WO2003052276A1 - Compressor unit with control system - Google Patents
Compressor unit with control system Download PDFInfo
- Publication number
- WO2003052276A1 WO2003052276A1 PCT/SE2002/002254 SE0202254W WO03052276A1 WO 2003052276 A1 WO2003052276 A1 WO 2003052276A1 SE 0202254 W SE0202254 W SE 0202254W WO 03052276 A1 WO03052276 A1 WO 03052276A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compressor
- rotors
- drive line
- power recovery
- waste flow
- Prior art date
Links
- 239000002699 waste material Substances 0.000 claims abstract description 29
- 238000011084 recovery Methods 0.000 claims abstract description 22
- 230000008878 coupling Effects 0.000 claims abstract 2
- 238000010168 coupling process Methods 0.000 claims abstract 2
- 238000005859 coupling reaction Methods 0.000 claims abstract 2
- 239000007789 gas Substances 0.000 description 15
- 239000002912 waste gas Substances 0.000 description 4
- 239000000446 fuel Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
- F02C6/04—Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
- F02C6/06—Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas
- F02C6/08—Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas the gas being bled from the gas-turbine compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D15/00—Control, e.g. regulation, of pumps, pumping installations or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/08—Adaptations for driving, or combinations with, pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/16—Control of working fluid flow
- F02C9/18—Control of working fluid flow by bleeding, bypassing or acting on variable working fluid interconnections between turbines or compressors or their stages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/08—Centrifugal pumps
- F04D17/10—Centrifugal pumps for compressing or evacuating
- F04D17/12—Multi-stage pumps
- F04D17/122—Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/02—Surge control
Definitions
- Compressor unit w- h control system.
- This invention relates to a compressor unit for delivering a pressurised gaseous medium at a varying outlet flow volume to a consumer with varying load demands .
- the invention concerns a technique to control the output of a compressor unit of the above type including one or more compressor rotors and a control system for providing a continuous high speed and a certain output flow volume of the compressor rotor or rotors.
- This technique has the objective to keep up a readiness for rapid changes in the load demand from the consumer, without just dumping or throttling away excessive pressure medium to the atmosphere. Load demands may vary widely within a fraction of a second.
- a characteristic feature of for instance turbo compressors is their relatively slow acceleration and pressure build up if intermittently operated at a reduced speed. This means that in this type of compressors speed regulation is not a very good way to control the output flow volume and to keep up a proper readiness for rapid load demand increases.
- One way to approach this problem might be to use a pressure medium reservoir of some volume to keep up the pressure medium delivery volume during the acceleration sequence of the compressor rotor or rotors.
- Another way of solving the readiness problem if there is no available space for a large enough reservoir, is to operate the compressor rotor or rotors continuously at high speed with a high output flow volume.
- a gas turbine driven turbo compressor unit of this type is previously described in US Patent No. 4,809,497.
- the compressor In order to have a good readiness to rapidly deliver full output volume, the compressor is continuously operated at full speed, and a reduction in the load demand from a consumer is met by opening up a by-pass line to dump excessive flow volume to the atmosphere.
- This flow dumping arrangement is provided to prevent surging and a consequent damage risk for the compressor.
- dumping excessive air to the atmosphere via the by-pass line while operating the gas turbine at full power means an undesirable loss of energy and a poor efficiency of the compressor unit .
- a gas turbine engine which is connected to a load and which comprises a turbo compressor which is partly fed with re-circulated exhaust gas from the turbine.
- the compressor is fed with an increased amount of fresh air, and the compressor is provided with a number of outlet taps for stepwise bleeding off waste gas to the atmosphere at varying power demands from the load.
- an auxiliary turbine which is driven by waste gas from a tap in a high pressure zone of the compressor and which is intended to drive a fresh air compressor for feeding fresh air to the compressor at high power demands.
- This waste gas recovery arrangement is used at high load demands only, because at low load demand very little fresh air is needed for turbine combustion. This means that at low power demands, most waste gas is dumped to the atmosphere from the compressor without any energy recovery.
- the main object of the invention is to provide a compressor unit for delivering pressurised gaseous medium with a high degree of readiness for rapid changes in the load demands, wherein the compressor rotor or rotors are continuously operated at high speed and a high outlet flow volume, wherein the waste flow outlet from the compressor rotor or rotors at reduced load demand is used for energy recovery.
- Another object of the invention is to provide a compressor unit for delivering pressurised gaseous medium with a varying outlet flow volume, while continuously operating the compressor rotor or rotors at high speed thereby delivering a high output flow volume, wherein waste output flow volume from the compressor rotor or rotors at part- load demand is used for driving one or more power recovery turbines mechanically coupled to the drive line of the compressor rotor or rotors for returning mechanical power to the compressor drive line.
- FIG. 1 shows a schematic illustration of a compressor unit according to one basic embodiment of the invention.
- Fig. 2 shows schematically a two-stage compressor unit according to another embodiment of the invention.
- the compressor unit illustrated schematically in Fig. 1 comprises a drive motor M, and a compressor rotor K coupled to the motor M via a drive line N.
- the drive line N comprises suitably a rotating shaft in one or more coaxial sections.
- the compressor rotor K is arranged to be fed with air of atmospheric pressure P x and deliver pressure air at P 2 .
- the compressor rotor K is arranged to be driven by the motor M at a constant speed and to deliver a constant flow volume of pressure air. This constant speed level is chosen with respect to the characteristics of the rotor K so as to make the latter operate under its optimum conditions.
- the compressor unit is intended to be connected to a pressure air consumer (not shown) with a load demand that could be rapidly varied between zero and full output volume of the compressor rotor K.
- a waste flow circuit comprises an power recovery turbine T R which is mechanically coupled to the drive line N and driven by the waste flow.
- the actual waste flow volume makes the power recovery turbine T R deliver power back to the drive line N and to the drive motor M, thereby recovering energy not momentarily needed to keep up with the actual load demand by the consumer. Thereby, the power supply to the motor M could be reduced to a level where the compressor rotor K is just maintained at its predetermined optimum speed level.
- the waste flow valve V is suitably controlled by the pressure at the output end of the compressor rotor K so as to continuously divert exactly that flow volume to the power recovery turbine which is not demanded by the consumer.
- a power control unit PCU is connected both to the waste control valve V and to the drive motor M and is intended to continuously adapt the power supply to the motor M to maintain the compressor rotor K at the predetermined optimum speed level .
- the drive motor M could be of any kind, an electric synchronous motor, a gas turbine etc.
- the compressor unit illustrated in Fig. 2 comprises two compressor rotors 10,11 arranged in series via an intermediate cooler 12 to form a two-stage compressor.
- the compressor unit has an air inlet 13 for atmospheric air and a pressure air outlet 14 for delivering pressure air to a consumer (not illustrated) via an air cooler 15.
- the consumer may very well be of a type having a varying load demand with rapid changes between a low and a high load demands .
- the compressor rotors 10,11 are connected to two separate drive lines 17,18 formed by rotating shafts driven by a gas turbine 19 comprising two rotors 20,21 each connected to one of the drive lines 17,18.
- the turbine rotors 20,21 and the two drive lines 17,18 may rotate in opposite directions for obtaining a favourable efficiency of the turbine 19.
- a waste air flow circuit is connected to the pressure air outlet end 14 of the compressor 10,11 via a valve 25 and includes branches to both power recovery turbines 22,23.
- the valve 25 is arranged also to control the air feed to a burner 27 connected to the gas turbine 19.
- the air flow diverted to the burner 27 is dependent on the actual load demand.
- the air flow volume diverted to the power recovering turbines 22,23 is the superfluous waste air volume momentarily needed neither by the consumer nor the burner 27.
- At a low load demand there will be a large waste flow diverted to the power recovery turbines 22,23 and, hence, a substantial power feed back to the drive lines 17,18.
- the burner 27 is supplied with fuel from a fuel supplying unit 28 and with air from the pressure air outlet end 14 of the compressor 10,11 via the valve 25.
- the air is supplied to the burner 27 via a recuperator 29 which is heated by the exhaust gases from the turbine 19.
- the fuel supplying unit 28 also comprises an ignition device for starting up the burner 27.
- the drive line 17 connected to the initial stage compressor rotor 20 is also connected to an electric motor 30 which is intended for turbine starting purposes.
- the motor 30 is energised by an accumulator 31 or via a mains connection.
- these turbines are preferably provided with adjustable guide vanes 32,33.
- the individual waste flow volumes to the power recovery turbines 22,23 are controlled by two separate valves 34,35 in the waste flow circuit. It may also be suitable to provide the first stage 20 of the gas turbine 19 with adjustable guide vanes (not illustrated) to optimise the turbine operation to different load demands .
- the guide vanes 32,33 and the valves 25,34,35 are adjusted in response to a number of parameters like the rotor speed, the actual pressure levels P x , P 2 , P 3 , P 4 , P 5 and temperatures T ⁇ ; T 2 , T 3 , T 4 , T 5 , T 6 , T 7 , T 8 _ T 9 . See Fig. 2. Sensors for these parameters are not shown in detail.
- control system 36 For accomplishing a proper operation control of the compressor unit there is provided a control system 36.
- control system 36 is illustrated symbolically without any leads to the different parts of the system.
- the control system 36 does not in itself form any part of the invention and is not described in further detail .
- the above described compressor unit could be operated in different ways dependent on the characteristic of the pressure air consumer. Should the consumer be of the kind requiring a very short notice readiness for full flow volume, the compressor should be operated at full speed all the time and recovering the excessive energy via a waste flow through the power recovery turbines 22,23. At low load demands, the waste air flow is large and the energy fed back to the drive lines 15,16 and the motor, i.e. the gas turbine, is high and the net spent energy is quite low. Should the load demand increase rapidly to full flow capacity of the compressor, the gas turbine which is rotating at full speed is able to deliver full output flow volume instantaneously.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Control Of Positive-Displacement Air Blowers (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Control Of Turbines (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003553133A JP2005513328A (ja) | 2001-12-14 | 2002-12-06 | 制御システムを備えたコンプレッサユニット |
CA002470046A CA2470046A1 (en) | 2001-12-14 | 2002-12-06 | Compressor unit with control system |
US10/498,675 US20050118034A1 (en) | 2001-12-14 | 2002-12-06 | Compressor unit with control system |
KR10-2004-7009182A KR20040096502A (ko) | 2001-12-14 | 2002-12-06 | 제어시스템을 가진 압축기유니트 |
EP02793607A EP1463889A1 (en) | 2001-12-14 | 2002-12-06 | Compressor unit with control system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE0104204-3 | 2001-12-14 | ||
SE0104204A SE521349C2 (sv) | 2001-12-14 | 2001-12-14 | Kompressorenhet med styrsystem |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003052276A1 true WO2003052276A1 (en) | 2003-06-26 |
Family
ID=20286313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SE2002/002254 WO2003052276A1 (en) | 2001-12-14 | 2002-12-06 | Compressor unit with control system |
Country Status (8)
Country | Link |
---|---|
US (1) | US20050118034A1 (ja) |
EP (1) | EP1463889A1 (ja) |
JP (1) | JP2005513328A (ja) |
KR (1) | KR20040096502A (ja) |
CN (1) | CN1617981A (ja) |
CA (1) | CA2470046A1 (ja) |
SE (1) | SE521349C2 (ja) |
WO (1) | WO2003052276A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006050943B4 (de) * | 2006-10-28 | 2020-04-16 | Pfeiffer Vacuum Gmbh | Vakuumpumpe und Verfahren zum Betrieb derselben |
EP1942279A1 (de) * | 2007-01-08 | 2008-07-09 | Siemens Aktiengesellschaft | Verfahren zum Betrieb einer Kompressoranordnung und Kompressoranordnung |
ITCO20110031A1 (it) * | 2011-07-28 | 2013-01-29 | Nuovo Pignone Spa | Treno di turbocompressori con supporti rotanti e metodo |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4627234A (en) * | 1983-06-15 | 1986-12-09 | Sundstrand Corporation | Gas turbine engine/load compressor power plants |
US4809497A (en) * | 1983-06-15 | 1989-03-07 | Sunstrand Corporation | Gas turbine engine/load compressor power plants |
US5117625A (en) * | 1988-05-23 | 1992-06-02 | Sundstrand Corporation | Integrated bleed load compressor and turbine control system |
US5163286A (en) * | 1991-02-25 | 1992-11-17 | Allied-Signal Inc. | Gas turbine engine with free turbine inlet flow control |
WO2001027452A1 (en) * | 1999-10-12 | 2001-04-19 | Alm Development, Inc. | Gas turbine engine |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1751851B2 (de) * | 1968-08-08 | 1973-12-13 | Motoren- Und Turbinen-Union Muenchen Gmbh, 8000 Muenchen | Gasturbinenanlage |
US5343692A (en) * | 1989-06-23 | 1994-09-06 | Alliedsignal Inc. | Contaminate neutralization system for use with an advanced environmental control system |
US6282897B1 (en) * | 1995-11-29 | 2001-09-04 | Marius A. Paul | Advanced thermo-electronic systems for hybrid electric vehicles |
US5956960A (en) * | 1997-09-08 | 1999-09-28 | Sundstrand Corporation | Multiple mode environmental control system for pressurized aircraft cabin |
US6735953B1 (en) * | 1997-12-22 | 2004-05-18 | Allied Signal Inc. | Turbomachine-driven environmental control system |
-
2001
- 2001-12-14 SE SE0104204A patent/SE521349C2/sv not_active IP Right Cessation
-
2002
- 2002-12-06 CN CNA028278844A patent/CN1617981A/zh active Pending
- 2002-12-06 EP EP02793607A patent/EP1463889A1/en not_active Withdrawn
- 2002-12-06 KR KR10-2004-7009182A patent/KR20040096502A/ko not_active Application Discontinuation
- 2002-12-06 JP JP2003553133A patent/JP2005513328A/ja active Pending
- 2002-12-06 US US10/498,675 patent/US20050118034A1/en not_active Abandoned
- 2002-12-06 WO PCT/SE2002/002254 patent/WO2003052276A1/en not_active Application Discontinuation
- 2002-12-06 CA CA002470046A patent/CA2470046A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4627234A (en) * | 1983-06-15 | 1986-12-09 | Sundstrand Corporation | Gas turbine engine/load compressor power plants |
US4809497A (en) * | 1983-06-15 | 1989-03-07 | Sunstrand Corporation | Gas turbine engine/load compressor power plants |
US5117625A (en) * | 1988-05-23 | 1992-06-02 | Sundstrand Corporation | Integrated bleed load compressor and turbine control system |
US5163286A (en) * | 1991-02-25 | 1992-11-17 | Allied-Signal Inc. | Gas turbine engine with free turbine inlet flow control |
WO2001027452A1 (en) * | 1999-10-12 | 2001-04-19 | Alm Development, Inc. | Gas turbine engine |
Also Published As
Publication number | Publication date |
---|---|
CN1617981A (zh) | 2005-05-18 |
EP1463889A1 (en) | 2004-10-06 |
KR20040096502A (ko) | 2004-11-16 |
SE0104204D0 (sv) | 2001-12-14 |
US20050118034A1 (en) | 2005-06-02 |
SE521349C2 (sv) | 2003-10-21 |
SE0104204L (sv) | 2003-06-15 |
CA2470046A1 (en) | 2003-06-26 |
JP2005513328A (ja) | 2005-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2258934B1 (en) | Dual-pump fuel system and method for starting a gas turbine engine | |
US11084591B2 (en) | Aircraft cabin blower system having a transmission receiving mechanical power from a first and seccond input wherein the first input is configured to receive mechanical power from a turbine engine and a first electrical machine to configured to receive mechanical power from the turbine engine independent of the transmission | |
US6745569B2 (en) | Power generation plant with compressed air energy system | |
US6003298A (en) | Steam driven variable speed booster compressor for gas turbine | |
US8572974B2 (en) | Variable speed and displacement electric fluid delivery system for a gas turbine engine | |
JP6183994B2 (ja) | トルクコンバータシステムを有するガスタービン圧縮機入口加圧 | |
EP1783364A2 (en) | Wind power generation systems and method of operating same | |
US6360535B1 (en) | System and method for recovering energy from an air compressor | |
US4733536A (en) | Integrated mechanical vapor recompression apparatus and process for the cogeneration of electric and water-based power having a recirculation control system for part-load capacity | |
EP1245805A2 (en) | Supercharged gas turbine | |
US6418707B1 (en) | General advanced power system | |
US4920276A (en) | Heat-and-electricity supply system | |
CN101680365A (zh) | 燃气轮机发电系统及其运行控制方法 | |
KR101312793B1 (ko) | 터빈 발전기의 제어 방법 및 장치 | |
JP2013536911A (ja) | 電力ステーション | |
US6282897B1 (en) | Advanced thermo-electronic systems for hybrid electric vehicles | |
US6321526B1 (en) | Gas turbine starting control system | |
US20050118034A1 (en) | Compressor unit with control system | |
JP2007263084A (ja) | 熱電供給システム | |
EP2586997A2 (en) | Compressed air energy storage system and method of operating such a system | |
CN117836507A (zh) | 用于供应飞机涡轮机械的燃料调节的系统、飞机及其使用方法 | |
CN111231643B (zh) | 一种煤矿井下运输气动车辆动力系统和驱动方法 | |
US10683800B2 (en) | Engine | |
JPS63208624A (ja) | ガスタ−ビンの出力制御装置 | |
CN115324743B (zh) | 一种气电混合驱动泵的低温升发动机燃油系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA CN JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2002793607 Country of ref document: EP Ref document number: 2470046 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003553133 Country of ref document: JP Ref document number: 1020047009182 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20028278844 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2002793607 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10498675 Country of ref document: US |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2002793607 Country of ref document: EP |