WO2003054196A1 - Eliciteur d'oligosaccharide de chitine et genes sensibles a la gibberelline dans les plantes et utilisations associees - Google Patents

Eliciteur d'oligosaccharide de chitine et genes sensibles a la gibberelline dans les plantes et utilisations associees Download PDF

Info

Publication number
WO2003054196A1
WO2003054196A1 PCT/JP2002/013375 JP0213375W WO03054196A1 WO 2003054196 A1 WO2003054196 A1 WO 2003054196A1 JP 0213375 W JP0213375 W JP 0213375W WO 03054196 A1 WO03054196 A1 WO 03054196A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
gene
plant
protein
rice
Prior art date
Application number
PCT/JP2002/013375
Other languages
English (en)
French (fr)
Inventor
Eiichi Minami
Naoto Shibuya
Robert B. Day
Original Assignee
National Institute Of Agrobiological Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Agrobiological Sciences filed Critical National Institute Of Agrobiological Sciences
Priority to CA002471375A priority Critical patent/CA2471375A1/en
Priority to JP2003561314A priority patent/JPWO2003054196A1/ja
Priority to AU2002361084A priority patent/AU2002361084A1/en
Priority to EP02791977A priority patent/EP1466978A4/en
Publication of WO2003054196A1 publication Critical patent/WO2003054196A1/ja
Priority to US10/871,083 priority patent/US20050034189A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants

Definitions

  • the present invention relates to elicitor and gibberellin responsive genes in plants, and uses thereof.
  • the Arab idopsis RGA gene encodes a transcriptional regulator repressing the gibb erel lin signal transduction pathway.
  • Rice gibberel lin-insensitive gene homo log, OsGAI encodes a nuclear-loicalized protein capable of gene activation at transcriptional level.Gene, 2000, 245, 21-29.Ikeda, A., Ueguchi-Tanaka, M., Sonoda, Y Kitano, H., Koshioka, M., Futsuhara, Y., Matsuoka, M , and Yamaguchi,
  • J. slender rice a constitutive gibberellin response mutant, is caused by a mill mutation of the SLR1 gene, an ort olog of the height-regulatin g gene GAI / RGA / RHT / D8.
  • the Plant Cell, 2001, 13, 999- 1010. showed that they were isolated one after another and were structurally well preserved. It was also reported that the product of the lateral suppressor gene in tomato belongs to the same family as Scarecrow (Schumacher, K., Schmitt, T., Rossberg, M., Schmitz, G., and Theres, K.
  • the Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc. Natl. Acad. Sci. USA, 1999, 96, 290-295.).
  • Scarecrow is transcribed because its amino acid sequence contains the basic amino acid region found in leucine zipper-type transcription factors, and 44% of the 267 amino acid residues at the N-terminal are glutamic acid, serine, threonine, proline, etc. Presumed to be a factor
  • RGA is a transcription factor localized in the nucleus (Silverstone, AL, Ciampaglio, CN, and Sun, TP.
  • the Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. The Plant Cell, 1998, 10, 155-169.).
  • oligomers of chitin (N- ⁇ ), one of the major components of the cell wall of rice blast fungus (Cetyl chitooligosaccharide) was found to induce various protective responses at low concentrations in cultured rice cells, that is, to act as a potent elicitor (a substance that induces biological defense responses) (Yamada, A ., Shibuya, N., Kodama, 0., and Akatsuka, T. Induction of phytoalexin formation in suspension-cultured rice cells by N-acetylchi tool igosacchar ides. Biosci. Biotech. Biochem., 1993, 57, 405-409. ).
  • the defense-related enzyme genes, PAL, chitinase and dalcanase which have been known so far, are expressed (He, D. -Y., Yazaki, Y., Nishizawa, II., Takai, R , Yamada, K., Sakano, K., Shibuya, N., and Minami, E. Gene activation, cytoplasmic acidification in suspension-cultured rice cells in response to the potent elicitor, N-acethylchi toheptaose. M icrobe Int., 1998, 12, 1167-1174.Nishizawa, Y., Kawakami, A., Hibi, T., He, D.
  • An object of the present invention is to identify a novel elicitor response gene in a plant, and to provide the gene and a plant in which the gene is regulated.
  • the present inventor has conducted intensive studies in order to solve the above problems. First, it is possible that a large number of gene expressions are changed in the Erisi response.
  • gibberellin is a generic term for compounds having an ent gibberellin skeleton, and only active gibberellin was effective in inducing the expression of these genes. It was also suggested that protein phosphorylation and dephosphorylation are involved in the signal transduction process leading to gene expression. Such rapid gene expression by gibberellin was also observed in rice green leaves.
  • the present invention relates to elicitor and gibberellin responsive genes in plants and their use, and more specifically,
  • (6) a vector comprising the DNA of any one of (1) to (3) or the nucleic acid of (5),
  • the present invention provides a DNA encoding a plant CIGR1 protein or CIGR2 protein.
  • the plant in the present invention is not particularly limited, and includes, for example, useful crops such as cereals, vegetables, and fruit trees, ornamental plants such as houseplants, and the like.
  • useful crops such as cereals, vegetables, and fruit trees
  • ornamental plants such as houseplants, and the like.
  • examples of the plant include rice, corn, wheat, oats, rapeseed, daisies, tomatoes, tomatoes, potatoes, chrysanthemums, roses, carnations, and cyclamen.
  • the plant of the present invention preferably includes rice.
  • the nucleotide sequence of the rice CI GR1 gene cDNA is shown in SEQ ID NO: 1, and the cDNA encoded by the cDNA is The amino acid sequence of the protein is shown in SEQ ID NO: 2.
  • the nucleotide sequence of the cDNA of the CIGR2 gene is shown in SEQ ID NO: 3, and the amino acid sequence of the protein encoded by the cDNA is shown in SEQ ID NO: 4.
  • the DNA of the present invention in plants other than rice can be isolated by those skilled in the art by generally known methods. For example, hybridization technology (Southern, EM., J MoI Biol, 1975, 98, 503.) and polymerase chain reaction (PCR) technology (Saiki, RK. Eta, Science, 1985, 230, 1350., Saiki, RK. Et al., Science 1988, 239, 487.). That is, a DNA consisting of the nucleotide sequence of SEQ ID NO: 1 or 3 or a part thereof is used as a probe, and an oligonucleotide that specifically hybridizes to the DNA consisting of the nucleotide sequence of SEQ ID NO: 1 or 3 is used.
  • hybridization technology Southern, EM., J MoI Biol, 1975, 98, 503.
  • PCR polymerase chain reaction
  • isolation of DNA having high homology to DNA consisting of the nucleotide sequence of SEQ ID NO: 1 or 3 from another plant can be usually performed by those skilled in the art.
  • a DNA that can be isolated by the hybridization technique or the PCR technique and that hybridizes with the DNA consisting of the nucleotide sequence of SEQ ID NO: 1 or 3 is also included in the DNA of the present invention.
  • a hybridization reaction is preferably performed under stringent conditions.
  • the stringent hybridization conditions refer to the conditions of 6M urea, 0.4% SDS, 0.5 ⁇ SSC, or equivalent hybridization conditions of stringency. Under conditions of higher stringency, for example, 6M urea, 0.4% SDS, and 0.1 ⁇ SSC, it is expected that more homologous DNA can be isolated.
  • the DNA thus isolated is considered to have high affinity with the amino acid sequence of SEQ ID NO: 2 or 4 at the amino acid level.
  • High homology refers to sequence identity of at least 70% or more, preferably 80% or more, more preferably 90% or more, and most preferably 95% or more in the entire phenolic acid sequence.
  • the present invention also provides a DNA encoding a protein structurally similar to the above-described CIGR1 protein and CIGR2 protein of the plant.
  • Examples of such DNA include a DNA encoding a protein consisting of an amino acid sequence in which one or more amino acids have been substituted, deleted, added, and / or inserted in the protein.
  • Methods well known to those skilled in the art for preparing the above-mentioned DNA include the above hybridization technology (Southern, EM., J Mol Biol, 1975, 98, 503.) ⁇ Polymerase chain reaction (PCR) technology (Saiki, RK. Et al., Science, 1985, 230, 1350., Saiki, RK. Et al., Science, 1988, 239, 487.) And a method for introducing a mutation by a site-directed mutagenesis method (Kramer, W. & Fritz, HJ., Methods Enzymol, 1987, 154, 350.). Also, in nature, it is possible that the amino acid sequence of the encoded protein changes due to a mutation in the base sequence. Further, even if the nucleotide sequence is mutated, the mutation may not be accompanied by mutation of an amino acid in the protein (degenerate mutation), and such a degenerate mutant DNA is also included in the present invention.
  • the DNA of the present invention includes genomic DNA, cDNA, and chemically synthesized DNA. genome! Preparation of NA and cDNA can be carried out by a person skilled in the art using conventional means. Genomic DNA can be obtained, for example, by extracting genomic DNA from a plant having a gene encoding the CIGR1 protein and CIGR2 protein of the above-mentioned plant, and using a genomic library (vectors such as plasmid, phage, cosmid, BAC, PAC, etc.) Can be used, developed, and subjected to colony hybridization or plaque hybridization using a probe prepared based on the DNA encoding the protein. It can be prepared.
  • a genomic library vectors such as plasmid, phage, cosmid, BAC, PAC, etc.
  • cDNA for example, a cDNA is synthesized based on mRNA extracted from a plant having a gene encoding the protein, and the cDNA is inserted into a vector such as ⁇ ZAP to prepare a cDNA library. It can be prepared by developing and performing colony hybridization or plaque hybridization in the same manner as described above, or by performing PCR.
  • the DNA of the present invention can be used, for example, for the preparation of recombinant proteins and for the production of transformed plants whose phenotype has been modified by controlling their expression.
  • the DNA of the present invention is introduced into an appropriate expression vector, the vector is introduced into appropriate cells, and the protein expressed by culturing the transformed cells is expressed. Purify.
  • the recombinant protein can be expressed as a fusion protein with another protein for the purpose of facilitating purification. For example, a method of preparing a fusion protein with a maltose binding protein using E.
  • coli as a host (vector pMA-release released by New England BioLabs, USA), a method of preparing a fusion protein with dalyuthione-S-transferase (GST) (Amersham Pharmacia Biotech's vector pGEX series) and a method of adding a histidine tag to prepare (Novagen's pET series) can be used.
  • GST dalyuthione-S-transferase
  • Novagen's pET series a host cell suitable for expressing the recombinant protein
  • yeast, various animal and plant cells, insect cells, and the like can be used by changing the expression vector.
  • Various methods known to those skilled in the art can be used for introducing the vector into the host cell. For example, for introduction into E. coli, an introduction method using calcium ions (
  • the recombinant protein expressed in the host cell can be purified and recovered from the host cell or its culture supernatant by a method known to those skilled in the art.
  • affinity purification can be easily performed.
  • the protein encoded by the DNA of the present invention thus produced is also included in the present invention.
  • an antibody that binds to the protein can be prepared.
  • a polyclonal antibody is prepared from a serum obtained by immunizing an immunized animal such as a rabbit with a purified protein of the present invention or a partial peptide thereof, collecting blood after a certain period of time, and removing the blood clot.
  • the monoclonal antibody is obtained by fusing the antibody-producing cells of the animal immunized with the above protein or peptide with bone tumor cells, isolating a single-clonal cell (hybridoma) producing the desired antibody, It can be prepared by obtaining antibodies from cells. The antibody thus obtained can be used for purification and detection of the protein of the present invention.
  • Antibodies of the present invention include antisera, polyclonal antibodies, monoclonal antibodies, and fragments of these antibodies.
  • the DNA of the present invention is inserted into an appropriate vector, and this is introduced into plant cells, and the resulting transformant is obtained. Regenerate plant cells.
  • the DNA for suppressing the expression of the DNA of the present invention is inserted into an appropriate vector, and this is introduced into a plant cell, whereby the transformed plant cell obtained is regenerated.
  • suppression of the expression of the DNA of the present invention includes suppression of transcription of a gene and / or suppression of translation into a protein. It also includes a decrease in expression as well as a complete cessation of DNA expression.
  • Preferred embodiments of the DNA for suppressing the expression of the DNA of the present invention include antisense nucleic acids complementary to the transcript of the DNA of the present invention and a lipozyme that specifically cleaves the transcript of the DNA of the present invention.
  • examples include nucleic acids having an activity, nucleic acids that suppress the expression of the DNA of the present invention by the RNAi effect or co-suppression effect, and DNAs encoding proteins having a dominant-negative trait to the transcript of the DNA of the present invention. be able to.
  • nucleic acid means RNA or DNA.
  • the action of the antisense nucleic acid to suppress the expression of the target gene has several factors as follows. In other words, inhibition of transcription initiation due to triplex formation, inhibition of transcription by formation of a hybrid with a site where an open loop structure was locally formed by RNA polymerase, transcription inhibition by formation of a hybrid with RNA that is undergoing synthesis, intron Of splicing by hybrid formation at splice point with exon, splicing by hybrid formation with spliceosome formation site Inhibition, inhibition of translocation from the nucleus to the cytoplasm by hybridization with mRNA, inhibition of splicing by formation of octibride with the capping site or poly (A) addition site, inhibition of translation initiation by formation of octiprid with the translation initiation factor binding site Translation inhibition by the formation of a hybrid with the ribosome binding site near the start codon, inhibition of peptide chain elongation by the formation of eight hybrids with the translation region of mRNA and polysome binding site, and formation
  • antisense nucleic acids suppress target gene expression by inhibiting various processes such as transcription, splicing and translation (Hirashima and Inoue, Shinsei Kagaku Kenkyusho 2 Nucleic acid IV gene replication and expression, Japan Biochemical Society, Tokyo Chemistry Dojin, 1993, 319-347.)
  • the antisense nucleic acid used in the present invention may suppress the expression of the target gene by any of the above actions.
  • designing an antisense sequence complementary to the untranslated region near the 5 'end of the mRNA of the gene is considered to be effective in inhibiting translation of the gene.
  • a sequence complementary to the coding region or the 3 ′ untranslated region can also be used.
  • the nucleic acid containing the antisense sequence of the sequence of the untranslated region as well as the translated region of the gene is also included in the antisense nucleic acid used in the present invention.
  • the antisense nucleic acid to be used is connected downstream of a suitable promoter, and preferably a sequence containing a transcription termination signal is connected on the 3 'side.
  • the nucleic acid thus prepared can be transformed into a desired plant by using a known method.
  • the sequence of the antisense nucleic acid is preferably a sequence complementary to the endogenous gene of the plant to be transformed or a part thereof, but is not completely complementary as long as gene expression can be effectively suppressed. You may.
  • the transcribed RNA has preferably 90% or more, and most preferably 95% or more complementarity to the transcript of the target gene.
  • the length of the antisense nucleic acid is at least 15 bases or more, preferably 100 bases or more, and more preferably 500 bases or more.
  • Commonly used antisense nucleic acids Is less than 5 kb, preferably less than 2.5 kb.
  • Liposomes refer to RNA molecules that have catalytic activity. Although there are various lipozymes with various activities, studies focusing on lipozymes as RNA-cleaving enzymes have made it possible to design lipozymes that cleave RNA in a site-specific manner. Some liposomes have a size of 400 nucleotides or more, such as the group I intron type and Ml RNA contained in RNase P, but have an active domain of about 40 nucleotides called hammerhead-hairpin type. There are also others (Makoto Koizumi and Eiko Otsuka, Protein Nucleic Acid Enzyme, 1990, 35, 2191.).
  • the self-cleaving domain of the hammerhead lipozyme cleaves the 3 'side of C15 in the sequence G13U14C15, but its activity is based on the base pairing of U14 and A9, and A15 or A15 or It has been shown that U15 can also be cleaved (Koizumi, M. ei al., FEBS Lett, 1988, 228, 228.).
  • a lipozyme in which the substrate binding site is complementary to the RNA sequence near the target site it is possible to create a restriction enzyme RNA cleavage lipozyme that recognizes the sequence UC, UU or M in the target RNA (Koi Zumi, M.
  • Hairpin liposomes are also useful for the purpose of the present invention.
  • This lipozyme is found, for example, in the minus strand of satellite RNA of tobacco ring spot virus (Buzayan, JM., Nature, 1986, 323, 349.). It has been shown that target-specific RNA-cleaving liposomes can also be produced from hairpin-type liposomes (Kikuchi, Y. & Sasaki, N., Nucl Acids Res, 1991, 19, 6751., Hiroshi Kikuchi, Chemistry Organisms, 1992, 30, 112.).
  • the lipozyme designed to cleave the target is linked to a promoter and transcription termination sequence, such as the cauliflower mosaic virus 35S promoter, so that it is transcribed in plant cells.
  • a promoter and transcription termination sequence such as the cauliflower mosaic virus 35S promoter
  • lipozyme activity may be lost, but in such cases, RNA containing the transcribed ribozyme may be lost.
  • another trimming ribozyme that acts in cis on the 5 'or 3' side of the lipozyme portion in order to accurately cut out only the ribozyme portion from liposome (Taira, K. et al., Protein Eng, 1990,
  • RNAi RNA interference
  • RNAi refers to a phenomenon in which when a double-stranded RNA having a sequence identical or similar to the target gene sequence is introduced into cells, the expression of both the introduced foreign gene and the target endogenous gene is suppressed.
  • the target gene is degraded when the initially introduced double-stranded RNA is broken down into small pieces and serves as an indicator of the target gene in some way.
  • RN Ai is also known to be effective in plants (Chuang, CF.
  • CIGR1 gene in plants In order to suppress the expression of CIGR2 gene by RNAi, CIGR1 gene or CIGR2 gene, or double-stranded RNA having a sequence similar to these 13375
  • RNAi can be introduced into the target plant.
  • the gene used for RNAi need not be exactly the same as the target gene, but at least 70% or more, preferably 80% or more, more preferably 90% or more, and most preferably 95% or more sequence identity. Having. In addition, the identity of the sequence can be determined by the method described above.
  • Co-suppression refers to the phenomenon in which when a gene having the same or similar sequence as the target endogenous gene is introduced into a plant by transformation, the expression of both the introduced foreign gene and the target endogenous gene is suppressed. Point to. Although the details of the mechanism of co-suppression are not clear, it is thought that at least part of the mechanism overlaps with the mechanism of RNAi. Cosuppression is also observed in plants (Smyth, DR., Curr Biol, 1997, 7, R793., Martinssen, R., Curr Biol, 1996, 6, 810.).
  • the purpose is to use a CIGR1 gene or a CIGR2 gene or a vector DNA prepared to express a DNA having a sequence similar thereto. May be transformed into the plant.
  • the gene used for co-suppression does not have to be exactly the same as the target gene, but at least 70%, preferably 80%, more preferably 90%, and most preferably 95% or more of the sequence. Have the same identity.
  • the sequence identity can be determined by the method described above.
  • the suppression of the expression of the endogenous gene in the present invention can also be achieved by transforming a gene encoding a protein having a dominant negative trait with respect to the protein encoded by the target gene into a plant.
  • a gene encoding a protein having a dominant negative trait has a function of eliminating or reducing the activity of an endogenous wild-type protein inherent in a plant by expressing the gene. Refers to a gene.
  • the present invention also provides a vector containing the above DNA or nucleic acid, a transformed plant cell carrying the vector, a transformed plant containing the transformed plant cell, the transformed plant A transgenic plant which is a progeny or clone of the present invention; and a propagation material for the transgenic plant.
  • the present invention relates to the above-mentioned method for producing a transformed plant, comprising a step of introducing the DNA or nucleic acid of the present invention or the vector of the present invention into a plant cell, and regenerating the plant from the plant cell. Provide a way.
  • the introduction of the DNA or nucleic acid of the present invention into plant cells can be carried out by those skilled in the art by known methods, for example, the agrobacterium method, the electroporation method (elect mouth poration method), and the particle gun method. Can be.
  • the above-mentioned agrobacterium method for example, the method of Nagel et al. (Microbiol. Lett., 1990, 67, 325.) is used.
  • the recombinant vector is transformed into Agrobacterium bacteria, and the transformed Agrobacterium is then introduced into plant cells by a known method such as a leaf disk method.
  • the above-mentioned vector contains an expression promoter so that, for example, after introduction into a plant, the DNA of the present invention is expressed in the plant.
  • a DNA of the present invention is located downstream of the promoter, and a terminator is located downstream of the DNA.
  • the recombinant vector used for this purpose is appropriately selected by those skilled in the art according to the method of introduction into the plant or the type of the plant.
  • the promoter include CaMV35S derived from cauliflower mosaic virus and corn ubiquitin promoter (JP-A-2-79983).
  • the terminator may be, for example, a luciferase from cauliflower mosaic virus or a terminator derived from a nopaline synthase gene. But not limited to these. '
  • the plant into which the DNA or nucleic acid of the present invention is introduced may be an explant, or cultured cells may be prepared from these plants and introduced into the obtained cultured cells.
  • the “plant cells” of the present invention include plant cells such as leaves, roots, stems, flowers and scutellum in seeds, P details 75
  • the above-mentioned recombinant vector contains a suitable selection marker gene or a plasmid vector containing a selection marker gene. It is preferable to introduce the DNA into a plant cell together.
  • Selectable marker genes used for this purpose include, for example, the hygromycin phosphotransferase gene, which is resistant to the antibiotic hidalomycin, the neomycin phosphotransferase, which is resistant to kanamycin or genyumycin, and the herbicide phosphinothricin Acetyltransferase gene and the like.
  • the plant cells into which the recombinant vector has been introduced are placed on a known selection medium containing an appropriate selection agent and cultured according to the type of the introduced selection gene. As a result, transformed plant culture cells can be obtained.
  • a plant is regenerated from the transformed cell into which the DNA or nucleic acid of the present invention has been introduced.
  • Plant regeneration can be performed by a method known to those skilled in the art depending on the type of plant cell (Toki. Et al., Plant Physiol, 1995, 100, 1503-1507.).
  • a method for producing a transformed plant is to introduce a gene into protoplasts using polyethylene glycol to regenerate the plant (Datta, S K).
  • the plant regenerated from the transformed cells is then cultured in a conditioned medium. Thereafter, when the regenerated acclimated plant is cultivated under normal cultivation conditions, a plant can be obtained, which can be matured and fruited to obtain a seed.
  • the presence of the introduced foreign DNA or nucleic acid in the transformed and cultivated transformed plant is determined by a known PCR method or Southern hybridization method, or by the nucleic acid in the plant. It can be confirmed by analyzing the nucleotide sequence of the DNA. In this case, extraction of DNA or nucleic acid from the transformed plant was carried out according to the known method of L Sambrook et al. (Molecular Cloning, Second Edition, Cold Spring Harbor Laboratory Pres s, 1989). can do.
  • an amplification reaction is performed using the nucleic acid extracted from the regenerated plant as described above.
  • the nucleic acid of the present invention is DNA
  • a synthesized oligonucleotide having a base sequence appropriately selected according to the base sequence of the DNA is used as a primer, and these are mixed in a reaction mixture.
  • an amplification reaction can be performed.
  • the denaturation, annealing, and extension reactions of DNA are repeated several tens of times, an amplification product of a DNA fragment containing the DNA sequence of the present invention can be obtained.
  • the reaction solution containing the amplification product is subjected to, for example, agarose electrophoresis, various amplified DNA fragments are fractionated, and it is possible to confirm that the DNA fragments correspond to the DNA of the present invention. is there.
  • progeny can be obtained from the plant by sexual or asexual reproduction. It is also possible to obtain a propagation material (for example, seeds, fruits, cuttings, tubers, tubers, strains, calli, protoplasts, etc.) from the plant, its progeny, or a loan, and mass-produce the plant based on them. It is possible.
  • FIG. 1 is a diagram showing a comparison between the amino acid sequences encoded by the CIGR1 gene and the CIGR2 gene and the GRAS family.
  • SLR (OsGAI) represents inezbererin signal repressor (SEQ ID NO: 5), and Tomato Ls represents tomato axillary bud suppressor (SEQ ID NO: 6). Amino acids conserved in all four types are indicated by *, and amino acids conserved in all three types are indicated by ⁇ .
  • FIG. 2 is a diagram showing a continuation of FIG.
  • FIG. 3 is a photograph showing the results of genomic Southern hybridization of the CIGR1 gene and the CIGR2 gene.
  • A indicates the CIGR1 gene.
  • B indicates the CIGR2 gene.
  • FIG. 4 is a diagram showing an evolved lineage of the CIGR1 gene and the CIGR2 gene at the amino acid level.
  • AtSCR is arabidopsis Scarecrow
  • At SCLn is a Scarecrow-like gene
  • AtG RS is a gene of unknown function similar to AtGAI
  • AtGRA is a gibberellin sig of arabidopsis
  • OsSLR is a gibberellin signal repressor in rice
  • Tomato Ls is an axillary bud suppressor in tomato
  • an arabidopsis light signaling factor AtSCL21 is a Scarecrow-like gene in arabidopsis (function unknown)
  • CIGR2 is the rice gene reported in this study
  • AtSCL13 is the Scarecrow-like gene of Arabidopsis (function unknown)
  • AtSCL5 is the Scarecrow-like gene of Arabidopsis (function unknown)
  • CIGR1 is the rice gene reported in this study.
  • FIG. 5 is a photograph showing nuclear localization of CIGR1 and CIGR2 genes.
  • the 35SZCIGR1 / GFP or 35SZCIGR2 / GFP fusion gene was introduced into onion epidermal cells by the particle gun method and observed with a laser confocal microscope.
  • the 35SZ0FP fusion gene was used as a control.
  • a represents 35S / GFP
  • b represents 35S / CIGR1 / GFP
  • c represents 35S / CIGR2 / GFP.
  • FIG. 6 is a photograph showing the responsiveness of the CIGR1 gene and the CIGR2 gene to chitin oligomers.
  • a shows the time course (minute) of expression by chitin heptamer treatment.
  • b shows the inducing activity of chitin and chitosan oligomers.
  • FIG. 7 is a photograph showing the effect of 2,4D on the GA3 response of CIGR1 and CIGR2 genes. The time indicates the time after the GA3 treatment.
  • FIG. 8 is a diagram and a photograph showing the effect of GA3 concentration on the induction of the expression of CIGR1 gene and CIGR2 gene.
  • a is a photograph showing the results of Northern blot hybridization analysis of total RNA extracted after treating each concentration (unit: molar concentration) of GA3 for 10 minutes.
  • b is a diagram showing the result of quantifying the signal of a by the image analyzer. The square indicates the CIGR1 gene, and the open triangle indicates the CIGR2 gene.
  • FIG. 9 is a diagram and a photograph showing the bioactivity and gene expression of gibberellin. Cultured rice cells were treated with active (GA1, GA3, GA4) and inactive (GA13, GA17) gibberellins for 10 minutes to extract total RNA. The results of analysis by the Northern plot hybridization method are shown in photographs.
  • FIG. 10 is a photograph showing the expression of the CIGR1 gene and CIGR2 gene in rice green leaves after GA3 treatment.
  • the rice plants were sprayed with GA3, and three or four leaves were sampled following the time course.
  • FIG. 11 is a photograph showing the effect of a protein phosphorylation inhibitor on the elicitor response and the gibberellin response.
  • Rice culture cells Rice culture cells are germinated rice (Oryza sat iva cv Nipponbare ) The seeds were induced on N6 agar medium containing 1 PPM of 2,4D (auxin; 2,4-dichlorophenoxyacetic acid) and subcultured in N6 liquid medium as follows. Once a week, about 1 ml of fresh volume of cells was subcultured into 150 ml of N6 medium. Once every two weeks, an operation to reduce the cell mass through a 20-mesh wire mesh was performed. The cells to be subjected to Northern blot RNA extraction were not shaken, but were used by shaking and culturing cells subcultured in 30 ml of medium for 4 to 6 days.
  • 2,4D auxin; 2,4-dichlorophenoxyacetic acid
  • RNA modification for Northern hybridization was performed by the Dalioxal method. 'Add 10 g total A (3.7 ⁇ 1) to 2.71 glyoxal (final concentration 1M), 1.6 l sodium phosphate ( ⁇ 70, final concentration 10 mM), 81 Methyl sulfoxide (added to a final concentration of 50, incubated at 50 for 1 hour, and then electrophoresed in 1.4% agarose (10 mM sodium phosphate, pH 7.0). The RNA was immobilized on the membrane by blotting on membrane hydodyne A) and treating at 80 ° C for 2 hours.
  • the hybridization was 50% formamide, 0.1% SDS, 0.1 mg / ml salmon sperm DNA, 5xSSPE (0.9M NaCl, 50mM sodium phosphate, 5mMEDTA pH7.4), 5x denhalt solution (0.1% bovine serum albumin, 0.1% Twenty-two nights at 42 ° C in ficoll, 0.1% polyvinylpyrrolidone), then twice in 0.1xSSC (15mM NaCl, 1.5mM sodium citrate) for 5 minutes at room temperature and twice for 30 minutes at 65 ° C After washing, it was exposed to X-ray film.
  • 5xSSPE 0.M NaCl, 50mM sodium phosphate, 5mMEDTA pH7.4
  • 5x denhalt solution 0.1% bovine serum albumin, 0.1% Twenty-two nights at 42 ° C in ficoll, 0.1% polyvinylpyrrolidone
  • 0.1xSSC 15mM NaCl, 1.5mM sodium citrate
  • a microchip http: ⁇ cdnaOl.dna.aifrc.g0.jp / RMOS / index.html
  • a single-strand cDNA probe was prepared by reverse transcription of poly (A) -RNA extracted from cells treated with Elysium-untreated and treated for 15 minutes in the presence of cy5-dCTP, and the results were analyzed using an array scanner (Microarray scanner FLA8000 ( Fuj if ilm)).
  • genes (SLR, OsGAI) considered to be gibberellin signal liberators have recently been reported (Ogawa, M., Kusano, T., Kaisumi, M., and Sano, H Rice gibberell in-insensitive gene homo log, OsGAI, encodes a nuclear-loicalized protein capable of gene activation at transc riptional level.Gene, 2000, 245, 21-29.Ikeda, A., Ueguchi-Tanaka, M., Sonoda, Y., Kitano, H., Kos ioka, M., Futsuhara, Y., Matsuoka, M., and Y amaguchi, J.
  • slender rice a constitutive gibberellin response mutant, is caused by a null mutation of the SLRl gene, an ortholog of the height-regulating gene GAI / RGA / RHT / D8.
  • the Plant Cell 2001, 13, 999-1010.
  • C72495 is referred to as CIGR1 gene (base sequence is described in SEQ ID NO: 1, amino acid sequence is described in SEQ ID NO: 2)
  • AU94860 is referred to as CIGR2 gene (base sequence is described in SEQ ID NO: 3, amino acid sequence is described in SEQ ID NO: 4) Named.
  • the homology between the two at the nucleotide level was 57%, and the homology at the amino acid sequence level was 40%.
  • genomic Southern hybridization both genes were considered to be present in one copy each (Fig. 3).
  • Figure 4 shows putative molecular evolution lines of both gene products and the GRAS family gene product whose structure has been elucidated so far.
  • the CIGR2 gene was considered to be more closely related to the Arabidopsis At SCL5 than the CIGR1 gene.
  • Gibberellin signal repressors form a subfamily, suggesting that rice OsGAI (SLR) is closely related to CIGR1 gene.
  • GRAS family 1 gene products are thought to be transcriptional regulators, but no information has been obtained on how they are involved in regulating gene expression.
  • Arabidopsis Scarecrow does not have a typical nuclear translocation signal, it was presumed to be a transcription factor because of its high N-terminal serine, threonine, proline, and glutamine.
  • Both the CI GR1 gene and the CI GR2 gene were identified as elicitor-responsive genes by DNA microarray analysis. Therefore, the elicitation response of both genes was analyzed by the Northern blot hybridization method. In both genes, a significant increase in mRNA levels was observed 5 minutes after treatment with chitin heptamer, and expression levels continued to increase until 90 minutes (Fig. 6a). Previous studies have shown that chitin oligomer activity on rice depends on its size, with the 7- or 8-mer having the strongest activity and the deacetylated chitosan oligomer having extremely low activity. Has become clearer.
  • Tsukada et al. Compared elicitor-responsive responses in calli derived from seeds of the dl line with those of the wild type in detail, and showed that there was no significant difference (Tsukada, K., Ishizak a, M., Fujisawa, Y., Iwasaki, ⁇ ., Yamaguchi, ⁇ ., Mmami, ⁇ ., And Shibuya, ⁇ .Rice receptor for chitin oligosaccharide elicitor does not couple to heterotrimeric G— protein: Elicitor responses of suspension cultured ri ce cells from Daikoku dwarf ( dl) mutants lacking a functional G-protein ⁇ -subunit. Physiol. Plantrum, 2002, 116, 373-382).
  • Figure 8 shows the effect of GA3 concentration on the induction of expression of both these genes.
  • the expression of both genes started to be induced by GA3 treatment of 10_3 ⁇ 4, and reached almost saturated by 103 ⁇ 4.
  • Vishnevetsky et al. (Vishnevetsky, M., Ovadis, M., Itzhaki, ⁇ ., A nd Vains tein, A. CHRC, encoding a chromoplas t-spec if ic carotenoid-assoc i ated protein, is an early gibberel l ie acid-respons ive gene. J. Biol . Che m.
  • Gibberellin unlike auxin and cytokinin, is defined as a compound with an ent gibberane skeleton rather than a physiological activity, and therefore has a large difference in its activity.
  • GA3 the expression induction by CI3 of the CIGR1 and IGR2 genes described above based on GA3 is based on its biological activity, or to determine whether the ent gibberane skeleton itself has the activity to induce both genes, (GA1, GA3, GA4), inactive (GA13, GA17) gibberellins (Crozier, A., Kuo, CC, Durley, RC, and Pharis, RP
  • the biol ogical act ivi ties of 26 gibberel l The induction of expression of both these genes by ins in nine plant bioassays.
  • Okadaic acid a protein phosphatase inhibitor, blocks calcium changes, gene expression and cell death induced by gibberellin in Wheat aleurone cells.
  • the Plant Cell 1996, 8, 259-269. Induced by gibberellin of Q! amylase in wheat germ-lon layer specifically by okadaic acid, one of the protein dephosphorylation enzyme inhibitors I found it to be hindered.
  • Okadaic acid is known to inhibit PP1 and PP2B among animal protein phosphatases.
  • the protein kinase inhibitor susubrosporin and K-252-A hardly inhibited the signal transmission from gibberellin to the ⁇ -amylase gene. It was speculated that phosphatase is importantly involved.
  • Labendastin A known as a receptor tyrosine kinase inhibitor, shows almost the same inhibition as okadaic acid, and almost completely inhibits induction by chitin heptamer, but almost completely inhibits induction by GA3 (Fig. 1 1 C).
  • K-252-A which is believed to inhibit both the protein serine / threonine kinase and the protein tyrosine kinase, almost completely inhibited the induction of both genes by chitin heptamer and GA3 (Fig. 11D).
  • the present inventors have provided elicitor and gibberellin responsive plant genes in plants. Elici Yuichi Induces Various Defense-Related Enzyme Genes in Plants And trigger a defensive response. Therefore, the CIGR1 and CIGR2 genes induced by elicitor are greatly expected to be useful in disease-resistant recombinant products.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

植物におけるキチンオリゴ糖エリシターおよびジべレリン応答遺伝子、
並びに、 その利用 技術分野
本発明は、 植物におけるェリシターおよびジベレリン応答遺伝子、 並びに、 そ の利用に関する。 背景技術
DiLaurenzioら (Laurenzio, L. , D. , Wysocka-Diller, J. , Mai amy, J. E. , P ysh, L. , Helariutta, Y., Fres our, G., Hahn, M. G. , Feldmann, K. A., and Benfey, P. N. The SCARECROW gene regulated an asymmetric cell division that is essential for generating the radial organization of the Arabidop sis root. Cell, 1996, 86, 423-433.) はクロモソ一ムウォーキング法により、 シロイヌナズナの根および茎の断面構造形成を司る遺伝子として Scarecrowを単 離しその構造を明らかにした。 この遺伝子はその構造からおそらく転写因子と推 定された。 その後ァラビドプシスの ESTにこれと構造上の類似性をもつ遺伝子が 多数同定され Scarecrowは遺伝子フアミリーを形成していることが明らかにされ た (Pysh, L. D., Wysocka-Diller, J. W. , Camilleri, C. , Bouchez, D. , and Benfey, P. N. The GRAS gene family in Arabidopsis: sequence characteriza tion and basic expression analysis of the SCARECROW-LIKE genes. The Plan t J, 1999, 18, 111-119.) 。
これとは独立に、 ァラビドプシスにおいて植物ホルモンの一つ、 ジベレリンの シグナルを負に制御する遺伝子が 2種類 (GAI、 RGA) 単離され、 その推定アミノ 酸配列のとりわけ C末側約 3分の 2が Scarecrowに有意な相同性を示すことが明らか となった (Peng, J. , Carol, P., Richards, D. E., King, K. E. , Cowling, R. J. Murphy, G. P. , and Harberd, N. P. Genes and Development, 1997, 11, 3194-3205. Silverstone, A. L., Cia即 aglio, C. N., and Sun, T-P. The Arab idopsis RGA gene encodes a transcriptional regulator repressing the gibb erel lin signal transduction pathway. The Plant Cell, 1998, 10, 155-169.
) o
似たようなジベレリンのシグナル制御因子はその後トウモロコシ、 コムギ (Pe ng, J., Richards, D. E. , Hartley, N. M., Murphy, G. P., Devos, K. M. , Fl intham, J. E., Beales, J., Fish, L. J., Worland, A. J., Pelica, F., Sudh akar, D., Christou, P., Snape, J. W. , Gale, M. D., and Harberd, N. P. "G reen revolution" genes encode mutant gibberellin response modulators. Na ture, 1999, 400, 256-261.) 、 イネ (Ogawa, M. , Kusano, T. , Katsumi, M., a nd Sano, H. Rice gibberel lin-insensi tive gene homo log, OsGAI, encodes a nuclear-loicalized protein capable of gene activation at transcriptional level. Gene, 2000, 245, 21-29. Ikeda, A., Ueguchi-Tanaka, M. , Sonoda, Y Kitano, H. , Koshioka, M. , Futsuhara, Y. , Matsuoka, M. , and Yamaguchi,
J. slender rice, a constitutive gibberellin response mutant, is caused by a mill mutation of the SLR1 gene, an ort olog of the height-regulatin g gene GAI/RGA/RHT/D8. The Plant Cell, 2001, 13, 999-1010.) で次々に単離 され、 構造的によく保存されていることが示された。 また、 トマトにおいては腋 芽抑制遺伝子 (Lateral suppressor) の産物が Scarecrowと同じファミリーに属 することが報告された (Schumacher, K. , Schmitt, T., Rossberg, M. , Schmitz , G. , and Theres, K. The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc. Natl. Acad. Sci. U.S.A., 1999, 96, 290-295.) 。
Pyshらはァラビドプシスで見いだされた GAI、 RGA、 Scarecrowの頭文字をとつ てこれらの遺伝子ファミリーを GRASと命名した (Pysh, L. D., Wysocka-Di 1 ler, J. W. , Camilleri, C. , Bouchez, D. , and Benfey, P. N. The GRAS gene fami Iy in Arabidopsis: sequence characterization and basic expression analys is of the SCARECROW-LIKE genes. The Plant J, 1999, 18, 111-119.) 。 GRAS ファミリーのアミノ酸配列は、 相同性の低い N末領域、 ロイシンへプタド構造, V HI ID領域等によつて特徴づけられる。 このような構造は動物や微生物では知られ ておらず、 植物に特有のものである。
ジべレリンシグナルの制御因子は N末付近まで相同性が高く、 特に DELLA配列は ジベレリンのシグナルをキャッチする上で重要な働きをしていることが GAIの遺 伝学的研究から明らかにされている (Herbard, N. P., King, K. , Ε., Carol, Ρ ., Cowling, R. J., Peng, J., and Richards, D. E. BioEssays, 1998, 20, 10 01-1008.) 。
Scarecrowはそのアミノ酸配列中にロイシンジッパー型転写因子にみられる塩 基性アミノ酸領域が含まれ、 また N末 267アミノ酸残基中 44%がグルタミン酸、 セ リン、 スレオニン、 プロリンである等のことから転写因子であろうと推定された
(Laurenzio, L. , D., Wysocka-Di 1 ler, J., Mai amy, J. E. , Pysh, L. , Helari utta, Y. , Freshour, G. , Hahn, M. G., Feldmann, K. A., and Benfey, P. N. The SCARECROW gene regulated an asymmetric cell division that is essenti al for generating the radial organization of the Arabidopsis root. Cell,
1996, 86, 423-433.) 。
最近、 RGAについては GFP融合タンパク質を導入した組換え体において核に蛍光 が局在することから、 核に局在する転写因子であることが強く示唆された (Silv erstone, A. L. , Ciampaglio, C. N. , and Sun, T-P. The Arabidopsis RGA gen e encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. The Plant Cell, 1998, 10, 155-169.) 。
一方、 イネィモチ病菌細胞壁の主要成分の一つ、 キチンのオリゴマー (N-ァ セチルキトオリゴ糖) がイネ培養細胞に対して種々の防御反応を低濃度で誘導す る、 すなわち強力なェリシター (生体防御反応を誘導する物質)として作用する ことが見出された (Yamada, A., Shibuya, N., Kodama, 0., and Akatsuka, T. Induction of phytoalexin formation in suspension-cultured rice cells by N-acetylchi tool igosacchar ides. Biosci. Biotech. Biochem. , 1993, 57, 405- 409.) 。 その過程で、 これまでも知られていた防御関連酵素遺伝子、 PAL、 キチ ナ一ゼ、 ダルカナーゼが発現すること (He, D. -Y. , Yazaki, Y. , Nishizawa, Υ. , Takai, R. , Yamada, K. , Sakano, K. , Shibuya, N. , and Minami, E. Gene ac tivation by cytoplasmic acidification in suspension-cultured rice cells in response to the potent elicitor, N-acethylchi toheptaose. Mol. Plant - M icrobe Int., 1998, 12, 1167-1174. Nishizawa, Y. , Kawakami, A., Hibi, T. , He, D. -Y. , Shibuya, N. , and Minami, E. Regulation of the chitinase gene expression in suspension-cultured rice cells by N-acetylchi tool igosacch arides: differences in the signal transduction pathways leading to the a ctivation of elicitor - responsive genes. Plant Mol. Biol. , 1999, 39, 907- 914.) 、 これ以外により速いタイムコースで EL2、 EL3、 EL5という 3種の新規な初 期遺伝子が発現することを見いだし (Minami, E., Kuchitsu, K. , He, D. -Υ. , Κ ouchi, Η. , Midoh, Ν., Ohtsuki, Υ. , and Shibuya, Ν. Two novel genes rapid ly and transiently activated in suspension - cul tured rice eel Is by treatm ent with N-acetylchi toheptaose, a biotic elicitor for phytoalexin produc tion. Plant Cell Physiol., 1996, 37, 563-567. Takai, R. , Hasegawa, K. , K aku, K. , Shibuya, N. , and Minami, E. Isolation and analysis of expressio n mechanisms of a rice gene, EL5, which shows structural similarity to A TL family from Arabidopsis, in response to N-acetylchi tool igosaccharide elicitor, Plant Sci., 2001, 160, 577-583.) 、 その構造、 発現特性等を明ら かにしてきた。 発明の開示
本発明の目的は、 植物における新規なェリシター応答遺伝子を同定し、 該遺伝 子および該遺伝子が制御された植物を提供することにある。
本発明者は、 上記の課題を解決するために鋭意研究を行った。 まず、 エリシ夕 一応答においては、 多数の遺伝子発現が変化していることが考えられることから
、 1265種類のイネ ESTを貼り付けた DNAマイクロチップを用いてエリシ夕一処理初 期に発現が誘導される遺伝子を探索した。 その際、 イネィモチ病菌細胞壁の主要 成分の一つ、 キ 5^ンのオリゴマー (N -ァセチルキトオリゴ糖) をエリシタ一と して用いた。 その結果、 2種類の Scarecrowファミリーの cDNAを含む 6種類の新規 ェリシター応答性 ESTを同定した。 これらのうち、 2種類の Scarecrow様遺伝子 (C IGR1遺伝子および CIGR2遺伝子と命名) の産物は、 GRASファミリーに特徴的なモ チーフを備えており、 イネでもジべレリンシグナル伝達制御因子以外に GRASファ ミリ一が存在することが初めて示された。 これら 2種類の遺伝子は興味あること に、 イネ懸濁培養細胞においてオーキシン非存在下ではジべレリンに応答してそ の発現が短時間内に誘導された。 ジべレリンは entジべラン骨格をもつ化合物の 総称であるが、 これらの遺伝子発現誘導には活性型ジべレリンのみが有効であつ た。 また、 遺伝子発現に至るシグナル伝達過程ではタンパク質リン酸化、 脱リン 酸化が関与していることが示唆された。 このようなジベレリンによる急激な遺伝 子発現はイネ緑葉においても観察された。
エリシ夕一は、 植物において、 種々の防御関連酵素遺伝子を誘導し、 防御反応 を引き起こすことが知られている。 よって、 エリシタ一によって誘導される CIGR 1¾伝子および CIGR2遺伝子は、 作物に病害抵抗性 付与するにあたり有用である ことが期待される。 また、 ジベレリンは発芽や休眠等作物の重要形質を司るホル モンとして農業上利用されてきたがそれによって制御される転写因子は未報告で あり、 本遺伝子はジベレリンによる有用形質を調節した組み換え作物の作出にお いても有用であることが期待される。
即ち、 本発明は、 植物におけるェリシターおよびジベレリン応答遺伝子、 並び に、 その利用に関し、 より具体的には、
〔1〕 以下の (a) 〜 (d) のいずれかに記載の植物のタンパク質をコードす る DNA、
(a) 配列番号: 1または 3に記載の塩基配列からなる DNA、
(b) 配列番号: 1または 3に記載の塩基配列からなる DNAとストリンジェン トな条件下でハイブリダイズする DNA、
(c) 配列番号: 2または 4に記載のアミノ酸配列からなるタンパク質をコー ドする DNA、
(d) 配列番号: 2または 4に記載のアミノ酸配列において 1または複数のァ ミノ酸が置換、 欠失、 付加、 および Zまたは揷入されたアミノ酸配列からなる夕 ンパク質をコ一ドする DNA、
〔2〕 植物がイネである、 〔1〕 に記載の DNA、
〔3〕 〔1〕 または 〔2〕 に記載の DNAがコードするタンパク質に対してドミ ナントネガティブな形質を有するタンパク質をコードする DNA、
〔4〕 〔1〕 〜 〔3〕 のいずれかに記載の DNAによりコードされるタンパク質
〔5〕 以下の (a) 〜 (d) のいずれかに記載の核酸、
(a) 〔1〕 または 〔2〕 に記載の DNAの転写産物と相補的なアンチセンス核 酸、
(b) 〔1〕 または 〔2〕 に記載の DNAの転写産物を特異的に開裂するリポザ ィム活性を有する核酸、
(c) 〔1〕 または 〔2〕 に記載の DNAの発現を、 共抑制により阻害効果を有 する核酸、
(d) 〔1〕 または 〔2〕 に記載の DNAの発現を、 RNAi効果により阻害効果を 有する核酸、
〔6〕 〔1〕 〜 〔3〕 のいずれかに記載の DNA、 または 〔5〕 に記載の核酸を 含むベクター、
〔7〕 〔1〕 〜 〔3〕 のいずれかに記載の DNA、 〔5〕 に記載の核酸、 または
〔6〕 に記載のベクターを保持する形質転換植物細胞、
〔8〕 〔7〕 に記載の形質転換植物細胞を含む形質転換植物体、
〔9〕 イネ由来である、 〔8〕 に記載の形質転換植物体、
〔1 0〕 〔8〕 または 〔9〕 に記載の形質転換植物体の子孫またはクローンで ある、 形質転換植物体、
〔1 1〕 〔8〕 〜 〔1 0〕 のいずれかに記載の形質転換植物体の繁殖材料、
〔1 2〕 〔8〕 〜 〔1 0〕 のいずれかに記載の形質転換植物体の製造方法であ つて、 〔1〕 〜 〔3〕 のいずれかに記載の DNA、 〔5〕 に記載の核酸、 または 〔 6〕 に記載のベクタ一を植物細胞に導入し、 該植物細胞から植物体を再生させる 工程を含む方法、
〔1 3〕 植物がイネである、 〔1 2〕 に記載の方法、 を提供するものである。 本発明者は、 植物における 2つの新規エリシ夕一応答遺伝子を同定し、 CIGR1遺 伝子および CIGR2遺伝子と命名した。 また、 これらの遺伝子が、 ジベレリンに対 しても応答性を示すことを明らかにした。
本発明は、 植物の CIGR1タンパク質または CIGR2タンパク質をコードする DNAを 提供する。 本発明における上記植物としては、 特に限定されず、 例えば、 穀類、 野菜、 および果樹等の有用農作物、 観葉植物等の鑑賞用植物等が挙げられる。 具 体的には、 該植物として、 イネ、 トウモロコシ、 コムギ、 ォォムギ、 ナタネ、 ダ ィズ、 ヮ夕、 トマト、. ジャガイモ、 キク、 バラ、 カーネーション、 'シクラメン等 を例示することができる。
本発明の上記植物としては、 好ましくはイネを挙げることができる。 イネの CI GR1遺伝子の cDNAの塩基配列を配列番号: 1に、 該 cDNAによってコードされるタ ンパク質のアミノ酸配列を配列番号: 2に示す。 また、 CIGR2遺伝子の cDNAの塩 基配列を配列番号: 3に、 該 cDNAによってコードされるタンパク質のアミノ酸配 列を配列番号: 4に示す。
イネ以外の植物における本発明の DNAは、 当業者においては、 一般的に公知の 方法により単離することが可能である。 例えば、 ハイブリダィゼ一シヨン技術 ( Southern, EM. , J Mo l Biol , 1975, 98, 503. ) やポリメラーゼ連鎖反応 (PCR) 技術 (Saiki , RK. e t aし, Sc ience, 1985, 230, 1350.、 Saiki , RK. e t al . , S c i ence 1988, 239, 487. ) を利用する方法が挙げられる。 すなわち、 配列番号: 1または 3に記載の塩基配列からなる DNAもしくはその一部をプローブとして、 また配列番号: 1または 3に記載の塩基配列からなる DNAに特異的にハイプリダ ィズするオリゴヌクレオチドをプライマ一として、 他の植物から配列番号: 1ま たは 3に記載の塩基配列からなる DNAと高い相同性を有する DNAを単離することは 、 当業者にとって通常行い得ることである。 このように、 ハイブリダィゼ一ショ ン技術や PCR技術によって単離し得る、 配列番号: 1または 3に記載の塩基配列 からなる DNAとハイブリダイズする DNAもまた、 本発明の DNAに含まれる。
このような DNAを単離するためには、 好ましくはストリンジェントな条件下で ハイブリダィゼ一シヨン反応を行う。 本発明においてストリンジェントなハイブ リダィゼーシヨン条件とは、 6M尿素、 0. 4% SDS、 0. 5 X SSCの条件またはこれと 同等のストリンジエンシーのハイブリダィゼーシヨン条件を指す。 よりストリン ジエンシーの高い条件、 例えば、 6M尿素、 0. 4% SDS、 0. 1 X SSCの条件下では、 より相同性の高い DNAを単離できることが期待される。 こうして単離された DNAは 、 アミノ酸レベルにおいて、 配列番号: 2または 4に記載のアミノ酸配列と高い 相崗性を有すると考えられる。 高い相同性とは、 ァ ¾ノ酸配列全体で少なくとも 70%以上、 好ましくは 80%以上、 さらに好ましくは 90%以上、 最も好ましくは 95 %以上の配列の同一性を指す。
アミノ酸配列や塩基配列の同一性は、 カーリンおよびアルチユールによるアル ゴリズム BLAST (Proc. Natl. Acad. Sei. USA, 1990, 87, 2264-2268., Karl in, S. & Altschul, SF., Proc. Natl. Acad. Sei. USA, 1993, 90, 5873.) を用い て決定できる。 BLASTのアルゴリズムに基づいた BLASTNや BLASTXと呼ばれるプロ グラムが開発されている (Altschul, SF. et al., J Mol Biol, 1990, 215, 403 .) 。 BLASTNを用いて塩基配列を解析する場合は、 パラメ一ターは、 例えば score = 100、 wordlength=12とする。 また、 BLASTXを用いてアミノ酸配列を解析する 場合は、 パラメータ一は、 例えば score=50、 wordlength=3とする。 BLASTと Gap ped BLASTプログラムを用いる場合は、 各プログラムのデフォルトパラメーター を用いる。 これらの解析方法の具体的な手法は公知である (http:〃 ww. ncbi.nl m. nih. gov/) 。
また、 本発明は、 上記の植物の CIGR1タンパク質および CIGR2タンパク質と構造 的に類似しているタンパク質をコードする DNAも提供する。 このような DNAとして は、 該タンパク質において 1または複数のアミノ酸が置換、 欠失、 付加、 および /または揷入されたアミノ酸配列からなるタンパク質をコードする DNAが挙げら れる。
上記の DNAを調製するために、 当業者によく知られた方法としては、 上記ハイ ブリダィゼ一シヨン技術 (Southern, EM., J Mol Biol, 1975, 98, 503.) ゃポ リメラ一ゼ連鎖反応 (PCR) 技術 (Saiki, RK. et al., Science, 1985, 230, 13 50.、 Saiki, RK. et al., Science, 1988, 239, 487.) の他に、 例えば、 該 DNA に対し、 site-directed mutagenesis法 (Kramer, W. & Fritz, HJ. , Methods En zymol, 1987, 154, 350.) により変異を導入する方法が挙げられる。 また、 自然 界においても、 塩基配列の変異によりコ一ドするタンパク質のアミノ酸配列が変 異することは起こり得ることである。 また、 塩基配列が変異していても、 その変 異がタンパク質中のアミノ酸の変異を伴わない場合 (縮重変異) があり、 このよ うな縮重変異 DNAも本発明に含まれる。
本発明の DNAには、 ゲノム DNA、 cDNA、 および化学合成 DNAが含まれる。 ゲノム!) NAおよび cDNAの調製は、 当業者にとって常套手段を利用して行うことが可能であ る。 ゲノム DNAは、 例えば、 上記の植物の CIGR1タンパク質および CIGR2タンパク 質をコ一ドする遺伝子を有する植物からゲノム DNAを抽出し、 ゲノミックライブ ラリー (ベクターとしては、 プラスミド、 ファージ、 コスミド、 BAC、 PAC等が利 用できる) を作成し、 これを展開して、 該タンパク質をコードする DNAを基に調 製したプローブを用いてコロ二一ハイブリダイゼーシヨンあるいはプラークハイ ブリダィゼーシヨンを行うことにより調製することが可能である。 また、 上記の 植物の CIGR1タンパク質および CIGR2タンパク質をコードする DNAに特異的なプラ ィマーを作成し、 これを利用した PCRを行うことによって調製することも可能で ある。 また、 cDNAは、 例えば、 該タンパク質をコードする遺伝子を有する植物か ら抽出した mRNAを基に cDNAを合成し、 これを λ ZAP等のベクターに揷入して cDNA ライブラリーを作成し、 これを展開して、 上記と同様にコロニーハイブリダィゼ —シヨンあるいはプラークハイブリダィゼ一シヨンを行うことにより、 また、 PC Rを行うことにより調製することが可能である。
本発明の DNAは、 例えば、 組み換えタンパク質の調製や、 その発現制御により 表現型が改変された形質転換植物体の作出などに利用することが可能である。 組み換えタンパク質を調製する場合には、 通常、 本発明の DNAを適当な発現べ クタ一に揷入し、 該ベクターを適当な細胞に導入し、 形質転換細胞を培養して発 現させたタンパク質を精製する。 組み換えタンパク質は、 精製を容易にするな の目的で、 他のタンパク質との融合タンパク質として発現させることも可能であ る。 例えば、 大腸菌を宿主としてマルトース結合タンパク質との融合タンパク質 として調製する方法 (米国 New England BioLabs社発売のベクター pMAぃンリーズ ) 、 ダル夕チオン- S -トランスフェラーゼ (GST)との融合タンパク質と ύて調製す る方法 (Amersham Pharmacia Biotech社発売のベクター pGEXシリーズ) 、 ヒスチ ジンタグを付加して調製する方法 (Novagen社の pETシリーズ) などを利用するこ とが可能である。 宿主細胞としては、 組み換えタンパク質の発現に適した細胞で あれば特に制限はなく、 上記の大腸菌の他、 発現ベクターを変えることにより、 例えば、 酵母、 種々の動植物細胞、 昆虫細胞などを用いることが可能である。 宿 主細胞へのベクターの導入には、 当業者に公知の種々の方法を用いることが可能 である。 例えば、 大腸菌への導入には、 カルシウムイオンを利用した導入方法 (
Mandel, M. & Higa, A. , Journal of Molecular Biology, 1970, 53, 158-162. 、 Hana an, D. , Journal of Molecular Biology, 1983, 166, 557-580. ) を用い ることができる。 宿主細胞内で発現させた組み換えタンパク質は、 該宿主細胞ま たはその培養上清から、 当業者に公知の方法により精製し、 回収することができ る。 組み換えタンパク質を上記したマルトース結合タンパク質などとの融合タン パク質として発現させた場合には、 容易にァフィ二ティ一精製を行うことが可能 である。 このようにして作製される本発明の DNAによってコードされるタンパク 質もまた、 本発明に含まれる。
得られた組み換えタンパク質を用いることにより、 これに結合する抗体を調製 することも可能である。 例えば、 ポリクロ一ナル抗体は、 精製した本発明のタン パク質若しくはその一部のペプチドをゥサギなどの免疫動物に免疫し、 一定期間 の後に血液を採取し、 血べいを除去した血清より調製することが可能である。 ま た、 モノクローナル抗体は、 上記タンパク質若しくはペプチドで免疫した動物の 抗体産生細胞と骨腫瘍細胞とを融合させ、 目的とする抗体を産生する単一クロー ンの細胞 (ハイプリドーマ) を単離し、 該細胞から抗体を得ることにより調製す ることができる。 これにより得られた抗体は、 本発明のタンパク質の精製や検出 などに利用することが可能である。 本発明の抗体には、 抗血清、 ポリクローナル 抗体、 モノクローナル抗体、 およびこれら抗体の断片が含まれる。
本 ¾明の DNAを発現する形質転換植物体を作製する場合には、 本発明の DNAを適 当なベクタ一に挿入して、 これを植物細胞に導入し、 これにより得られた形質転 換植物細胞を再生させる。
また、 本発明の DNAの発現が抑制された形質転換植物体を作製する場合には、 本発明の DNAの発現を抑制するための DNAを適当なベクターに揷入して、 これを植 物細胞に導入し、 これにより得られた形質転換植物細胞を再生させる。 「本発明 の DNAの発現抑制」 には、 遺伝子の転写の抑制、 および/またはタンパク質への 翻訳の抑制が含まれる。 また、 DNAの発現の完全な停止のみならず発現の減少も 含まれる。
本発明の DNAの発現を抑制するための DNAの好ましい態様としては、 本発明の DN Aの転写産物と相捕的なアンチセンス核酸、 本発明の DNAの転写産物を特異的に開 裂するリポザィム活性を有する核酸、 RNAi効果または共抑制効果により本発明の DNAの発現を抑制する核酸、 および、 本発明の DNAの転写産物に対してドミナント ネガティブな形質を有するタンパク質をコードする DNA等を例示することができ る。 本発明において 「核酸」 とは RNAまたは DNAを意味する。
植物における特定の内在性遺伝子の発現を抑制する方法としては、 アンチセン ス技術を利用する方法が当業者に最もよく利用されている。 植物細胞におけるァ ンチセンス効果は、 電気穿孔法で導入したアンチセンス核酸が植物においてアン チセンス効果を発揮することをエッカーらが示したことで初めて実証された (Ec ker, JR. & Davi s, RW. , Proc Nat l Acad Sc i USA, 1986, 83, 5372. ) 。 その後 、 タバコやペチュニアにおいてもアンチセンス核酸の発現により標的遺伝子の発 現が低下した例が報告されており (van der Kro l AR. et ah , Nature, 1988, 3 33, 866. ) 、 現在では、 アンチセンス技術は植物における遺伝子発現を抑制させ る手段として確立している。
アンチセンス核酸が標的遺伝子の発現を抑制する作用としては、 以下のような 複数の要因が存在する。 すなわち、 三重鎖形成による転写開始阻害、 RNAポリメ ラーゼによって局部的に開状ループ構造が作られた部位とのハイプリッド形成に よる転写阻害、 合成の進みつつある RNAとのハイプリッド形成による転写阻害、 イントロンとェキソンとの接合点におけるハイプリッド形成によるスプライシン グ阻害、 スプライソソーム形成部位とのハイブリツド形成によるスプライシング 阻害、 mRNAとのハイブリッド形成による核から細胞質への移行阻害、 キヤッピン グ部位やポリ(A)付加部位との八イブリッド形成によるスプライシング阻害、 翻 訳開始因子結合部位との八ィプリッド形成による翻訳開始阻害、 開始コドン近傍 のリボソーム結合部位とのハイプリッド形成による翻訳阻害、 mRNAの翻訳領域や ポリソーム結合部位との八イブリツド形成によるペプチド鎖の伸長阻害、 および 核酸とタンパク質との相互作用部位とのハイプリッド形成による遺伝子発現阻害 などである。 このようにアンチセンス核酸は、 転写、 スプライシングまたは翻訳 など様々な過程を阻害することで、 標的遺伝子の発現を抑制する (平島および井 上, 新生化学実験講座 2核酸 IV遺伝子の複製と発現, 日本生化学会編, 東京化学 同人, 1993, 319-347. ) 。
本発明で用いられるァンチセンス核酸は、 上記のいずれの作用により標的遺伝 子の発現を抑制してもよい。 一つの態様としては、 遺伝子の mRNAの 5'端近傍の非 翻訳領域に相補的なアンチセンス配列を設計すれば、 遺伝子の翻訳阻害に効果的 と考えられる。 また、 コード領域もしくは 3'側の非翻訳領域に相補的な配列も使 用することができる。 このように、 遺伝子の翻訳領域だけでなく非翻訳領域の配 列のアンチセンス配列を含む核酸も、 本発明で利用されるアンチセンス核酸に含 まれる。 使用されるアンチセンス核酸は、 適当なプロモーターの下流に連結され 、 好ましくは 3'側に転写終結シグナルを含む配列が連結される。 このようにして 調製された核酸は、 公知の方法を用いることで、 所望の植物へ形質転換できる。 アンチセンス核酸の配列は、 形質転換される植物が持つ内在性遺伝子またはその 一部と相補的な配列であることが好ましいが、 遺伝子の発現を有効に抑制できる 限りにおいて、 完全に相補的でなくてもよい。 転写された RNAは、 標的遺伝子の 転写産物に対して好まし は 90%以上、 最も好ましくは 95%以上の相補性 ¾有す る。 アンチセンス核酸を用いて標的遺伝子の発現を効果的に抑制するには、 アン チセンス核酸の長さは少なくとも 15塩基以上であり、 好ましくは 100塩基以上で あり、 さらに好ましくは 500塩基以上である。 通常用いられるアンチセンス核酸 の長さは 5kbよりも短く、 好ましくは 2. 5kbよりも短い。
また、 内在性遺伝子の発現の抑制は、 リボザィム、 またはリポザィムをコード する DNAを利用して行うことも可能である。 リポザィムとは触媒活性を有する RNA 分子のことを指す。 リポザィムには種々の活性を有するものが存在するが、 中で も RNAを切断する酵素としてのリポザィムに焦点を当てた研究により、 RNAを部位 特異的に切断するリポザィムの設計が可能となった。 リポザィムには、 グループ Iイントロン型や RNase Pに含まれる Ml RNAのように 400ヌクレオチド以上の大き さのものもあるが、 ハンマーへッド型ゃヘアピン型と呼ばれる 40ヌクレオチド程 度の活性ドメインを有するものもある (小泉誠および大塚栄子, 蛋白質核酸酵素 , 1990, 35, 2191. ) 。
例えば、 ハンマーヘッド型リポザィムの自己切断ドメインは、 G13U14C15とい う配列の C15の 3'側を切断するが、 その活性には U14と A9との塩基対形成が重要と され、 C15の代わりに A15または U15でも切断され得ることが示されている (Ko izu mi , M. ei al ., FEBS Let t, 1988, 228, 228. ) 。 基質結合部位が標的部位近傍 の RNA配列と相補的なリポザィムを設計すれば、 標的 RNA中の UC、 UUまたは Mとい う配列を認識する制限酵素的な RNA切断リポザィムを作出することができる (Koi zumi , M. e t al . , FEBS Let t, 1988, 239, 285.、 小泉誠および大塚栄子, 蛋白 質核酸酵素, 1990, 35, 2191.、 Koizumi , M. et al . , Nuc l Ac ids Res, 1989, 1 7, 7059. ) 。 例えば、 CIGR1遺伝子または CIGR2遺伝子のコード領域中には、 標的 となり得る部位が複数存在する。
また、 ヘアピン型リポザィムも本発明の目的に有用である。 このリポザィムは 、 例えばタバコリングスポットウィルスのサテライト RNAのマイナス鎖に見出さ れる (Buzayan, JM. , Nature, 1986, 323, 349. ) 。 ヘアピン型リポザィムから も、 標的特異的な RNA切断リポザィムを作出できることが示されている (Kikuchi , Y. & Sasaki , N., Nuc l Ac ids Res, 1991 , 19, 6751.、 菊池洋, 化学と生物, 1992, 30, 112. ) 。 標的を切断できるように設計されたリポザィムは、 植物細胞中で転写されるよ うに、 カリフラワーモザイクウィルスの 35Sプロモータ一などのプロモーターお よび転写終結配列に連結される。 このとき、 転写された RNAの 5'端や 3'端に余分 な配列が付加されていると、 リポザィムの活性が失われることがあるが、 こうい つた場合は、 転写されたリボザィムを含む RNAからリボザィム部分だけを正確に 切り出すために、 リポザィム部分の 5'側や 3'側にシスに働く別のトリミングリボ ザィムを配置させることも可能である (Taira, K. et al., Protein Eng, 1990,
3, 733.、 Dzianott, AM. & Bujarski, JJ., Proc Natl Acad Sci USA, 1989, 8 6, 4823·、 Grosshans, CA. & Cech, TR., Nucl Acids Res, 1991, 19, 3875.、 T aira, K. et al., Nucl Acids Res, 1991, 19, 5125.) 。 また、 このような構成 単位をタンデムに並べ、 標的遺伝子内の複数の部位を切断できるようにすること で、 より効果を高めることもできる (Yuyama, N. et al., Bioc em Biophys Res
Commun, 1992, 186, 1271.) 。 このように、 リポザィムを用いて本発明におけ る標的遺伝子の転写産物を特異的に切断することで、 該遺伝子の発現を抑制する ことができる。
内在性遺伝子の発現の抑制は、 さらに、 標的遺伝子配列と同一もしくは類似し た配列を有する二本鎖 RNAを用いた RNA干渉 (RNA interferance; RNAi) によって も行うことができる。 RNAiとは、 標的遺伝子配列と同一もしくは類似した配列を 有する二重鎖 RNAを細胞内に導入すると、 導入した外来遺伝子および標的内在性 遺伝子の発現がいずれも抑制される現象のことを指す。 RNAiの機構の詳細は明ら かではないが、 最初に導入した二本鎖 RNAが小片に分解され、 何らかの形で標的 遺伝子の指標となることにより、 標的遺伝子が分解されると考えられている。 RN Aiは植物においても効果を奏することが知もれている (Chuang, CF. & Meyerowi tz, EM" Proc Natl Acad Sci USA, 2000, 97, 4985.) 。 例えば、 植物体におけ る CIGR1遺伝子または CIGR2遺伝子の発現を RNAiにより抑制するためには、 CIGR1 遺伝子もしくは CIGR2遺伝子、 または、 これらと類似した配列を有する二本鎖 RNA 13375
1 6
を目的の植物へ導入すればよい。 RNAiに用いる遺伝子は、 標的遺伝子と完全に同 一である必要はないが、 少なくとも 70%以上、 好ましくは 80%以上、 さらに好ま しくは 90%以上、 最も好ましくは 95%以上の配列の同一性を有する。 また、 配列 の同一性は上述した手法により決定できる。
内在性遺伝子の発現の抑制は、 標的遺伝子配列と同一もしくは類似した配列を 有する DNAの形質転換によって起こる共抑制によっても達成できる。 「共抑制」 とは、 植物に標的内在性遺伝子と同一もしくは類似した配列を有する遺伝子を形 質転換により導入すると、 導入した外来遺伝子および標的内在性遺伝子の発現が いずれも抑制される現象のことを指す。 共抑制の機構の詳細は明らかではないが 、 少なくともその機構の一部は RNAiの機構と重複していると考えられている。 共 抑制も植物において観察される (Smyth, DR. , Curr Bio l, 1997, 7, R793.、 Mar t ienssen, R., Curr Bio l , 1996, 6, 810. ) 。 例えば、 CIGR1遺伝子または CIGR2 遺伝子が共抑制された植物体を得るためには、 CIGR1遺伝子もしくは CIGR2遺伝子 、 または、 これらと類似した配列を有する DNAを発現できるように作製したべク 夕一 DNAを目的の植物へ形質転換すればよい。 共抑制に用いる遺伝子は、 標的遺 伝子と完全に同一である必要はないが、 少なくとも 70%以上、 好ましくは 80%以 上、 さらに好ましくは 90%以上、 最も好ましくは 95 %以上の配列の同一性を有す る。 また、 配列の同一性は上述した手法により決定できる。
さらに、 本発明における内在性遺伝子の発現の抑制は、 標的遺伝子がコードす るタンパク質に対してドミナントネガティブの形質を有するタンパク質をコード する遺伝子を、 植物へ形質転換することによつても達成することができる。 「ド ミナントネガティブの形質を有するタンパク質をコードする遺伝子」 とは、 該遺 伝子を発現させることによって、 植物体が本来持つ内在性の野生型タンパク ¾の 活性を消失もしくは低下させる機能を有する遺伝子のことを指す。
また本発明は、 上記 DNAまたは核酸を含むベクター、 該ベクターを保持する形 質転換植物細胞、 該形質転換植物細胞を含む形質転換植物体、 該形質転換植物体 の子孫またはクローンである形質転換植物体、 および該形質転換植物体の繁殖材 料を提供する。
さらに、 本発明は、 上記の形質転換植物体の製造方法であって、 本発明の DNA または核酸、 あるいは本発明のベクターを植物細胞に導入し、 該植物細胞から植 物体を再生させる工程を含む方法を提供する。
本発明の DNAまたは核酸の植物細胞への導入は、 当業者においては、 公知の方 法、 例えばァグロパクテリゥム法、 電気穿孔法 (エレクト口ポーレーシヨン法) 、 パ一ティクルガン法により実施することができる。
上記ァグロパクテリゥム法を用いる場合、 例えば Nagelらの方法 (Microbiol . Let t. , 1990, 67, 325. ) が用いられる。 この方法によれば、 組み換えベクター をァグロパクテリゥム細菌中に形質転換して、 次いで形質転換されたァグロバク テリゥムを、 リーフディスク法等の公知の方法により植物細胞に導入する。 上記 ベクタ一は、 例えば植物体に導入した後、 本発明の DNAが植物体中で発現するよ うに、 発現プロモーターを含む。 一般に、 該プロモーターの下流には本発明の DN Aが位置し、 さらに該 DNAの下流にはターミネ一夕一が位置する。 この目的に用い られる組み換えべクタ一は、 植物への導入方法、 または植物の種類に応じて、 当 業者によって適宜選択される。 上記プロモーターとして、 例えばカリフラワーモ ザイクウィルス由来の CaMV35S、 トウモロコシのュビキチンプロモ一夕一 (特開 平 2 - 79983号公報) 等を挙げることができる。
また、 上記ターミネータ一は、 カリフラワーモザイクウィルス由来の夕一ミネ —夕一、 あるいはノパリン合成酵素遺伝子由来のターミネータ一等を例示するこ とができるが、 植物体中で機能するプロモーターや夕一ミネ一ターであれば、 こ れらに限定'されない。 '
また、 本発明の DNAまたは核酸を導入する植物は、 外植片であってもよく、 こ れらの植物から培養細胞を調製し、 得られた培養細胞に導入してもよい。 本発明 の 「植物細胞」 は、 例えば葉、 根、 茎、 花および種子中の胚盤等の植物細胞、 力 P 删細 75
1 8
ルス、 懸濁培養細胞等が挙げられる。
また、 本発明の DNAまたは核酸の導入により形質転換した植物細胞を効率的に 選択するために、 上記組み換えベクターは、 適当な選抜マーカ一遺伝子を含む、 もしくは選抜マ一カー遺伝子を含むプラスミドベクタ一と共に植物細胞へ導入す るのが好ましい。 この目的に使用する選抜マーカー遺伝子は、 例えば抗生物質ハ イダロマイシンに耐性であるハイグロマイシンホスホトランスフエラーゼ遺伝子 、 カナマイシンまたはゲン夕マイシンに耐性であるネオマイシンホスホトランス フェラーゼ、 および除草剤ホスフィノスリシンに耐性であるァセチルトランスフ ェラ一ゼ遺伝子等が挙げられる。
組み換えベクターを導入した植物細胞は、 導入された選抜マ一力一遺伝子の種 類に従って適当な選抜用薬剤を含む公知の選抜用培地に置床し培養する。 これに より形質転換された植物培養細胞を得ることができる。
次いで、 本発明の DNAまたは核酸を導入した形質転換細胞から植物体を再生す る。 植物体の再生は植物細胞の種類に応じて当業者に公知の方法で行うことが可 能である (Toki . et al ., Plant Physiol, 1995, 100, 1503-1507. ) 。 例えばィ ネにおいては、 形質転換植物体を作出する手法については、 ポリエチレングリコ ールによりプロトプラストへ遺伝子導入し、 植物体 (インド型イネ品種が適して いる) を再生させる方法 (Dat ta, S K. et al ., In Gene Trans fer To Plants ( Potrykus I and Spangenberg Eds. ) , 1995, 66-74. ) 、 電気パルスによりプロト プラストへ遺伝子導入し、 植物体 (日本型イネ品種が適している) を再生させる 方法 (Toki . et aし, Plant Phys iol , 1992, 100, 1503-1507. ) 、 パーティクル ガン法により細胞へ遺伝子を直接導入し、 植物体を再生させる方法 (Chri s tou, et al . , Bio/technology, 1991, 9, 957-962. ) およびァグロパクテリゥムを介 して遺伝子を導入し、 植物体を再生させる方法 (Hiei. et al. , Plant J, 1994,
6, 271-282. ) 等、 いくつかの技術が既に確立し、 本願発明の技術分野において 広く用いられている。 本発明においては、 これらの方法を好適に用いることがで きる。
形質転換細胞から再生させた植物体は、 次いで順化用培地で培養する。 その後 、 順化した再生植物体を、 通常の栽培条件で栽培すると、 植物体が得られ、 成熟 して結実して種子を得ることができる。
なお、 このように再生され、 かつ栽培した形質転換植物体中の導入された外来 DNAまたは核酸の存在は、 公知の PCR法やサザンハイブリダィゼーション法によつ て、 または植物体中の核酸の塩基配列を解析することによって確認することがで きる。 この場合、 形質転換植物体からの DNAまたは核酸の抽出は、 公知の L Sambr ookらの方法 (Mol ecul ar Cl oning, 第 2版, Co ld Spr ingHarbor l aboratory Pres s, 1989) に準じて実施することができる。
再生させた植物体中に存在する本発明の DNAよりなる外来遺伝子を、 PCR法を用 いて解析する場合には、 上記のように再生植物体から抽出した核酸を铸型として 増幅反応を行う。 また、 本発明の核酸が DNAである場合には、 該 DNAの塩基配列に 従つて適当に選択された塩基配列をもつ合成したォリゴヌクレオチドをプライマ —として用い、 これらを混合させた反応液中おいて増幅反応を行うこともできる 。 増幅反応においては、 DNAの変性、 アニーリング、 伸張反応を数十回繰り返す と、 本発明の DNA配列を含む DNA断片の増幅生成物を得ることができる。 増幅生成 物を含む反応液を、 例えばァガロース電気泳動にかけると、 増幅された各種の DN A断片が分画されて、 その DNA断片が本発明の DNAに対応することを確認すること が可能である。
一旦、 染色体内に本発明の DNAが導入された形質転換植物体が得られれば、 該 植物体から有性生殖または無性生殖により子孫を得ることが可能である。 また、 該植物体やその子孫あるいは ローンから繁殖材料 (例えば種子、 果実、 切穂、' 塊茎、 塊根、 株、 カルス、 プロトプラスト等) を得て、 それらを基に該植物体を 量産することも可能である。 図面の簡単な説明
図 1は、 CIGR1遺伝子および CIGR2遺伝子からコードされるアミノ酸配列と GRAS ファミリーとの比較を示す図である。 SLR (OsGAI) はイネジベレリンシグナルリ プレッサー (配列番号: 5 ) 、 Tomato Lsはトマト腋芽抑制因子 (配列番号: 6 ) を示す。 4種類全てで保存されているアミノ酸を *で、 3種類で保存されている アミノ酸を ·で示す。
図 2は、 図 1の続きを示す図である。
図 3は、 CIGR1遺伝子および CIGR2遺伝子のゲノミックサザンハイブリダィゼー シヨンの結果を示す写真である。 Aは、 CIGR1遺伝子を示す。 Bは、 CIGR2遺伝子 を示す。
図 4は、 アミノ酸レベルでの CIGR1遺伝子および CIGR2遺伝子の進化系統を示す 図である。 AtSCRはァラビドプシス Scarecrow, At SCLnは Scarecrow様遺伝子、 AtG RSは AtGAIに類似の機能不明の遺伝子、 AtGRAはァラビドプシスのジべレリンシグ
(GRAとの機能分担については不明) 、 OsSLRはイネのジベレリンシグナルリプレ ッサ一、 Tomato Lsはトマトの腋芽抑制因子、 ァラビドプシスの光シグナル伝達 因子、 AtSCL21はァラビドプシスの Scarecrow様遺伝子 (機能不明) 、 CIGR2は本 研究で報告したイネ遺伝子、 AtSCL13はァラビドプシスの Scarecrow様遺伝子 (機 能不明) 、 AtSCL5はァラビドプシスの Scarecrow様遺伝子 (機能不明) 、 CIGR1は 本研究で報告したィネ遺伝子を示す。
図 5は、 CIGR1および CIGR2遺伝子の核局在を示す写真である。 35SZCIGR1/GF P または 35SZCIGR2/GFP融合遺伝子をパーティクルガン法でタマネギ表皮細胞 に導入し、 レーザー共焦点顕微鏡で観察した。 対照として 35SZ0FP融合遺伝子を 用いた。 aは 35S/GFP、 bは 35S/CIGR1/GFP、 cは 35S/CIGR2/GFPを表す。
図 6は、 CIGR1遺伝子および CIGR2遺伝子のキチンオリゴマーへの応答性を示す 写真である。 aは、 キチン 7量体処理による発現のタイムコース (分) を示す。 bは、 キチンおよびキトサンオリゴマーの誘導活性を示す。
図 7は、 CIGR1遺伝子および CIGR2遺伝子の GA3応答に対する 2, 4Dの効果を示す 写真である。 時間は、 GA3処理後の時間を示す。
図 8は、 CIGR1遺伝子および CIGR2遺伝子の発現誘導に及ぼす GA3の濃度効果を 示す図および写真である。 aは、 各濃度 (単位はモル濃度) の GA3を 10分間処理 した後に抽出した全 RNAのノーザンプロットハイプリダイゼーシヨン法による解 析結果を示す写真である。 bは、 イメージアナライザーによる aのシグナルの定 量結果を示す図である。 四角が CIGR1遺伝子、 白抜き三角が CIGR2遺伝子を示す。 図 9は、 ジベレリンの生理活性と遺伝子発現を示す図および写真である。 イネ 培養細胞に活性型 (GA1、 GA3、 GA4) 、 不活性型 (GA13、 GA17) のジベレリンを 1 0分間処理し、 全 RNAを抽出した。 ノーザンプロットハイブリダィゼーシヨン法で 解析した結果を写真で示す。
図 1 0は、 GA3処理後のイネ緑葉における CIGR1遺伝子および CIGR2遺伝子の発 現を示す写真である。 イネ植物体に GA3をスプレー処理し、 タイムコースを追つ て 3, 4葉をサンプリングした。 3, 4葉より抽出した全 RNAをノーザンブロッ卜ハイ ブリダイゼーション法で解析した。
図 1 1は、 ェリシター応答とジベレリン応答に対するタンパク質リン酸化阻害 剤の効果を示す写真である。 (A) エリシ夕一応答のポ.ジティブコントロール、
( B ) オカダ酸 (1 z M) 、 ( C ) ラベンダスチン A (30 M) 、 (D ) K-252-A (2 O M) をキチン 7量体 (GN7) またはジベレリン (GA3) 処理 10分前に投与した。 発明を実施するための最良の形態
' 以下、 本発明を実施例により、 さらに具体的【こ説明するが本発明はこれら実施 例に制限されるものではない。 なお、 実施例は、 下記の材料および方法に従って 実施した。
( 1 ) イネ培養細胞; イネ培養細胞は発芽イネ (Oryza sat iva cv Nipponbare ) 種子より 1PPMの 2,4D (オーキシン; 2, 4 -ジクロロフエノキシ酢酸) を含む N6寒 天培地上で誘導し、 N6液体培地で以下のように継代した。 週に一度生体積約 lml 程度の細胞を 150mlの N6培地に植え継いだ。 2週に一度 20- meshの金網を通して細 胞塊を小さくする操作を行った。 ノーザンブロットの RNA抽出に供する細胞は裏 ごししないで 30mlの培地に植え継いだ細胞を 4〜6日間振とう培養したものを用い た。
( 2 ) RM抽出; イネ培養細胞および緑葉からの全 RNA抽出はフエノール SDS法 に従って行った。 組織体積の約 10倍以上のフエノール (水で 90%程度飽和させた もの) およびこれと等量の抽出緩衝液(50 mM Tri s-HCl pH9. 0, 1% SDS, 50 mM N aCl)存在下ポリトロンホモジェナイザーで組織を磨砕した。 遠心分離によって得 た水層を繰り返しフエノ一ル抽出した後、 0. 6容のィソプロパノールを加えて攪 拌し、 全核酸を沈殿させた。 これを水に溶かした後その 0. 25容の 10M LiClを加え て氷冷し高分子 RNAを遠心分離によつて回収した。 これを 70%エタノ一ルで洗浄し たのち少量の水に溶解させて RNA標品とした。
( 3 ) 培養細胞および緑葉のジベレリン処理方法; 培養細胞をあらかじめ 2, 4D を含まない N6培地で数回洗浄後同じ培地に懸濁し 25でで 2時間浸透した。 ジべレ リン (GA3:エタノール溶液) をそれぞれの終濃度になるように加えて所定時間 振とう培養後 RNA抽出に供した。 播種後 3週間の日本晴植物体にジベレリンをスプ レーで噴霧処理しタイムコースを追って 3, 4葉をサンプリングし、 全 RNAを抽出し た。 エリシタ一処理はイネ培養細胞に直接エリシタ一水溶液を投与することによ り行った。
( 4 ) ハイブリダィゼーシヨン; ノーザンハイブリダィゼ一シヨンのための RN A変性はダリオキサル法によった。' 10 gの全 A(3. 7 ^ 1)に2. 7 1のグリォキサ ル (終濃度 1M) 、 1. 6 lのリン酸ナトリウム(ΡΗ7· 0、 終濃度 10 mM)、 8 1のジ メチルスルフォキシド (終濃度 50 を加えて 50 で 1時間保温したのち 1. 4%ァ ガロース (10mMリン酸ナトリウム pH7. 0) 中で電気泳動した。 泳動後 RNAをナイ口 ン膜 ひ ィォダイン A) にブロットし 80°C、 2時間処理をして RNAを膜に固定した 。 ハイブリダィゼ一シヨンは 50%フオルムアミド、 0.1%SDS、 0. lmg/mlサケ精子 DNA, 5xSSPE (0.9MNaCl, 50mMリン酸ナトリウム, 5mMEDTA pH7.4) 、 5xデンハ ルト溶液 (0.1%牛血清アルブミン、 0.1%フイコール、 0.1%ポリビニルピロリ ドン) 中で 42°C—昼夜行い、 その後 0. lxSSC (15mMNaCl, 1.5mMクェン酸ナトリ ゥム) で、 室温で 5分間 3回、 65°Cで 30分間、 2回洗浄した後 X線フィルムに露光 した。
(5) DNAマイクロアレイ解析; マイクロチップ (http:〃 cdnaOl.dna.aifrc.g 0. jp/RMOS/index.html)はイネゲノムプロジェクトにより 1265クローンのイネ EST を用いて作成された。 エリシ夕ー無処理および 15分処理した細胞より抽出した po ly (A) - RNAを cy5- dCTP存在下逆転写して一本鎖 cDNAプローブを作成し、 その結 果をアレイスキャナー (Microarray scanner FLA8000 (Fuj if ilm)) を用いて解 祈した。
[実施例 1]
イネ GMSファミリ一のうち、 ジベレリンシグナルリブレッサ一と考えられる遺 伝子 (SLR、 OsGAI) については最近報告された (Ogawa, M., Kusano, T., Kaisu mi, M. , and Sano, H. Rice gibberell in-insensitive gene homo log, OsGAI, e ncodes a nuclear-loicalized protein capable of gene activation at transc riptional level. Gene, 2000, 245, 21-29. Ikeda, A., Ueguchi-Tanaka, M. , Sonoda, Y. , Kitano, H. , Kos ioka, M. , Futsuhara, Y., Matsuoka, M. , and Y amaguchi, J. slender rice, a constitutive gibberellin response mutant, i s caused by a null mutation of the SLRl gene, an ortholog of the height- regulating gene GAI/RGA/RHT/D8. The Plant Cell, 2001, 13, 999-1010. ) 。
DNAマイクロアレイでエリシ夕一処理 15分でシグナルが有意に増加した 2つの EST
(c72495, AU094860) を農林水産ジーンバンクより入手して全塩基配列を解読し 、 両者の推定アミノ酸配列を既知の GRASファミリ一遺伝子と比較した (図 1およ P 漏 2/13375
2 4
び図 2 ) 。 両遺伝子は VHI ID領域を有し、 C末側のアミノ酸配列は Scarecrowおよ びそのファミリ一との間でよく保存されていたが典型的なロイシンへプタド構造 は認められなかった。 またジべレリンシグナルリブレッサーに特徴的な DELLA配 列は存在しなかった。 以後、 C72495を CIGR1遺伝子 (塩基配列を配列番号: 1、 アミノ酸配列を配列番号: 2に記す) 、 AU94860を CIGR2遺伝子 (塩基配列を配列 番号: 3、 アミノ酸配列を配列番号: 4に記す) と命名した。 ヌクレオチドレべ ルでの両者の相同性は 57%、 アミノ酸配列レベルでの相同性は 40 %であった。 ゲ ノミックサザンハイプリダイゼーションの結果、 両遺伝子はそれぞれ 1コピー存 在するものと考えられた (図 3 ) 。
図 4は両遺伝子産物ならびにこれまでに構造が明らかになった GRASフアミリー 遺伝子産物の推定分子進化系統を示す。 CIGR2遺伝子は CIGR1遺伝子よりもむしろ ァラビドプシスの At SCL5に近縁であると考えられた。 またジべレリンシグナルリ プレッサ一は一つのサブファミリーを形成し、 イネ OsGAI (SLR) は CIGR1遺伝子 近縁であることが示唆された。
[実施例 2 ]
GRASファミリ一遺伝子産物は転写調節因子であると考えられているがそれらが どのような遺伝子発現の調節に関わっているかについての知見は得られていない 。 ァラビドプシスの Scarecrowは典型的な核移行シグナルをもたないが、 N末側に セリン、 スレオニン、 プロリン、 グルタミンが多いこと等の理由から転写因子と 推測された。 ァラビドプシスのジベレリンシグナルリブレッサーの一つ、 GAIお よびそれと極めてよく似た遺伝子 GRSには核移行シグナル様の配列が存在した (P eng, J. , Caro l , P. , Richards, D. E. , King, K. E. , Cowl ing, R. J. , Murphy , G. P. , and Harberd, N. P. Genes and Development, 1997, 11 , 3194-3205. ) 。 またもう一つのリブレッサ一である RGAが、 GFPとの融合タンパク質を用いた 実験で核に局在することが示された (Si lvers tone, A. L. , Ci ampagl i o, C. N., and Sun, T-P. The Arabidops is RGA gene encodes a transcript ional regula tor repress ing the gibberel l in s ignal transduct ion pathway. The Plant Ce 11, 1998, 10, 155-169. ) 。 CIGR1遺伝子および CIGR2遺伝子についてその細胞内 局在性を検討するためこれらの翻訳領域を GFPに i n f r ameで連結したキメラブラ スミドをパ一ティクルガン法によってタマネギ表皮細胞に導入し、 融合タンパク 質の挙動を GFPの蛍光を指標として追跡したところ、 CIGR2 ' GFP融合タンパク質 が細胞核に局在している像が観察された (図 5 ) 。 また GFP単独ではそのような 像は観察されなかったことから、 CIGR2遺伝子産物は核に局在すると結論した。
[実施例 3 ] .
C I GR1遺伝子および C I GR2遺伝子はいずれも DNAマイクロアレイ解析によってェ リシ夕一応答性遺伝子として同定された。 そこでこれらの両遺伝子のェリシ夕一 応答性をノーザンブロットハイブリダィゼーシヨン法によって解析した。 両遺伝 子ともキチン 7量体処理 5分後にその mRNA量の顕著な増加が観察されはじめ 90分に 至るまで発現量は増加し続けた (図 6 a ) 。 キチンオリゴマーのイネに対するェ リシ夕一活性はそのサイズに依存し、 7または 8量体がもっとも強い活性をもつこ と、 脱ァセチル体であるキトサンオリゴマ一は活性が極めて低いことがこれまで の研究により明らかになつている。 そこで 1〜7量体のキチンオリゴマーおよび 4, 7量体のキトサンオリゴマーを処理したときのこれら両遺伝子の発現誘導を調べ た。 両者ともキチンの 7量体にもっとも強く応答し、 キトサンのオリゴマーには 有意な応答を示さなかった (図 6 b ) 。
[実施例 4]
1 Jら (Ashikari, M. , Wu, J. , Yano, M. , Sasaki, T., and yoshimura, A. Rice gibberel 1 in-insens i t ive dwarif mutant gene Dwarf 1 encodes the alph a-subuni t of GTP-binding protein. Pro Nat l . Acad. Sci. U. S. A. 1999, 96, 10284-10289. ) 、 藤澤ら (Fuj isawa, Y., Kato, T. , Ishikawa, A. , Ki tano , H., Sasaki, T. , Asa i, T. , and Iwasaki, Y. Suppress ion of the heterodi meric G protein causes abnormal morphology, including dwarfism, in rice.
Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 7575-7580. ) は独立に、 イネわ い性変異体 dlの原因遺伝子 (D1) 力 ¾量体型 Gタンパク質ひサブユニットをコード していることを見いだした。 動物細胞においては 3量体型 Gタンパク質は 7回膜貫 通型受容体と共役して細胞外の情報を伝達する重要な役割をもつことが知られて いる (Neer, E. J. Heterotorimeric G proteins : Organizers of transmembran e signals. 1995, Cell 50, 1011-1019. ) 。
一方、 ェリシターシグナルの伝達過程においてはこの阻害剤あるいは活性化剤 を用いた研究からその関与が示唆されている(Legendre, し, Heinsyein, P. F., and Low, P. S. Evidence for participation of GTP - binding proteins in el icitation of the rapid oxidative burst in cultured soybean cells. J. Bio 1. Chem. 1992, 267, 20140 - 20147. )がこれらの阻害剤はその特異性が必ずしも 明確でないなどの問題点が指摘されており(Ephritikhine, G. , Pradier, J. - M., and Guern, J. Complexity of GTP S binding to tobacco plasma membranes.
Plant Physiol. Biochem. 1993, 31, 573-584. )、 Dl遺伝子産物の関与について も明確な結論は得られていない。
塚田らは dl系統の種子由来のカルスにおけるェリシター応答性諸反応を野生型 と詳細に比較し、 有意な差が認められないことを示した (Tsukada, K., Ishizak a, M., Fujisawa, Y. , Iwasaki, Υ., Yamaguchi, Τ. , Mmami, Ε. , and Shibuya , Ν. Rice receptor for chitin oligosaccharide elicitor does not couple t o heterotrimeric G— protein: Elicitor responses of suspension cultured ri ce cells from Daikoku dwarf (dl) mutants lacking a functional G - protein α-subunit. Physiol. Plantrum, 2002, 116, 373-382) 。
予備的実験の結果から CIGR1遺伝子おょぴ CIGR2遺伝子の dl系統におけるェリシ ター誘導も野生型と同じタイムコースをたどることを確認した。
一方、 上ロ-田中り (Ueguchi-Tanaka, M., Fujisawa, Y., Kobayashi, M. , . As tr正された 鈹 (規則 91) hikari, M., I asaki, Y. , Ki tano, H. , and Matsuoka, M. Rice dwarf mutant dl, which is defective in the a subuni t of the heterotrimeric G protein , affects gibberellin signal transduction. Proc. Natl. Acad. Sci. U.S.A.
2000, 97, 11638- 11643.)'は発芽種子ァリューロンにおける αアミラーゼの誘 導を指標として、 ジベレリンのシグナル伝達に D1遺伝子が関与していることを示 した。 これより先に Schumacherら (Schumacher, K. , Sc mitt, T. , Rossberg, Μ Schmitz, G. , and Theres, K. The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc. Natl. Acad. Sci . U.S.A. 1999, 96, 290-295. ) はトマトの腋芽抑制遺伝子の産物が Scarecrowと 同じ遺伝子ファミリ一に属することを明らかにし、 その形態形成における役割の 考察においてこの遺伝子産物とジベレリンとの何らかの相互作用の可能性を指摘 した。
そこで CIGR1遺伝子および CIGR2遺伝子についてそのジべレリン応答性を検討し た。 懸濁培養細胞に活性型ジベレリンの一つ GA3を処理し、 タイムコースを追つ てこれら両遺伝子の発現変化を解析したが、 処理 3時間後まで見る限りでは両遺 伝子ともその発現量に有意な変化は認められなかった。 培養細胞の培地には細胞 の分裂能を維持するために植物によって代謝されにくいオーキシン、 2,4Dが含ま れている。 これがジベレリンの作用を抑制している可能性が考えられたため、 細 胞を 2, 4Dを含まない培地であらかじめ洗浄した後、 同じ培地中で 2時間前培養し 、 GA3を処理したところ、 処理 10分後をピークとする一過的な発現が観察された (図 7) 。
これまで、 ジべレリンシグナル伝達の研究は穀物種子のァリユーロン組織にお けるひ'アミラーゼの誘導を指標とした解析が中心であり'、 培養細胞を用いた例は 上記の結果が初めてである。 そこでジべレリンによる CIGR1遺伝子および CIGR2遺 伝子の培養細胞での発現を指標としてその応答性をさらに詳細に解析した。
図 8はこれら両遺伝子の発現誘導に対する GA3の濃度効果をみたものである。 両遺伝子とも 10_¾の GA3処理によつてその発現が誘導されはじめ、 10—¾でほぼ飽 和に達した。 Vi shnevetskyら (Vishnevetsky, M. , Ovadis, M. , I tzhaki, Η. , a nd Vains tein, A. CHRC, encoding a chromoplas t-spec i f ic carotenoid - assoc i ated protein, i s an early gibberel l ie acid-respons ive gene. J. Biol . Che m. 1997, 272, 24747-24750. ) はキユウリ花弁色素体のカロチノイド結合タンパ ク質、 CHRCのジベレリンによる誘導には少なくとも 10_7Mの GA3が必要で、 10_ ま でほぼ直線的に発現量が増大することを報告しており、 材料、 遺伝子が異なるが GA3の有効濃度に関しては似たような結果となっている。
[実施例 5 ]
ジベレリンはオーキシンやサイトカイニンと異なり、 生理活性ではなく entジ ベラン骨格をもつ化合物として定義されているため、 その活性には大きな差があ る。 これまで述べてきた CIGR1遺伝子およびじ I GR2遺伝子の GA3による発現誘導が その生理活性に基づくものかそれとも entジべラン骨格自体にこの両遺伝子を誘 導する活性があるのかを調べるために活性型 (GA1、 GA3、 GA4) 、 不活性型 (GA1 3、 GA17) のジベレリン (Croz ier, A. , Kuo, C. C. , Durley, R. C. , and Phari s, R. P. The biol ogical act ivi t ies of 26 gibberel l ins in nine plant bioa ssays. Canadian J. Botany 1970, 48, 867-877. ) によるこれら両遺伝子の発現 誘導を解析した。 その結果、 両遺伝子とも活性型ジベレリンによってのみその発 現が誘導された (図 9 ) 。 この結果はこれまでに述べてきたジベレリンによる CI GR1遺伝子および CIGR2遺伝子の発現誘導がジべレリンの受容体を介したシグナル 伝達を介するものであることを強く示唆している。
[実施例 6 ]
培養細胞はオーキシン存在下で脱分化状態にあると考えられており、 葉緑体を もたないために従属栄養条件下で生育するなど、 植物体とは組織学的、 生理学的 に大きく異なるものである。 したがってこれまで述べてきた CIGR1遺伝子および C IGR2遺伝子のジベレリンによる誘導現象は培養細胞における特殊な現象である可 能性が否定できない。 そこでイネ録葉において両遺伝子がジべレリンにどのよう に応答するかを解析した。 播種後 3週間のイネの 3, 4葉に GA3 (50 ^M) をスプレー しタイムコースを追って全 RNAを抽出して両遺伝子の発現量変化を解析した。 そ の結果両遺伝子ともスプレー後 30分をピークとする極めて迅速な一過的発現を示 した (図 10) 。 したがって培養細胞における、 ジベレリン受容体を介したシグ ナルは培養細胞特有のものではなく、 イネ植物体においても機能していることが 強く示唆された。
[実施例 7]
Kuoら (Kuo, A. , Cappelluti, S. , Cervantes-Cervantes, M. , Rodriguez, M. , and Bush, D. S. Okadaic acid, a protein phosphatase inhibitor, blocks calcium changes, gene expression and cell death induced by gibberellin i n wheat aleurone cells. The Plant Cell 1996, 8, 259-269.) はコムギアリュ —ロン層における Q!アミラーゼのジべレリンによる誘導がタンパク質脱リン酸化 酵素阻害剤の一つであるオカダ酸によって特異的に阻害されることを見いだした 。 オカダ酸は動物のタンパク質脱リン酸化酵素のうち PP1、 PP2Bを阻害すること が知られている。
一方タンパク質リン酸化酵素阻害剤であるス夕ゥロスポリン、 K- 252- Aはほと んど阻害しなかつたことから、 ジベレリンから αアミラ一ゼ遺伝子に至るシグナ ル伝達にはタンパク質リン酸化、 特にタンパク質脱リン酸化酵素が重要な関与を していると推測した。
一方、 これまでの我々の結果ではエリシター応答性遺伝子の発現誘導は Κ- 252- Αの前処理によって強く阻害されることが明らかになつている (He, D.- Y., Yaza ki, Y., Nishizawa, Y. , Takai, R., Yamada, K., Sakano, K. , Shibuya, Ν. , a nd Minami, E. Gene activation by cytoplasmic acidification in suspensio n- cultured rice eel Is in response to the potent elicitor, N-acethylchi to heptaose. Mol. Plant-Microbe Int. 1998, 12, 1167-1174. Nishizawa, Y. , Ka wakami, A. , Hibi, T. , He, D. - Y., Shibuya, N. , and Mi nam i, E. Regulation of the chitinase gene expression in suspension-cultured rice cells by N- ace ty 1 chit oo ligosacchar ides: differences in the signal transduction path ways leading to the activation of elicitor responsive genes. Plant ol. Biol. 1999, 39, 907-914.) 。
そこでィネ培養細胞における CI GR1遺伝子および I GR2遺伝子のジべレリンおよ びエリシタ一による誘導における種々の阻害剤の影響を検討した。 まず Kuoらの 結果を参照してオカダ酸を前処理した細胞では両遺伝子のキチン 7量体による誘 導はほとんど阻害されなかったのに対して GA3による誘導はほぼ完全に阻害され た (図 11B) ことから、 イネ培養細胞における CIGR1遺伝子および CIGR2遺伝子 へのジべレリンからのシグナル伝達にはタンパク質脱リン酸化酵素の関与が推定 された。 つぎにタンパク質リン酸化酵素阻害剤について検討した。 受容体型チロ シンキナーゼの阻害剤として知られるラベンダスチン Aはオカダ酸とほぼ同様の 阻害を示し、 キチン 7量体による誘導をほとんど阻害しないのに対し GA3による誘 導をほぼ完全に阻害した (図 1 1 C) 。 タンパク質セリン ·スレオニンリン酸化 酵素、 タンパク質チロシンリン酸化酵素のいずれをも阻害するとされる K- 252 - A は両遺伝子のキチン 7量体および GA3による誘導をほぼ完全に阻害した (図 11 D) 。
コムギアリューロン層における αアミラーゼのジべレリンによる誘導はオカダ 酸によって阻害されるが Κ-252- Αによっては阻害されないと報告されている (Kuo , A. , Cappelluti, S. , Cervantes-Cervantes, M. , Rodriguez, Μ. , and Bush, D. S. Okadaic acid, a protein phosphatase inhibitor, blocks calcium chan ges, gene expression and cell death induced by gibberellin in wheat aleu rone cells. The Plant Cell 1996, 8, 259-269.) 。
図 11の結果は、 培養細胞における CIGR1遺伝子および CIGR2遺伝子のジべレリ ン誘導においてもオカダ酸によって阻害されるタンパク質脱リン酸化酵素の関与 のほかに、 K- 252- A、 ラベンダスチン Aによって阻害されるタンパク質リン酸化酵' 素の関与を示唆するものであり、 ァリューロン層におけるシグナル伝達との共通 性、 相違点が認められた。 また、 ジベレリンからのシグナル伝達はキチン 7量体 からのものとは質的に異なると考えられる。
Richardら (Donald E. Richards, J inrong Peng, and Nicholas P. Harberd B ioEssays vol22, p573-577 (2000) ) は、 GRASファミリ一は後生動物に幅広く見 いだされる転写因子、 STATに対応するものであるという仮説を提唱している。 ST ATでは C末領域には動物の転写因子、 STATファミリ一に共通した SH2領域に類似し た構造が見いだされる。 SH2領域の C末端付近に動物の STATでもよく保存されリン 酸化を受けることが知られているチロシン残基、 およびこのリン酸化チ口シンと 静電的に相互作用するとされるアルギニン残基が保存されている。 アミノ酸配列 の N-末付近は C末側に比べると相同性が低くなつている。 これは GRASファミリ一 に一般的である。 CIGR1遺伝子および CIGR2遺伝子のヌクレオチドレベルでの相同 性は 57%であった。 一方、 ゲノミックサザンハイブリダィゼ一シヨンの結果これ ら両遺伝子は 1コピーずつ存在するものと推定された (図 3 ) 。 イネのゲノム DNA を制限酵素 BamHI (B)、 EcoRI (E) , Hi nd I I I (H)で完全消化し、 ァガ口一スゲ ル電気泳動で分離後、 ニトロセルロース膜に転写した。 これを32 Pで標識した CIG Rl、 C I GR2でハイブリダイズしたところ cDNAのマップと一致するパターンが得ら れた。
このことから cDNAの全長鎖はそれぞれ対応する遺伝子産物と特異的にハイプリ ダイズするものと考えられた。 両遺伝子ともジべレリンシグナルの負の制御因子 である GAI/RGAサブファミリーに共通する DELLA配列を有していない。 産業上の利用の可能性
本発明者によって、 植物におけるエリシタ一およびジベレリン応答植物遺伝子 が提供された。 エリシ夕一は、 植物において、 種々の防御関連酵素遺伝子を誘導 し、 防御反応を引き起こすことが知られている。 よって、 ェリシターによって誘 導される CIGR1遺伝子および CIGR2遺伝子は、 病害抵抗性が付与された組み換え作 物において有用であることが大いに期待される。

Claims

請求の範囲
1. 以下の (a) 〜 (d) のいずれかに記載の植物のタンパク質をコードする
(a) 配列番号: 1または 3に記載の塩基配列からなる DNA
(b) 配列番号: 1または 3に記載の塩基配列からなる DNAとストリンジェン トな条件下でハイブリダイズする DNA
(c) 配列番号: 2または 4に記載のアミノ酸配列からなるタンパク質をコー ドする DNA
(d) 配列番号: 2または 4に記載のアミノ酸配列において 1または複数のァ ミノ酸が置換、 欠失、 付加、 および Zまたは挿入されたアミノ酸配列からなるタ ンパク質をコードする DNA
2. 植物がイネである、 請求項 1に記載の DNA。
3. 請求項 1または 2に記載の DNAがコ一ドするタンパク質に対してドミナン 卜ネガティブな形質を有するタンパク質をコードする DNA。
4. 請求項 1〜 3のいずれかに記載の DNAによりコードされるタンパク質。
5. 以下の (a) 〜 (d) のいずれかに記載の核酸。
( a ) 請求項 1または 2に記載の DNAの転写産物と相補的なァンチセンス核酸
(b) 請求項 1または 2に記載の DNAの転写産物を特異的に開裂するリボザィ ム活性を有する核酸
(c) 請求項 1または 2に記載の DNAの発現を、 共抑制により阻害効果を有す る核酸
(d) 請彔項 1または 2に記載の DNAの発現を、 RNAi効果 より阻害効果を有 する核酸
6. 請求項 1〜3のいずれかに記載の DNA、 または請求項 5に記載の核酸を含 むベクター。
7 . 請求項 1〜3のいずれかに記載の DNA、 請求項 5に記載の核酸、 または請 求項 6に記載のベクターを保持する形質転換植物細胞。
8 . 請求項 7に記載の形質転換植物細胞を含む形質転換植物体。
9 . イネ由来である、 請求項 8に記載の形質転換植物体。
1 0 . 請求項 8または 9に記載の形質転換植物体の子孫またはクローンである 、 形質転換植物体。
1 1 . 請求項 8〜1 0のいずれかに記載の形質転換植物体の繁殖材料。
1 2 . 請求項 8〜1 0のいずれかに記載の形質転換植物体の製造方法であって 、 請求項 1〜3のいずれかに記載の DNA、 請求項 5に記載の核酸、 または請求項 6に記載のベクターを植物細胞に導入し、 該植物細胞から植物体を再生させるェ 程を含む方法。
1 3 . 植物がイネである、 請求項 1 2に記載の方法。
PCT/JP2002/013375 2001-12-20 2002-12-20 Eliciteur d'oligosaccharide de chitine et genes sensibles a la gibberelline dans les plantes et utilisations associees WO2003054196A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002471375A CA2471375A1 (en) 2001-12-20 2002-12-20 Chitin oligosaccharide elicitor-and gibberellin-responsive genes in plants, and uses thereof
JP2003561314A JPWO2003054196A1 (ja) 2001-12-20 2002-12-20 植物におけるキチンオリゴ糖エリシターおよびジベレリン応答遺伝子、並びに、その利用
AU2002361084A AU2002361084A1 (en) 2001-12-20 2002-12-20 Chitin oligosaccharide elicitor- and gibberellin-responsive genes in plants, and uses thereof
EP02791977A EP1466978A4 (en) 2001-12-20 2002-12-20 CHIENE OLIGOSACCHARIDE ELICTOR AND GIBBERELLIN SENSITIVE GENES IN PLANTS AND USES THEREOF
US10/871,083 US20050034189A1 (en) 2001-12-20 2004-06-18 Chitin oligosaccharide elicitor- and gibberellin-responsive genes in plants, and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-387862 2001-12-20
JP2001387862 2001-12-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/871,083 Continuation-In-Part US20050034189A1 (en) 2001-12-20 2004-06-18 Chitin oligosaccharide elicitor- and gibberellin-responsive genes in plants, and uses thereof

Publications (1)

Publication Number Publication Date
WO2003054196A1 true WO2003054196A1 (fr) 2003-07-03

Family

ID=19188099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/013375 WO2003054196A1 (fr) 2001-12-20 2002-12-20 Eliciteur d'oligosaccharide de chitine et genes sensibles a la gibberelline dans les plantes et utilisations associees

Country Status (6)

Country Link
US (1) US20050034189A1 (ja)
EP (1) EP1466978A4 (ja)
JP (1) JPWO2003054196A1 (ja)
AU (1) AU2002361084A1 (ja)
CA (1) CA2471375A1 (ja)
WO (1) WO2003054196A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5109128B2 (ja) * 2005-04-14 2012-12-26 国立大学法人名古屋大学 植物の分化・生長を制御する遺伝子、並びにその利用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104719293A (zh) * 2015-01-30 2015-06-24 中国水稻研究所 一种防止大穗型水稻品种倒伏的化学调控方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9602796D0 (en) * 1996-02-12 1996-04-10 Innes John Centre Innov Ltd Genetic control of plant growth and development
US6137031A (en) * 1999-03-11 2000-10-24 Duke University DNA binding proteins that interact with NPR1
WO2003054192A1 (fr) * 2001-12-21 2003-07-03 National Institute Of Agrobiological Sciences Procede d'identification de genes sensibles a la gibberelline a l'aide de cellules vegetales cultivees

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BOLLE C. ET AL.: "PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction", GENES DEV., vol. 14, no. 10, May 2002 (2002-05-01), pages 1269 - 1278, XP002965851 *
CHONO M. ET AL.: "cDNA cloning and characterization of a gibberellin-responsive gene in hypocotyls of cucumis sativus L.", PLANT CELL PHYSIOL., vol. 37, no. 5, 1996, pages 686 - 691, XP002965853 *
OGAWA M. ET AL.: "Gibberellin-responsive genes: high level of transcript accumulation in leaf sheath meristematic tissue from zea mays L.", PLANT MOL. BIOL., vol. 40, no. 4, 1999, pages 645 - 657, XP002182552 *
See also references of EP1466978A4 *
VAN DER KNAAP E. ET AL.: "Transcript level for a gene encoding a putative type la plasma membrane receptor is induced by gibberellin in deepwater rice", PLANT CELL PHYSIOL., vol. 39, no. 11, 1998, pages 1127 - 1132, XP002965854 *
VISHNEVETSKY M. ET AL.: "CHRC, encoding a chromoplast-specific carotenoid-associated protein, is an early gibberellic acid-responsive gene", J. BIOL. CHEM., vol. 272, no. 40, 1997, pages 24747 - 24750, XP002965852 *
WASHIO K. ET AL.: "Identification of dof proteins with implication in the gibberellin-regulated expression of a peptidase gene following the germination of rice grains", BIOCHIM. BIOPHYS. ACTA, vol. 1520, no. 1, July 2001 (2001-07-01), pages 54 - 62, XP004255722 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5109128B2 (ja) * 2005-04-14 2012-12-26 国立大学法人名古屋大学 植物の分化・生長を制御する遺伝子、並びにその利用

Also Published As

Publication number Publication date
EP1466978A4 (en) 2005-11-23
CA2471375A1 (en) 2003-07-03
US20050034189A1 (en) 2005-02-10
EP1466978A1 (en) 2004-10-13
AU2002361084A1 (en) 2003-07-09
JPWO2003054196A1 (ja) 2005-04-28

Similar Documents

Publication Publication Date Title
US6762348B1 (en) Genetic control of plant growth and development
US20180223303A1 (en) Sequence-determined dna fragments and corresponding polypeptides encoded thereby
Fukaki et al. Lateral root formation is blocked by a gain‐of‐function mutation in the SOLITARY‐ROOT/IAA14 gene of Arabidopsis
US8877916B2 (en) Promoter, promoter control elements, and combinations, and uses thereof
US9029523B2 (en) Promoter, promoter control elements, and combinations, and uses thereof
JP5109128B2 (ja) 植物の分化・生長を制御する遺伝子、並びにその利用
Liu et al. THIS1 is a putative lipase that regulates tillering, plant height, and spikelet fertility in rice
Deng et al. Expression and regulation of ATL9, an E3 ubiquitin ligase involved in plant defense
Jung et al. Functional characterization of OsRacB GTPase–a potentially negative regulator of basal disease resistance in rice
Yan et al. Membrane-bound transcriptional activator NTL1 from rapeseed positively modulates leaf senescence through targeting genes involved in reactive oxygen species production and programmed cell death
JPWO2003020935A1 (ja) フィトクロムcの発現制御による植物の開花時期の調節
AU754851B2 (en) A novel mitogenic cyclin and uses thereof
AU754804B2 (en) Method and means for modulating plant cell cycle proteins and their use in controlling plant cell growth
WO2003054196A1 (fr) Eliciteur d'oligosaccharide de chitine et genes sensibles a la gibberelline dans les plantes et utilisations associees
KR20140143376A (ko) 니트레이트 수준에 관련된 식물에서의 전사 인자 및 이를 사용하는 방법
JP4982727B2 (ja) 植物培養細胞を用いたジベレリン応答性遺伝子の同定方法
JP4102099B2 (ja) 細胞質雄性不稔から可稔への回復に関与するタンパク質及びそれをコードする遺伝子
US7316928B2 (en) Plant fatty acid amide hydrolases
MXPA00001449A (en) Genetic control of plant growth and development

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL SI

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003561314

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002361084

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 10871083

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2471375

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002791977

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002791977

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002791977

Country of ref document: EP