WO2003052810A1 - Substrate treating method - Google Patents

Substrate treating method Download PDF

Info

Publication number
WO2003052810A1
WO2003052810A1 PCT/JP2002/013134 JP0213134W WO03052810A1 WO 2003052810 A1 WO2003052810 A1 WO 2003052810A1 JP 0213134 W JP0213134 W JP 0213134W WO 03052810 A1 WO03052810 A1 WO 03052810A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
substrate processing
substrate
processing method
nitriding
Prior art date
Application number
PCT/JP2002/013134
Other languages
French (fr)
Japanese (ja)
Inventor
Takuya Sugawara
Seiji Matsuyama
Masaru Sasaki
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to AU2002357591A priority Critical patent/AU2002357591A1/en
Publication of WO2003052810A1 publication Critical patent/WO2003052810A1/en
Priority to US11/076,282 priority patent/US7517751B2/en
Priority to US12/392,630 priority patent/US20090163036A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material

Definitions

  • the present invention generally relates to a substrate processing technique, and more particularly, to a substrate processing method for forming a high dielectric film on a substrate.
  • the thickness of the gate insulating film needs to be reduced to 1.7 ⁇ m or less.
  • reducing the thickness of the oxide film in this manner increases the gate leakage current flowing through the oxide film due to the tunnel effect, which causes degradation of device characteristics such as increased power consumption.
  • the high dielectric films such as the gate T a 2 0 5 in place of conventional silicon oxide film as the insulating film, Z r O 2, H f 0 2 or A 1 2 0 3 Study Have been.
  • these high-dielectric films have significantly different properties from silicon oxide films conventionally used in semiconductor technology, and if these high-dielectric films are used as gate insulating films, they must be solved. There are many issues to be addressed.
  • the silicon nitride film is a material that has been used in conventional semiconductor processes, and has a dielectric constant twice that of the silicon oxide film. Because it can effectively prevent diffusion, it is considered to be a promising material for gate insulating films in next-generation high-speed semiconductor devices. Background art
  • a silicon nitride film is generally formed by a plasma CVD method.
  • CVD nitride films generally have poor interface characteristics, and are not suitable as gate insulating films. For this reason, no attempt has been made to use a nitride film as a gate insulating film. Not.
  • N radicals or NH radicals to convert the silicon oxide film surface to an oxynitride film has been proposed (Katsuyuki Sekine, Yuji Sato, Masaki Hirayama and Tadahiro Ohmi, J. Vac. Sci. Tecnnol. A17 ( 5), Sept / Oct 1999, pp.
  • the oxynitride film thus formed has an interface characteristic comparable to or superior to that of a silicon thermal oxide film, and is considered to be promising as a gate insulating film for next-generation high-speed semiconductor devices.
  • a plasma nitriding technique for directly nitriding the silicon substrate surface with the microwave plasma and a plasma oxidizing technique for directly oxidizing by introducing a gas containing oxygen into the rare gas plasma have been proposed.
  • This problem of increasing the thickness of the gate insulating film is particularly prominent when nitriding is performed for a long time to sufficiently diffuse the introduced nitrogen atoms in the film thickness direction or when the underlying oxide film is thin ( Takuya Sugawara, et al., Op.cit .; CC Chen, MC Yu, MF Wang, TL Lee, SC Chen, CH Yu and MS Liang, 2002 7th International Symposium on Plasma and Process Induced Damage, pp.41-44) .
  • the thickness of the gate insulating film is increased by the same oxidation due to the moisture absorbed when the substrate is transferred from the oxidation treatment device to the nitridation treatment device.
  • a more specific object of the present invention is to suppress an increase in the thickness of an oxynitride film formed during the nitridation process when nitriding the oxidized film formed subsequent to the oxidation process on the silicon substrate surface. It is to provide a substrate processing method and a substrate processing apparatus.
  • Another subject of the present invention is:
  • a substrate processing method comprising: oxidizing the surface of a silicon substrate to form an oxide film; and nitriding the oxide film to form an oxynitride film.
  • the present invention during nitridation of an oxide film formed on the surface of a silicon substrate, the increase in the thickness of the oxide film due to oxygen remaining in the atmosphere is suppressed, and the gut of an ultra-high-speed semiconductor device is improved.
  • An extremely thin oxynitride film suitable for an insulating film can be formed.
  • FIG. 1 is a diagram showing a configuration of a substrate processing apparatus used in a first embodiment of the present invention
  • FIG. 2 is a diagram showing a substrate processing apparatus shown in FIG. Diagram showing the distribution of oxygen and nitrogen atoms in the formed oxynitride film when
  • 3A to 3E are views showing a substrate processing method according to a first embodiment of the present invention.
  • FIGS. 4A to 4D are views showing a substrate processing method according to a second embodiment of the present invention.
  • FIG. 5 is a view showing a substrate processing method using a cluster type substrate processing apparatus according to a third embodiment of the present invention.
  • FIG. 6 is a diagram showing a substrate processing method using a cluster type substrate processing apparatus according to a fourth embodiment of the present invention.
  • FIG. 1 shows a schematic configuration of a plasma substrate processing apparatus 10 used in the present invention.
  • a plasma substrate processing apparatus 1 ⁇ has a processing container 11 on which a substrate holding table 12 for holding a substrate W to be processed is formed, and the processing container 11 is evacuated at an exhaust port 11 A. Is done.
  • a substrate temperature control mechanism 12a such as a heater is formed in the substrate holding table 12.
  • An opening is formed on the processing vessel 11 corresponding to the substrate W to be processed on the substrate holding table 12, and the opening is made of a low-loss ceramic such as alumina. Blocked by 3. Further, under the cover plate 13, a low-loss ceramic such as alumina is formed in which a gas introduction path and a number of nozzle openings communicating with the gas introduction path are formed so as to face the substrate W to be processed. shower plate 14 is formed.
  • the cover plate 13 and the shower plate 14 form a microwave window, and a microwave antenna 15 such as a radial line slot antenna or a horn antenna is formed outside the cover plate 13.
  • the processing space inside the processing container 11 is set to a predetermined processing pressure by exhausting the gas through the exhaust port 11A, and is set together with a rare gas such as Ar or Kr from the shower plate 14. Acid gas ⁇ nitriding gas is introduced.
  • a microwave having a frequency of several GHz is irradiated from above the antenna 15.
  • the illuminated microwave propagates through the antenna in the radial direction, is radiated to the lower part of the antenna, passes through the cover plate 13, and is introduced into the vacuum vessel 11.
  • the microwaves since microwaves are introduced through the antenna, high-density, low-electron-temperature plasma is generated, and the plasma has a uniform distribution. Therefore, in the substrate processing apparatus of FIG. 1, the electron temperature of the plasma is low, and damage to the substrate W to be processed and the inner wall of the processing chamber 11 can be avoided.
  • the formed radicals flow radially along the surface of the substrate W to be processed and are quickly exhausted, so that recombination of the radicals is suppressed, and efficient and very uniform substrate processing is performed. It becomes possible at a low temperature of 00 ° C or less.
  • FIG. 2 shows that the silicon substrate surface is oxidized using the substrate processing apparatus 10 of FIG.
  • the SIMS profile of oxygen and nitrogen atoms in the plasma oxide film when the oxynitride film is formed by subsequent nitriding is shown.
  • Ar gas and oxygen gas were supplied into the processing vessel 11 at the flow rates of 100 SCCM and 20 SCCM, respectively, in the substrate processing apparatus 10 of FIG. 3 3 X 1 (at a pressure of about PPa, 400.
  • a microwave of 2.45 GHz is supplied with a power of 150 W to form a thickness of about 6 nm.
  • the nitriding treatment was performed by supplying Ar gas and nitrogen gas at a flow rate of 100 SCCM and 20 SCCM, respectively, to a flow rate of about 1.33 X 1 OiPa.
  • the microwave is supplied at a substrate temperature of 400 ° C. under pressure with a power of 1500 W.
  • a nitrogen-rich region is formed near the oxide film surface, and it can be seen that nitrogen atoms diffuse into the oxide film from such a nitrogen-rich region.
  • an oxynitride film formed by diffusion of nitrogen atoms in such an oxide film no interface is formed between the nitrogen-enriched region and the oxide film, and thus traps are formed in the film. You can't.
  • Fig. 2 shows the concentration distribution of nitrogen and oxygen atoms when the nitriding time is changed.As can be seen from Fig. 2, as the nitriding time increases, the oxygen concentration in the film increases simultaneously. You can see that This means that the oxygen infiltration into the silicon substrate has increased the thickness of the oxygenated film. It is considered that the oxygen that causes such an increase in the oxide film is caused by oxygen molecules attached to the inner wall of the processing container 11 or the gas supply line, or moisture attached to the substrate surface.
  • FIGS. 3A to 3C show the mechanism by which such an oxide film is increased during nitriding treatment when nitriding is performed in the substrate processing apparatus 10 of FIG. 1 shows a substrate processing method according to a first embodiment of the present invention, which suppresses an increase in an acid film.
  • 3A shows the plasma lighting sequence in the processing vessel 11 during the oxidation and nitriding treatments
  • FIG. 3B shows the oxygen concentration change in the processing vessel 11
  • FIG. 3C shows the same processing vessel 1 1 shows the change in nitrogen concentration during 1.
  • Ar plasmas A and B are excited in the treatment container 11, and during the oxidation treatment, the Ar plasmas A and B are further treated.
  • Oxygen gas is introduced into the vessel 11, and nitrogen gas is introduced during nitriding as shown in FIGS. 3B and 3C, respectively.
  • the plasma A is turned off and the supply of oxygen gas is shut off.
  • the plasma B which was turned on, is turned off, and the supply of nitrogen gas is cut off.
  • nitrogen gas was introduced into the processing vessel 11: If the plasma was further turned on, the oxygen remaining in the processing vessel 11 was activated, It is believed that the resulting oxygen radicals further oxidize the silicon substrate in parallel with the nitridation of the oxide film.
  • the lighting of the plasma during the nitriding treatment is delayed by about 1 to 600 seconds from the extinguishing of the plasma at the end of the oxidation treatment, and Immediately after the supply of oxygen gas is stopped, nitrogen gas is introduced into the processing vessel 11 together with Ar gas.
  • the inside of the processing container 11 is purged by the Ar gas and the nitrogen gas thus introduced until the plasma is turned on again.
  • the inside of the processing container 11 is purged with nitrogen gas, whereby oxygen in the processing container 11 is rapidly eliminated as shown by a broken line in FIG. Processing time can be reduced.
  • Ar gas may be supplied at a flow rate of 100 SCCM and nitrogen gas may be supplied at a flow rate of 20 SCCM as in the case of the oxidation treatment or nitridation treatment.
  • Table 1 below shows an example of a typical recipe of the present embodiment.
  • the so-called “ital purge” may be performed by interrupting the supply of nitrogen during the purge period. By performing such a cycle purge, the insult period can be further reduced.
  • the purging with nitrogen gas can be omitted.
  • FIG. 4A to 4C show a substrate processing method according to a second embodiment of the present invention using the substrate processing apparatus 10 of FIG. ′
  • plasma is continuously formed from the start of the oxidation process A to the end of the nitridation process B.
  • the supply time t of the oxygen gas is set shorter than the period of the oxidation process as shown in FIG. 4B in order to avoid the increase of the oxide film in the nitridation process B.
  • the oxygen gas supply step is terminated prior to the end of the oxidation treatment step, and the remaining oxidation treatment step is executed by the oxygen remaining in the processing vessel 11 or the gas supply system.
  • the oxidation treatment has been completed at the time of introduction of the nitrogen gas shown in FIG. 4C, and as a result, the oxide film does not increase during the nitridation treatment.
  • the plasma is continuously formed from the beginning of the oxidation process to the end of the nitridation process, the residual oxygen is consumed in the oxidation process after the supply of oxygen gas is shut off in FIG. 4B.
  • the residual oxygen concentration decreases rapidly. Therefore, after the oxidation treatment step, the nitridation treatment step can be started without providing a long oxygen purge step, and the throughput of the substrate treatment can be improved.
  • the plasma is once also turned off immediately after the oxidation treatment step A, ignition is performed again with only Ar plasma, and N2 gas is introduced later.
  • FIG. 5 shows a configuration of a cluster type substrate processing apparatus 20 according to a third embodiment of the present invention.
  • the cluster type substrate processing apparatus 20 is a cassette module 21 A.
  • the vacuum transfer chamber 21 has the same configuration as the substrate processing apparatus 10 of FIG. 1, and a pre-processing chamber. 2 1 C is bound.
  • the silicon substrate loaded in the cassette module 21A is transferred to the substrate processing chamber 21B by a transfer robot (not shown) in the vacuum transfer chamber 21 described above, and plasma is generated in the substrate processing chamber 21B.
  • a radical oxidation process is performed to form an oxide film on the surface of the silicon substrate.
  • the silicon substrate that has been oxidized in this way is transported to the pretreatment chamber 21C, where it is held at a temperature of 300 to 600 ° C. for several minutes in an Ar or nitrogen atmosphere.
  • the oxygen molecules adsorbed on the substrate surface are removed.
  • the silicon substrate thus pre-treated is transferred to the substrate processing chamber 21D through the vacuum transfer chamber 21 and subjected to the same nitriding treatment as described above.
  • the atmosphere is not switched in the substrate processing chamber 21D, the nitriding process is started immediately after the substrate is transferred, and the throughput of the entire substrate processing can be improved.
  • the removal efficiency is improved by removing the adsorbed oxygen molecules of the substrate to be processed in the dedicated pretreatment chamber 21C, and it is possible to effectively suppress the increase in the film thickness during the nitriding treatment. Will be possible.
  • the time for the substrate pretreatment can be reduced.
  • Such a pretreatment can be performed in the substrate processing chamber 21D.
  • FIG. 6 shows a configuration of a cluster type substrate processing apparatus 30 according to a fourth embodiment of the present invention.
  • the parts described above are denoted by the same reference numerals, and description thereof will be omitted.
  • plasma radical oxidation processing and nitriding processing are performed in the substrate processing chamber 21B.
  • a substrate to be processed is supplied from the cassette module 21A to the substrate processing chamber 21B through the vacuum transfer chamber 21 and the above-described plasma radical oxidation treatment is performed.
  • the substrate to be oxidized is transferred to the pre-processing chamber 21 C through the vacuum transfer chamber 21 and subjected to a heat treatment or an Ar plasma treatment.
  • the process removes adsorbed oxygen molecules.
  • the atmosphere in the substrate processing chamber 21B is changed from an oxygen atmosphere as described above with reference to FIGS. 3 and 4A to 4C. Switch to nitrogen atmosphere.
  • a dummy wafer is introduced into the processing chamber 21B, and the dummy wafer is subjected to plasma processing, whereby the processing chamber 21B is processed. It is also possible to switch the atmosphere to a nitrogen atmosphere. It is also possible to perform the same processing without a dummy wafer.
  • the substrate to be processed which has been subjected to the pre-processing in the pre-processing chamber 21C, is returned to the processing chamber 21B through the vacuum transfer chamber 21.
  • the atmosphere has already been switched to a nitrogen atmosphere, and purging of residual oxygen molecules has been completed. Therefore, by igniting the plasma in the processing chamber 21C, it becomes possible to nitride the oxide film formed on the surface of the substrate to be processed.
  • the process of removing the adsorbed oxygen molecules of the substrate to be processed in the dedicated preprocessing chamber 21C can be performed in parallel with the atmosphere switching process in the substrate processing chamber 21B. It is possible to improve the throughput of substrate processing. Further, in the substrate processing apparatus 30 of the present embodiment, only one substrate processing apparatus 10 shown in FIG. 1 needs to be provided, so that the manufacturing cost of the substrate processing apparatus 30 can be reduced.
  • the configuration shown in FIG. 6 is also useful when a thermal oxide film formed in an external, for example, batch-type oxidation processing apparatus is subjected to nitriding treatment in the substrate processing apparatus 10 having the configuration shown in FIG.
  • a silicon substrate that has been subjected to an oxidation treatment such as a thermal oxidation treatment in an external oxidation treatment device always adsorbs moisture in the air when transported in the air.
  • an oxidation treatment such as a thermal oxidation treatment in an external oxidation treatment device
  • moisture is not sufficiently removed due to the low substrate temperature during nitriding, and oxygen in the moisture causes iridescence of the substrate. A problem arises that progresses.
  • the oxidized silicon substrate is directly transferred from the cassette module 21A to the pre-processing chamber as indicated by a broken line in the figure.
  • the substrate is transported to 21 C, and the adsorbed water molecules are released from the substrate surface by performing a heat treatment or a plasma treatment at about 300 to 600 ° C. in an Ar atmosphere in the pretreatment chamber 21 C. It is possible to do.
  • the oxidized film can be nitrided without increasing the film due to the oxidization.
  • the substrate processing chamber 21B is dedicated to the nitriding treatment, it is not necessary to switch the atmosphere, and therefore, there is no occurrence of oxidation due to residual oxygen in the substrate processing chamber 21B. .
  • the function of the pre-processing chamber 21C can be integrated into the substrate processing chamber 21B.
  • the substrate temperature control mechanism 12a in the substrate holder 12 is driven in the substrate processing apparatus 10 of FIG. To heat the substrate to a desired temperature of 300 to 600 ° C. At that time, it is needless to say that a plasma can be formed as needed.
  • an increase in the thickness of the oxide film due to oxygen remaining in the atmosphere is suppressed, and the gate of the ultra-high-speed semiconductor device is reduced.
  • An extremely thin oxynitride film suitable for an insulating film can be formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A substrate treating method comprising the step of oxidizing the surface of a silicon substrate to form an oxide film, the step of nitriding the oxide film to form an oxynitrided film, and the step of removing oxygen from a nidriding-effected environment after the above oxidizing step and before the above nitriding step. Accordingly, an increase in an oxide film caused by oxygen remaining in the atmosphere is restricted, and a very thin oxynitrided film suitable for the gate insulation film of a ultra-high-speed semiconductor device can be formed.

Description

明細書  Specification
基板処理方法  Substrate processing method
技術分野  Technical field
本発明は一般に基板処理技術に係り、 特に基板上に高誘電体膜を形成する基板 処理方法に関する。  The present invention generally relates to a substrate processing technique, and more particularly, to a substrate processing method for forming a high dielectric film on a substrate.
微細化技術の進展により、 今日では 0 . 1 / mを切るゲート長の M〇S トラン ジスタを持つ超微細加工半導体デバイスの製造が可能になりつつある。  Advances in miniaturization technology are now making it possible to manufacture ultra-microfabricated semiconductor devices with M〇S transistors with gate lengths less than 0.1 / m.
かかる超微細加工半導体デバイスにおいて、 MO S トランジスタのゲート長の 短縮に伴って半導体デバイスの動作速度を向上させようとすると、 ゲート絶縁膜. の厚さをスケーリング則に従って減少させる必要がある。 例えばゲート絶縁膜と して従来のシリコン酸化膜を使った場合、 ゲート絶縁膜の厚さを従来の 1 . 7 η m以下に減少させる必要がある。 しかし、 酸化膜の厚さをこのように減少させる と、 トンネル効果により酸化膜を通って流れるゲートリーク電流が増大してしま い、 消費電力の増大等、 デバイス特性の劣化を引き起こす。  In such a microfabricated semiconductor device, if the operation speed of the semiconductor device is to be improved in accordance with the shortening of the gate length of the MOS transistor, it is necessary to reduce the thickness of the gate insulating film according to a scaling rule. For example, when a conventional silicon oxide film is used as the gate insulating film, the thickness of the gate insulating film needs to be reduced to 1.7 ηm or less. However, reducing the thickness of the oxide film in this manner increases the gate leakage current flowing through the oxide film due to the tunnel effect, which causes degradation of device characteristics such as increased power consumption.
このため、 従来より、 ゲート絶縁膜として従来のシリコン酸化膜の代わりに T a 205, Z r O 2, H f 02あるいは A 1 203などの高誘電体膜を使うことが検討 されている。 しかし、 これらの高誘電体膜は半導体技術において従来から使われ てきているシリコン酸化膜とは性質が大きく異なっており、 これらの高誘電体膜 をゲート絶縁膜として使うためには、 解決しなければならない課題が数多く残つ ている。 Therefore, conventionally, can use the high dielectric films such as the gate T a 2 0 5 in place of conventional silicon oxide film as the insulating film, Z r O 2, H f 0 2 or A 1 2 0 3 Study Have been. However, these high-dielectric films have significantly different properties from silicon oxide films conventionally used in semiconductor technology, and if these high-dielectric films are used as gate insulating films, they must be solved. There are many issues to be addressed.
これに対し、 シリコン窒化膜は従来の半導体プロセスで使われてきた材料であ り、 しかもシリコン酸化膜の 2倍の比誘電率を有するため、 またゲート電極中の ドーパント元素のシリコン基板中への拡散を効果的に阻止できることからも、 次 世代の高速半導体デバイスのゲ一ト絶縁膜として有望な材料と考えられている。 背景技術  On the other hand, the silicon nitride film is a material that has been used in conventional semiconductor processes, and has a dielectric constant twice that of the silicon oxide film. Because it can effectively prevent diffusion, it is considered to be a promising material for gate insulating films in next-generation high-speed semiconductor devices. Background art
従来、 シリコン窒化膜はプラズマ C V D法により形成されるのが一般的であつ た。 しかし、 このような C V D窒化膜は一般に界面特性が悪く、 ゲ一卜絶縁膜と しては不適当であった。 このため、 従来窒化膜をゲート絶縁膜に使う試みはなさ れていない。 Conventionally, a silicon nitride film is generally formed by a plasma CVD method. However, such CVD nitride films generally have poor interface characteristics, and are not suitable as gate insulating films. For this reason, no attempt has been made to use a nitride film as a gate insulating film. Not.
これに対し、 最近ではマイクロ波励起された A r, K rあるいは H eのような 希ガスプラズマ中に窒素ガスあるいは窒素ガスと水素ガス、 あるいは N H3のよ うな窒素を含んだガスを導入し、 Nラジカルあるいは N Hラジカルを発生させ、 シリコン酸化膜表面を酸窒化膜に変換する技術が提案されている (Katsuyuki Sekine, Yuji Sato, Masaki Hirayama and Tadahiro Ohmi, J. Vac. Sci. Tecnnol. A17(5), Sept/Oct 1999, pp.3129 - 3133; Takuya Sugawara, Toshio Nakanishi, Maseru Sasaki, Shigenori Ozaki, Yoshihide Tada, Extended Abstracts of Solid State Devices and Materials, 2002, pp.714-715) 。 このようにして形成された 酸窒化膜はシリコン熱酸化膜に匹敵する、 あるいはそれを凌ぐ界面特性を有し、 次世代高速半導体デバイスのゲート絶縁膜として有望であると考えられている。 また、 シリコン基板表面をかかるマイクロ波プラズマにより直接に窒化するブラ ズマ窒化技術、 および上記希ガスプラズマ中に酸素を含んだガスを導入し、 直接 に酸化するプラズマ酸化技術も提案されている。 On the other hand, recently, nitrogen gas, nitrogen gas and hydrogen gas, or gas containing nitrogen such as NH 3 has been introduced into a rare gas plasma such as Ar, Kr or He excited by microwaves. , N radicals or NH radicals to convert the silicon oxide film surface to an oxynitride film has been proposed (Katsuyuki Sekine, Yuji Sato, Masaki Hirayama and Tadahiro Ohmi, J. Vac. Sci. Tecnnol. A17 ( 5), Sept / Oct 1999, pp. 3129-3133; Takuya Sugawara, Toshio Nakanishi, Maseru Sasaki, Shigenori Ozaki, Yoshihide Tada, Extended Abstracts of Solid State Devices and Materials, 2002, pp. 714-715). The oxynitride film thus formed has an interface characteristic comparable to or superior to that of a silicon thermal oxide film, and is considered to be promising as a gate insulating film for next-generation high-speed semiconductor devices. In addition, a plasma nitriding technique for directly nitriding the silicon substrate surface with the microwave plasma and a plasma oxidizing technique for directly oxidizing by introducing a gas containing oxygen into the rare gas plasma have been proposed.
一方、 同一の装置でシリコン基板表面の酸化処理に引き続いてプラズマ窒化処 理を行った場合、 酸ィヒ処理やその他の処理の際に導入された酸素が処理雰囲気中 に残留していると、 窒化処理と同時に酸化が進行し、 結果的に、 窒化処理で形成 されるゲート絶縁膜の膜厚が増大してしまう問題が生じる。 このようなゲート絶 縁膜の増膜が生じると、 所望のスケーリング側に従った半導体デバイスの動作速 度の向上が得られない。 このゲート絶縁膜の増膜の問題は、 導入された窒素原子 を膜厚方向に十分に拡散させるために窒化処理を長時間行った場合や下地となる 酸化膜が薄い場合に特に顕著になる (Takuya Sugawara, et al., op. cit.; C. C. Chen, M. C. Yu, M. F. Wang, T. L. Lee, S. C. Chen, C. H. Yu and M. S. Liang, 2002 7th International Symposium on Plasma and Process Induced Damage, pp.41 - 44)。  On the other hand, when plasma nitridation is performed following oxidation of the silicon substrate surface using the same apparatus, if oxygen introduced during the acid treatment or other treatment remains in the treatment atmosphere, Oxidation proceeds at the same time as the nitridation process, and as a result, the thickness of the gate insulating film formed by the nitridation process increases. If such an increase in the gate insulating film occurs, it is not possible to improve the operation speed of the semiconductor device according to a desired scaling side. This problem of increasing the thickness of the gate insulating film is particularly prominent when nitriding is performed for a long time to sufficiently diffuse the introduced nitrogen atoms in the film thickness direction or when the underlying oxide film is thin ( Takuya Sugawara, et al., Op.cit .; CC Chen, MC Yu, MF Wang, TL Lee, SC Chen, CH Yu and MS Liang, 2002 7th International Symposium on Plasma and Process Induced Damage, pp.41-44) .
酸化処理と窒化処理を別々の装置で実行する場合には、 基板を酸化処理装置か ら窒化処理装置へと搬送する際に吸着した水分によっても、 同様な酸化によるゲ 一ト絶縁膜の増膜の問題が生じる。 発明の開示 When the oxidation treatment and the nitridation treatment are performed by different devices, the thickness of the gate insulating film is increased by the same oxidation due to the moisture absorbed when the substrate is transferred from the oxidation treatment device to the nitridation treatment device. Problem arises. Disclosure of the invention
そこで、 本発明は上記の課題を解決した、 新規で有用な基板処理装置および処 理方法を提供することを概括的課題とする。  Accordingly, it is a general object of the present invention to provide a new and useful substrate processing apparatus and a processing method which have solved the above-mentioned problems.
本発明のより具体的な課題は、 シリコン基板表面の酸化処理に引き続いて形成 された酸ィヒ膜の窒化処理を行う際に、 窒化処理に伴い形成される酸窒化膜の増膜 を抑制できる基板処理方法および基板処理装置を提供することにある。  A more specific object of the present invention is to suppress an increase in the thickness of an oxynitride film formed during the nitridation process when nitriding the oxidized film formed subsequent to the oxidation process on the silicon substrate surface. It is to provide a substrate processing method and a substrate processing apparatus.
本発明の他の課題は、  Another subject of the present invention is:
シリコン基板表面を酸化処理することにより、 酸化膜を形成する工程と、 前記酸化膜を窒化処理することにより、 酸窒化膜を形成する工程とを含むこと. を特徴とする基板処理方法であって、  A substrate processing method comprising: oxidizing the surface of a silicon substrate to form an oxide film; and nitriding the oxide film to form an oxynitride film. ,
前記酸化処理工程の後、 前記窒化処理工程の前に、 前記窒化処理が行われる環 境から、 酸素を排除する工程を含むことを特徴とする基板処理方法を提供するこ とにある。  It is another object of the present invention to provide a substrate processing method, comprising a step of removing oxygen from an environment where the nitriding treatment is performed after the oxidation treatment step and before the nitriding treatment step.
本発明によれば、 シリコン基板表面に形成された酸化膜の窒化処理の際に、 雰 囲気中に残留している酸素に起因する酸化膜の増膜が抑制され、 超高速半導体デ バイスのグート絶縁膜に適した非常に薄い酸窒化膜を形成することが可能になる。 図面の簡単な説明  According to the present invention, during nitridation of an oxide film formed on the surface of a silicon substrate, the increase in the thickness of the oxide film due to oxygen remaining in the atmosphere is suppressed, and the gut of an ultra-high-speed semiconductor device is improved. An extremely thin oxynitride film suitable for an insulating film can be formed. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1実施例において使われる基板処理装置の構成を示す図; 図 2は、 図 1の基板処理装置において、 シリコン基板の酸ィ匕処理と窒化処理と を続いて実行した場合の、 形成された酸窒化膜中における酸素原子と窒素原子の 分布を示す図;  FIG. 1 is a diagram showing a configuration of a substrate processing apparatus used in a first embodiment of the present invention; FIG. 2 is a diagram showing a substrate processing apparatus shown in FIG. Diagram showing the distribution of oxygen and nitrogen atoms in the formed oxynitride film when
図 3 A〜3 Eは、 本発明の第 1実施例による基板処理方法を示す図;  3A to 3E are views showing a substrate processing method according to a first embodiment of the present invention;
図 4 A〜4 Dは、 本発明の第 2実施例による基板処理方法を示す図;  4A to 4D are views showing a substrate processing method according to a second embodiment of the present invention;
図 5は、 本発明の第 3実施例によるクラスタ型基板処理装置を使った基板処理 方法を示す図;  FIG. 5 is a view showing a substrate processing method using a cluster type substrate processing apparatus according to a third embodiment of the present invention;
図 6は、 本発明の第 4実施例によるクラスタ型基板処理装置を使つた基板処理 方法を示す図である。 発明を実施するための最良の態様 FIG. 6 is a diagram showing a substrate processing method using a cluster type substrate processing apparatus according to a fourth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
[第 1実施例]  [First embodiment]
図 1は、 本発明で使われるプラズマ基板処理装置 1 0の概略的構成を示す。 図 1を参照するに、 ブラズマ基板処理装置 1 όは被処理基板 Wを保持する基板 保持台 1 2が形成された処理容器 1 1を有し、 処理容器 1 1は排気ポート 1 1 A において排気される。 前記基板保持台 1 2中には、 ヒータなどの基板温度制御機 構 1 2 aが形成されている。  FIG. 1 shows a schematic configuration of a plasma substrate processing apparatus 10 used in the present invention. Referring to FIG. 1, a plasma substrate processing apparatus 1 を has a processing container 11 on which a substrate holding table 12 for holding a substrate W to be processed is formed, and the processing container 11 is evacuated at an exhaust port 11 A. Is done. In the substrate holding table 12, a substrate temperature control mechanism 12a such as a heater is formed.
前記処理容器 1 1上には前記基板保持台 1 2上の被処理基板 Wに対応して開口 部が形成されており、 前記開口部は、 アルミナ等の低損失セラミックよりなる力. バープレート 1 3により塞がれている。 さらにカバープレート 1 3の下には、 前 記被処理基板 Wに対面するように、 ガス導入路とこれに連通する多数のノズル開 口部とを形成された、 アルミナ等の低損失セラミックよりなるシャワープレート 1 4が形成されている。  An opening is formed on the processing vessel 11 corresponding to the substrate W to be processed on the substrate holding table 12, and the opening is made of a low-loss ceramic such as alumina. Blocked by 3. Further, under the cover plate 13, a low-loss ceramic such as alumina is formed in which a gas introduction path and a number of nozzle openings communicating with the gas introduction path are formed so as to face the substrate W to be processed. Shower plate 14 is formed.
前記カバープレート 1 3およびシャワープレート 1 4はマイクロ波窓を形成し、 前記カバープレート 1 3の外側には、 ラジアルラインスロットアンテナあるいは ホーンアンテナ等のマイクロ波アンテナ 1 5が形成されている。  The cover plate 13 and the shower plate 14 form a microwave window, and a microwave antenna 15 such as a radial line slot antenna or a horn antenna is formed outside the cover plate 13.
動作時には、 前記処理容器 1 1内部の処理空間は前記排気ポート 1 1 Aを介し て排気することにより所定の処理圧に設定され、 前記シャワープレート 1 4から A rや K r等の希ガスと共に酸ィヒガスゃ窒化ガスが導入される。  During operation, the processing space inside the processing container 11 is set to a predetermined processing pressure by exhausting the gas through the exhaust port 11A, and is set together with a rare gas such as Ar or Kr from the shower plate 14. Acid gas ィ nitriding gas is introduced.
さらに前記アンテナ 1 5上部より周波数が数 G H zのマイクロ波を照射する。 照 されたマイクロ波はアンテナ中を径方向に伝播し、 アンテナ下部に放射され、 カバープレート 1 3を透過して真空容器 1 1中に導入される。 この際、 マイクロ 波がアンテナを介して導入されているために高密度、 低電子温度のプラズマが発 生し、 またこのプラズマは均一な分布となる。 従って図 1の基板処理装置ではプ ラズマの電子温度が低く、 被処理基板 Wや処理容器 1 1内壁の損傷が回避できる。 また、 形成されたラジカルは被処理基板 Wの表面に沿って径方向に流れ、 速やか に排気されるため、 ラジカルの再結合が抑制され、 効率的で非常に一様な基板処 理が、 6 0 0 °C以下の低温において可能になる。  Further, a microwave having a frequency of several GHz is irradiated from above the antenna 15. The illuminated microwave propagates through the antenna in the radial direction, is radiated to the lower part of the antenna, passes through the cover plate 13, and is introduced into the vacuum vessel 11. At this time, since microwaves are introduced through the antenna, high-density, low-electron-temperature plasma is generated, and the plasma has a uniform distribution. Therefore, in the substrate processing apparatus of FIG. 1, the electron temperature of the plasma is low, and damage to the substrate W to be processed and the inner wall of the processing chamber 11 can be avoided. In addition, the formed radicals flow radially along the surface of the substrate W to be processed and are quickly exhausted, so that recombination of the radicals is suppressed, and efficient and very uniform substrate processing is performed. It becomes possible at a low temperature of 00 ° C or less.
図 2は、 図 1の基板処理装置 1 0を使ってシリコン基板表面を酸化処理し、 得 られたプラズマ酸化膜を引き続き窒化処理して酸窒化膜を形成した場合の、 膜中 における酸素原子と窒素原子の S I M Sプロファイルを示す。 ただし図 2の実験 は、 前記図 1の基板処理装置 1 0において処理容器 1 1中に A rガスと酸素ガス をそれぞれ 1 0 0 0 S C CMおよび 2 0 S C CMの流量で供給し、 1 . 3 3 X 1 (P P a程度の圧力下、 4 0 0。Cの基板温度において 2 . 4 5 G H zのマイクロ 波を 1 5 0 0 Wの電力で供給して約 6 n mの厚さに形成した酸化膜についてなさ れたものであり、 窒化処理は A rガスおよび窒素ガスをそれぞれ 1 0 0 0 S C C Mおよび 2 0 S C CMの流量で供給し、 1 . 3 3 X 1 O i P a程度の圧力下、 4 0 0 °Cの基板温度において前記マイクロ波を 1 5 0 0 Wの電力で供給することで. 行っている。 FIG. 2 shows that the silicon substrate surface is oxidized using the substrate processing apparatus 10 of FIG. The SIMS profile of oxygen and nitrogen atoms in the plasma oxide film when the oxynitride film is formed by subsequent nitriding is shown. However, in the experiment of FIG. 2, Ar gas and oxygen gas were supplied into the processing vessel 11 at the flow rates of 100 SCCM and 20 SCCM, respectively, in the substrate processing apparatus 10 of FIG. 3 3 X 1 (at a pressure of about PPa, 400. At a substrate temperature of C, a microwave of 2.45 GHz is supplied with a power of 150 W to form a thickness of about 6 nm. The nitriding treatment was performed by supplying Ar gas and nitrogen gas at a flow rate of 100 SCCM and 20 SCCM, respectively, to a flow rate of about 1.33 X 1 OiPa. The microwave is supplied at a substrate temperature of 400 ° C. under pressure with a power of 1500 W.
図 2を参照するに、 酸化膜表面近傍に窒素の濃集領域が形成されており、 この ような窒素濃集領域から酸化膜内部に窒素原子が拡散しているのがわかる。 この ような酸化膜中に窒素原子が拡散して形成された酸窒化膜では、 窒素濃集領域と 酸化膜との間に界面が形成されることはなく、 従って膜中におけるトラップが形 成されることもなレ、。  Referring to FIG. 2, a nitrogen-rich region is formed near the oxide film surface, and it can be seen that nitrogen atoms diffuse into the oxide film from such a nitrogen-rich region. In an oxynitride film formed by diffusion of nitrogen atoms in such an oxide film, no interface is formed between the nitrogen-enriched region and the oxide film, and thus traps are formed in the film. You can't.
図 2では、 また窒化時間を変化させた場合の窒素原子および酸素原子の濃度分 布が示されているが、 図 2よりわかるように窒化時間が長くなると膜中の酸素濃 度も同時に増大しているのがわかる。 これは、 酸素がシリコン基板内部に侵入す ることで酸ィヒ膜に増膜が生じていることを意味する。 このような酸化膜の増大を もたらす酸素は、 処理容器 1 1やガス供給ラインの内壁に付着した酸素分子、 あ るいは基板表面に付着した水分に起因するものであると考えられる。  Fig. 2 shows the concentration distribution of nitrogen and oxygen atoms when the nitriding time is changed.As can be seen from Fig. 2, as the nitriding time increases, the oxygen concentration in the film increases simultaneously. You can see that This means that the oxygen infiltration into the silicon substrate has increased the thickness of the oxygenated film. It is considered that the oxygen that causes such an increase in the oxide film is caused by oxygen molecules attached to the inner wall of the processing container 11 or the gas supply line, or moisture attached to the substrate surface.
図 3 A〜3 Cは前記図 1の基板処理装置 1 0において、 酸ィヒと窒化を行われた 場合の窒化処理の際にこのような酸化膜の増膜が生じるメカニズム、 およびこの ような酸ィヒ膜の増膜を抑制する本発明の第 1実施例による基板処理方法を示す。 ただし図 3 Aは酸化処理および窒化処理の際における処理容器 1 1中のプラズマ 点灯シーケンスを、 図 3 Bは前記処理容器 1 1中における酸素濃度変化を、 さら に図 3 Cは同じ処理容器 1 1中における窒素濃度変化を示す。  FIGS. 3A to 3C show the mechanism by which such an oxide film is increased during nitriding treatment when nitriding is performed in the substrate processing apparatus 10 of FIG. 1 shows a substrate processing method according to a first embodiment of the present invention, which suppresses an increase in an acid film. 3A shows the plasma lighting sequence in the processing vessel 11 during the oxidation and nitriding treatments, FIG. 3B shows the oxygen concentration change in the processing vessel 11, and FIG. 3C shows the same processing vessel 1 1 shows the change in nitrogen concentration during 1.
図 3 Aを参照するに、 前記酸化処理および窒化処理の各々において前記処理容 器 1 1中には A rプラズマ A, Bが励起され、 酸化処理の際にはさらに前記処理 容器 1 1中に酸素ガスが、 また窒化処理の際には窒素ガスが、 それぞれ図 3 B, 3 Cに示すように導入される。 また酸化処理が終了するとプラズマ Aは消灯され、 また酸素ガスの供給が遮断される。 同様に窒化処理が終了すると点灯されていた プラズマ Bは消灯され、 窒素ガスの供給が遮断される。 Referring to FIG. 3A, in each of the oxidation treatment and the nitridation treatment, Ar plasmas A and B are excited in the treatment container 11, and during the oxidation treatment, the Ar plasmas A and B are further treated. Oxygen gas is introduced into the vessel 11, and nitrogen gas is introduced during nitriding as shown in FIGS. 3B and 3C, respectively. When the oxidation process is completed, the plasma A is turned off and the supply of oxygen gas is shut off. Similarly, when the nitriding process is completed, the plasma B, which was turned on, is turned off, and the supply of nitrogen gas is cut off.
特に酸化処理が終了したタイミングにおいては、 酸素ガスの供給を遮断した後 も処理容器の器壁やガス供給ラインに付着していた酸素分子が徐々に放出され、 図 3 Bに示すように前記処理容器 1 1中における酸素濃度プロファイルにティル が生じてしまう。  In particular, at the timing when the oxidation treatment is completed, even after the supply of oxygen gas is shut off, oxygen molecules adhering to the vessel wall of the treatment vessel and the gas supply line are gradually released, and as shown in FIG. Tiles are generated in the oxygen concentration profile in the container 11.
そこで酸素ガスの供給を遮断した直後に窒素ガスを処理容器 1 1中に導入し、: さらにプラズマを点灯した場合には、 処理容器 1 1中に残留していた酸素が活性 化されてしまい、 その結果生じた酸素ラジカルによりシリコン基板の酸化が、 酸 化膜の窒化と平行してさらに進行するものと考えられる。  Therefore, immediately after the supply of oxygen gas was cut off, nitrogen gas was introduced into the processing vessel 11: If the plasma was further turned on, the oxygen remaining in the processing vessel 11 was activated, It is believed that the resulting oxygen radicals further oxidize the silicon substrate in parallel with the nitridation of the oxide film.
この問題を解決するために、 本実施例では図 3 Aに示すように窒化処理の際の プラズマの点灯を、 酸化処理の終了に伴うプラズマの消灯から 1〜6 0 0秒間程 度遅らせ、 また酸素ガス供給を遮断した直後に窒素ガスを A rガスとともに処理 容器 1 1中に導入する。 その結果、 前記処理容器 1 1の内部はプラズマが再び点 灯するまでの間、 このようにして導入された A rガスおよび窒素ガスによりパー ジされる。 このように、 酸化処理の後、 前記処理容器 1 1内部を窒素ガスにより パージすることにより、 前記処理容器 1 1内部の酸素は図 3 Bに破線で示すよう に急速に排除され、 全体の基板処理時間を短縮することが可能になる。 前記パー ジ工程では、 例えば A rガスを、 前記酸化処理あるいは窒化処理の場合と同じく 1 0 0 0 S C CMの流量で、 また窒素ガスを 2 0 S C CMの流量で供給すればよ レ、。  In order to solve this problem, in the present embodiment, as shown in FIG. 3A, the lighting of the plasma during the nitriding treatment is delayed by about 1 to 600 seconds from the extinguishing of the plasma at the end of the oxidation treatment, and Immediately after the supply of oxygen gas is stopped, nitrogen gas is introduced into the processing vessel 11 together with Ar gas. As a result, the inside of the processing container 11 is purged by the Ar gas and the nitrogen gas thus introduced until the plasma is turned on again. In this way, after the oxidation treatment, the inside of the processing container 11 is purged with nitrogen gas, whereby oxygen in the processing container 11 is rapidly eliminated as shown by a broken line in FIG. Processing time can be reduced. In the purging step, for example, Ar gas may be supplied at a flow rate of 100 SCCM and nitrogen gas may be supplied at a flow rate of 20 SCCM as in the case of the oxidation treatment or nitridation treatment.
以下の表 1は、 本実施例の代表的なレシピの例を示す。  Table 1 below shows an example of a typical recipe of the present embodiment.
AT (SCCM) 02 (SCCM) N2 (SCCM) マイクロ波 時間 (秒) AT (SCCM) 02 (SCCM) N2 (SCCM) Microwave time (sec)
パワー (W)  Power (W)
1000 20 1500 40  1000 20 1500 40
1000 20 0 N2パージ 1000 20 0 N2 purge
1000 20 1500 30 なお、 図 3 Dに示すように、 パージ期間中に窒素の供給を断続し、 いわゆるサ イタルパージを行ってもよい。 このようなサイクルパージを行うことにより、 ノ ージ期間をさらに短縮することができる。 勿論、 図 3 Eに示すように、 前記酸ィ匕 処理 Aと窒化処理 Bとの間に十分な時間間隔を置けば、 窒素ガスによるパージを 省略することも可能である。 1000 20 1500 30 As shown in FIG. 3D, the so-called “ital purge” may be performed by interrupting the supply of nitrogen during the purge period. By performing such a cycle purge, the insult period can be further reduced. Of course, as shown in FIG. 3E, if a sufficient time interval is provided between the oxidation treatment A and the nitridation treatment B, the purging with nitrogen gas can be omitted.
[第 2実施例] [Second embodiment]
図 4 A〜4 Cは、 図 1の基板処理装置 1 0を使った本発明の第 2実施例による 基板処理方法を示す。 ' 本実施例では図 4 Aに示すようにプラズマを酸化処理工程 Aの始まりから窒化 処理工程 Bの終わりまで連続的に形成する。 一方、 本実施例では窒化処理工程 B における酸化膜の増膜を回避するため、 図 4 Bに示すように酸素ガスの供給時間 tを酸化処理工程の期間よりも短く設定する。 これにより、 酸素ガスの供給工程 は酸化処理工程の終了に先立って打ち切られ、 処理容器 1 1あるいはガス供給系 に残留した酸素により、 残りの酸化処理工程が実行される。  4A to 4C show a substrate processing method according to a second embodiment of the present invention using the substrate processing apparatus 10 of FIG. ′ In this embodiment, as shown in FIG. 4A, plasma is continuously formed from the start of the oxidation process A to the end of the nitridation process B. On the other hand, in this embodiment, the supply time t of the oxygen gas is set shorter than the period of the oxidation process as shown in FIG. 4B in order to avoid the increase of the oxide film in the nitridation process B. As a result, the oxygen gas supply step is terminated prior to the end of the oxidation treatment step, and the remaining oxidation treatment step is executed by the oxygen remaining in the processing vessel 11 or the gas supply system.
本実施例では、 図 4 Cに示す窒素ガスの導入時点においては酸化処理は終了し ており、 その結果、 窒化処理の際に酸化膜が増膜することはない。  In this embodiment, the oxidation treatment has been completed at the time of introduction of the nitrogen gas shown in FIG. 4C, and as a result, the oxide film does not increase during the nitridation treatment.
本実施例では、 プラズマが酸化処理工程の始まりから窒化処理工程の終わりま で連続して形成されているため、 図 4 Bにおいて酸素ガスの供給を遮断した後、 残留酸素が酸化処理に消費され、 残留酸素濃度は急速に低下する。 このため、 酸 化処理工程の後、 長い酸素パージ工程を設けなくとも窒化処理工程を開始するこ とができ、 基板処理のスループットを向上させることができる。  In this embodiment, since the plasma is continuously formed from the beginning of the oxidation process to the end of the nitridation process, the residual oxygen is consumed in the oxidation process after the supply of oxygen gas is shut off in FIG. 4B. However, the residual oxygen concentration decreases rapidly. Therefore, after the oxidation treatment step, the nitridation treatment step can be started without providing a long oxygen purge step, and the throughput of the substrate treatment can be improved.
また、 図 4 Dに示すように、 本実施例と原理を同じくするものとして、 酸化処 理工程 Aの直後にプラズマも一度消し、 再度 A rプラズマのみにて着火を行い、 後に N2ガスを導入し、 窒化処理を行う方法もある。  Further, as shown in FIG. 4D, assuming that the principle is the same as that of the present embodiment, the plasma is once also turned off immediately after the oxidation treatment step A, ignition is performed again with only Ar plasma, and N2 gas is introduced later. There is also a method of performing a nitriding treatment.
[第 3実施例] [Third embodiment]
図 5は、 本発明の第 3実施例によるクラスタ型基板処理装置 2 0の構成を示す。 図 5を参照するに、 クラスタ型基板処理装置 2 0はカセットモジュール 2 1 A を結合された真空搬送室 2 1を有しており、 前記真空搬送室 2 1には図 1の基板 処理装置 1 0と同一構成の基板処理室 2 1 B、 2 1 Dと、 前処理室 2 1 Cとが結 合されている。 前記カセットモジュール 2 1 Aにロードされたシリコン基板は前 記真空搬送室 2 1中の搬送ロボット (図示せず) により前記基板処理室 2 1 Bに 搬送され、 前記基板処理室 2 1 Bにおいてプラズマラジカル酸化処理が行われ、 前記シリコン基板表面に酸化膜が形成される。 FIG. 5 shows a configuration of a cluster type substrate processing apparatus 20 according to a third embodiment of the present invention. Referring to FIG. 5, the cluster type substrate processing apparatus 20 is a cassette module 21 A. The vacuum transfer chamber 21 has the same configuration as the substrate processing apparatus 10 of FIG. 1, and a pre-processing chamber. 2 1 C is bound. The silicon substrate loaded in the cassette module 21A is transferred to the substrate processing chamber 21B by a transfer robot (not shown) in the vacuum transfer chamber 21 described above, and plasma is generated in the substrate processing chamber 21B. A radical oxidation process is performed to form an oxide film on the surface of the silicon substrate.
このようにして酸化処理を終えたシリコン基板は前処理室 2 1 Cに搬送され、 A rあるいは窒素雰囲気中、 3 0 0〜6 0 0 °Cの温度で数分間保持されることに より、 基板表面に吸着していた酸素分子が除去される。 ' このようにして前処理を施されたシリコン基板は真空搬送室 2 1中を通って基 板処理室 2 1 Dに搬送され、 先に説明したのと同様な窒化処理が行われる。 その 際、 前記基板処理室 2 1 Dでは雰囲気の切り換えがないため、 基板が搬送される と直ちに窒化処理が開始され、 基板処理全体のスループットを向上させることが できる。 また本実施例では被処理基板の吸着酸素分子を専用の前処理室 2 1 Cに おいて除去することで、 除去効率が向上し、 窒化処理の際の増膜を効果的に抑制 することが可能になる。  The silicon substrate that has been oxidized in this way is transported to the pretreatment chamber 21C, where it is held at a temperature of 300 to 600 ° C. for several minutes in an Ar or nitrogen atmosphere. The oxygen molecules adsorbed on the substrate surface are removed. The silicon substrate thus pre-treated is transferred to the substrate processing chamber 21D through the vacuum transfer chamber 21 and subjected to the same nitriding treatment as described above. At this time, since the atmosphere is not switched in the substrate processing chamber 21D, the nitriding process is started immediately after the substrate is transferred, and the throughput of the entire substrate processing can be improved. In the present embodiment, the removal efficiency is improved by removing the adsorbed oxygen molecules of the substrate to be processed in the dedicated pretreatment chamber 21C, and it is possible to effectively suppress the increase in the film thickness during the nitriding treatment. Will be possible.
なお、 図 5において、 前記前処理室 2 1 Cにおいて A rプラズマ処理を行うこ とにより、 基板前処理の時間を短縮することが可能である。 また、 このような前 処理は、 前記基板処理室 2 1 Dにおいて行うことも可能である。  In FIG. 5, by performing the Ar plasma treatment in the pretreatment chamber 21C, the time for the substrate pretreatment can be reduced. Such a pretreatment can be performed in the substrate processing chamber 21D.
[第 4実施例] [Fourth embodiment]
図 6は、 本発明の第 4実施例によるクラスタ型基板処理装置 3 0の構成を示す。 ただし図 6中、 先に説明した部分には同一の参照符号を付し、 説明を省略する。 図 6を参照するに、 基板処理装置 3 0においては基板処理室 2 1 Bにおいてプ ラズマラジカル酸化処理および窒化処理が行われる。  FIG. 6 shows a configuration of a cluster type substrate processing apparatus 30 according to a fourth embodiment of the present invention. However, in FIG. 6, the parts described above are denoted by the same reference numerals, and description thereof will be omitted. Referring to FIG. 6, in the substrate processing apparatus 30, plasma radical oxidation processing and nitriding processing are performed in the substrate processing chamber 21B.
より具体的に説明すると、 最初に被処理基板が前記カセットモジュール 2 1 A から真空搬送室 2 1を通って基板処理室 2 1 Bに供給され、 先に説明したプラズ マラジカル酸化処理が行われる。 酸化処理を終えた被処理基板は前記真空搬送室 2 1を通って前記前処理室 2 1 Cに搬送され、 加熱処理あるいは A rプラズマ処 理により、 吸着酸素分子が除去される。 More specifically, first, a substrate to be processed is supplied from the cassette module 21A to the substrate processing chamber 21B through the vacuum transfer chamber 21 and the above-described plasma radical oxidation treatment is performed. The substrate to be oxidized is transferred to the pre-processing chamber 21 C through the vacuum transfer chamber 21 and subjected to a heat treatment or an Ar plasma treatment. The process removes adsorbed oxygen molecules.
前記被処理基板が前記前処理室 2 1 Cで処理されている間に前記基板処理室 2 1 Bでは雰囲気が、 先に図 3および図 4 A〜 4 Cで説明したように酸素雰囲気か ら窒素雰囲気へと切り換えられる。 また、 前記前処理基板が前記前処理室 2 1 C にて処理されている間、 処理室 2 1 Bにダミーウェハを導入し、 前記ダミーゥェ ハにプラズマ処理を施すことにより、 処理室 2 1 Bの雰囲気を窒素雰囲気に切り 換えることも可能である。 また、 同様の処理をダミーウェハ無しで行うことも可 能である。  While the substrate to be processed is being processed in the preprocessing chamber 21C, the atmosphere in the substrate processing chamber 21B is changed from an oxygen atmosphere as described above with reference to FIGS. 3 and 4A to 4C. Switch to nitrogen atmosphere. In addition, while the pre-processed substrate is being processed in the pre-processing chamber 21C, a dummy wafer is introduced into the processing chamber 21B, and the dummy wafer is subjected to plasma processing, whereby the processing chamber 21B is processed. It is also possible to switch the atmosphere to a nitrogen atmosphere. It is also possible to perform the same processing without a dummy wafer.
そこで前記前処理室 2 1 Cでの前処理が終了した被処理基板が前記処理室 2 1 Bに前記真空搬送室 2 1を通って戻された時点においては、 前記処理室 2 1 B中 の雰囲気はすでに窒素雰囲気に切り替わっており、 残留酸素分子のパージも終了 している。 そこで前記処理室 2 1 Cにおいてプラズマを点火することにより、 前 記被処理基板表面に形成された酸化膜を窒化することが可能になる。  Therefore, when the substrate to be processed, which has been subjected to the pre-processing in the pre-processing chamber 21C, is returned to the processing chamber 21B through the vacuum transfer chamber 21. The atmosphere has already been switched to a nitrogen atmosphere, and purging of residual oxygen molecules has been completed. Therefore, by igniting the plasma in the processing chamber 21C, it becomes possible to nitride the oxide film formed on the surface of the substrate to be processed.
このように、 本実施例では専用の前処理室 2 1 C中における被処理基板の吸着 酸素分子の除去工程を基板処理室 2 1 Bにおける雰囲気切り換え工程と平行して 実行することが可能で、 基板処理のスループットを向上させることが可能である。 また、 本実施例の基板処理装置 3 0では、 図 1の基板処理装置 1 0を一つ設ける だけでよく、 従って基板処理装置 3 0の製造費用を低減することが可能である。 なお、 図 6の構成は、 外部の例えばバッチ式の酸化処理装置において形成され た熱酸化膜を図 1の構成の基板処理装置 1 0において窒化処理する場合において も有用である。  As described above, in this embodiment, the process of removing the adsorbed oxygen molecules of the substrate to be processed in the dedicated preprocessing chamber 21C can be performed in parallel with the atmosphere switching process in the substrate processing chamber 21B. It is possible to improve the throughput of substrate processing. Further, in the substrate processing apparatus 30 of the present embodiment, only one substrate processing apparatus 10 shown in FIG. 1 needs to be provided, so that the manufacturing cost of the substrate processing apparatus 30 can be reduced. The configuration shown in FIG. 6 is also useful when a thermal oxide film formed in an external, for example, batch-type oxidation processing apparatus is subjected to nitriding treatment in the substrate processing apparatus 10 having the configuration shown in FIG.
すなわち、 外部の酸化処理装置において熱酸化処理などの酸化処理を施された シリコン基板は、 大気中を搬送される際にかならず大気中の水分を吸着するが、 このような水分を吸着したシリコン基板に対して図 1のようなマイクロ波プラズ マ処理装置において窒化処理を施すと、 窒化処理の際の基板温度が低いため水分 が十分に除去されず、 水分中の酸素により基板の酸ィ匕が進行してしまう問題が生 じる。  That is, a silicon substrate that has been subjected to an oxidation treatment such as a thermal oxidation treatment in an external oxidation treatment device always adsorbs moisture in the air when transported in the air. In contrast, when nitriding is performed in a microwave plasma processing apparatus as shown in FIG. 1, moisture is not sufficiently removed due to the low substrate temperature during nitriding, and oxygen in the moisture causes iridescence of the substrate. A problem arises that progresses.
これに対し、 図 6の基板処理装置 3 0では、 酸化処理を施されたシリコン基板 を前記カセットモジュール 2 1 Aから直接に、 図中に破線で示すように前処理室 2 1 Cに搬送し、 前記前処理室 2 1 Cにおいて A r雰囲気中、 3 0 0〜6 0 0 °C 程度の加熱処理もしくはプラズマ処理を行うことにより、 吸着した水分子を基板 表面から離脱させることが可能である。 In contrast, in the substrate processing apparatus 30 of FIG. 6, the oxidized silicon substrate is directly transferred from the cassette module 21A to the pre-processing chamber as indicated by a broken line in the figure. The substrate is transported to 21 C, and the adsorbed water molecules are released from the substrate surface by performing a heat treatment or a plasma treatment at about 300 to 600 ° C. in an Ar atmosphere in the pretreatment chamber 21 C. It is possible to do.
このようにして前処理を行った被処理基板を前記基板処理室 2 1 Bに搬送する ことにより、 酸ィ匕による増膜を生じることなく酸ィ匕膜を窒化することが可能にな る。 このような場合には、 前記基板処理室 2 1 Bは窒化処理に専用されるため、 雰囲気の切り換えは必要なく、 従って基板処理室 2 1 B中の残留酸素による酸ィ匕 が生じることはない。  By transporting the substrate to which the pre-processing has been performed in this way to the substrate processing chamber 21B, the oxidized film can be nitrided without increasing the film due to the oxidization. In such a case, since the substrate processing chamber 21B is dedicated to the nitriding treatment, it is not necessary to switch the atmosphere, and therefore, there is no occurrence of oxidation due to residual oxygen in the substrate processing chamber 21B. .
なお、 必要に応じて、 前記前処理室 2 1 Cの機能を前記基板処理室 2 1 Bに統 合することも可能である。  If necessary, the function of the pre-processing chamber 21C can be integrated into the substrate processing chamber 21B.
この場合には、 基板処理室 2 1 B中に設けられた図 1の基板処理装置 1 0にお いて基板保持台 1 2中の基板温度制御機構 1 2 aを駆動し、 A r雰囲気中におい て所望の 3 0 0〜6 0 0 °Cの温度に基板を加熱する。 その際、 必要に応じてブラ ズマを形成することができるのは勿論である。  In this case, the substrate temperature control mechanism 12a in the substrate holder 12 is driven in the substrate processing apparatus 10 of FIG. To heat the substrate to a desired temperature of 300 to 600 ° C. At that time, it is needless to say that a plasma can be formed as needed.
以上、 本発明を好ましい実施例について説明したが、 本発明は上記の実施例に 限定されるものではなく、 特許請求の範囲に記載の要旨内において様々な変形 · 変更が可能である。  As described above, the present invention has been described with reference to the preferred embodiments. However, the present invention is not limited to the above-described embodiments, and various modifications and changes can be made within the gist of the claims.
産業上の利用可能性  Industrial applicability
本発明によれば、 シリコン基板表面に形成された酸化膜の窒化処理の際に、 雰 囲気中に残留している酸素に起因する酸化膜の増膜が抑制され、 超高速半導体デ バイスのゲート絶縁膜に適した非常に薄い酸窒化膜を形成することが可能になる。  According to the present invention, during nitridation of an oxide film formed on the surface of a silicon substrate, an increase in the thickness of the oxide film due to oxygen remaining in the atmosphere is suppressed, and the gate of the ultra-high-speed semiconductor device is reduced. An extremely thin oxynitride film suitable for an insulating film can be formed.

Claims

請求の範囲 The scope of the claims
1 . シリコン基板表面を酸化処理することにより、 酸化膜を形成する工程と、 前記酸化膜を窒化処理することにより、 酸窒化膜を形成する工程とを含む基板 処理方法であって、 1. A substrate processing method comprising: a step of forming an oxide film by oxidizing a silicon substrate surface; and a step of forming an oxynitride film by nitriding the oxide film,
前記酸化処理工程の後、 前記窒化処理工程の前に、 前記窒化処理が行われる環 境から、 酸素を排除する工程を含むことを特徴とする基板処理方法。  A substrate processing method comprising: removing oxygen from an environment in which the nitriding process is performed after the oxidation process and before the nitriding process.
2 . 前記酸化処理はバッチ処理により行われ、 前記窒化処理は枚葉処理によ.. り行われ、 前記酸素を排除する工程は、 加熱処理により実行されることを特徴と する請求項 1記載の基板処理方法。 2. The oxidation process is performed by a batch process, the nitriding process is performed by a single-wafer process, and the step of removing oxygen is performed by a heating process. Substrate processing method.
3 . 前記加熱処理は、 前記窒化処理を行う処理装置内において実行されるこ とを特徴とする請求項 2記載の基板処理方法。 3. The substrate processing method according to claim 2, wherein the heating process is performed in a processing apparatus that performs the nitriding process.
4 . 前記加熱処理は、 前記窒化処理を行う処理装置とは別の処理装置におい て実行されることを特徴とする請求項 2記載の基板処理方法。 4. The substrate processing method according to claim 2, wherein the heat treatment is performed in a processing device different from a processing device that performs the nitriding process.
5 . 前記酸化処理はバッチ処理により行われ、 前記窒化処理は枚葉処理によ り行われ、 前記酸素を排除する工程は、 プラズマ処理により実行されることを特 徴とする請求項 1記載の基板処理方法。 5. The method according to claim 1, wherein the oxidation process is performed by a batch process, the nitriding process is performed by a single-wafer process, and the step of removing oxygen is performed by a plasma process. Substrate processing method.
6 . 前記プラズマ処理は、 前記窒化処理を行う処理装置内において実行され ることを特徴とする請求項 5記載の基板処理方法。 6. The substrate processing method according to claim 5, wherein the plasma processing is performed in a processing apparatus that performs the nitriding processing.
7 . 前記プラズマ処理は、 前記窒化処理を行う処理装置とは別の処理装置に ぉレ、て実行されることを特徴とする請求項 5記載の基板処理方法。 7. The substrate processing method according to claim 5, wherein the plasma processing is performed in a processing apparatus different from a processing apparatus that performs the nitriding processing.
8 . 前記窒化処理は、 プラズマ処理により実行されることを特徴とする請求 項 2記載の基板処理方法。 8. The nitriding process is performed by a plasma process. Item 2. The substrate processing method according to Item 2.
9 . 前記酸化処理は、 第 1の枚葉処理装置中において行われ、 前記窒化処理 は第 2の枚葉処理装置中において行われ、 前記酸素を排除する工程は、 加熱処理 およびブラズマ処理により実行されることを特徴とする請求項 1記載の基板処理 方法。 9. The oxidation treatment is performed in a first single-wafer processing apparatus, the nitridation processing is performed in a second single-wafer processing apparatus, and the step of removing oxygen is performed by heating processing and plasma processing. 2. The substrate processing method according to claim 1, wherein the method is performed.
1 0 . 前記加熱処理およびプラズマ処理は、 前記第 2の枚葉処理装置内にお V、て実行されることを特徴とする請求項 9記載の基板処理方法。 10. The substrate processing method according to claim 9, wherein the heat treatment and the plasma treatment are performed in the second single wafer processing apparatus.
1 1 . 前記加熱処理およぴプラズマ処理は、 前記第 2の枚葉処理装置とは別 の処理装置において実行されることを特徴とする請求項 9記載の基板処理方法。 11. The substrate processing method according to claim 9, wherein the heating processing and the plasma processing are performed in a processing apparatus different from the second single-wafer processing apparatus.
1 2 . 前記酸化処理および窒化処理は、 プラズマ処理により実行されること を特徴とする請求項 9記載の基板処理方法。 12. The substrate processing method according to claim 9, wherein the oxidizing process and the nitriding process are performed by a plasma process.
1 3 . 前記酸化処理および窒化処理は単一の枚葉処理装置中において、 ブラ ズマ処理により順次行われ、 前記酸素を排除する工程は、 前記酸化処理のプラズ マ処理終了後、 前記窒化処理のプラズマ処理開始までの間、 前記枚葉処理装置の 処理容器中を連続して排気する工程により実行されることを特徴とする請求項 1 記載の基板処理方法。 13. The oxidation treatment and the nitridation treatment are sequentially performed by plasma treatment in a single wafer processing apparatus, and the step of removing oxygen is performed after the plasma treatment of the oxidation treatment is completed. 2. The substrate processing method according to claim 1, wherein the substrate processing method is performed by a step of continuously exhausting the inside of the processing container of the single wafer processing apparatus until the start of the plasma processing.
1 4 . 前記酸素を排除する工程は、 前記処理容器中を連続して排気する際に、 前記処理容器中に窒素ガス及び 又は希ガスを供給しながら実行されることを特 徴とする請求項 1 3記載の基板処理方法。 14. The step of removing oxygen is characterized in that, when continuously exhausting the processing vessel, the step is performed while supplying nitrogen gas and / or a rare gas into the processing vessel. 13. The substrate processing method described in 3.
1 5 . 前記酸素を排除する工程は、 さらに前記基板を、 前記枚葉処理装置に 結合された別の装置に搬送した状態で実行されることを特徴とする請求項 1 3ま たは 1 4記載の基板処理方法。 15. The method according to claim 13, wherein the step of removing oxygen is further performed in a state where the substrate is further transported to another apparatus coupled to the single-wafer processing apparatus. The substrate processing method according to the above.
1 6 . 前記酸素を除去する工程は、 前記連続排気工程の間、 前記処理容器中 に窒素ガス及び Z又は希ガスを繰り返し断続的に供給する工程を含むことを特徴 とする請求項 1 3記載の基板処理方法。 16. The step of removing oxygen includes a step of repeatedly and intermittently supplying nitrogen gas and Z or a rare gas into the processing vessel during the continuous evacuation step. Substrate processing method.
1 7 . 前記酸化処理は第 1のプラズマにより実行され、 前記窒化処理は第 2 のプラズマにより実行され、 前記酸化処理の終了後、 前記第 1のプラズマを停止 し、 前記窒化処理の際に前記第 2のプラズマを点火することを特徴とする請求項 1 3記載の基板処理方法。 17. The oxidizing process is performed by a first plasma, the nitriding process is performed by a second plasma, and after the oxidizing process is completed, the first plasma is stopped. 14. The substrate processing method according to claim 13, wherein the second plasma is ignited.
1 8 . 前記酸化処理おょぴ前記窒化処理は連続したプラズマ処理により、 そ れぞれ酸素および窒素を供給することにより実行され、 前記酸化処理の際には、 酸化処理終了前に酸素の供給を遮断することを特徴とする請求項 1 3記載の基板 処理方法。 18. The oxidation treatment and the nitridation treatment are performed by supplying oxygen and nitrogen by continuous plasma treatment, respectively. In the oxidation treatment, supply of oxygen before the end of the oxidation treatment is performed. 14. The substrate processing method according to claim 13, wherein the substrate is cut off.
1 9 . 前記プラズマがマイクロ波によって形成されることを特徴とする請求 項 1記載の基板処理方法。 19. The substrate processing method according to claim 1, wherein the plasma is formed by microwaves.
2 0 . 前記プラズマが平面アンテナ部材を介してマイクロ波を放射すること により形成されることを特徴とする請求項 1記載の基板処理方法。 20. The substrate processing method according to claim 1, wherein the plasma is formed by radiating a microwave through a planar antenna member.
PCT/JP2002/013134 2001-12-18 2002-12-16 Substrate treating method WO2003052810A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2002357591A AU2002357591A1 (en) 2001-12-18 2002-12-16 Substrate treating method
US11/076,282 US7517751B2 (en) 2001-12-18 2005-03-10 Substrate treating method
US12/392,630 US20090163036A1 (en) 2001-12-18 2009-02-25 Substrate Treating Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-385108 2001-12-18
JP2001385108A JP4048048B2 (en) 2001-12-18 2001-12-18 Substrate processing method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10499347 A-371-Of-International 2002-12-16
US11/076,282 Continuation US7517751B2 (en) 2001-12-18 2005-03-10 Substrate treating method

Publications (1)

Publication Number Publication Date
WO2003052810A1 true WO2003052810A1 (en) 2003-06-26

Family

ID=19187790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/013134 WO2003052810A1 (en) 2001-12-18 2002-12-16 Substrate treating method

Country Status (4)

Country Link
JP (1) JP4048048B2 (en)
AU (1) AU2002357591A1 (en)
TW (1) TW200301311A (en)
WO (1) WO2003052810A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7232772B2 (en) 2002-05-16 2007-06-19 Tokyo Electron Limited Substrate processing method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1742273A4 (en) * 2004-04-09 2008-07-09 Tokyo Electron Ltd Method of forming gate insulating film, storage medium and computer program
JP2006245528A (en) * 2005-02-01 2006-09-14 Tohoku Univ Dielectric film and method for forming the same
JP2007012788A (en) * 2005-06-29 2007-01-18 Elpida Memory Inc Method of manufacturing semiconductor device
JP2008192975A (en) * 2007-02-07 2008-08-21 Hitachi Kokusai Electric Inc Method for processing substrate
JP6039996B2 (en) * 2011-12-09 2016-12-07 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing method, substrate processing apparatus, and program
JP6032963B2 (en) * 2012-06-20 2016-11-30 キヤノン株式会社 SOI substrate, method for manufacturing SOI substrate, and method for manufacturing semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148325A (en) * 1995-11-28 1997-06-06 Oki Electric Ind Co Ltd Method for manufacturing semiconductor device
JPH1027795A (en) * 1996-07-12 1998-01-27 Toshiba Corp Manufacturing method of semiconductor device
US5885870A (en) * 1995-11-03 1999-03-23 Motorola, Inc. Method for forming a semiconductor device having a nitrided oxide dielectric layer
JP2001085427A (en) * 1999-09-13 2001-03-30 Nec Corp Oxynitride film and forming method therefor
WO2002009166A1 (en) * 2000-07-21 2002-01-31 Tokyo Electron Limited Method for manufacturing semiconductor device, substrate treater, and substrate treatment system
WO2002054473A1 (en) * 2000-12-28 2002-07-11 Tadahiro Ohmi Semiconductor device and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5885870A (en) * 1995-11-03 1999-03-23 Motorola, Inc. Method for forming a semiconductor device having a nitrided oxide dielectric layer
JPH09148325A (en) * 1995-11-28 1997-06-06 Oki Electric Ind Co Ltd Method for manufacturing semiconductor device
JPH1027795A (en) * 1996-07-12 1998-01-27 Toshiba Corp Manufacturing method of semiconductor device
JP2001085427A (en) * 1999-09-13 2001-03-30 Nec Corp Oxynitride film and forming method therefor
WO2002009166A1 (en) * 2000-07-21 2002-01-31 Tokyo Electron Limited Method for manufacturing semiconductor device, substrate treater, and substrate treatment system
WO2002054473A1 (en) * 2000-12-28 2002-07-11 Tadahiro Ohmi Semiconductor device and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7232772B2 (en) 2002-05-16 2007-06-19 Tokyo Electron Limited Substrate processing method
US7429539B2 (en) 2002-05-16 2008-09-30 Tokyo Electron Limited Nitriding method of gate oxide film

Also Published As

Publication number Publication date
JP4048048B2 (en) 2008-02-13
TW200301311A (en) 2003-07-01
TWI292441B (en) 2008-01-11
JP2003188172A (en) 2003-07-04
AU2002357591A1 (en) 2003-06-30

Similar Documents

Publication Publication Date Title
US7517751B2 (en) Substrate treating method
JP4926219B2 (en) Manufacturing method of electronic device material
US7217659B2 (en) Process for producing materials for electronic device
JP4255563B2 (en) Semiconductor manufacturing method and semiconductor manufacturing apparatus
KR100943246B1 (en) Semiconductor fabrication method and semiconductor fabrication equipment
TWI406337B (en) Methods for oxidation of a semiconductor device
JP3746968B2 (en) Insulating film forming method and forming system
US7226874B2 (en) Substrate processing method
KR101188574B1 (en) Method for forming insulating film and method for manufacturing semiconductor device
TWI415187B (en) Selective plasma treatment
US20060269694A1 (en) Plasma processing method
KR101477831B1 (en) Method for pretreating inner space of chamber in plasma nitridation, plasma processing method and plasma processing apparatus
JP4965849B2 (en) Insulating film forming method and computer recording medium
JP2003133298A (en) Apparatus for treating substrate with microwave plasma
JP4526995B2 (en) Method for forming gate insulating film, computer-readable storage medium, and computer program
WO2003052810A1 (en) Substrate treating method
WO2004077542A1 (en) Substrate processing method
WO2007129579A1 (en) Method of substrate treatment, computer-readable recording medium, substrate treating apparatus and substrate treating system
JP2007201507A (en) Substrate processing device and method of the same
JP4088275B2 (en) Insulating film formation method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase