WO2003046503A1 - Procede de detection de fuites dans des canalisations - Google Patents

Procede de detection de fuites dans des canalisations Download PDF

Info

Publication number
WO2003046503A1
WO2003046503A1 PCT/AT2002/000334 AT0200334W WO03046503A1 WO 2003046503 A1 WO2003046503 A1 WO 2003046503A1 AT 0200334 W AT0200334 W AT 0200334W WO 03046503 A1 WO03046503 A1 WO 03046503A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
leak
stations
station
pressure change
Prior art date
Application number
PCT/AT2002/000334
Other languages
German (de)
English (en)
Inventor
Josef Schedelberger
Herbert Kotschnig
Original Assignee
Pipeflow Software Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pipeflow Software Gmbh filed Critical Pipeflow Software Gmbh
Priority to DE2002195540 priority Critical patent/DE10295540D2/de
Priority to AU2002358401A priority patent/AU2002358401A1/en
Publication of WO2003046503A1 publication Critical patent/WO2003046503A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2807Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes
    • G01M3/2815Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes using pressure measurements

Definitions

  • the present invention relates to a method for leak detection on pipelines or other system parts connected to the pipeline, in which liquids, e.g. Petroleum or petroleum products are transported, whereby any pressure change that exceeds a certain limit value is recorded in the pressure measuring stations along the pipeline.
  • the present invention therefore relates to the detection or monitoring of liquid leaks (leaks) as a result of failure of the pipeline or other associated system parts when operating pipelines, pipeline networks or pipelines, in which liquids tianspox.tj.ert.
  • liquid leaks cause corresponding environmental damage, so that the safe and early detection of such leaks is of great importance.
  • the hydraulic parameters along the pipeline are simulated on the basis of known operating parameters and switching states on the pipeline system using a computing model. If there are any discrepancies between the operational data and the operational data calculated based on the model, a leak can be inferred from this and subsequently usually after the so-called called "gradient method" leak detection.
  • grade method Such a method is described in DE 4128750 AI.
  • the disadvantage of this method is the difficulty in interpreting a leak if an unexpected pressure curve is recognized.
  • pressure events are related to each other through logical links and related to the hydraulic pipeline states in cause and effect relationships. From the cause-effect relationships, the pressure events can be examined with regard to a possible leak.
  • the rapid occurrence of leaks temporarily causes a rapid drop in pressure (pressure drop) at the scene.
  • This pressure event propagates both upstream and downstream in the pipeline at pressure wave velocity.
  • These pressure drops are smaller, the smaller the leak, and are often in the range of operationally caused pressure fluctuations in the pipeline. Accordingly, the detection of the pressure trap caused by operation is of very great importance.
  • a leak is assumed in the simulation calculation, the location and the size of the leak being variables that are changed until the simulation calculation agrees as closely as possible with the measured values.
  • the disadvantage of this method is that a leak can only be determined if - e.g. by changing the position of a valve or the delivery rate of a pump - a pressure change is generated. Now it happens that no change is necessary in normal operation for several hours. Either you run the risk of not recognizing a leak for several hours, or you create random changes in pressure. However, since each pressure change places an additional load on the pipe network, this leads to the fact that the method for detecting a leak increases the likelihood of a leak, which of course does not make sense either.
  • Another disadvantage is that the simulation calculation is very complex to program and also requires powerful computers.
  • Fig. 1 is a pressure-displacement diagram (ps diagram), where the pressure conditions in the area of a station with a control valve are illustrated with rapid intervention of the valve;
  • Fig. 2 is a pressure-displacement diagram (ps diagram), where the pressure conditions in a pumping station are illustrated when a pump fails;
  • 3 shows the height profile (height h) of a pipeline along the route s and the pressure p when the pipeline section is operated without free-mirror sections (continuous line) or with free-mirror sections (dashed line);
  • 4 shows a time-path diagram (ts diagram), where a time window for the referencing of pressure events in neighboring stations is illustrated in the case of "coupling between stations to past events";
  • FIG. 5 shows a representation analogous to FIG. 3, where pressure drop monitoring is illustrated in a free-mirror section of a pipeline; 6 shows a pressure-time diagram (pt diagram), where the time course of the pressure in the measuring station of the free-mirror section is illustrated after a leak occurs at time to; 7 shows a pressure-displacement diagram (ps diagram), where the passage of a pressure drop through a throttle point (control valve) with partial reflection at the throttle point is illustrated; and FIGS. 8a and 8b each show a pressure-displacement diagram (ps diagram), where a partial reflection of a discharge wave arriving on the suction side (FIG. 8a) or pressure side (FIG. 8b) of a pumping station illustrates the pressure drop (without control valve intervention) is.
  • pt diagram pressure-time diagram
  • FIGS. 8a and 8b each show a pressure-displacement diagram (ps diagram), where a partial reflection of a discharge wave arriving on the suction side (FIG. 8a) or pressure
  • ⁇ p (a * p * Q / A * 10 ⁇ 5 ) / 2 [bar]
  • the software for detecting and locating leaks is usually installed in an operating computer in the control center.
  • the data exchange with the telecontrol system takes place via an interface.
  • the prerequisite for the trouble-free function of EDI is that the individual
  • Pressures or pressure cases measured in stations of the pipeline, which are then transferred to the EDI, are provided with the most accurate time stamp possible.
  • This evaluation comes into play when a pressure drop is registered in a measuring station along the pipeline that cannot be filtered out as operationally using the "coupling within stations" algorithm.
  • This pressure drop can of course not only have been caused by a leak, but also by another station.
  • a referencing to the next upstream and / or the next downstream measuring station takes place within a time window. If the reference is positive, the pressure drop is recognized as operational.
  • a pressure drop event at a leak 22 in the adjacent stations SB and SC causes a pressure drop of ⁇ tj . or ⁇ t 2 time-delayed pressure drop event ⁇ p here or ⁇ p there , the running times ⁇ ti or ⁇ t 2 depending on the location of the leak between the two stations.
  • ⁇ tj . or ⁇ t 2 time-delayed pressure drop event ⁇ p here or ⁇ p there the running times ⁇ ti or ⁇ t 2 depending on the location of the leak between the two stations.
  • Blast wave speed is in this range.
  • Characterized in each station referred to as “here” (SB in Fig. 3 or 4) be ⁇ in which the time t a pressure drop Ap he h is recorded, is not protected by the algorithm "coupling within stations” filtered as operationally within a time window 30, 31 (FIG. 4), referencing to the next upstream and downstream station (designated "there") with respect to the pressure drop ⁇ p takes place in the time window as follows: time window for upstream station SA: ( t - ⁇ t on ) ⁇ ⁇ t on * C t Time window for downstream station SC:
  • the factor C_t takes into account the uncertainties in the
  • Runtimes ⁇ t up and ⁇ t down can be
  • L up and L down means a af a down the length of the route from station SB "here" to upstream and downstream stations "there” SA and SC (see FIG. 3); and a up and a down mean the average pressure wave velocity in these sections.
  • the factor C_R takes into account on the one hand the damping of the pressure waves between the stations and on the other hand hydraulic effects such as partial reflections of the pressure waves in the stations. Examples of this are shown in FIGS. 7, 8a and 8b.
  • Fig. 7 you can see the passage of a pressure drop through a control valve
  • Fig. 8a the passage of a pressure drop through a pumping station
  • Fig. 8b the passage of a pressure drop through a pumping station
  • the Pressure drop comes from the pressure side.
  • the incoming pressure case 51 is greater than the outgoing pressure case 53 because of a partial reflection 52.
  • a pressure drop event in a station that cannot be filtered for operational reasons either by the "coupling within stations” or by the "coupling between stations to past events” must be indicated in a packed line section (line section without cantilever sections) a possible leak apply.
  • a pressure drop event must spread at one of the two neighboring stations at pressure wave speed, depending on the direction of the discharge wave, namely the upstream if the leak is downstream, the downstream if the leak lies upstream, and in both neighboring stations if the leak lies in the station area of the station under consideration. If the pressure drop does not spread into either the upstream or the downstream pressure measuring station, it can be concluded after a further closer examination of the pressure drop that the pressure event cannot be hydraulic.
  • Such printing events are common in practice. They can be caused by a malfunction of the sensor, by errors in data processing and data transmission in the control system, e.g. but can also be caused by recurring functional tests in the respective station.
  • a pressure event at time t in station SB "here" (FIG. 3) with pressure drop ⁇ p h i er / - is then to be regarded as an event caused by a leak if:
  • references between ⁇ pi e r and ⁇ p dor can be met either by the downstream station SC or by the upstream station SA or by both stations. If this reference is not met by either the upstream station or the downstream station, the pressure drop event can be filtered as not caused by hydraulics and further measures can be omitted. Otherwise, it must be assumed that the pressure drop in the station under consideration was caused by a leak, so that a leak alarm then occurs and the location and size of the leak are calculated.
  • the factor takes into account the uncertainties C_T m from the transit times .DELTA.t aT and At - The two factors C_R_low and C_R_h ⁇ gh isolate the area in which the rich Druckfallbe- Ap there m the neighboring station is expected.
  • Steps c) and d) described above must therefore fail with such free-mirror sections. For this reason, according to a further preferred feature of the invention, it is determined where the pipeline is hydraulically decoupled by free-mirror sections, so that the pressure waves triggered by a pressure drop event are negatively reflected at the respective free mirrors and do not reach the neighboring station, and that steps c) and d) are not applied to these stations.
  • FIG. 3 schematically shows the geodetic height profile 17 of a pipeline with the stations SA (in the height position H SA ), SB (in the height position H SB ) and SC (in the height position H S c) and with two pronounced high points HPA (in the height position H HPA ) and HPB (at an altitude of H HPB ) •
  • the pipeline pressures p SA in the station SA and p S c in the station SC are so high that a pressure line 18 is established, which in the entire line section under consideration is above the height profile 17 the pipeline lies.
  • HPA and HPB there are
  • the route section between the station SA and SC is "hydraulically coupled", i.e. they are not separated by free-mirror sections 15, 16.
  • the station SB also referred to as “here”
  • the neighboring stations SA and SC also referred to as “there"
  • FIG. 5 shows a free mirror section 33 from FIG. 3 in the
  • FIG. 6 shows the time course of the pressure p n of the measuring station SB (FIGS. 3, 5) when a leak occurs, the reference time to relating to the time the leak occurred and thus the pressure drop ⁇ p at the leak point 22. After the pressure drop arrives at the measuring station
  • the pressure m of the measuring station SB decreases by the pressure drop ⁇ p h ⁇ er - ⁇ i is determined from Li, the distance of the leak 22 from the station SB, and the pressure wave speed in this section.
  • a pressure drop also runs from the leak point 22 in the direction of the high point HPB. This requires a time ⁇ t 3 , this time being determined from the distance L 3 of the high point HPB from the leak 22 (and the pressure wave speed in this area).
  • the pressure drop is reflected negatively (thus becomes a pressure increase) and runs to station SB. The reflected pressure drop takes time to do this
  • the leak location can be determined from the duration of the pressure reduction 2 * ⁇ t 3 .
  • the algorithm "monitoring of free level sections” thus recognizes that the pipeline breaks down into individual pipeline sections which are hydraulically decoupled by the free level sections in such a way that the pressure waves triggered by a pressure drop event are negatively reflected at the respective free level and thereby the neighboring station do not reach. Accordingly, steps c) and d) are not carried out for the relevant stations in such cases.

Abstract

L'invention concerne un procédé de détection de fuites dans des canalisations en fonctionnement. Ce procédé repose sur le principe que, lorsqu'une fuite apparaît rapidement, une chute de pression caractéristique se produit à l'endroit de la fuite ; cette chute de pression se diffuse à la vitesse du son aussi bien en amont qu'en aval de cet endroit puis est enregistrée au niveau de points de mesure de pression situés le long de la canalisation. L'application de quatre algorithmes pour la liaison logique de chutes de pression enregistrées au niveau des stations de mesure de pression voisines (qui représentent l'invention effective) permet de détecter si la chute de pression enregistrée au niveau d'une station a été provoquée par une fuite dans la station elle-même ou par une fuite dans les deux sections de conduite vers les stations voisines ou bien si cette chute de pression a été déclenchée par des variations de pression liées au régime de fonctionnement. Des chutes de pression liées au fonctionnement peuvent ainsi être détectées tout au long de la canalisation et filtrées, de manière à garantir, d'une part, une détection précise et fiable des fuites et, d'autre part, à maintenir un nombre très réduit de fausses alertes.
PCT/AT2002/000334 2001-11-30 2002-11-29 Procede de detection de fuites dans des canalisations WO2003046503A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE2002195540 DE10295540D2 (de) 2001-11-30 2002-11-29 Verfahren zur Leckerkennung von Rohrleitungen
AU2002358401A AU2002358401A1 (en) 2001-11-30 2002-11-29 Method for detecting leaks in pipe lines

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT18692001A AT412016B (de) 2001-11-30 2001-11-30 Verfahren zur leckerkennung von rohrleitungen
ATA1869/2001 2001-11-30

Publications (1)

Publication Number Publication Date
WO2003046503A1 true WO2003046503A1 (fr) 2003-06-05

Family

ID=3689180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2002/000334 WO2003046503A1 (fr) 2001-11-30 2002-11-29 Procede de detection de fuites dans des canalisations

Country Status (4)

Country Link
AT (1) AT412016B (fr)
AU (1) AU2002358401A1 (fr)
DE (1) DE10295540D2 (fr)
WO (1) WO2003046503A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005023692B3 (de) * 2005-05-23 2006-11-09 PSI Aktiengesellschaft für Produkte und Systeme der Informationstechnologie Verfahren zur Vermeidung von Fehlalarmen bei einem druckfallgestützten Leckerkennungssystem, und Vorrichtung zur Durchführung eines derartigen Verfahrens
WO2007128657A1 (fr) * 2006-05-10 2007-11-15 Deutsche Transalpine Oelleitung Gmbh ProcÉdÉ de dÉtection de fuites sur des conduites tubulaires
WO2009158602A1 (fr) 2008-06-27 2009-12-30 Exxonmobil Research And Engineering Company Procédé et appareil d’amélioration en temps réel de l’exploitation d’une canalisation de transport de fluide
WO2018132137A1 (fr) * 2017-01-10 2018-07-19 Sensus Spectrum Llc Procédé et appareil de détection de fuite basée sur un modèle dans un réseau de canalisations
US10352505B2 (en) 2008-06-27 2019-07-16 Exxonmobil Research And Engineering Company Method and apparatus for real time enhancing of the operation of a fluid transport pipeline
DE112012001851B4 (de) 2011-06-27 2023-06-15 International Business Machines Corporation Ermitteln von Fluid-Leckagevolumen in Pipelines

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2603715A1 (de) * 1976-01-31 1977-08-11 Rolf Prof Dr Ing Isermann Verfahren zur leckerkennung und leckortung bei rohrleitungen
EP0186478A2 (fr) * 1984-12-25 1986-07-02 Nippon Kokan Kabushiki Kaisha Méthode et appareil pour détecter des fuites dans une canalisation de gaz

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4128750C2 (de) * 1991-08-29 1995-03-16 Psi Ges Fuer Prozessteuerungs Verfahren zur Ortung eines Lecks in einem Fluid-Rohrleitungsnetz
DE19542890C1 (de) * 1995-11-17 1997-07-17 Hansaconsult Ingenieurgesellsc Verfahren zur Erkennung von Leckagen in Rohrleitungen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2603715A1 (de) * 1976-01-31 1977-08-11 Rolf Prof Dr Ing Isermann Verfahren zur leckerkennung und leckortung bei rohrleitungen
EP0186478A2 (fr) * 1984-12-25 1986-07-02 Nippon Kokan Kabushiki Kaisha Méthode et appareil pour détecter des fuites dans une canalisation de gaz

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005023692B3 (de) * 2005-05-23 2006-11-09 PSI Aktiengesellschaft für Produkte und Systeme der Informationstechnologie Verfahren zur Vermeidung von Fehlalarmen bei einem druckfallgestützten Leckerkennungssystem, und Vorrichtung zur Durchführung eines derartigen Verfahrens
WO2007128657A1 (fr) * 2006-05-10 2007-11-15 Deutsche Transalpine Oelleitung Gmbh ProcÉdÉ de dÉtection de fuites sur des conduites tubulaires
DE102006000220A1 (de) * 2006-05-10 2008-04-17 Deutsche Transalpine Oelleitung Gmbh Verfahren zur Leckerkennung an Rohrleitungen
WO2009158602A1 (fr) 2008-06-27 2009-12-30 Exxonmobil Research And Engineering Company Procédé et appareil d’amélioration en temps réel de l’exploitation d’une canalisation de transport de fluide
US8766806B2 (en) 2008-06-27 2014-07-01 Exxonmobil Research And Engineering Company Method and apparatus for real time enhancing of the operation of a fluid transport pipeline
RU2525369C2 (ru) * 2008-06-27 2014-08-10 ЭкссонМобил Рисерч энд Энджиниринг Компани Способ и устройство для повышения в реальном времени эффективности работы трубопровода для транспортировки текучей среды
US10352505B2 (en) 2008-06-27 2019-07-16 Exxonmobil Research And Engineering Company Method and apparatus for real time enhancing of the operation of a fluid transport pipeline
DE112012001851B4 (de) 2011-06-27 2023-06-15 International Business Machines Corporation Ermitteln von Fluid-Leckagevolumen in Pipelines
WO2018132137A1 (fr) * 2017-01-10 2018-07-19 Sensus Spectrum Llc Procédé et appareil de détection de fuite basée sur un modèle dans un réseau de canalisations
US11280696B2 (en) 2017-01-10 2022-03-22 Sensus Spectrum Llc Method and apparatus for model-based leak detection of a pipe network
EP3568681B1 (fr) * 2017-01-10 2023-08-16 Sensus Spectrum, LLC Procédé et appareil de détection de fuite basée sur un modèle dans un réseau de canalisations

Also Published As

Publication number Publication date
AT412016B (de) 2004-08-26
AU2002358401A1 (en) 2003-06-10
DE10295540D2 (de) 2005-01-13
ATA18692001A (de) 2004-01-15

Similar Documents

Publication Publication Date Title
DE3905054C1 (fr)
EP2541224B1 (fr) Procédé de contrôle d'étanchéité pour soupapes de sécurité
EP1977209B1 (fr) Procede de surveillance permanente de conduits tubulaires et de systemes de conduits qui transportent des fluides sous pression
DE102004016378A1 (de) Verfahren und Anordnung zur aktiven Überwachung von Rohrleitungen
DE102009046758A1 (de) Sich selbst überwachende Durchflussmessanordnung und Verfahren zu deren Betrieb
EP0284785A1 (fr) Méthode et dispositif pour le contrôle de l'étanchéité de deux vannes disposées successivement sur un conduit de fluide
DE1961928C3 (de) Vorrichtung zum Überwachen einer Rohrleitung auf Rohrbrüche
DE2240752A1 (de) Verfahren und vorrichtung zur feststellung und lokalisierung von undichtigkeitsstellen an einer pipeline
DE19542890C1 (de) Verfahren zur Erkennung von Leckagen in Rohrleitungen
EP2016384A1 (fr) Procede de detection de fuites sur des conduites tubulaires
EP1788373B1 (fr) Dispositif de contrôle de conduite souple
EP3350560B1 (fr) Procédé et dispositif permettant de déterminer un taux de fuite d'une section de conduite
DE3904487C1 (fr)
WO2006125715A1 (fr) Procede pour eviter des fausses alarmes dans un systeme de detection de fuites fonde sur les chutes de pression et dispositif pour l'execution d'un tel procede
AT412016B (de) Verfahren zur leckerkennung von rohrleitungen
EP3848690B1 (fr) Dispositif de protection contre les dégâts des eaux, en particulier de détection de petites fuites
WO2011153985A2 (fr) Dispositif de commande d'une unité de soutènement dans la taille d'une mine
DE102017100416A1 (de) Verfahren zur Erkennung einer Leckage, Überwachungseinrichtung und Computerprogramm hierzu
DE102005059441A1 (de) Druckminderer mit Überwachungsmittel
DE102018222218B4 (de) Verfahren zum Prüfen eines Hydrauliksystems
DE102004035333B3 (de) Verfahren zur Ortung von Leckagen
EP3588047A1 (fr) Protection contre les fuites
DE10310874B4 (de) Leckageerkennung bei einem Ventil
DE102022114818A1 (de) System und Verfahren zum Ermitteln von Fluidkommunikation zwischen Räumen
DE4342554C2 (de) Verfahren zur Überwachung von Abgastransportsystemen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 092542002

Country of ref document: AT

Date of ref document: 20030605

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 92542002

Country of ref document: AT

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
REF Corresponds to

Ref document number: 10295540

Country of ref document: DE

Date of ref document: 20050113

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10295540

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP