WO2003045126A1 - Electromagnetic wave shielding light transmitting window material and method for producing the same - Google Patents

Electromagnetic wave shielding light transmitting window material and method for producing the same Download PDF

Info

Publication number
WO2003045126A1
WO2003045126A1 PCT/JP2002/011545 JP0211545W WO03045126A1 WO 2003045126 A1 WO2003045126 A1 WO 2003045126A1 JP 0211545 W JP0211545 W JP 0211545W WO 03045126 A1 WO03045126 A1 WO 03045126A1
Authority
WO
WIPO (PCT)
Prior art keywords
window material
transmitting window
metal foil
electromagnetic wave
shielding light
Prior art date
Application number
PCT/JP2002/011545
Other languages
French (fr)
Japanese (ja)
Inventor
Hidefumi Kotsubo
Yasuhiro Morimura
Itsuo Tanuma
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to JP2003546633A priority Critical patent/JPWO2003045126A1/en
Priority to AU2002365993A priority patent/AU2002365993A1/en
Publication of WO2003045126A1 publication Critical patent/WO2003045126A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0094Shielding materials being light-transmitting, e.g. transparent, translucent
    • H05K9/0096Shielding materials being light-transmitting, e.g. transparent, translucent for television displays, e.g. plasma display panel

Definitions

  • the present invention relates to an electromagnetic wave shielding light transmitting window material useful as a front filter of a plasma display panel (PDP), a window material of a building requiring an electromagnetic wave shield such as a hospital (for example, a sticking film), and a method of manufacturing the same.
  • the present invention relates to an electromagnetic wave shielding light transmitting window material formed by forming a conductive pattern on a film and a method for producing the same.
  • window materials that have electromagnetic wave shielding properties and are light transmissive have been developed as front filters for equipment.
  • This window material is also used as a window material in places where precision equipment is installed, such as hospitals and laboratories, in order to protect precision equipment from electromagnetic waves such as mobile phones.
  • a conventional electromagnetic wave shielding light transmitting window material has a pair of transparent substrates such as an acrylic plate, and a conductive mesh or a transparent conductive film such as a wire mesh interposed between the transparent substrates. These are integrated.
  • the conductive mesh used for the conventional electromagnetic shielding light transmitting window material is generally about 5 to 500 mesh with a wire diameter of 10 to 500 ⁇ m, and the aperture ratio is 75%. Is less than.
  • the aperture ratio is calculated from the line width of the mesh and the number of lines existing in one inch width. In the conventional electromagnetic shielding light transmitting window material using the conductive mesh, the light transmittance is at most about 70%.
  • moire interference fringes
  • the transparent conductive film By using a transparent conductive film instead of a mesh, it is conceivable to achieve both light transmittance and electromagnetic shielding properties.However, the transparent conductive film is not compatible with the housing. It is not easy to achieve conduction.
  • the periphery of the conductive mesh protrudes from the periphery of the transparent substrate, and the periphery is bent, and the periphery is electrically connected to the housing. If the edge of the transparent conductive film protrudes from the edge of the transparent substrate and is bent, the film will tear at the fold.
  • An object of the present invention is to provide an electromagnetic wave shielding light transmitting window material having a conductive pattern having a sufficiently small line width and an extremely high aperture ratio, and a method for manufacturing the same.
  • an electromagnetic wave shielding light transmitting window material having a conductive pattern formed of metal on a surface of a transparent film is produced.
  • the method includes the steps of: bonding a metal foil to the surface of the transparent film; forming a resist pattern having the same pattern as the conductive pattern on the surface of the metal foil; Removing the metal foil not covered by the resist pattern to form the conductive pattern.
  • This resist for forming a resist pattern has a low viscosity, and a fine and precise resist pattern is formed.
  • the conductive pattern formed under the resist pattern has a significantly smaller line width and therefore a larger aperture ratio.
  • an electromagnetic wave shielding light transmitting window material having a conductive pattern having a line width of 200 m or less and an aperture ratio of 75% or more can be manufactured.
  • the electromagnetic wave shielding light transmitting window material of the present invention is manufactured by the method of the present invention. BRIEF DESCRIPTION OF THE FIGURES
  • FIGS. 1, 2, 3, 4 and 5 are cross-sectional views illustrating an example of the method of the present invention. Detailed description
  • an adhesive 2 is used on a transparent film 1. And the metal foil 3 is bonded.
  • a resist is printed in a grid pattern on the metal foil 3 to form a resist pattern 4.
  • the etching process is performed, and the metal foil 3 not covered with the resist pattern 4 is removed.
  • the resist pattern 4 is removed.
  • the above etching process removes only the portion of the metal foil 3 that is not covered with the resist pattern 4, and the metal foil 3 below the resist pattern 4 remains without being etched and is made of metal.
  • the conductive pattern becomes 3 A.
  • the adhesive 2 may remain on the transparent film 1 without being removed if it is transparent. By this etching, the adhesive 2 may be removed together with the metal foil 3, the adhesive 2 may be removed by using a solvent after the etching, and the adhesive 2 may be removed together with the removal of the resist pattern 4. Alternatively, the adhesive 2 may be removed after the removal of the resist pattern 4.
  • the conductive pattern 3A Since the conductive pattern 3A is formed below the lattice-shaped resist pattern 4, it has the same lattice shape as the resist pattern 4. By reducing the line width of the resist pattern 4, a lattice-shaped conductive pattern 3A having a small line width is formed. By reducing the line width of the grid-like resist pattern 4 and increasing the area of the opening of the resist pattern 4, a grid-like conductive pattern 3A having a large aperture ratio is formed.
  • the resist pattern 4 is not removed, and the processing may be stopped in the state of FIG. 4 to provide an electromagnetic wave shielding light transmitting window material.
  • the conductive pattern 3A becomes an electromagnetic wave shielding light transmitting window material covered with the resist.
  • This resist has an antireflection function.
  • the blackening process described later is performed, the resist is removed.
  • a transparent synthetic resin which is not eroded by an etching solution is used as a material of the transparent film 1.
  • this synthetic resin include polyethylene terephthalate, polyethylene naphthalate, polyether sulfone, polyarylate, polycarbonate, polymethyl methacrylate, and triacetate. Hardness is preferred.
  • the thickness of the transparent film 1 is preferably about 50 to 300 ⁇ in order to provide rigidity to the electromagnetic wave shielding light transmitting window material to facilitate handling.
  • metals or alloys such as aluminum, nickel, indium, chromium, gold, vanadium, tin, cadmium, silver, platinum, copper, titanium, cobalt, and zinc are preferable, and among these, copper is preferable. Pure metals or alloys of aluminum, nickel, chromium, zinc, tin, silver or gold are preferred.
  • the thickness of the metal foil 3 is preferably about 0.1 to 20 ⁇ . If the thickness is less than 0.1 ⁇ , electromagnetic wave shielding performance will be insufficient. If the pattern 3 ⁇ is thicker than 20 ⁇ , the viewing angle of the electromagnetic wave shielding light transmitting window material will be narrowed, and the etching will also spread in the width direction. ⁇ may not be formed.
  • the adhesive 2 for bonding the metal foil 3 to the transparent film a general-purpose and highly transparent material such as an epoxy-based, urethane-based, or acrylic-based adhesive can be used.
  • the layer thickness of the adhesive 2 may be about 5 to 50 ⁇ .
  • the resist pattern 4 formed on the metal foil 3 is preferably formed by printing.
  • the printing material those commercially available as a photo resist or the like are preferable, and among them, a solution containing an acrylic polymer as a main component is preferable.
  • an etching process is performed after curing by irradiating energy rays such as ultraviolet rays.
  • the resist pattern 4 is preferably printed so as to form a lattice.
  • the line width is printed so as to be not more than 200 ⁇ m, particularly preferably not more than 100 ⁇ m, especially not more than 30 ⁇ m.
  • Daravia printing, screen printing, flexo printing, and offset printing are suitable as printing methods, but gravure printing is preferable for thinning.
  • the printing thickness of the resist pattern 4 is not particularly limited, but is usually about 0:! To 10 ⁇ m.
  • the etching solution is selected depending on the material of the metal foil 3. It is sufficient to use various types of etching liquid itself.
  • metal foil is copper, iron, anoremi, nickel, For chromium, zinc, tin, etc., a ferric chloride solution can be used.
  • a blackening treatment may be performed to impart antiglare properties.
  • a metal foil previously blackened may be bonded to the transparent film 1.
  • blackening it is possible to adopt oxidation treatment of a metal film, black plating treatment of a chromium alloy or the like.
  • the electromagnetic wave shielding light transmitting window material manufactured in this manner may be composed of a single film, or may be a continuous web-like film unwound from a roll.
  • a blackened copper foil having a thickness of 12 m was bonded with a two-component curing epoxy adhesive (layer thickness: 20 ⁇ ).
  • a UV-curable resist ink POTOEDP-500, manufactured by Nippon Paint
  • the lattice was regularly arranged in the form of a square lattice.
  • the line width of the lattice was 20 ⁇ m, one side of the lattice was 250 ⁇ m, and the aperture ratio was 80%.
  • the print thickness is about 2 ⁇ m after UV curing.
  • an etching treatment was performed using a ferric chloride-based etchant.
  • the resist pattern was removed using an aqueous sodium hydroxide solution (3%) as a resist remover to obtain an electromagnetic wave shielding light transmitting window material.
  • the adhesive (the part of the adhesive not covered by the conductive pattern 3A) remained on the film without being removed.
  • the conductive pattern on the surface of this film is regularly arranged in a square lattice, and, like the resist pattern, the line width is 20 ⁇ , one side of the lattice is 250 ⁇ , and the aperture ratio is 80%.
  • an electromagnetically shielded light transmitting window material having a conductive pattern with a small line width and a high aperture ratio is manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

In order to produce an electromagnetic wave shielding light transmitting window material having a conductive pattern of small line width and a high opening ratio, a metal foil (3) is bonded onto a transparent film (1) using an adhesive (2). A resist is then printed in a lattice form onto the metal foil (3) thus forming a resist pattern (4). Thereafter, the metal foil (3) not covered with the resist pattern (4) is removed by etching.

Description

明細書 電磁波シールド性光透過窓材及ぴその製造方法 発明の分野  Description: EMI shielding light transmitting window material and method for producing the same
本発明は P D P (プラズマディスプレーパネル) の前面フィルタや、 病院など の電磁波シールドを必要とする建築物の窓材料 (例えば貼着用フィルム) 等とし て有用な電磁波シールド性光透過窓材とその製造方法に係り、 特に、 フィルム上 に導電性パタ一ンを形成してなる電磁波シールド性光透過窓材とその製造方法に 関する。 発明の背景  The present invention relates to an electromagnetic wave shielding light transmitting window material useful as a front filter of a plasma display panel (PDP), a window material of a building requiring an electromagnetic wave shield such as a hospital (for example, a sticking film), and a method of manufacturing the same. In particular, the present invention relates to an electromagnetic wave shielding light transmitting window material formed by forming a conductive pattern on a film and a method for producing the same. Background of the Invention
O A機器や通信機器等の機器から発生する電磁波をシールドするために、 機器 の前面フィルタとして、 電磁波シールド性を有し、 かつ光透過性の窓材が開発さ れている。 この窓材は、 携帯電話等の電磁波から精密機器を保護するために、 病 院ゃ研究室等の精密機器設置場所の窓材としても利用されている。  In order to shield electromagnetic waves generated from equipment such as office automation equipment and communication equipment, window materials that have electromagnetic wave shielding properties and are light transmissive have been developed as front filters for equipment. This window material is also used as a window material in places where precision equipment is installed, such as hospitals and laboratories, in order to protect precision equipment from electromagnetic waves such as mobile phones.
従来の電磁波シールド性光透過窓材は、 1対のアクリル板等の透明基板と、 こ れらの透明基板同士の間に介在された金網のような導電性メッシュ又は透明導電 性フィルムとを有し、 これらが一体化されている。  A conventional electromagnetic wave shielding light transmitting window material has a pair of transparent substrates such as an acrylic plate, and a conductive mesh or a transparent conductive film such as a wire mesh interposed between the transparent substrates. These are integrated.
従来の電磁波シールド性光透過窓材に用いられている導電性メッシュは、 一般 に線径 1 0〜 5 0 0 μ mで 5〜 5 0 0メッシュ程度のものであり、 開口率は 7 5 %未満である。 開口率はメ ッシュの線幅と 1インチ幅に存在する線の数から計 算で求められる。 この導電性メッシュを用いた従来の電磁波シールド性光透過窓 材では、 光透過率は高々 7 0 %程度である。  The conductive mesh used for the conventional electromagnetic shielding light transmitting window material is generally about 5 to 500 mesh with a wire diameter of 10 to 500 μm, and the aperture ratio is 75%. Is less than. The aperture ratio is calculated from the line width of the mesh and the number of lines existing in one inch width. In the conventional electromagnetic shielding light transmitting window material using the conductive mesh, the light transmittance is at most about 70%.
従来の導電性メッシュでは、 電磁波シールド性光透過窓材を取り付ける発光パ ネルの画素ピッチとの関係で、 モアレ (干渉縞) が発生し易い。  In a conventional conductive mesh, moire (interference fringes) is likely to occur in relation to the pixel pitch of a light emitting panel to which an electromagnetic wave shielding light transmitting window material is attached.
メ ッシュの代りに透明導電性フイルムを用いることにより光透過性と電磁波シ 一ルド性とを両立させることが考えられるが、 透明導電性フィルムは、 筐体との 導通をとることが容易ではない。 By using a transparent conductive film instead of a mesh, it is conceivable to achieve both light transmittance and electromagnetic shielding properties.However, the transparent conductive film is not compatible with the housing. It is not easy to achieve conduction.
導電性メッシュの周縁部を透明基板周縁部からはみ出させ、 この周縁部を折り 曲げ、 この周縁部が筐体と導通される。 透明導電性フィルムの周縁部を透明基板 周縁部からはみ出させて折り曲げると、 この折り目部分でフィルムが裂けてしま ラ o 発明の概要  The periphery of the conductive mesh protrudes from the periphery of the transparent substrate, and the periphery is bent, and the periphery is electrically connected to the housing. If the edge of the transparent conductive film protrudes from the edge of the transparent substrate and is bent, the film will tear at the fold.
本発明は、 線幅が十分に小さく、 開口率も著しく高い導電性パターンを有した 電磁波シールド性光透過窓材と、 その製造方法を提供することを目的とする。 本発明の電磁波シールド性光透過窓材の製造方法は、 透明フィルムの表面に金 属ょりなる導電性パターンが形成された電磁波シールド性光透過窓材を製造する。 この方法は、 該透明フィルムの表面に金属箔を接着する工程と、 該金属箔の表面 に前記導電性パターンと同一パターンのレジストパターンを形成する工程と、 そ の後、 エッチング処理して、 該レジストパターンによって覆われていない金属箔 を除去して前記導電性パタ一ンを形成する工程とを有する。  An object of the present invention is to provide an electromagnetic wave shielding light transmitting window material having a conductive pattern having a sufficiently small line width and an extremely high aperture ratio, and a method for manufacturing the same. According to the method for producing an electromagnetic wave shielding light transmitting window material of the present invention, an electromagnetic wave shielding light transmitting window material having a conductive pattern formed of metal on a surface of a transparent film is produced. The method includes the steps of: bonding a metal foil to the surface of the transparent film; forming a resist pattern having the same pattern as the conductive pattern on the surface of the metal foil; Removing the metal foil not covered by the resist pattern to form the conductive pattern.
このレジス トパターン形成用のレジストは低粘性であり、 微細で精緻なレジス トパターンが形成される。 このレジス トパターンの下側に形成される導電性パタ ーンは、 著しく小さい線幅を有し、 それ故に大きな開口率を有する。  This resist for forming a resist pattern has a low viscosity, and a fine and precise resist pattern is formed. The conductive pattern formed under the resist pattern has a significantly smaller line width and therefore a larger aperture ratio.
本発明によれば、 例えば線幅が 2 0 0 m以下で開口率 7 5 %以上の導電性パ ターンを有した電磁波シールド性光透過窓材を製造することができる。  According to the present invention, for example, an electromagnetic wave shielding light transmitting window material having a conductive pattern having a line width of 200 m or less and an aperture ratio of 75% or more can be manufactured.
本発明の電磁波シールド性光透過窓材は、 かかる本発明方法によって製造され たものである。 図面の簡単な説明  The electromagnetic wave shielding light transmitting window material of the present invention is manufactured by the method of the present invention. BRIEF DESCRIPTION OF THE FIGURES
図 1, 2, 3, 4及び 5は本発明方法の一例を説明する断面図である。 詳細な説明  FIGS. 1, 2, 3, 4 and 5 are cross-sectional views illustrating an example of the method of the present invention. Detailed description
図 1, 2に示される本発明の一例において、 透明フィルム 1上に接着剤 2を用 いて金属箔 3が接着される。 次いで、 図 3の通り、 この金属箔 3の上にレジス ト が格子状に印刷されてレジストパターン 4が形成される。 次に、 図 4の通り、 ェ ツチング処理され、 レジストパターン 4で覆われていない金属箔 3が除去され、 その後、 図 5の通りレジス トパターン 4が除去される。 In the example of the present invention shown in FIGS. 1 and 2, an adhesive 2 is used on a transparent film 1. And the metal foil 3 is bonded. Next, as shown in FIG. 3, a resist is printed in a grid pattern on the metal foil 3 to form a resist pattern 4. Next, as shown in FIG. 4, the etching process is performed, and the metal foil 3 not covered with the resist pattern 4 is removed. Then, as shown in FIG. 5, the resist pattern 4 is removed.
上記のエッチング処理は、 金属箔 3のうちレジストパターン 4に覆われていな い部分のみを除去するものであり、 レジストパターン 4の下側の金属箔 3はエツ チングされずに残り、 金属よりなる導電性パターン 3 Aとなる。 接着剤 2は、 透 明であれば除去されずに透明フィルム 1上に残っていてもよい。 このエッチング により、 金属箔 3と共に接着剤 2も除去されてもよく、 エッチング後に溶剤を用 いて接着剤 2が除去されてもよく、 レジス トパターン 4の除去時に併せて接着剤 2が除去されてもよく、 レジス トパターン 4の除去後に接着剤 2が除去されても よい。  The above etching process removes only the portion of the metal foil 3 that is not covered with the resist pattern 4, and the metal foil 3 below the resist pattern 4 remains without being etched and is made of metal. The conductive pattern becomes 3 A. The adhesive 2 may remain on the transparent film 1 without being removed if it is transparent. By this etching, the adhesive 2 may be removed together with the metal foil 3, the adhesive 2 may be removed by using a solvent after the etching, and the adhesive 2 may be removed together with the removal of the resist pattern 4. Alternatively, the adhesive 2 may be removed after the removal of the resist pattern 4.
この導電性パターン 3 Aは、 格子状のレジストパターン 4の下側に形成された ものであることから、 該レジス トパターン 4と同じ格子状となる。 このレジス ト パターン 4の線幅を狭く しておくことにより、 線幅の小さい格子状の導電性バタ ーン 3 Aが形成される。 この格子状のレジス トパターン 4の線幅を小さく し、 レ ジストパターン 4の目開き開口の面積を広くすることにより、 開口率の大きな格 子状の導電性パターン 3 Aが形成される。  Since the conductive pattern 3A is formed below the lattice-shaped resist pattern 4, it has the same lattice shape as the resist pattern 4. By reducing the line width of the resist pattern 4, a lattice-shaped conductive pattern 3A having a small line width is formed. By reducing the line width of the grid-like resist pattern 4 and increasing the area of the opening of the resist pattern 4, a grid-like conductive pattern 3A having a large aperture ratio is formed.
本発明では、 レジス トパターン 4は除去せず、 図 4の状態で加工を止めて電磁 波シールド性光透過窓材としてもよい。 このようにすると、 導電性パターン 3 A がレジストで覆われた電磁波シールド性光透過窓材となる。 このレジストは反射 防止機能を果す。 後述の黒色化処理を施す場合には、 レジス トは除去される。 次に、 上記の各材料の好適例について説明する。  In the present invention, the resist pattern 4 is not removed, and the processing may be stopped in the state of FIG. 4 to provide an electromagnetic wave shielding light transmitting window material. By doing so, the conductive pattern 3A becomes an electromagnetic wave shielding light transmitting window material covered with the resist. This resist has an antireflection function. When the blackening process described later is performed, the resist is removed. Next, preferred examples of each of the above materials will be described.
透明フィルム 1の材料としては、 エッチング液によって侵食されない透明合成 樹脂が用いられる。 この合成樹脂としては、 ポリエチレンテレフタレート、 ポリ エチレンナフタレート、 ポリエーテルスルホン、 ポリアリレート、 ポリ力一ボネ ート、 ポリメチルメタタリレート、 トリアセテートなどの透明性が高く、 また取 り扱いし易い適度の硬さのものが好ましい。 この透明フィルム 1の厚さは、 電磁波シールド性光透過窓材に剛性を与えて取 り扱い易くするために 5 0〜3 0 0 μ πι程度であることが好ましい。 As a material of the transparent film 1, a transparent synthetic resin which is not eroded by an etching solution is used. Examples of this synthetic resin include polyethylene terephthalate, polyethylene naphthalate, polyether sulfone, polyarylate, polycarbonate, polymethyl methacrylate, and triacetate. Hardness is preferred. The thickness of the transparent film 1 is preferably about 50 to 300 μπι in order to provide rigidity to the electromagnetic wave shielding light transmitting window material to facilitate handling.
金属箔 3としては、 アルミニウム、 ニッケル、 インジウム、 クロム、 金、 バナ ジゥム、 スズ、 カドミウム、 銀、 プラチナ、 銅、 チタン、 コバルト、 亜鉛等の金 属又は合金が好適であるが、 これらの中でも銅、 アルミニウム、 ニッケル、 クロ ム、 亜鉛、 スズ、 銀又は金の純金属又は合金が好ましい。  As the metal foil 3, metals or alloys such as aluminum, nickel, indium, chromium, gold, vanadium, tin, cadmium, silver, platinum, copper, titanium, cobalt, and zinc are preferable, and among these, copper is preferable. Pure metals or alloys of aluminum, nickel, chromium, zinc, tin, silver or gold are preferred.
この金属箔 3の厚さは約 0 . 1〜2 0 μ πιが好ましい。 厚さが 0 . Ι μ πιより も小さいと、 電磁波シールド性能が不足する。 パターン 3 Αが 2 0 μ πιよりも厚 いと、 電磁波シールド性光透過窓材の視野角を狭く してしまい、 また、 エツチン グが幅方向にも広がるためレジス トパターン 4通りの導電性パターン 3 Αが形成 されないおそれがある。  The thickness of the metal foil 3 is preferably about 0.1 to 20 μπι. If the thickness is less than 0.1 μππι, electromagnetic wave shielding performance will be insufficient. If the pattern 3 厚 is thicker than 20 μπι, the viewing angle of the electromagnetic wave shielding light transmitting window material will be narrowed, and the etching will also spread in the width direction. Α may not be formed.
金属箔 3を透明フィルム 1に接着するための接着剤 2としては、 エポキシ系、 ウレタン系、 アクリル系など汎用でかつ透明性の高いものなどを用いることがで きる。 接着剤 2の層厚さは 5〜5 0 μ πι程度であればよい。  As the adhesive 2 for bonding the metal foil 3 to the transparent film 1, a general-purpose and highly transparent material such as an epoxy-based, urethane-based, or acrylic-based adhesive can be used. The layer thickness of the adhesive 2 may be about 5 to 50 μπι.
金属箔 3上に形成するレジストパターン 4は印刷により形成されることが好ま しい。 印刷材料としては、 フォ トレジス ト等として市販されているものが好適で あり、 中でもアクリルポリマーを主成分とした溶液が好適である。 フォ トレジス トにてパターンを印刷した場合は、 紫外線等のエネルギー線を照射して硬化させ た後、 エッチング処理を行う。  The resist pattern 4 formed on the metal foil 3 is preferably formed by printing. As the printing material, those commercially available as a photo resist or the like are preferable, and among them, a solution containing an acrylic polymer as a main component is preferable. When a pattern is printed using a photo resist, an etching process is performed after curing by irradiating energy rays such as ultraviolet rays.
レジス トパターン 4は、 好適には、 格子状となるように印刷される。 好ましく は、 この線幅が 2 0 0 μ m以下特に好ましくは 1 0 0 μ m以下とりわけ 3 0 μ m 以下となるように印刷される。 印刷手法としてはダラビア印刷、スクリーン印刷、 フレキソ印刷、 オフセッ ト印刷が好適であるが、 細線化のためにはグラビア印刷 が好適である。  The resist pattern 4 is preferably printed so as to form a lattice. Preferably, the line width is printed so as to be not more than 200 μm, particularly preferably not more than 100 μm, especially not more than 30 μm. Daravia printing, screen printing, flexo printing, and offset printing are suitable as printing methods, but gravure printing is preferable for thinning.
レジス トパターン 4の印刷厚みは、特に限定されるものではないが、通常は 0 . :!〜 1 0 μ m程度とされる。  The printing thickness of the resist pattern 4 is not particularly limited, but is usually about 0:! To 10 µm.
エッチング液は、 金属箔 3の材料によって選択される。 エッチング液自体は巿 販の各種のものを用いれば足りる。 例えば、 金属箔が銅、 鉄、 ァノレミ 、 ニッケル、 クロム、 亜鉛、 スズなどであるときには塩化第 2鉄溶液を用いることができる。 この導電性パターン 3 Aの形成後、 防眩性を付与するために黒色化処理しても よい。 また、 予め黒色化処理した金属箔を透明フィルム 1に接着してもよい。 黒 色化の手法としては、 金属膜の酸化処理、 クロム合金などの黒色メツキ処理など を採用することができる。 The etching solution is selected depending on the material of the metal foil 3. It is sufficient to use various types of etching liquid itself. For example, metal foil is copper, iron, anoremi, nickel, For chromium, zinc, tin, etc., a ferric chloride solution can be used. After the formation of the conductive pattern 3A, a blackening treatment may be performed to impart antiglare properties. In addition, a metal foil previously blackened may be bonded to the transparent film 1. As a method of blackening, it is possible to adopt oxidation treatment of a metal film, black plating treatment of a chromium alloy or the like.
このようにして製造された電磁波シールド性光透過窓材は、 1枚物のフィルム よりなるものであってもよく、 ロールから卷き出された連続ウェブ状のフィルム であってもよい。 実施例  The electromagnetic wave shielding light transmitting window material manufactured in this manner may be composed of a single film, or may be a continuous web-like film unwound from a roll. Example
以下に実施例を説明するが、 この実施例は本発明の一例であり、 本発明はこれ に限定されない。  Hereinafter, an example will be described, but this example is an example of the present invention, and the present invention is not limited thereto.
実施例 1  Example 1
厚さ 1 0 0 μ mのポリエチレンテレフタレートフイルムの上に、 黒色化処理し た厚さ 1 2 mの銅箔を 2液硬化エポキシ接着剤 (層厚さ 2 0 μ πι) によって接 着した。 この上に、 U V硬化型レジストインク (日本ペイント製 P H O T O E D P - 5 0 0 ) を格子状に印刷し、 次いで U Vを照射して硬化させた。 格子は 正方格子状に規則配列しており、 格子の線幅は 2 0 μ m、 格子の 1辺は 2 5 0 μ m、 開口率は 8 0 %であった。 印刷厚さは、 U V硬化後で約 2 μ mである。 次いで、 塩化第 2鉄系のエッチング液を用いてエッチング処理した。 その後、 レジス ト除去剤として水酸化ナトリウム水溶液 (3 %) を用いてレジス トパター ンを除去し、 電磁波シールド性光透過窓材とした。 なお、 接着剤 (導電性パター ン 3 Aで覆われていない部分の接着剤) は除去されずにフィルム上に残った。 このフィルム表面の導電性パターンは、 正方格子状に規則配列しており、 レジ ストパターンと同様に、 線幅は 2 0 μ πι、 格子の 1辺は 2 5 0 μ πιであり、 開口 率は 8 0 %であった。  On a polyethylene terephthalate film having a thickness of 100 μm, a blackened copper foil having a thickness of 12 m was bonded with a two-component curing epoxy adhesive (layer thickness: 20 μπι). On this, a UV-curable resist ink (PHOTOEDP-500, manufactured by Nippon Paint) was printed in a grid pattern, and then cured by UV irradiation. The lattice was regularly arranged in the form of a square lattice. The line width of the lattice was 20 μm, one side of the lattice was 250 μm, and the aperture ratio was 80%. The print thickness is about 2 μm after UV curing. Next, an etching treatment was performed using a ferric chloride-based etchant. After that, the resist pattern was removed using an aqueous sodium hydroxide solution (3%) as a resist remover to obtain an electromagnetic wave shielding light transmitting window material. The adhesive (the part of the adhesive not covered by the conductive pattern 3A) remained on the film without being removed. The conductive pattern on the surface of this film is regularly arranged in a square lattice, and, like the resist pattern, the line width is 20 μππ, one side of the lattice is 250 μππι, and the aperture ratio is 80%.
以上の通り、 線幅が小さく開口率の高い導電性パターンを有した電磁波シール ド性光透過窓材が製造される。  As described above, an electromagnetically shielded light transmitting window material having a conductive pattern with a small line width and a high aperture ratio is manufactured.

Claims

請求の範囲 The scope of the claims
1 . 透明フィルムの表面に金属よりなる導電性パターンが形成された電磁波シ ールド性光透過窓材を製造する方法であって、 1. A method for producing an electromagnetic shielding light-transmitting window material in which a conductive pattern made of metal is formed on a surface of a transparent film,
該透明フィルムの表面に金属箔を接着する工程と、  Bonding a metal foil to the surface of the transparent film,
該金属箔の表面に前記導電性パターンと同一パターンのレジス トパターンを形 成する工程と、  Forming a resist pattern having the same pattern as the conductive pattern on the surface of the metal foil;
その後、 エッチング処理して、 該レジス トパターンによって覆われていない金 属箔を除去して前記導電性パターンを形成する工法とを有する電磁波シールド性 光透過窓材の製造方法。  Then, an etching process is performed to remove the metal foil not covered by the resist pattern to form the conductive pattern.
2 . 請求項 1において、 該レジストパターンを格子状に形成することを特徴と する電磁波シールド性光透過窓材の製造方法。  2. The method according to claim 1, wherein the resist pattern is formed in a lattice pattern.
3 . 請求項 1又は 2において、 該レジス トパターンを印刷により形成すること を特徴とする電磁波シールド性光透過窓材の製造方法。  3. The method according to claim 1, wherein the resist pattern is formed by printing.
4 . 請求項 1ないし 3のいずれか 1項において、 前記導電性パターンを形成し た後、 該導電性パターンを黒色化処理することを特徴とする電磁波シールド性光 透過窓材の製造方法。  4. The method for producing an electromagnetic wave shielding light transmitting window material according to claim 1, wherein after forming the conductive pattern, the conductive pattern is blackened.
5 . 請求項 1ないし 4のいずれか 1項において、 該透明フィルムがポリエチレ ンテレフタレート、 ポリエチレンナフタレート、 ポリエーテルスルホン、 ポリ力 ーボネート、 ポリメチルメタクリ レート、 ポリアリレート及びトリアセテートよ りなる群から選ばれる 1種又は 2種以上よりなることを特徴とする電磁波シール ド性光透過窓材の製造方法。  5. The transparent film according to any one of claims 1 to 4, wherein the transparent film is selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polyether sulfone, polycarbonate, polymethyl methacrylate, polyarylate and triacetate. A method for producing an electromagnetic-shielding light-transmitting window material, comprising at least one kind.
6 . 請求項 5において、 該透明フィルムの厚さが 5 0〜3 0 0 μ πιであること を特徴とする電磁波シールド性光透過窓材の製造方法。  6. The method according to claim 5, wherein the transparent film has a thickness of 50 to 300 μπι.
7 . 請求項 1ないし 6のいずれか 1項において、 前記金属箔が銅、 アルミユウ ム、 ニッケル、 クロム、 亜鉛、 スズ、 銀及び金の少なくとも 1種よりなる金属箔 であることを特徴とする電磁波シールド性光透過窓材の製造方法。  7. The electromagnetic wave according to any one of claims 1 to 6, wherein the metal foil is a metal foil made of at least one of copper, aluminum, nickel, chromium, zinc, tin, silver, and gold. A method for manufacturing a light-transmitting window material having a shielding property.
8 . 請求項 1ないし 7のいずれか 1項において、 前記金属箔の厚さが 0 . 電磁 波シールド性光透過窓材の製造方法。 1〜2 0 μ mであることを特徴とする電磁 波シールド性光透過窓材の製造方法。 8. The method according to any one of claims 1 to 7, wherein the thickness of the metal foil is 0. Method for producing wave-shielding light-transmitting window material. A method for producing an electromagnetic wave shielding light-transmitting window material, which has a thickness of 1 to 20 μm.
9 . 請求項 1ないし 8のいずれか 1項において、 レジス トパターンを形成する ためのレジストはァクリルポリマーを主成分としたものであることを特徴とする 電磁波シールド性光透過窓材の製造方法。  9. The method for manufacturing an electromagnetic wave shielding light transmitting window material according to any one of claims 1 to 8, wherein the resist for forming the resist pattern is mainly composed of acryl polymer. .
1 0 . 請求項 1ないし 9のいずれか 1項において、 前記金属箔を接着剤により 接着することを特徴とする電磁波シールド性光透過窓材の製造方法。  10. The method of manufacturing an electromagnetic wave shielding light transmitting window material according to any one of claims 1 to 9, wherein the metal foil is adhered with an adhesive.
1 1 . 請求項 1ないし 1 0のいずれか 1項において、 該導電性パターンの線幅 が 2 0 0 μ πι以下であり、 開口率が 7 5 %以上であることを特徴とする電磁波シ ールド性光透過窓材の製造方法。  11. The electromagnetic shield according to any one of claims 1 to 10, wherein the conductive pattern has a line width of 200 μππ or less and an aperture ratio of 75% or more. Of producing a transparent light transmitting window material.
1 2 . 請求項 1ないし 1 1のいずれか 1項の方法により製造された電磁波シー ルド性光透過窓材。  12. An electromagnetic wave shielding light transmitting window material manufactured by the method according to any one of claims 1 to 11.
PCT/JP2002/011545 2001-11-20 2002-11-06 Electromagnetic wave shielding light transmitting window material and method for producing the same WO2003045126A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003546633A JPWO2003045126A1 (en) 2001-11-20 2002-11-06 Electromagnetic shielding light transmissive window material and method for manufacturing the same
AU2002365993A AU2002365993A1 (en) 2001-11-20 2002-11-06 Electromagnetic wave shielding light transmitting window material and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001354897 2001-11-20
JP2001-354897 2001-11-20

Publications (1)

Publication Number Publication Date
WO2003045126A1 true WO2003045126A1 (en) 2003-05-30

Family

ID=19166680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/011545 WO2003045126A1 (en) 2001-11-20 2002-11-06 Electromagnetic wave shielding light transmitting window material and method for producing the same

Country Status (3)

Country Link
JP (1) JPWO2003045126A1 (en)
AU (1) AU2002365993A1 (en)
WO (1) WO2003045126A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027389A (en) * 2005-07-15 2007-02-01 Dainippon Printing Co Ltd Electromagnetic wave shield filter, its production method, display equipped therewith and electromagnetic wave shield structure
JP2008283041A (en) * 2007-05-11 2008-11-20 Toppan Printing Co Ltd Manufacturing method of light transmissive electromagnetic wave shielding member
US9156539B2 (en) 2007-02-19 2015-10-13 Mitsubishi Heavy Industries, Ltd. Aircraft window member, method of manufacturing the same, and aircraft window assembly
CN105075417A (en) * 2013-03-21 2015-11-18 株式会社则武 Electromagnetic shield

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1041682A (en) * 1996-05-23 1998-02-13 Hitachi Chem Co Ltd Adhesive film having shielding effect and transparency for electromagnetic wave, and display and electromagnetic wave shielding configuration using the film
JP2000174486A (en) * 1998-12-04 2000-06-23 Sumitomo Rubber Ind Ltd Light-transmission electromagnetic wave shield film and manufacturing method of light-transmission electromagnetic shield panel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1041682A (en) * 1996-05-23 1998-02-13 Hitachi Chem Co Ltd Adhesive film having shielding effect and transparency for electromagnetic wave, and display and electromagnetic wave shielding configuration using the film
JP2000174486A (en) * 1998-12-04 2000-06-23 Sumitomo Rubber Ind Ltd Light-transmission electromagnetic wave shield film and manufacturing method of light-transmission electromagnetic shield panel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027389A (en) * 2005-07-15 2007-02-01 Dainippon Printing Co Ltd Electromagnetic wave shield filter, its production method, display equipped therewith and electromagnetic wave shield structure
JP4699123B2 (en) * 2005-07-15 2011-06-08 大日本印刷株式会社 Electromagnetic wave shielding filter, manufacturing method thereof, display including the electromagnetic wave shielding filter, and electromagnetic wave shielding structure
US9156539B2 (en) 2007-02-19 2015-10-13 Mitsubishi Heavy Industries, Ltd. Aircraft window member, method of manufacturing the same, and aircraft window assembly
JP2008283041A (en) * 2007-05-11 2008-11-20 Toppan Printing Co Ltd Manufacturing method of light transmissive electromagnetic wave shielding member
CN105075417A (en) * 2013-03-21 2015-11-18 株式会社则武 Electromagnetic shield
CN105075417B (en) * 2013-03-21 2018-07-10 株式会社则武 Electromagnetic wave shielding plate
US10655209B2 (en) 2013-03-21 2020-05-19 Noritake Co., Limited Electromagnetic shield

Also Published As

Publication number Publication date
AU2002365993A1 (en) 2003-06-10
JPWO2003045126A1 (en) 2005-04-07

Similar Documents

Publication Publication Date Title
EP1909551B1 (en) Method for producing electromagnetic wave shielding sheet, electromagnetic wave shielding sheet produced by such method, and filter and display employing same
EP1389901A1 (en) Shield material and method of manufacturing the shield material
KR20030051394A (en) Electromagnetic wave shielding sheet
JPWO2003045125A1 (en) Electromagnetic shielding light transmissive window material and method for manufacturing the same
JP6070356B2 (en) Manufacturing method of conductive sheet for touch panel, and conductive sheet for touch panel
JP2007096111A (en) Composite filter for display and its manufacturing method
JPH11233992A (en) Electromagnetic shielding adhesive film and electromagnetic shielding structural body using the same, and display
JP4148108B2 (en) Electromagnetic shielding light transmissive window material and method for manufacturing the same
JP2001022283A (en) Filter and image device provided with filter
WO2003045127A1 (en) Electromagnetic wave shielded light-transmissive material and manufacturing method thereof
JP2001053488A (en) Electromagnetic wave shielding material and electromagnetic wave shielding structure and display using it
WO2003045126A1 (en) Electromagnetic wave shielding light transmitting window material and method for producing the same
JP2005268688A (en) Light permeable electromagnetic shield material, manufacturing method of same, and display front filter having electromagnetic shield material
JP2001217589A (en) Laminated body and electromagnetic wave shield using the same
JP2004335609A (en) Electromagnetic shielding light transmitting window material and its manufacturing method
JP2004241761A (en) Sheet for electromagnetic wave shielding and manufacturing method therefor
JP2009302090A (en) Light transmissive electromagnetic shield material and manufacturing method thereof, and filter for display
JP2000323891A (en) Electromagnetic wave shielding adhesive film, display using the same, its manufacture, and manufacture of electromagnetic wave shielding component
JP2004040033A (en) Translucent electromagnetic shielding material and method for manufacturing the same
JP2008042021A (en) Light-transmitting electromagnetic wave shielding window material, and method and apparatus for producing the same
JP2002335095A (en) Electromagnetic wave shielding adhesive film, electromagnetic wave shield component, and manufacturing method for display
JP4337610B2 (en) Electromagnetic shielding light transmissive window material and method for manufacturing the same
JP2004022851A (en) Translucent electromagnetic shielding material and its manufacturing method
JP2000013089A (en) Electromagnetic-wave shielding material for display
JP5067321B2 (en) Electromagnetic wave shielding sheet and method for producing electromagnetic wave shielding sheet

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003546633

Country of ref document: JP

122 Ep: pct application non-entry in european phase