only in an upper surface area substantially inside the storage section. Manufacturing method. '
13. 硬化性材料を含む基本構造体(10)が成形体内に収納される床構造体(1) の製造方法において、 該方法は、  13. A method of manufacturing a floor structure (1) in which a basic structure (10) containing a curable material is housed in a molded body, the method comprising:
再生 PET (ポリエチレン テレフタレート)材(30)と、 前記基本構造体(10)に該 再生 PET材(30)が接しないようにするための接触防止材(20)と、 該接触防止材 (20)および該再生 PET材(30)を確実に保持するためのォレフィン系接着材(21)と を実質的に同時に共押出し成形することにより、 前記再生 PET材(30).が前記基本 構造体(10)に接しないように最上層を、 また前記ォレフィン系接着材 (21)が該再 生 PET材(30)と前記接触防止材 (20)との接着を可能にする中間層を、 さらに該接 触防止材(20)が該基本構造体(10)に接するように最下層を、 それぞれ形成して、 少なくとも 3層のシート状部材を形成するシート状成形工程と、  Recycled PET (polyethylene terephthalate) material (30); contact preventing material (20) for preventing the recycled PET material (30) from contacting the basic structure (10); and contact preventing material (20) And an olefin adhesive (21) for surely holding the recycled PET material (30) are co-extruded at substantially the same time, whereby the recycled PET material (30). ), And an intermediate layer in which the olefin adhesive (21) enables adhesion between the recycled PET material (30) and the contact preventing material (20). Forming a lowermost layer so that the touch-preventing material (20) is in contact with the basic structure (10), and forming a sheet-like member having at least three layers;
前記 3層シート状部材を熱成形して、 その内側面に前記接触防止材 (20)が位置 するように、 前記成形体(50)を形成する熱成形工程と、  A thermoforming step of thermoforming the three-layer sheet member to form the molded body (50) such that the contact preventing material (20) is located on the inner surface thereof;
前記成形体(50)の内側面の基本構造体の収納部分に前記硬化性材料を充填する 充填工程とを含むことを特徴とする再生 PETを用いた床構造体の製造方法。  A filling step of filling the curable material into a housing portion of the basic structure on the inner surface of the molded body (50). A method of manufacturing a floor structure using recycled PET.
14. 請求の範囲第 13項に記載の方法において、 前記接触防止材(20)は、 成形 前において、 少なくとも樹脂シートまたは樹脂フィルムで成り、 その厚さは、 前 記再生 PET材(30)が前記基本構造体(10)に接しない厚さ、 すなわち実質的に 0 m を超えて 200 μ πι以下の範囲を満足することを特徴とする床構造体の製造方法。  14. The method according to claim 13, wherein the contact-preventing material (20) is made of at least a resin sheet or a resin film before molding, and has a thickness of the recycled PET material (30). A method for producing a floor structure, characterized by satisfying a thickness not in contact with the basic structure (10), that is, a range of substantially more than 0 m and 200 μπι or less.
15. 請求の範囲第 13項に記載の方法において、 前記再生 PET材(30)の厚さは、 成形前において、 少なくともほぼ 450 inないし 800 i mの範囲を満足することを特 徴とする床構造体の製造方法。  15. The floor structure according to claim 13, wherein the thickness of the recycled PET material (30) satisfies at least approximately 450 in to 800 im before molding. How to make the body.
16. 請求の範囲第 13項に記載の方法において、 前記接触防止材(20)は、 前記 再生 PET材(30)と前記基本構造体(10)とを接着するォレフイン系接着材を含み、 その厚さは、 成形前において、 実質的に 20 mないし 30 μ πι (実質的に 25 Αί ΐη±5 μ m) の範囲を満足することを特徴とする床構造体の製造方法。 16. The method according to claim 13, wherein the contact preventing material (20) includes an olefin-based adhesive for bonding the recycled PET material (30) and the basic structure (10), Before molding, the thickness should be substantially 20 m to 30 μπι (substantially 25 Αί η ± 5 μ m) A method for producing a floor structure, characterized by satisfying the range of:
17. 請求の範囲第 13項に記載の方法において、 前記再生 PET材(30)、 前記ォ レフイン系接着材(21)および前記接触防止材(20)を含む成形体(50)の総厚は、 成 开前において、 実質的に 500 μ ιηないし 1030 / m (ォレフイン系接着材が 0 mの場 合を含む。 ) の範囲を満足することを特徴とする床構造体の製造方法。  17. The method according to claim 13, wherein a total thickness of the molded body (50) including the recycled PET material (30), the olefin-based adhesive (21), and the contact prevention material (20) is: A method for producing a floor structure, which substantially satisfies a range of 500 μιη to 1030 / m (including a case where an olefin-based adhesive is 0 m) before growth.
18. 硬化性材料を含む基本構造体(10)が成形体内に収納される床構造体(1) の製造方法において、 該方法は、  18. A method of manufacturing a floor structure (1) in which a basic structure (10) containing a curable material is housed in a molded body, the method comprising:
再生 PET (ポリエチレン テレフタレート)材(30)を略シート状の再生 PET部材に 形成する第 1のシ一ト形成工程と、  A first sheet forming step of forming a recycled PET (polyethylene terephthalate) material (30) into a substantially sheet-shaped recycled PET member;
前記再生 PET材(30)と密着可能とするためのォレフィン系接着材(21)を備え、 前記基本構造体(10)に該再生 PET材 (30)が接しないようにするための接触防止材 (20)を略シート状の接触防止部材に形成する第 2のシート形成工程と、  An anti-reflective adhesive (21) for enabling close contact with the recycled PET material (30), and a contact preventing material for preventing the recycled PET material (30) from contacting the basic structure (10). (20) a second sheet forming step of forming a substantially sheet-shaped contact prevention member,
前記再生 PET部材が前記基本構造体(10)に接しないように最上層を、 また前記 ォレフィン系接着材(21)が前記再生 PET部材と前記接触防止部材とを接着可能に する中間層を、 さらに前記接触防止部材が前記基本構造体(10)に接するように最 下層を、 それぞれ形成して、 少なくとも 3層の略シート状の層部材に形成する第 3のシート状形成工程と、 '  An uppermost layer so that the recycled PET member does not come into contact with the basic structure (10); and an intermediate layer that allows the olefin-based adhesive (21) to bond the recycled PET member to the contact preventing member. A third sheet-like forming step of forming a lowermost layer so that the contact preventing member is in contact with the basic structure (10) to form at least three substantially sheet-like layer members;
前記 3層の層部材を熱成形して、 その内側面に前記接触防止部材が位置するよ うに前記成形体(50)に形成する熱成形工程と、  A thermoforming step of thermoforming the three layer members and forming the molded body (50) such that the contact preventing member is located on the inner surface thereof;
前記成形体(50)の内側面の基本構造体(10)の収納部分に前記硬化性材料を充填 する充填工程とを含むことを特徴とする再生 PETを用いた床構造体の製造方法。  A filling step of filling the curable material into a housing portion of the basic structure (10) on the inner surface of the molded body (50). A method for manufacturing a floor structure using recycled PET.
PCT/JP2002/013237 2001-12-21 2002-12-18 Floor structure using reclaimed pet material WO2003054324A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001390213 2001-12-21
JP2001/390213 2001-12-21
JP2002363482A JP2007131998A (en) 2001-12-21 2002-12-16 Floor structure using recycled pet material, and its manufacturing method
JP2002/363482 2002-12-16

Publications (1)

Publication Number Publication Date
WO2003054324A1 true WO2003054324A1 (en) 2003-07-03

Family

ID=26625220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/013237 WO2003054324A1 (en) 2001-12-21 2002-12-18 Floor structure using reclaimed pet material

Country Status (3)

Country Link
JP (1) JP2007131998A (en)
TW (1) TW200302310A (en)
WO (1) WO2003054324A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5620838B2 (en) * 2011-02-04 2014-11-05 Kbセーレン株式会社 Inner gloves

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04146367A (en) * 1990-10-05 1992-05-20 Shintaro Sato Floor backing construction
JPH09273295A (en) * 1996-10-21 1997-10-21 Bridgestone Corp Floor panel support leg
JPH10245251A (en) * 1997-02-28 1998-09-14 Alps:Kk Waste plastic aggregate to be admixed to cement product, cement product containing waste plastic aggregate and its production
JP2001090318A (en) * 1999-09-24 2001-04-03 Nichiha Corp Building plate, and its manufacturing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04146367A (en) * 1990-10-05 1992-05-20 Shintaro Sato Floor backing construction
JPH09273295A (en) * 1996-10-21 1997-10-21 Bridgestone Corp Floor panel support leg
JPH10245251A (en) * 1997-02-28 1998-09-14 Alps:Kk Waste plastic aggregate to be admixed to cement product, cement product containing waste plastic aggregate and its production
JP2001090318A (en) * 1999-09-24 2001-04-03 Nichiha Corp Building plate, and its manufacturing device

Also Published As

Publication number Publication date
JP2007131998A (en) 2007-05-31
TW200302310A (en) 2003-08-01

Similar Documents

Publication Publication Date Title
US11649641B2 (en) Panel and method of producing a panel
MXPA06011506A (en) Release agent-free, multiple-use, polymer-based composite materials employed for concrete pouring forms and methods of making and using the same.
US20210131115A1 (en) Floor, wall and ceiling cladding
WO2003054324A1 (en) Floor structure using reclaimed pet material
JP4749070B2 (en) Thermal insulation panels and composite insulation
JP5143803B2 (en) Sound insulation floor material and method for producing sound insulation floor material
JP5312963B2 (en) Flooring
KR100830882B1 (en) Multi-laminated sheet and manufacturing method thereof
JP2002339573A (en) Sheet for curing
JP2010095879A (en) Woody decorative floor member and method for remodeling woody decorative floor
JP2774993B2 (en) Formwork
US20060157194A1 (en) Method for the production of a laminate, device for carrying out the method and corresponding laminate
JP4020531B2 (en) Insulation panel for enamel plate
CN207228521U (en) Mould proof durable background wallboard
WO2019223707A1 (en) Fireproof moisture-resistant easy-to-lay environmentally friendly tile having engagement means, and manufacturing method
US20120012245A1 (en) Production method for a panel
JP2007077727A (en) Thermal insulation panel and composite thermal insulation material
JP5975432B2 (en) Face material
JPH04136367A (en) Mold plate for placing concrete
JPH0782870A (en) Sound insulating floor plate for laying
EP4163457A1 (en) Decorative panel and method for producing a panel
JP6263852B2 (en) Decorative plate manufacturing method
JP3042756U (en) Floor material for remodeling
WO2020144112A1 (en) Panel suitable for assembling a floor covering
JPH07217016A (en) Heat insulating panel used also as form, and its manufacture and constructing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN GB ID KR SG US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)