WO2003043964A1 - Process for producing bisphenol a and apparatus therefor - Google Patents

Process for producing bisphenol a and apparatus therefor Download PDF

Info

Publication number
WO2003043964A1
WO2003043964A1 PCT/JP2002/011882 JP0211882W WO03043964A1 WO 2003043964 A1 WO2003043964 A1 WO 2003043964A1 JP 0211882 W JP0211882 W JP 0211882W WO 03043964 A1 WO03043964 A1 WO 03043964A1
Authority
WO
WIPO (PCT)
Prior art keywords
bisphenol
granulation
phenol
producing
dephenol
Prior art date
Application number
PCT/JP2002/011882
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Kodama
Kazuyuki Hirano
Norio Ogata
Hideaki Masaki
Akio Suwa
Original Assignee
Idemitsu Petrochemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001357022A external-priority patent/JP2003160523A/en
Priority claimed from JP2001357023A external-priority patent/JP2003160524A/en
Application filed by Idemitsu Petrochemical Co., Ltd. filed Critical Idemitsu Petrochemical Co., Ltd.
Publication of WO2003043964A1 publication Critical patent/WO2003043964A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment

Definitions

  • the present invention relates to an improved method for producing bisphenol A [2,2-bis (4-hydroxyphenyl) pulp bread] and an apparatus used therefor. More specifically, the present invention is capable of simultaneously producing a molten product and a granular product of bisphenol A, and is capable of simultaneously operating a device other than the granulation system in the event of an abnormality such as a trouble in the granulation process. In addition to this, bisphenol A generated when the granulation system is stopped can be effectively used without waste, and the time required for steady operation when the granulation system is restarted can be shortened.
  • the present invention relates to an advantageous method for producing bisphenol A, and an apparatus for producing bisphenol A used in this method. Background art
  • Bisphenol A is known to be an important compound as a raw material for engineering plastics such as polycarbonate resin and polyarylate resin, or epoxy resin, and its demand has been increasing in recent years. .
  • This bisphenol A is produced by condensing excess phenol and acetone in the presence of an acidic catalyst and optionally a cocatalyst such as a sulfur compound.
  • alkyl mercaptans having or not having a substituent such as methyl mercaptan, ethyl mercaptan, and thiodaricholic acid are known to be effective (U.S. Pat. Nos. 3,592,242 and 2,775,620.
  • This mercaptan is It has the effect of increasing the reaction rate and increasing the selectivity.
  • 2- (2-hydroxyphenolene) -12- (4-hydroxyphenolinole) propane (o, -isomer) is mainly produced as a reaction by-product, and trisphenol , Polyphenols and the like are produced.
  • a granulation step is usually provided in order to correspond to various applications, and heat-melted bisphenol A is granulated into a particulate product.
  • a granulation device such as a spray dryer is used, and granulation is performed by converting bisphenol A into droplets and then cooling and solidifying the droplets.
  • the molten bisphenol A can be reused, but the quality deteriorates due to coloration due to storage at high temperature, etc., so it needs to be purified again.
  • Excessive heating and passing the bisphenol A repeatedly through the purification equipment It is economically unfavorable, and in some cases, it can be transferred to a slop tank and used only as tar, causing problems such as a significant increase in economic loss.
  • the present invention can simultaneously produce a molten product and a granular product of bisphenol A, and can stop the operation of devices other than the granulation system in the event of an abnormality such as a granulation process trouble.
  • an abnormality such as a granulation process trouble.
  • it is industrially advantageous such as bisphenol A generated when the granulation system is stopped can be used effectively without waste, and the time until steady operation can be shortened when the granulation system is restarted. It is an object of the present invention to provide a method for producing bisphenol A, and an apparatus for producing bisphenol A used in this method.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, a method for producing bisphenol A having a step of heating and melting an adduct of bisphenol A and phenol, a step of removing phenol, and a step of granulating.
  • the present inventors have proposed a method for producing bisphenol A including a reaction step, a low boiling point component removing step, a concentration step, a crystallization-solid-liquid separation step, a heat melting step, a dephenol step, and a granulation step.
  • a method for producing bisphenol A including a reaction step, a low boiling point component removing step, a concentration step, a crystallization-solid-liquid separation step, a heat melting step, a dephenol step, and a granulation step.
  • at least a part of bisphenol A extracted from the phenol removal step that is, a method of returning part or all of the bisphenol A to the concentration step, and a device capable of performing the method, may be used. It has been found that the object can be better achieved.
  • the present invention has been completed based on such findings.
  • the bisphenol A in the molten state which is transferred outside the granulation process, is The method for producing bisphenol A according to the above (1) or (2), wherein the bisphenol A is mixed or dissolved in an aqueous sodium solution,
  • At least a part of the bisphenol A extracted from the dephenol removal step is returned to the concentration step, and at least a part of the remaining bisphenol A is transferred to another manufacturing apparatus using the bisphenol A as a raw material.
  • Transporting characterized in that
  • FIG. 1 is a diagram showing an example of steps in the method for producing bisphenol A of the present invention.
  • a reaction mixture containing bisphenol A is obtained by a reaction step of condensing phenol and acetone, and then a low-boiling-point component removing step, a concentration step, Bisphenol A is produced by sequentially performing the precipitation-solid-liquid separation step, the heat melting step, the phenol removal step, and the granulation step.
  • a reaction step of condensing phenol and acetone a reaction step of condensing phenol and acetone
  • a low-boiling-point component removing step a concentration step
  • Bisphenol A is produced by sequentially performing the precipitation-solid-liquid separation step, the heat melting step, the phenol removal step, and the granulation step.
  • an acidic catalyst As the acidic catalyst, an acid-type ion exchange resin can be used.
  • the acid-type ion-exchange resin is not particularly limited, and those conventionally used as catalysts for bisphenol A can be used, but sulfonic-acid-type cation-exchange resins are particularly preferred from the viewpoint of catalytic activity and the like. It is.
  • the sulfonic acid type cation exchange resin is not particularly limited as long as it is a strongly acidic cation exchange resin having a sulfonic acid group.
  • Acid resin benzene honolemualdehyde sulfonic acid resin and the like. Each of these may be used alone or in combination of two or more.
  • mercaptans are usually used in combination with the acid-type ion exchange resin as a cocatalyst. This mercaptan refers to a compound having an SH group in a free form in the molecule.
  • Examples of such a compound include an alkyl mercaptan and one or more substituents such as a carboxyl group, an amino group, and a hydroxy group. And mercapto alcohol.
  • Examples of such mercaptans include methyl mercaptan, ethyl mercaptan, thiocarboxylic acids such as n-thioglycolic acid and monomercaptopropionic acid, aminoalkanethiols such as 2-aminoethanethiol, and mercapto alcohols such as mercaptoethanol.
  • alkyl mercaptan is particularly preferable in view of its effect as a cocatalyst.
  • these merbutanes may be used alone or in combination of two or more.
  • These mercaptans can be immobilized on the acid-type ion exchange resin to function as a catalyst.
  • the amount of the mercaptans is generally against acetone raw material, 0.1 to 20 mole 0/0, preferably, selected in the range from 1 to 10 mol%.
  • the ratio of phenol to acetone it is desirable that the amount of unreacted acetone be as small as possible in view of the ease of purification and economical efficiency of the generated bisphenol A. It is advantageous to use the phenol in excess of the stoichiometric amount. Usually, 3 to 30 moles, preferably 5 to 15 moles of phenol are used per mole of acetone.
  • the reaction solvent is generally not required, except that the reaction solution is reacted at a low temperature at which the viscosity of the reaction solution is too high or the solidification makes the operation difficult.
  • the condensation reaction between phenol and acetone in the present invention may be either a batch type or a continuous type.
  • a reaction tower filled with an acid-type ion-exchange resin phenol, acetone and mercaptans (mercaptans are used as an acid).
  • a fixed bed continuous reaction system in which is continuously supplied (when not immobilized on a type ion exchange resin) to react.
  • one or more reaction towers may be arranged in series, but industrially, two or more reaction towers filled with an acid-type ion exchange resin are connected in series and fixed. It is particularly advantageous to employ a multi-bed continuous reaction system. The reaction conditions in the fixed bed continuous reaction system will be described.
  • the molar ratio of acetone to phenol is usually selected from the range of 1Z30 to 1/3, preferably 1/15 to 1/5. If the molar ratio is smaller than 1/30, the reaction rate may be too slow. If the molar ratio is larger than 1/3, the generation of impurities increases, and the selectivity of bisphenol A tends to decrease.
  • the molar ratio of the mercaptans / aceton is usually selected from the range of 0.1 / 100 to 20/100, preferably 1/100 to 10/100. It is.
  • the molar ratio is less than 0.1 / 10 °, the effect of improving the reaction rate and the selectivity of bisphenol A may not be sufficiently exhibited. If the molar ratio is larger than 2 OZl 00, the effect is improved in proportion to the amount. Is rarely recognized.
  • the reaction temperature is usually 40 to 150 ° C, preferably 60 to 110 ° C. Is chosen. If the temperature is lower than 40 ° C, the reaction rate is low, the viscosity of the reaction solution is extremely high, and in some cases, there is a possibility of solidification. If the temperature exceeds 150 ° C, the reaction control becomes difficult, and bisphenol A (In addition, the selectivity of ⁇ , '-isomer) decreases, and the acid type ion exchange resin of the catalyst may decompose or deteriorate. Further, the LHSV (liquid hourly space velocity) of the raw material mixture is usually 0.2 to 30 hr, preferably 0.5 to 30 hr.
  • the reaction mixture containing bisphenol A obtained in the reaction step (A) is substantially free of an acid-type ion-exchange resin, that is, a batch reaction method.
  • the catalyst is removed by filtration or the like, and in the case of a fixed bed continuous reaction system, a treatment for removing low boiling components is performed as it is.
  • this step generally, first, unreacted acetone, by-product water, and low-boiling substances such as alkylmercaptan are removed by distillation under reduced pressure using a distillation column.
  • This vacuum distillation is generally carried out under the conditions of a pressure of about 6.5 to 80 kPa and a temperature of about 70 to 180 ° C. At this time, the unreacted phenol azeotropes, and a part of the phenol is removed from the distillation tower from the top together with the low-boiling substances.
  • the temperature of the heating source used is desirably 190 ° C or less to prevent the thermal decomposition of bisphenol A.
  • SUS304, SUS316 and SSUS316L are used as materials for the equipment.
  • bisphenol A is concentrated by subjecting the bottom liquid containing bisphenol A and phenol, etc., from which the low-boiling substances have been removed from the reaction mixture, to distillation under reduced pressure to distill off phenol and to concentrate bisphenol A.
  • concentration conditions usually conditions of a temperature of about 100 to 170 ° C and a pressure of about 5 to 70 kPa are employed. If this temperature is lower than 100 ° C, a high vacuum is required, and if it is higher than 170 ° C, extra heat removal is required in the next crystallization step, which is not preferable.
  • the concentration of bisphenol A in the concentrated residual liquid is preferably 20 to 50 weight 0/0, more preferably 20 to 40 wt. / 0 range. Bisufu Roh at this concentration is less than 20 weight 0/0 If the recovery rate of the catalyst A is low and exceeds 50% by weight, it may be difficult to transfer the slurry after crystallization.
  • a 1: 1 adduct of bisphenol A and phenol (hereinafter sometimes referred to as phenol adatat) may be obtained from the concentrated residual liquid obtained in the concentration step of the above step (C).
  • phenol adatat a 1: 1 adduct of bisphenol A and phenol
  • the above-mentioned concentrated residue is cooled to about 40 to 70 ° C., and phenol adduct is crystallized to form a slurry.
  • the cooling at this time may be performed by using an external heat exchanger, or by a vacuum cooling crystallization method in which water is added to the concentrated residual liquid and cooling is performed using the latent heat of evaporation of water under reduced pressure. Is also good.
  • the slurry containing phenol adduct thus crystallized is separated into a phenol adduct and a crystallization mother liquor containing reaction by-products by known means such as filtration and centrifugation.
  • This crystallization mother liquor may be partially recycled to the reactor as it is, or partially or entirely subjected to alkali decomposition treatment, and recovered as phenol and isopro- phenylol.
  • a part or all of the compound can be isomerized and recycled as a raw material for crystallization.
  • the phenol adduct crystallized and separated in the step (D) is dissolved using a phenol-containing solution.
  • the phenol-containing solution used in this step is not particularly limited, and may be, for example, the concentration step in step (C).
  • the above-mentioned phenol-containing solution is added to the phenol adduct obtained in the step (D), and the mixture is heated to about 80 to 110 ° C., and the phenol adduct is heated and dissolved to form a crystal.
  • a bisphenol A-containing solution having a preferred bisphenol A concentration for the precipitation operation is prepared.
  • the bisphenol A-containing solution thus prepared has a low viscosity even at a relatively low temperature and is relatively easy to handle, and is suitable for performing solid-liquid separation of the crystallized phenol adduct with a filter.
  • the phenol duct is crystallized and solid-liquid separated from the bisphenol A-containing solution obtained as described above, and the phenol adduct is further dissolved using the phenol-containing solution. Repeat at least once.
  • This heating and melting step is a step of heating and melting the phenol adduct that has been crystallized and separated in the above step (D) or (D ′), and then distilling off the phenol.
  • the phenol adduct is heated to about 100 to 160 ° C. and melted to form a liquid mixture, and then the phenol is distilled off under reduced pressure to remove the bisphenol A in a molten state. to recover.
  • the vacuum distillation is generally performed under the conditions of a pressure of 1.3 to 13 kPa and a temperature of 150 to 190 ° C. Residual phenol can be further removed by steam stripping.
  • the bisphenol A in a dissolved state obtained in the above step (E) is formed into droplets by a granulation device such as a spray drier and cooled and solidified to obtain a product.
  • the droplets are formed by spraying or spraying, and are cooled by nitrogen, air, or the like.
  • a feature of the method for producing bisphenol A of the present invention is that at least a part of the bisphenol A in a molten state obtained in the dephenolization step, that is, Is to transfer the whole to the outside of the granulation process according to the processing capacity in the granulation process.
  • part or all of the bisphenol A in the molten state obtained in the dephenol removal step is transferred to the outside of the granulation step according to the processing capacity in the granulation step, thereby preventing troubles in the granulation step.
  • the operation of the equipment other than the granulation system need not be stopped, and the bisphenol A generated when the granulation system is stopped can be effectively used without waste.
  • a typical mode of transferring at least a part of the bisphenol A in a molten state obtained in the dephenol removal step to the outside of the granulation step is a bisphenol A extracted from the dephenol removal step.
  • the concentration of bisphenol A in the liquid to be concentrated in the concentration step is adjusted to a desired value by adjusting the amount of acetone introduced into the reaction step according to the amount of bisphenol A returned to the concentration step. Can be adjusted.
  • the bisphenol A in a molten state to be transported out of the granulation step can be mixed or dissolved in water or an aqueous sodium hydroxide solution as needed.
  • the method for producing bisphenol A according to the present invention at least a portion of the bisphenol A in a molten state obtained in the dephenol removal step is transferred outside the granulation step. At the time of occurrence, at least a part of the bisphenol A in a molten state obtained in the dephenol removal step is to be transferred to another manufacturing apparatus using the bisphenol A as a raw material.
  • a production apparatus include a polycarbonate production apparatus using bisphenol A as a raw material and a polycarbonate production apparatus.
  • An epoxy resin manufacturing apparatus can be preferably mentioned.
  • the bisphenol A in the molten state to be transferred can be mixed or dissolved in water or an aqueous sodium hydroxide solution as required.
  • the temperature of the aqueous sodium hydroxide solution is preferably in the range of 20 to 80 ° C.
  • the concentration of hydroxide Natoriumu solution is generally 2-4 0 weight 0/0 approximately, also the amount used, relative to bisphenol A 1 molar, N a OH is from 1.9 to 2.5 moles of It is better to select it within the range. '
  • a line mixer or a dissolution tank with a stirrer can be used.
  • the air in the device may be replaced with an inert gas such as nitrogen gas in advance.
  • another typical embodiment of transferring at least a part of the bisphenol A in a molten state obtained in the dephenolization step to the outside of the granulation step is a step of removing from the dephenol step. At least a part of the bisphenol A is returned to the concentration step, and at least a part of the remaining bisphenol A is converted to another manufacturing apparatus using the bisphenol A as a raw material, such as a polycarbonate resin manufacturing apparatus or an epoxy resin manufacturing apparatus. It is to be transferred to equipment.
  • a manufacturing apparatus using bisphenol A as a raw material is installed nearby, it is more economical to transfer the molten bisphenol A product via piping than the granular bisphenol A product. It may be advantageous to
  • the bisphenol A product in a molten state can be extracted using this transfer line. That is, if necessary In this way, a bisphenol A granular product and a molten product can be obtained at the same time.
  • FIG. 1 is a process chart of an example of the method for producing bisphenol A of the present invention.
  • the present invention also provides an apparatus for producing bisphenol A, which can carry out the above-described method for producing bisphenol A.
  • the apparatus for producing bisphenol A according to the present invention includes a heating and melting apparatus for adducts of bisphenol A and phenol, a phenol removal apparatus, and a granulation apparatus, and a molten state obtained by the phenol removal apparatus.
  • a pipe is provided to transfer bisphenol A out of the granulator.
  • a reaction apparatus for condensing phenol and acetone In addition to having an apparatus and a granulating apparatus, a pipe is provided between the outlet of the dephenolic apparatus and the inlet of the concentrating apparatus for returning bisphenol A extracted from the dephenolic apparatus to the concentrating apparatus. Further, in the apparatus of the present invention, if necessary, a pipe for transferring bisphenol A to a production apparatus using bisphenol A as a raw material is provided in a pipe for returning bisphenol A to the concentrating apparatus. be able to.
  • the apparatus of the present invention can be provided with a mechanism for mixing or dissolving the bisphenol A in a molten state to be transported out of the granulation apparatus into water or an aqueous sodium hydroxide solution, if necessary.
  • Bisphenol A was continuously produced according to the process for producing bisphenol A shown in FIG.
  • a reactor filled with 600 g of cation exchange resin was heated to a temperature of 7600 hrs at a rate of 460 g / hr for phenol, 280 g / hr for acetone, and 16 g / hr for ethyl mercaptan.
  • the solution was continuously supplied while maintaining the temperature at 5 ° C.
  • the reaction mixture was sent to a low-boiling component removal step for removing low-boiling components mainly composed of unreacted acetone, and low-boiling components mainly composed of unreacted acetone were removed.
  • the phenol was partially removed, and the concentration was adjusted so that the concentration of bisphenol A became 30% by weight.
  • Water is added to the bisphenol A concentrated solution in which the concentration of bisphenol A from the concentration step is 30% by weight (the remainder is mostly phenol), and this mixture is sent to the crystallization / solid-liquid separation step.
  • the crystallization step cooling crystallization is performed at 45 ° C, and an adduct of bisphenol A and phenol crystallizes.
  • the slurry solution of the adduct was sent to a solid-liquid separation step and centrifuged to separate an adduct crystal of bisphenol A and phenol and a mother liquor.
  • the thus obtained bisphenol A in a molten state is sent to the granulation step, where the bisphenol A in a molten state dropped in a droplet form from the top of the granulation tower is brought into contact with cooling nitrogen gas in an alternating current.
  • Granules of bisphenol A were continuously obtained at 538 g Z hr.
  • a molten product and a granular product of bisphenol A can be produced at the same time, and at the time of abnormality such as a trouble in the granulation process, the operation of equipment other than the granulation system can be performed. It is not necessary to stop, and the bisphenol A generated when the granulation system is stopped can be effectively used without waste, and the time required for steady operation when the granulation system is restarted can be reduced.

Abstract

In a process for producing bisphenol A which comprises the reaction step, the step of removing low-boiling components, the concentration step, the crystallization/solid-liquid separation step, the heat melting step, the phenol-removal step, and the granulation step, at least a portion of bisphenol A withdrawn from the phenol-removal step depending on the treatment capacity of the granulation step is transferred to somewhere (for example, the concentration step) other than the granulation step. Owing to the above process, in case of the occurrence of some troubles in the granulation step during the production of bisphenol A, it becomes unnecessary to stop the operation of the apparatus other than the granulation unit and bisphenol A formed till the stop of the operation in the granulation unit can be effectively utilized without wasting. Moreover, the time required until the start of normal operation in the granulation unit can be shortened thereby.

Description

明 細 書 ビスフヱノール Aの製造方法及びその装置 技術分野  TECHNICAL FIELD The manufacturing method and apparatus of bisphenol A
本発明は、 ビスフエノール A 〔2 , 2—ビス (4ーヒ ドロキシフエニル) プ 口パン〕 の製造方法の改良及びそれに用いる装置に関する。 さらに詳しくは、 本発明は、 ビスフエノール Aの溶融状製品と粒状製品を同時に製造し得ると共 に、 造粒工程のトラブルなどの異常時に、 造粒系以外の装置の運転を止めなく てもよい上、 造粒系の停止時に生成したビスフエノール Aを無駄なく有効に利 用することができる、 造粒系の再スタートアップ時に定常運転までの時間を短 縮することができるなど、 工業的に有利なビスフエノール Aの製造方法、 及び この方法に用いられるビスフエノール Aの製造装置に関するものである。 背景技術  The present invention relates to an improved method for producing bisphenol A [2,2-bis (4-hydroxyphenyl) pulp bread] and an apparatus used therefor. More specifically, the present invention is capable of simultaneously producing a molten product and a granular product of bisphenol A, and is capable of simultaneously operating a device other than the granulation system in the event of an abnormality such as a trouble in the granulation process. In addition to this, bisphenol A generated when the granulation system is stopped can be effectively used without waste, and the time required for steady operation when the granulation system is restarted can be shortened. The present invention relates to an advantageous method for producing bisphenol A, and an apparatus for producing bisphenol A used in this method. Background art
ビスフエノール Aはポリカーボネート樹脂やポリアリレート樹脂などのェン ジニアリングプラスチック、 あるいはエポキシ樹脂などの原料として重要な化 合物であることが知られており、近年その需要はますます増大する傾向にある。 このビスフエノール Aは、 酸性触媒及び場合により用いられる硫黄化合物な どの助触媒の存在下に、 過剰のフエノールとァセトンとを縮合させることによ り製造される。  Bisphenol A is known to be an important compound as a raw material for engineering plastics such as polycarbonate resin and polyarylate resin, or epoxy resin, and its demand has been increasing in recent years. . This bisphenol A is produced by condensing excess phenol and acetone in the presence of an acidic catalyst and optionally a cocatalyst such as a sulfur compound.
この反応において用いられる酸触媒としては、 従来、 硫酸や塩化水素などの 無機鉱酸が用いられていたが、 近年、 陽イオン交換樹脂が注目され (英国特許 第 8 4 2 2 0 9号明細書、 同第 8 4 9 5 6 5号明細書、 同第 8 8 3 3 9 1号明 細書)、 工業的に用いられるようになった。  As the acid catalyst used in this reaction, inorganic mineral acids such as sulfuric acid and hydrogen chloride have conventionally been used, but in recent years, cation exchange resins have attracted attention (UK Patent No. 8422209). Nos. 8495655 and 883391), which have been used industrially.
一方、 助触媒として用いられる硫黄化合物としては、 メチルメルカプタン、 ェチルメルカプタン、 チォダリコール酸などの置換基を有する若しくは有しな いアルキルメルカプタン類が有効であることが知られている (米国特許第 2 3 5 9 2 4 2号明細書、 同第 2 7 7 5 6 2 0号明細書)。 このメルカブタン類は、 反応速度を上げるとともに、 選択率を向上させる作用を有している。 例えば、 ビスフエノール Aの製造において、 反応副生物として、 主に 2— (2—ヒ ドロ キシフエュノレ) 一 2— (4—ヒ ドロキシフエ二ノレ) プロパン (o, —体) が生成し、 その他トリスフエノール、 ポリフエノールなどが生成する。 特に、 ポリカーボネート樹脂やポリアリレート樹脂などの原料として用いる場合、 こ れらの副生物の含有量が少なく、 着色のない高純度のビスフエノール Aが要求 される。 このため、 反応速度を上げるとともに、 上記副生物の生成を抑え、 選 択率を高めるために、 助触媒としてメルカプタン類が用いられる。 On the other hand, as a sulfur compound used as a cocatalyst, alkyl mercaptans having or not having a substituent such as methyl mercaptan, ethyl mercaptan, and thiodaricholic acid are known to be effective (U.S. Pat. Nos. 3,592,242 and 2,775,620. This mercaptan is It has the effect of increasing the reaction rate and increasing the selectivity. For example, in the production of bisphenol A, 2- (2-hydroxyphenolene) -12- (4-hydroxyphenolinole) propane (o, -isomer) is mainly produced as a reaction by-product, and trisphenol , Polyphenols and the like are produced. In particular, when used as a raw material for a polycarbonate resin, a polyarylate resin, or the like, bisphenol A with high purity and low content of these by-products is required. For this reason, mercaptans are used as a co-catalyst in order to increase the reaction rate, suppress the generation of the by-products, and increase the selectivity.
このビスフエノール Aの製造プロセスにおいては、 通常各種用途に対応する ため、 造粒工程を設け、 加熱溶融ビスフヱノール Aを造粒して粒子状製品とす ることが行われている。 そして、 この造粒工程においては、 例えばスプレード ライヤ一などの造粒装置が用いられ、 ビスフエノール Aを液滴にしたのち、 冷 却固化することにより、 造粒することが行われている。  In the production process of bisphenol A, a granulation step is usually provided in order to correspond to various applications, and heat-melted bisphenol A is granulated into a particulate product. In this granulation process, for example, a granulation device such as a spray dryer is used, and granulation is performed by converting bisphenol A into droplets and then cooling and solidifying the droplets.
ところで、 ビスフエノール A製造装置においては、 原料のフユノールや生成 物であるビスフエノール Aの融点が高いため、 固形物形成などによるトラブル が発生しやすく、 したがって、 このようなトラブルが発生する部位では様々な 工夫がなされている。 例えば、 前記ビスフエノール Aの造粒工程では、 上記ト ラブルが発生しやすく、 したがって、 原因となる微粉を予め除去したり、 微粉 再凝集を防ぐ様々な対策で対処しているが、 ホッパーなどの閉塞を完全に防止 するこどができず、 しばしばビスフエノール A装置の運転を停止するとレヽぅ好 ましくない事態が招来していた。 この際、 装置内に残留するビスフエノール A は、 中間タンクゃスロップタンクなどに移す必要があった。 この場合、 溶融ビ スフヱノール Aは再利用できるものの、 高温での保存による着色などで、 品質 の劣化が生じるので、 再度精製が必要となり、 余分な加熱や、 ビスフエノール Aを繰り返し精製装置を通すことになり、 経済的にも好ましくなく、 また、 場 合によってはスロップタンクに移し、 タールとしての利用しかできず、 経済的 損失が著しく大きくなるなどの問題が生じる。  By the way, in the bisphenol A production equipment, since the melting point of the raw material phenol and the product bisphenol A is high, it is easy for troubles due to the formation of solids, etc., to occur. Some ingenuity has been devised. For example, in the granulation process of bisphenol A, the above-mentioned trouble is likely to occur, and therefore, various measures are taken in advance to remove the caustic fine powder or to prevent fine powder reagglomeration. Occlusion could not be completely prevented, and shutting down the Bisphenol A unit often led to undesirable situations. At this time, bisphenol A remaining in the equipment had to be transferred to the intermediate tank / slop tank. In this case, the molten bisphenol A can be reused, but the quality deteriorates due to coloration due to storage at high temperature, etc., so it needs to be purified again.Excessive heating and passing the bisphenol A repeatedly through the purification equipment It is economically unfavorable, and in some cases, it can be transferred to a slop tank and used only as tar, causing problems such as a significant increase in economic loss.
さらに、 ビスフエノール A製造装置の運転を全面的に停止した場合、 定常運 転に戻すまでに、 かなりの時間を要するのを免れない。 また、 近隣に、 ポリカーボネート樹脂製造プラントやエポキシ樹脂製造ブラ ントなどのビスフエノール Aを原料とする製造装置が設置されている際には、 粒状のビスフエノール A製品よりも、 溶融状のビスフエノール A製品を配管を 介して移送する方が、 経済的に有利な場合がある。 発明の開示 Furthermore, if the operation of Bisphenol A production equipment is completely stopped, it will inevitably take a considerable amount of time to return to normal operation. In addition, when a manufacturing equipment using bisphenol A as a raw material, such as a polycarbonate resin manufacturing plant or an epoxy resin manufacturing plant, is installed nearby, molten bisphenol A products are more likely to be used than granular bisphenol A products. It may be economically advantageous to transport the product through piping. Disclosure of the invention
本発明は、 このような状況下で、 ビスフエノール Aの溶融状製品と粒状製品 を同時に製造し得ると共に、 造粒工程のトラブルなどの異常時に、 造粒系以外 の装置の運転を止めなくてもよい上、 造粒系の停止時に生成したビスフエノー ル Aを無駄なく有効に利用することができる、 造粒系の再スタートアップ時に 定常運転までの時間を短縮することができるなど、 工業的に有利なビスフエノ ール Aの製造方法、 及びこの方法に用いられるビスフエノール Aの製造装置を 提供することを目的とするものである。  Under such circumstances, the present invention can simultaneously produce a molten product and a granular product of bisphenol A, and can stop the operation of devices other than the granulation system in the event of an abnormality such as a granulation process trouble. In addition, it is industrially advantageous, such as bisphenol A generated when the granulation system is stopped can be used effectively without waste, and the time until steady operation can be shortened when the granulation system is restarted. It is an object of the present invention to provide a method for producing bisphenol A, and an apparatus for producing bisphenol A used in this method.
本発明者らは、 前記目的を達成するために鋭意研究を重ねた結果、 ビスフエ ノール Aとフヱノールとの付加物の加熱溶融工程、 脱フエノール工程及び造粒 工程を有するビスフエノール Aの製造方法において、 脱フヱノール工程で得ら れた溶融状態のビスフエノール Aの少なくとも一部、すなわち一部又は全部を、 造粒工程における処理能力に応じて、 造粒工程外へ移送する方法、 及び該方法 を実施し得る装置により、 その目的を達成し得ることを見出した。  The present inventors have conducted intensive studies to achieve the above object, and as a result, a method for producing bisphenol A having a step of heating and melting an adduct of bisphenol A and phenol, a step of removing phenol, and a step of granulating. A method of transferring at least a part of the bisphenol A in a molten state obtained in the dephenol removal step, that is, a part or all of the bisphenol A to the outside of the granulation step according to the treatment capacity in the granulation step; and It has been found that the objectives can be achieved by a practicable device.
さらに、 本発明者らは、 反応工程、 低沸点成分除去工程、 濃縮工程、 晶析 - 固液分離工程、 加熱溶融工程、 脱フエノール工程及び造粒工程を含むビスフエ ノール Aの製造方法において、 造粒工程における処理能力に応じて、 脱フエノ ール工程から抜き出されるビスフヱノール Aの少なくとも一部、 すなわち一部 又は全量を濃縮工程へ返送する方法、 及ぴ該方法を実施し得る装置により、 そ の目的をよりよく達成し得ることを見出した。  Further, the present inventors have proposed a method for producing bisphenol A including a reaction step, a low boiling point component removing step, a concentration step, a crystallization-solid-liquid separation step, a heat melting step, a dephenol step, and a granulation step. Depending on the processing capacity in the granulation process, at least a part of bisphenol A extracted from the phenol removal step, that is, a method of returning part or all of the bisphenol A to the concentration step, and a device capable of performing the method, may be used. It has been found that the object can be better achieved.
本発明は、 かかる知見に基づいて完成したものである。  The present invention has been completed based on such findings.
すなわち、 本発明は、  That is, the present invention
( 1 ) ビスフエノール Aとフエノールとの付加物を加熱溶融工程にて加熱溶 融させたのち、 得られた液状混合物を脱フエノール工程にて脱フェノール処理 することにより、 溶融状態のビスフ ノール Aを得、 次いで造粒工程にて造粒 させてビスフヱノール Aを製造する方法において、 造粒工程における処理能力 に応じて、 脱フェノール工程で得られた溶融状態のビスフエノール Aの少なく とも一部を、 造粒工程外へ移送することを特徴とするビスフエノール Aの製造 方法、 (1) After the adduct of bisphenol A and phenol is heated and melted in the heating and melting step, the resulting liquid mixture is dephenolized in the dephenol step. To obtain bisphenol A in the molten state, and then granulate in the granulation step to produce bisphenol A. In the method for producing bisphenol A, the molten state obtained in the A method for producing bisphenol A, wherein at least part of bisphenol A is transferred outside the granulation step.
( 2 ) ビスフエノール Aとフエノーノレとの付加物が、 フエノールとアセトン を縮合させる反応工程によりビスフヱノール Aを含む反応混合物を得たのち、 該反応混合物に、 低沸点成分除去工程、 濃縮工程、 晶析,固液分離工程を順次 施すことにより得られたものである上記 (1 ) 記載のビスフエノール Aの製造 方法、  (2) An adduct of bisphenol A and phenol is used to obtain a reaction mixture containing bisphenol A by a reaction step of condensing phenol and acetone, and then a low-boiling component removing step, a concentration step, and crystallization are performed. The method for producing bisphenol A according to the above (1), which is obtained by sequentially performing a solid-liquid separation step,
( 3 ) フヱノールとァセトンを縮合させる反応工程によりビスフエノール A を含む反応混合物を得たのち、 該反応混合物に、 低沸点成分除去工程、 濃縮ェ 程、 晶析 ·固液分離工程、 加熱溶融工程、 脱フエノール工程及び造粒工程を順 次施し、 ビスフエノール Aを製造する方法において、 造粒工程における処理能 力に応じて、 脱フ ノール工程から抜き出されるビスフ ノール Aの少なくと も一部を濃縮工程へ返送することを特徴とするビスフエノール Aの製造方法、 (3) After obtaining a reaction mixture containing bisphenol A by a reaction step of condensing phenol and acetone, a low-boiling component removing step, a concentration step, a crystallization / solid-liquid separation step, and a heating and melting step are added to the reaction mixture. In the method of producing bisphenol A by sequentially performing the phenol removal step and the granulation step, at least a portion of the bisphenol A extracted from the phenol removal step depends on the processing capacity in the granulation step. A process for producing bisphenol A, wherein
( 4 ) ビスフエノール Aとフヱノールとの付加物の加熱溶融装置、 脱フエノ ール装置及び造粒装置を有するビスフヱノ一ル Aの製造装置において、 脱フェ ノール装置で得られた溶融状態のビスフ ノール Aを造粒装置外に移送するた めの配管を設けたことを特徴とするビスフエノール Aの製造装置、 (4) Bisphenol A in a molten state obtained by a dephenolizer in an apparatus for producing bisphenol A having a device for heating and melting an adduct of bisphenol A and phenol, a dephenolizer and a granulator Bisphenol A production equipment characterized by providing a pipe for transferring A out of the granulator,
( 5 )フエノールとアセ トンとを縮合させる反応装置、低沸点成分除去装置、 濃縮装置、 晶析 ·固液分離装置、 加熱溶融装置、 脱フエノール装置及び造粒装 置を有するビスフエノール Aの製造装置において、 上記脱フエノール装置の出 口と濃縮装置の入口間に、 脱フエノール装置から抜き出されるビスフエノ^ "ル Aを濃縮装置に返送するための配管を設けたことを特徴とするビスフエノ^ "ル Aの製造装置、  (5) Production of bisphenol A having a reaction device for condensing phenol and acetone, a low-boiling component removal device, a concentration device, a crystallization / solid-liquid separation device, a heating and melting device, a dephenol device, and a granulation device In the apparatus, a pipe for returning the bisphenol A extracted from the dephenol unit to the concentrator is provided between the outlet of the dephenol unit and the inlet of the concentrator. Le A manufacturing equipment,
( 6 ) 濃縮工程に返送されるビスフエノール Aの量に応じて、 反応工程に導 入するアセ トン量を調節する上記 (3 ) 記載のビスフエノール Aの製造方法、 (6) The method for producing bisphenol A according to (3), wherein the amount of acetone to be introduced into the reaction step is adjusted according to the amount of bisphenol A returned to the concentration step.
( 7 ) 造粒工程外へ移送する溶融状態のビスフエノール Aを、 水又は水酸化 ナトリウム水溶液に混合又は溶解させる上記 (1) 又は (2) 記載のビスフエ ノール Aの製造方法、 (7) The bisphenol A in the molten state, which is transferred outside the granulation process, is The method for producing bisphenol A according to the above (1) or (2), wherein the bisphenol A is mixed or dissolved in an aqueous sodium solution,
(8) 造粒工程におけるトラブル発生時、 脱フエノール工程で得られた溶融 状態のビスフエノール Aの少なくとも一部を、 該ビスフエノール Aを製造原料 とする他の製造装置に移送する上記 (1)、 (2) 又は (7) 記載のビスフエノ ール Aの製造方法、  (8) When trouble occurs in the granulation step, at least a part of the bisphenol A in a molten state obtained in the dephenol removal step is transferred to another manufacturing apparatus using the bisphenol A as a raw material. , (2) or (7), the method for producing bisphenol A,
(9) 脱フエノール工程から抜き出されるビスフエノール Aの少なくとも一 部を濃縮工程へ返送し、 残りのビスフエノール Aの少なくとも一部を、 該ビス フ ノール Aを製造原料とする他の製造装置に移送することを特徴とする上記 (9) At least a part of the bisphenol A extracted from the dephenol removal step is returned to the concentration step, and at least a part of the remaining bisphenol A is transferred to another manufacturing apparatus using the bisphenol A as a raw material. Transporting, characterized in that
(3) 記載のビスフエノール Aの製造方法、 (3) the method for producing bisphenol A according to
(1 0) ビスフ ノール Aを製造原料とする他の製造装置が、 ポリカーボネ ート製造装置又はエポキシ樹脂製造装置である上記 (8) 又は (9) 記載のビ スフヱノール Aの製造方法、 '  (10) The method for producing bisphenol A according to the above (8) or (9), wherein the other production apparatus using bisphenol A as a production raw material is a polycarbonate production apparatus or an epoxy resin production apparatus.
(1 1) 溶融状態のビスフ ノール Aを造粒装置外に移送するための配管と 共に、 造粒装置外へ移送する溶融状態のビスフエノール Aを、 水又は水酸化ナ トリウム水溶液に混合又は溶解させるための機構を設けてなる上記 (4) 記載 のビスフエノール Aの製造装置、  (11) Mix or dissolve molten bisphenol A to be transported out of the granulator together with water or sodium hydroxide aqueous solution, together with piping to transport the molten bisphenol A out of the granulator. The apparatus for producing bisphenol A according to the above (4), further comprising a mechanism for causing
を提供するものである。 図面の簡単な説明 Is provided. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明のビスフエノール Aの製造方法における工程の一例を示す図 である。 発明を実施するための最良の形態  FIG. 1 is a diagram showing an example of steps in the method for producing bisphenol A of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明のビスフエノール Aの製造方法においては、 フエノールとァセ トンを 縮合させる反応工程によりビスフエノール Aを含む反応混合物を得たのち、 該 反応混合物に、 低沸点成分除去工程、 濃縮工程、 晶析■固液分離工程、 加熱溶 融工程、 脱フエノール工程及び造粒工程を順次施すことにより、 ビスフエノー ル Aが製造される。 次に、 当該ビスフヱノール Aの製造方法における各工程について説明する。 (A) 反応工程 In the method for producing bisphenol A according to the present invention, a reaction mixture containing bisphenol A is obtained by a reaction step of condensing phenol and acetone, and then a low-boiling-point component removing step, a concentration step, Bisphenol A is produced by sequentially performing the precipitation-solid-liquid separation step, the heat melting step, the phenol removal step, and the granulation step. Next, each step in the method for producing bisphenol A will be described. (A) Reaction process
この反応工程においては、 酸性触媒の存在下、 過剰のフエノールとアセ トンを 縮合させて、 ビスフエノール Aを生成させる。 上記酸性触媒としては、 酸型ィ オン交換樹脂を用いることができる。 この酸型イオン交換樹脂としては、 特に 制限はなく、 従来ビスフエノール Aの触媒として慣用されているものを用いる ことができるが、 特に触媒活性などの点から、 スルホン酸型陽イオン交換樹脂 が好適である。 In this reaction step, excess phenol and acetone are condensed in the presence of an acidic catalyst to form bisphenol A. As the acidic catalyst, an acid-type ion exchange resin can be used. The acid-type ion-exchange resin is not particularly limited, and those conventionally used as catalysts for bisphenol A can be used, but sulfonic-acid-type cation-exchange resins are particularly preferred from the viewpoint of catalytic activity and the like. It is.
該スルホン酸型陽イオン交換樹脂については、 スルホン酸基を有する強酸性 陽ィォン交換樹脂であればよく特に制限されず、 例えばスルホン化スチレン一 ジビニノレベンゼンコポリマー、 スルホン化架橋スチレンポリマー、 フエノーノレ ホルムァノレデヒ ドースルホン酸樹脂、 ベンゼンホノレムアルデヒ ドースルホン酸 樹脂などが挙げられる。 これらはそれぞれ単独で用いてもよく、 二種以上を組 み合わせて用いてもよい。 - 本発明の方法においては、 上記酸型イオン交換樹脂と共に、 通常助触媒とし て、 メルカプタン類が併用される。 このメルカプタン類は、 分子内に S H基を 遊離の形で有する化合物を指し、 このようなものとしては、 アルキルメルカプ タンや、 カルボキシル基、 アミノ基、 ヒ ドロキシル基などの置換基一種以上を ンチオール、 メルカプトアルコールなどを用いることができる。 このようなメ ルカブタン類の例としては、 メチルメルカプタン、 ェチルメルカプタン、 n - チォグリコール酸、 一メルカプトプロピオン酸などのチォカルボン酸、 2— アミノエタンチオールなどのアミノアルカンチオール、 メルカプトエタノール などのメルカプトアルコールなどが挙げられるが、 これらの中で、 アルキルメ ルカブタンが助触媒としての効果の点で、 特に好ましい。 また、 これらのメル カブタン類は、 単独で用いてもよく、 二種以上を組み合わせて用いてもよい。 これらのメルカブタン類は、 前記酸型イオン交換樹脂上に固定化させ、 助触 媒として機能させることもできる。 前記メルカプタン類の使用量は、 一般に原料のアセ トンに対して、 0. 1〜 20モル0 /0、 好ましくは、 1〜 10モル%の範囲で選定される。 The sulfonic acid type cation exchange resin is not particularly limited as long as it is a strongly acidic cation exchange resin having a sulfonic acid group. Acid resin, benzene honolemualdehyde sulfonic acid resin and the like. Each of these may be used alone or in combination of two or more. -In the method of the present invention, mercaptans are usually used in combination with the acid-type ion exchange resin as a cocatalyst. This mercaptan refers to a compound having an SH group in a free form in the molecule. Examples of such a compound include an alkyl mercaptan and one or more substituents such as a carboxyl group, an amino group, and a hydroxy group. And mercapto alcohol. Examples of such mercaptans include methyl mercaptan, ethyl mercaptan, thiocarboxylic acids such as n-thioglycolic acid and monomercaptopropionic acid, aminoalkanethiols such as 2-aminoethanethiol, and mercapto alcohols such as mercaptoethanol. Among them, alkyl mercaptan is particularly preferable in view of its effect as a cocatalyst. Further, these merbutanes may be used alone or in combination of two or more. These mercaptans can be immobilized on the acid-type ion exchange resin to function as a catalyst. The amount of the mercaptans is generally against acetone raw material, 0.1 to 20 mole 0/0, preferably, selected in the range from 1 to 10 mol%.
また、 フエノールとアセトンとの使用割合については特に制限はないが、 生 成するビスフヱノール Aの精製の容易さや経済性などの点から、 未反応のァセ トンの量はできるだけ少ないことが望ましく、 したがって、 フエノールを化学 量論的量よりも過剰に用いるのが有利である。 通常、 ァセトン 1モル当たり、 3~30モル、 好ましくは 5〜 15モルのフエノールが用いられる。 また、 こ のビスフ ノール Aの製造においては、 反応溶媒は、 反応液の粘度が高すぎた り、 凝固して運転が困難になるような低温で反応させる以外は、 一般に必要で はない。  Although there is no particular limitation on the ratio of phenol to acetone, it is desirable that the amount of unreacted acetone be as small as possible in view of the ease of purification and economical efficiency of the generated bisphenol A. It is advantageous to use the phenol in excess of the stoichiometric amount. Usually, 3 to 30 moles, preferably 5 to 15 moles of phenol are used per mole of acetone. In the production of bisphenol A, the reaction solvent is generally not required, except that the reaction solution is reacted at a low temperature at which the viscosity of the reaction solution is too high or the solidification makes the operation difficult.
本発明におけるフエノールとアセトンとの縮合反応は、 回分式及び連続式の いずれであってもよいが、 酸型イオン交換樹脂を充填した反応塔に、 フエノー ルとァセトンとメルカプタン類 (メルカブタン類が酸型イオン交換樹脂に固定 化されない場合) を連続的に供給して反応させる固定床連続反応方式を用いる のが有利である。 この際、 反応塔は 1基でもよく、 また 2基以上を直列に配置 してもよいが、 工業的には、 酸型イオン交換樹脂を充填した反応塔を 2基以上 直列に連結し、 固定床多段連続反応方式を採用するのが、 特に有利である。 この固定床連続反応方式における反応条件について説明する。  The condensation reaction between phenol and acetone in the present invention may be either a batch type or a continuous type. In a reaction tower filled with an acid-type ion-exchange resin, phenol, acetone and mercaptans (mercaptans are used as an acid). It is advantageous to use a fixed bed continuous reaction system in which is continuously supplied (when not immobilized on a type ion exchange resin) to react. At this time, one or more reaction towers may be arranged in series, but industrially, two or more reaction towers filled with an acid-type ion exchange resin are connected in series and fixed. It is particularly advantageous to employ a multi-bed continuous reaction system. The reaction conditions in the fixed bed continuous reaction system will be described.
まず、 アセトン Zフエノールモル比は、 通常 1Z30〜1/3、 好ましくは 1/15〜 1/5の範囲で選ばれる。 このモル比が 1/30より小さい場合、 反応速度が遅くなりすぎるおそれがあり、 1/3より大きいと不純物の生成が 多くなり、 ビスフエノール Aの選択率が低下する傾向がある。 一方、 メルカプ タン類が酸型イオン交換樹脂に固定化されない場合、 メルカブタン類/ァセト ンモル比は、 通常 0. 1/100〜 20/100、 好ましくは 1/100〜1 0/ 100の範囲で選ばれる。 このモル比が 0. 1 / 10◦より小さい場合、 反応速度やビスフ ノール Aの選択率の向上効果が十分に発揮されないおそれ があり、 2 OZl 00より大きいとその量の割りには効果の向上はあまり認め られない。  First, the molar ratio of acetone to phenol is usually selected from the range of 1Z30 to 1/3, preferably 1/15 to 1/5. If the molar ratio is smaller than 1/30, the reaction rate may be too slow. If the molar ratio is larger than 1/3, the generation of impurities increases, and the selectivity of bisphenol A tends to decrease. On the other hand, when the mercaptans are not immobilized on the acid-type ion exchange resin, the molar ratio of the mercaptans / aceton is usually selected from the range of 0.1 / 100 to 20/100, preferably 1/100 to 10/100. It is. If the molar ratio is less than 0.1 / 10 °, the effect of improving the reaction rate and the selectivity of bisphenol A may not be sufficiently exhibited.If the molar ratio is larger than 2 OZl 00, the effect is improved in proportion to the amount. Is rarely recognized.
また、 反応温度は、 通常 40〜150°C、 好ましくは 60〜110°Cの範囲 で選ばれる。 該温度が 40°C未満では反応速度が遅い上、 反応液の粘度が極め て高く、 場合により、 固化するおそれがあり、 1 50°Cを超えると反応制御が 困難となり、 かつビスフエノール A (ρ, ' —体) の選択率が低下する上、 触媒の酸型イオン交換樹脂が分解又は劣化することがある。 さらに、 原料混合 物の LHSV (液空間速度) は、 通常 0. 2〜30 h r 、 好ましくは 0. 5The reaction temperature is usually 40 to 150 ° C, preferably 60 to 110 ° C. Is chosen. If the temperature is lower than 40 ° C, the reaction rate is low, the viscosity of the reaction solution is extremely high, and in some cases, there is a possibility of solidification.If the temperature exceeds 150 ° C, the reaction control becomes difficult, and bisphenol A ( In addition, the selectivity of ρ, '-isomer) decreases, and the acid type ion exchange resin of the catalyst may decompose or deteriorate. Further, the LHSV (liquid hourly space velocity) of the raw material mixture is usually 0.2 to 30 hr, preferably 0.5 to 30 hr.
〜: L 0 h r の範囲で選ばれる。 ~: Selected within the range of L 0 h r.
(B) 低沸点成分除去工程  (B) Low boiling point component removal process
この低沸点成分除去工程においては、 前記の (A) 工程の反応工程で得られ たビスフエノール Aを含む反応混合液を、 実質上酸型ィオン交換樹脂が含まれ ない状態、 すなわち回分反応方式の場合は該触媒をろ過などにより除去し、 固 定床連続反応方式の場合は、そのままの状態で低沸点成分除去処理が施される。 この工程においては、 通常、 まず、 蒸留塔を用いた減圧蒸留により、 未反応 ァセトン、 副生水及びアルキルメルカブタンなどの低沸点物質を除去すること が行われる。  In the low-boiling-point component removing step, the reaction mixture containing bisphenol A obtained in the reaction step (A) is substantially free of an acid-type ion-exchange resin, that is, a batch reaction method. In such a case, the catalyst is removed by filtration or the like, and in the case of a fixed bed continuous reaction system, a treatment for removing low boiling components is performed as it is. In this step, generally, first, unreacted acetone, by-product water, and low-boiling substances such as alkylmercaptan are removed by distillation under reduced pressure using a distillation column.
この減圧蒸留は、一般に圧力 6.5〜80 k P a程度及び温度 70〜 1 80 °C 程度の条件で実施される。 この際、 未反応フエノールが共沸し、 その一部が上 記低沸点物質と共に、蒸留塔の塔頂より系外へ除かれる。この蒸留においては、 ビスフエノール Aの熱分解を防止するために、 使用する加熱源の温度は 1 9 0°C以下とすることが望ましい。 また、 機器の材料としては、 一般に SUS 3 04、 SU S 3 1 6及び SU S 31 6 Lが用いられる。  This vacuum distillation is generally carried out under the conditions of a pressure of about 6.5 to 80 kPa and a temperature of about 70 to 180 ° C. At this time, the unreacted phenol azeotropes, and a part of the phenol is removed from the distillation tower from the top together with the low-boiling substances. In this distillation, the temperature of the heating source used is desirably 190 ° C or less to prevent the thermal decomposition of bisphenol A. In general, SUS304, SUS316 and SSUS316L are used as materials for the equipment.
(C) 濃縮工程  (C) Concentration step
この濃縮工程においては、 反応混合物から低沸点物質を除いた、 ビスフ ノ ール A及びフエノールなどを含む塔底液に減圧蒸留を施してフエノ一ルを留去 させ、 ビスフエノール Aを濃縮する。 この濃縮条件については特に制限はない が、 通常温度 100〜 1 70 °C程度及ぴ圧力 5〜 70 k P a程度の条件が採用 される。 この温度が 100°Cより低いと高真空が必要となり、 170°Cより高 いと次の晶析工程で余分の除熱が必要となり、 好ましくない。 また、 濃縮残液 中のビスフエノール Aの濃度は、 好ましくは 20〜50重量0 /0、 より好ましく は 20〜40重量。 /0の範囲である。 この濃度が 20重量0 /0未満ではビスフ ノ ール Aの回収率が低く、 5 0重量%を超えると晶析後のスラリー移送が困難と なるおそれがある。 In this concentration step, bisphenol A is concentrated by subjecting the bottom liquid containing bisphenol A and phenol, etc., from which the low-boiling substances have been removed from the reaction mixture, to distillation under reduced pressure to distill off phenol and to concentrate bisphenol A. Although there are no particular restrictions on the concentration conditions, usually conditions of a temperature of about 100 to 170 ° C and a pressure of about 5 to 70 kPa are employed. If this temperature is lower than 100 ° C, a high vacuum is required, and if it is higher than 170 ° C, extra heat removal is required in the next crystallization step, which is not preferable. The concentration of bisphenol A in the concentrated residual liquid is preferably 20 to 50 weight 0/0, more preferably 20 to 40 wt. / 0 range. Bisufu Roh at this concentration is less than 20 weight 0/0 If the recovery rate of the catalyst A is low and exceeds 50% by weight, it may be difficult to transfer the slurry after crystallization.
• (D ) 晶析 ·固液分離工程  • (D) Crystallization · Solid-liquid separation process
この晶析 '固液分離工程は、 上記 (C ) 工程の濃縮工程で得られた濃縮残液 からビスフエノール Aとフエノールとの 1 : 1付加物 (以下、 フエノールァダ タ トと称することがある。)を晶析'分離する工程である。この工程においては、 まず、 上記濃縮残液を 4 0〜 7 0 °C程度に冷却し、 フエノールァダクトを晶析 させ、スラリーとする。この際の冷却は、外部熱交換器を用いて行ってもよく、 また、 濃縮残液に水を加え、 減圧下での水の蒸発潜熱を利用して冷却する真空 冷却晶析法によって行ってもよい。 この真空冷却晶析法においては、 該濃縮残 液に、 水を 3〜2 0重量%程度添加し、 通常温度 4 0〜7 0 °C、 圧力 3 ~ 1 3 k P aの条件で晶析処理が行われる。 上記水の添加量が 3重量%未満では除熱 能力が十分ではなく、 2 0重量%を超えるとビスフエノール Aの溶解ロスが大 きくなり、 好ましくない。 このような晶析操作において、 晶析温度が 4 0 °C未 満では晶析液の粘度の増大や固化をもたらすおそれがあり、 7 0 °Cを超えると ビスフエノール Aの溶解ロスが大きくなり、 好ましくない。  In this crystallization-solid-liquid separation step, a 1: 1 adduct of bisphenol A and phenol (hereinafter sometimes referred to as phenol adatat) may be obtained from the concentrated residual liquid obtained in the concentration step of the above step (C). ) Is a step of crystallization and separation. In this step, first, the above-mentioned concentrated residue is cooled to about 40 to 70 ° C., and phenol adduct is crystallized to form a slurry. The cooling at this time may be performed by using an external heat exchanger, or by a vacuum cooling crystallization method in which water is added to the concentrated residual liquid and cooling is performed using the latent heat of evaporation of water under reduced pressure. Is also good. In this vacuum cooling crystallization method, about 3 to 20% by weight of water is added to the concentrated residue, and crystallization is carried out at a normal temperature of 40 to 70 ° C and a pressure of 3 to 13 kPa. Processing is performed. If the amount of water added is less than 3% by weight, the heat removal ability is not sufficient, and if it exceeds 20% by weight, the dissolution loss of bisphenol A increases, which is not preferable. In such a crystallization operation, if the crystallization temperature is less than 40 ° C, the viscosity of the crystallization liquid may increase or solidify, and if it exceeds 70 ° C, the dissolution loss of bisphenol A increases. Is not preferred.
次に、 このようにして晶析されたフエノールァダク トを含むスラリーを、 ろ 過や遠心分離などの公知の手段により、 フエノールァダクトと、 反応副生物を 含む晶析母液とに分離する。 この晶析母液はそのまま一部を反応器へリサイク ルしたり、 一部又は全部をアルカリ分解処理して、 フエノールとイソプロべ- ル ェノールとして回収してもよい。 また、 一部又は全部を異性化して、 晶析 原料にリサイクルすることもできる。  Next, the slurry containing phenol adduct thus crystallized is separated into a phenol adduct and a crystallization mother liquor containing reaction by-products by known means such as filtration and centrifugation. This crystallization mother liquor may be partially recycled to the reactor as it is, or partially or entirely subjected to alkali decomposition treatment, and recovered as phenol and isopro- phenylol. In addition, a part or all of the compound can be isomerized and recycled as a raw material for crystallization.
この晶析 ·固液分離工程は、 高純度の製品を得るために、 複数回繰り返すこ とが有効である。 すなわち、 晶析後、 固液分離によって得られたフエノールァ ダクトに対して、 次の (D, ) 工程を施すのがよい。  It is effective to repeat this crystallization-solid-liquid separation step several times to obtain a high-purity product. That is, after crystallization, the following phenolic adduct obtained by solid-liquid separation should be subjected to the following steps (D,).
(D ' ) フエノールァダクトの溶解、 晶析 '固液分離工程  (D ') Dissolution and crystallization of phenol adduct' Solid-liquid separation process
この工程においては、 上記 (D ) 工程で晶析 '分離されたフエノールァダク トを、 フエノール含有溶液を用いて溶解する。 この工程において用いられるフ 工ノール含有溶液としては特に制限はなく、 例えば前記 (C ) 工程の濃縮工程 で得られた回収フヱノール、 (D )工程の晶析 ·固液分離工程で生成するフヱノ ールァダク トの洗浄液、 本 (D ' ) 工程以降の工程で生成する、 晶析したフエ ノールァダクトの固液分離における母液ゃ該フエノールァダク トの洗浄液など を挙げることができる。 In this step, the phenol adduct crystallized and separated in the step (D) is dissolved using a phenol-containing solution. The phenol-containing solution used in this step is not particularly limited, and may be, for example, the concentration step in step (C). The recovered phenol obtained in Step (C), the washing liquid for the phenol adduct formed in the crystallization / solid-liquid separation step in Step (D), and the solid-liquid separation of the crystallized phenol duct formed in the steps following Step (D ') And the washing solution of the phenol product.
この工程においては、 (D )工程で得られたフエノールァダク トに上記フエノ ール含有溶液を加え、 8 0〜1 1 0 °C程度に加熱し、 該フヱノールァダクトを 加熱溶解させ、 晶析操作に好ましいビスフエノール A濃度を有するビスフエノ ール A含有溶液を調製する。 このようにして調製されたビスフヱノール A含有 溶液は、 比較的低い温度でも粘度が低くて取扱いが比較的容易であり、 晶析し たフエノールァダク トの固液分離をフィルターで行うのに適している。  In this step, the above-mentioned phenol-containing solution is added to the phenol adduct obtained in the step (D), and the mixture is heated to about 80 to 110 ° C., and the phenol adduct is heated and dissolved to form a crystal. A bisphenol A-containing solution having a preferred bisphenol A concentration for the precipitation operation is prepared. The bisphenol A-containing solution thus prepared has a low viscosity even at a relatively low temperature and is relatively easy to handle, and is suitable for performing solid-liquid separation of the crystallized phenol adduct with a filter.
次に、 上記のようにして得られたビスフエノール A含有溶液から、 フエノー ルァダクトを晶析 ·固液分離し、 さらに当該フエノールァダク トをフエノール 含有溶液を用いて溶解したのち、晶析'固液分離する操作を 1回以上繰り返す。  Next, the phenol duct is crystallized and solid-liquid separated from the bisphenol A-containing solution obtained as described above, and the phenol adduct is further dissolved using the phenol-containing solution. Repeat at least once.
( E ) 加熱溶解工程  (E) Heat melting process
この加熱溶解工程は、 上記 (D ) 又は (D ' ) 工程で晶析 '分離されたフエ ノールァダク トを加熱溶融後、 フエノールを留去させる工程である。 この工程 においては、 まず、 フエノールァダクトを 1 0 0 ~ 1 6 0 °C程度に加熱 '溶融 して液状混合物となし、 次いで減圧蒸留によってフエノールを留去し、 溶融状 態のビスフエノール Aを回収する。 上記減圧蒸留は、 一般に圧力 1 . 3〜1 3 k P a、温度 1 5 0〜 1 9 0 °Cの範囲の条件で実施される。残存フエノールは、 さらにスチームストリッビングにより除去することができる。  This heating and melting step is a step of heating and melting the phenol adduct that has been crystallized and separated in the above step (D) or (D ′), and then distilling off the phenol. In this step, first, the phenol adduct is heated to about 100 to 160 ° C. and melted to form a liquid mixture, and then the phenol is distilled off under reduced pressure to remove the bisphenol A in a molten state. to recover. The vacuum distillation is generally performed under the conditions of a pressure of 1.3 to 13 kPa and a temperature of 150 to 190 ° C. Residual phenol can be further removed by steam stripping.
( F ) 造粒工程  (F) Granulation process
この造粒工程においては、 上記 (E ) 工程で得られた溶解状態のビスフヱノ ール Aを、 スプレードライヤーなどの造粒装置により、 液滴にし、 冷却固化し て製品とする。 該液滴は嘖霧、 散布などにより形成され、 窒素や空気などによ つて冷却される。 本発明のビスフヱノール Aの製造方法における特徴は、 前記脱フェノールェ 程で得られた溶融状態のビスフエノール Aの少なくとも一部、 すなわち一部又 は全部を、 造粒工程における処理能力に応じて造粒工程外へ移送することであ る。 In this granulation step, the bisphenol A in a dissolved state obtained in the above step (E) is formed into droplets by a granulation device such as a spray drier and cooled and solidified to obtain a product. The droplets are formed by spraying or spraying, and are cooled by nitrogen, air, or the like. A feature of the method for producing bisphenol A of the present invention is that at least a part of the bisphenol A in a molten state obtained in the dephenolization step, that is, Is to transfer the whole to the outside of the granulation process according to the processing capacity in the granulation process.
このように、 脱フエノール工程で得られた溶融状態のビスフエノール Aの一 部又は全量を、 造粒工程における処理能力に応じて造粒工程外へ移送すること により、 造粒工程のトラブルなどの異常時に、 造粒系以外の装置の運転を止め なくてもよく、 かつ造粒系の停止時に生成したビスフエノール Aを無駄なく有 効に利用することができる。  In this way, part or all of the bisphenol A in the molten state obtained in the dephenol removal step is transferred to the outside of the granulation step according to the processing capacity in the granulation step, thereby preventing troubles in the granulation step. In the event of an abnormality, the operation of the equipment other than the granulation system need not be stopped, and the bisphenol A generated when the granulation system is stopped can be effectively used without waste.
本発明のビスフヱノール Aの製造方法において、 前記脱フエノール工程で得 られた溶融状態のビスフエノール Aの少なくとも一部を造粒工程外へ移送する 典型的な態様は、 脱フエノール工程から抜き出されるビスフエノール Aの少な くとも一部、 すなわち一部又は全量を濃縮工程へ返送することである。 この場 合、 濃縮工程に返送されるビスフエノール Aの量に応じて、 反応工程に導入す るァセトン量を調節することにより、 濃縮工程における被濃縮液中のビスフェ ノール Aの濃度を所望の値に調整することができる。  In the method for producing bisphenol A of the present invention, a typical mode of transferring at least a part of the bisphenol A in a molten state obtained in the dephenol removal step to the outside of the granulation step is a bisphenol A extracted from the dephenol removal step. This means that at least a part of phenol A, that is, a part or the whole amount, is returned to the concentration step. In this case, the concentration of bisphenol A in the liquid to be concentrated in the concentration step is adjusted to a desired value by adjusting the amount of acetone introduced into the reaction step according to the amount of bisphenol A returned to the concentration step. Can be adjusted.
このように、 造粒工程における処理能力に応じて、 脱フエノール工程から抜 き出されるビスフエノール Aの少なくとも一部を濃縮工程へ返送することによ り、 造粒工程のトラブルなどの異常時に、 '造粒系以外の装置の運転を止めなく てもよく、 かつ装置内に残留するビスフ ノール Aを再製品化し得る上、 反応 混合物中のビスフエノール A濃度を早く安定化させることができるので、 造粒 系の再スタートアップ時に定常運転までの時間を短縮することができる。  In this way, by returning at least a portion of the bisphenol A extracted from the phenol removal step to the concentration step according to the processing capacity in the granulation step, abnormalities such as troubles in the granulation step can be achieved. '' It is not necessary to stop the operation of the equipment other than the granulation system, and it is possible to remanufacture the bisphenol A remaining in the equipment and to stabilize the bisphenol A concentration in the reaction mixture quickly. When the granulation system is restarted, the time until steady operation can be shortened.
本発明の方法において、 造粒工程外へ移送する溶融状態のビスフエノール A は、 必要に応じ、 水又は水酸化ナトリウム水溶液に混合又は溶解させることが できる。  In the method of the present invention, the bisphenol A in a molten state to be transported out of the granulation step can be mixed or dissolved in water or an aqueous sodium hydroxide solution as needed.
本発明のビスフ ノール Aの製造方法において、 前記脱フエノール工程で得 られた溶融状態のビスフエノール Aの少なくとも一部を造粒工程外へ移送する 他の典型的な態様は、 造粒工程におけるトラブル発生時、 脱フエノール工程で 得られた溶融状態のビスフエノール Aの少なくとも一部を、 該ビスフエノーノレ Aを製造原料とする他の製造装置に移送することである。 そのような製造装置 としては、 ビスフヱノール Aを製造原料とするポリカーボネート製造装置及ぴ エポキシ樹脂製造装置を好ましく挙げることができる。 この場合も、 移送する 溶融状態のビスフエノール Aは、 必要に応じ、 水又は水酸化ナトリウム水溶液 に混合又は溶解させることができる。 In the method for producing bisphenol A according to the present invention, at least a portion of the bisphenol A in a molten state obtained in the dephenol removal step is transferred outside the granulation step. At the time of occurrence, at least a part of the bisphenol A in a molten state obtained in the dephenol removal step is to be transferred to another manufacturing apparatus using the bisphenol A as a raw material. Examples of such a production apparatus include a polycarbonate production apparatus using bisphenol A as a raw material and a polycarbonate production apparatus. An epoxy resin manufacturing apparatus can be preferably mentioned. Also in this case, the bisphenol A in the molten state to be transferred can be mixed or dissolved in water or an aqueous sodium hydroxide solution as required.
溶融状態のビスフエノール Aを水酸化ナトリゥム水溶液に溶解させる場合、 水酸化ナトリゥム水溶液の温度は、 2 0〜8 0 °Cの範囲が好ましい。  When bisphenol A in a molten state is dissolved in an aqueous sodium hydroxide solution, the temperature of the aqueous sodium hydroxide solution is preferably in the range of 20 to 80 ° C.
この温度が 2 0 °C未満ではビスフエノール Aの溶解に長時間を要し、 また 8 0 °Cを超えるとビスフエノール Aが着色したり、 水酸化ナトリゥム水溶液によ る装置材料の腐蝕が生じるおそれがある。 水酸化ナトリゥム水溶液の濃度は、 一般に 2〜4 0重量0 /0程度であり、 またその使用量は、 ビスフエノール A 1モ ルに対して、 N a O Hが 1 . 9〜2 . 5モルの範囲になるように選定するのが よい。 ' If the temperature is lower than 20 ° C, it takes a long time to dissolve bisphenol A, and if the temperature is higher than 80 ° C, bisphenol A is colored and the aqueous sodium hydroxide solution causes corrosion of equipment materials. There is a risk. The concentration of hydroxide Natoriumu solution is generally 2-4 0 weight 0/0 approximately, also the amount used, relative to bisphenol A 1 molar, N a OH is from 1.9 to 2.5 moles of It is better to select it within the range. '
溶融状態のビスフエノール Aを、 水や水酸化ナトリゥム水溶液と混合する場 合には、 ラインミキサーや攪拌機付きの溶解槽などを用いることができる。 機 器による混合に際しては、 必要に応じ、 予め機器内の空気を窒素ガスなどの不 活性ガスより置換しておいてもよい。  When bisphenol A in a molten state is mixed with water or an aqueous solution of sodium hydroxide, a line mixer or a dissolution tank with a stirrer can be used. At the time of mixing by the device, if necessary, the air in the device may be replaced with an inert gas such as nitrogen gas in advance.
本発明のビスフヱノール Aの製造方法において、 前記脱フェノール工程で得 られた溶融状態のビスフエノール Aの少なくとも一部を造粒工程外へ移送する もう 1つの典型的な態様は、 脱フエノール工程から抜き出されるビスフエノー ル Aの少なくとも一部を濃縮工程へ返送し、 残りのビスフヱノール Aの少なく とも一部を、 該ビスフェノール Aを製造原料とする他の製造装置、 例えばポリ カーボネート樹脂製造装置やエポキシ樹脂製造装置などへに移送することであ る。 そのためには、 ビスフエノール Aを濃縮装置へ返送するための配管の途中 に、 ビスフエノール Aを原料とする製造装置へビスフ ノール Aを移送するた めの配管を設けることが好ましい。 近隣に、 ビスフエノール Aを原料とする製 造装置が設置されている際には、 粒状のビスフエノール A製品よりも、 溶融状 のビスフエノール A製品を配管を介して移送する方が、 経済的に有利な場合が ある。  In the method for producing bisphenol A of the present invention, another typical embodiment of transferring at least a part of the bisphenol A in a molten state obtained in the dephenolization step to the outside of the granulation step is a step of removing from the dephenol step. At least a part of the bisphenol A is returned to the concentration step, and at least a part of the remaining bisphenol A is converted to another manufacturing apparatus using the bisphenol A as a raw material, such as a polycarbonate resin manufacturing apparatus or an epoxy resin manufacturing apparatus. It is to be transferred to equipment. For this purpose, it is preferable to provide a pipe for transferring bisphenol A to a production apparatus using bisphenol A as a raw material, in the middle of the pipe for returning bisphenol A to the concentrator. When a manufacturing apparatus using bisphenol A as a raw material is installed nearby, it is more economical to transfer the molten bisphenol A product via piping than the granular bisphenol A product. It may be advantageous to
なお、 正常運転中においても、 必要に応じ、 この移送ラインを利用して、 溶 融状態のビスフエノール A製品を抜き出すことができる。 すなわち、 必要に応 じ、 ビスフエノール Aの粒状製品と溶融 製品を同時に得ることができる。 In addition, even during normal operation, if necessary, the bisphenol A product in a molten state can be extracted using this transfer line. That is, if necessary In this way, a bisphenol A granular product and a molten product can be obtained at the same time.
図 1は、本発明のビスフエノール Aの製造方法における一例の工程図である。 本発明はまた、 前記のビスフエノール Aの製造方法を実施し得るビスフエノ ール Aの製造装置をも提供する。  FIG. 1 is a process chart of an example of the method for producing bisphenol A of the present invention. The present invention also provides an apparatus for producing bisphenol A, which can carry out the above-described method for producing bisphenol A.
本発明のビスフエノール Aの製造装置においては、 ビスフエノール Aとフエ ノールとの付加物の加熱溶融装置、 脱フ ノール装置及び造粒装置を有すると 共に、 脱フエノール装置で得られた溶融状態のビスフエノール Aを造粒装置外 に移送するための配管が設けられている。  The apparatus for producing bisphenol A according to the present invention includes a heating and melting apparatus for adducts of bisphenol A and phenol, a phenol removal apparatus, and a granulation apparatus, and a molten state obtained by the phenol removal apparatus. A pipe is provided to transfer bisphenol A out of the granulator.
本発明のビスフエノール Aの製造装置の 1態様においては、 フエノールとァ セトンとを縮合させる反応装置、 低沸点成分除去装置、 濃縮装置、 晶析■固液 分離装置、 加熱溶融装置、 脱フ ノール装置及び造粒装置を有すると共に、 上 記脱フエノール装置の出口と濃縮装置の入口間に、 脱フエノール装置から抜き 出されるビスフエノール Aを濃縮装置に返送するための配管が設けられている。 さらに、 本発明の装置には、 必要に応じ、 ビスフヱノール Aを濃縮装置へ返 送するための配管の途中に、 ビスフエノール Aを原料とする製造装置へビスフ ェノール Aを移送するための配管を設けることができる。  In one embodiment of the apparatus for producing bisphenol A according to the present invention, a reaction apparatus for condensing phenol and acetone, a low-boiling-point component removing apparatus, a concentrating apparatus, a crystallization-solid-liquid separation apparatus, a heating and melting apparatus, and a dephenol removing apparatus In addition to having an apparatus and a granulating apparatus, a pipe is provided between the outlet of the dephenolic apparatus and the inlet of the concentrating apparatus for returning bisphenol A extracted from the dephenolic apparatus to the concentrating apparatus. Further, in the apparatus of the present invention, if necessary, a pipe for transferring bisphenol A to a production apparatus using bisphenol A as a raw material is provided in a pipe for returning bisphenol A to the concentrating apparatus. be able to.
本発明の装置には、 必要に応じ、 造粒装置外へ移送する溶融状態のビスフ ノール Aを、 水又は水酸化ナトリゥム水溶液に混合又は溶解させるための機構 を設けることができる。  The apparatus of the present invention can be provided with a mechanism for mixing or dissolving the bisphenol A in a molten state to be transported out of the granulation apparatus into water or an aqueous sodium hydroxide solution, if necessary.
次に、 本発明を実施例によりさらに詳細に説明するが、 本発明は、 これらの 例によってなんら限定されるものではない。  Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
参考例 1  Reference example 1
図 1に示すビスフエノール Aの製造工程に従って、 連続的にビスフエノール Aを製造した。  Bisphenol A was continuously produced according to the process for producing bisphenol A shown in FIG.
陽イオン交換樹脂 6 0 0 gが充填された反応器に、 フエノールを 4 6 0 0 g Z h r、 アセトンを 2 8 0 g / h r及びェチルメルカプタンを 1 6 g / h rの 速度で温度を 7 5 °Cに維持しながら、 連続的に供給した。 反応混合物は、 未反 応ァセトンを主とした低沸点成分を除去するための低沸点成分除去工程に送り、 未反応アセトンを主とした低沸点成分を除去した。 低沸点成分除去工程から生 成したビスフエノール A及び未反応フエノールを主とした反応生成物が 4 6 4 O g Z h rで得られ、 この反応生成物は、 1 6 5 °C、 5 3 . 3 k P aの条件に 維持された濃縮工程へ送った。 A reactor filled with 600 g of cation exchange resin was heated to a temperature of 7600 hrs at a rate of 460 g / hr for phenol, 280 g / hr for acetone, and 16 g / hr for ethyl mercaptan. The solution was continuously supplied while maintaining the temperature at 5 ° C. The reaction mixture was sent to a low-boiling component removal step for removing low-boiling components mainly composed of unreacted acetone, and low-boiling components mainly composed of unreacted acetone were removed. Raw from low boiling point component removal process A reaction product mainly composed of bisphenol A and unreacted phenol was obtained at 464 Og Zhr, and this reaction product was obtained under the conditions of 1650 ° C and 53.3 kPa. It was sent to the maintained concentration step.
この濃縮工程において、 フエノールが一部除去されて、 ビスフエノール Aの 濃度が 3 0重量%となるように濃縮調整された。 濃縮工程からのビスフエノー ル Aの濃度が 3 0重量% (残りは大部分がフエノールである。) であるビスフエ ノール A濃縮液に水を加え、 この混合液は晶析 ·固液分離工程へ送られた。 晶 析工程では、 4 5 °Cの条件で冷却晶析が施され、 ビスフエノール Aとフエノー ルとの付加物 (ァダクト) が晶析する。 この付加物のスラリー溶液は固液分離 工程に送られ遠心分離されてビスフエノール Aとフエノールとの付加物結晶と 母液とに分離された。  In this concentration step, the phenol was partially removed, and the concentration was adjusted so that the concentration of bisphenol A became 30% by weight. Water is added to the bisphenol A concentrated solution in which the concentration of bisphenol A from the concentration step is 30% by weight (the remainder is mostly phenol), and this mixture is sent to the crystallization / solid-liquid separation step. Was done. In the crystallization step, cooling crystallization is performed at 45 ° C, and an adduct of bisphenol A and phenol crystallizes. The slurry solution of the adduct was sent to a solid-liquid separation step and centrifuged to separate an adduct crystal of bisphenol A and phenol and a mother liquor.
晶析 ·固液分離工程から 8 7 0 g / h rで連続的に得られたビスフエノール Aとフエノールとの付加物結晶は、 ァダクト加熱溶融工程に送り 1 7 0 °Cの温 度で加熱溶融させた。 次いで、 この加熱溶融されたビスフエノール Aとフエノ ールとの付加物結晶は、 1 7 0 °C、 5 . 3 k P aの条件に維持された工程へ送 り、大部分のフヱノ一ルを留出させ溶融状態のビスフヱノール Aを得た。次に、 大部分のフエノ一ルを留出させた溶融状態のビスフエノール Aをさらにスチー ムストリッピングすることにより、 残留フヱノールを実質上完全に除去し、 溶 融状態のビスフエノール Aを 5 4 5 g / h rで連続的に得た。  Crystallization ・ Adduct crystals of bisphenol A and phenol continuously obtained at 870 g / hr from the solid-liquid separation process are sent to the adduct heating and melting process and heated and melted at a temperature of 170 ° C. I let it. Next, the heat-melted adduct crystal of bisphenol A and phenol is sent to a process maintained at 170 ° C. and 5.3 kPa, and most of the phenol is added. Was distilled out to obtain bisphenol A in a molten state. Next, the residual bisphenol A is substantially completely removed by further steam stripping the molten bisphenol A from which most of the phenol has been distilled off, and the bisphenol A in the molten state is removed. Obtained continuously at g / hr.
このようにして得られた溶融状態のビスフエノール Aは、 造粒工程に送り、 造粒塔の塔頂部から液滴状態で落下させた溶融状態のビスフ ノール Aと冷却 窒素ガスとを交流接触させ、 ビスフエノール Aの造粒物を 5 3 8 g Z h rで連 続的に得た。  The thus obtained bisphenol A in a molten state is sent to the granulation step, where the bisphenol A in a molten state dropped in a droplet form from the top of the granulation tower is brought into contact with cooling nitrogen gas in an alternating current. Granules of bisphenol A were continuously obtained at 538 g Z hr.
実施例 1  Example 1
参考例 1において、 造粒工程にトラブルが発生し、 脱フ ノール工程からの 溶融状態のビスフエノール Aを造粒工程に送ることができなくなつたため、 脱 フエノール工程の出口と濃縮工程の入口の間に設けた返送ラインにより、 溶融 状態のビスフエノール Aを全量 (5 4 5 g / h r ) 連続的に濃縮工程へ返送す ると共に、 反応工程にはアセトンの供給を停止し、 フエノールのみを流しつづ けた。 In Reference Example 1, a trouble occurred in the granulation process, and it was not possible to send the bisphenol A in the molten state from the phenol removal process to the granulation process. An intervening return line continuously returns the entire amount of bisphenol A in the molten state (545 g / hr) to the enrichment process, stops supplying acetone in the reaction process, and allows only phenol to flow. Continued I did.
5時間後、造粒工程のトラプルが解消したため、濃縮工程への返送を停止し、 造粒工程に溶融状態のビスフエノール Aを供給すると共に、 反応工程にはァセ トンの供給を開始してビスフヱノール Aの造粒物を製造した。  Five hours later, the trap in the granulation process was resolved, so the return to the concentration process was stopped, bisphenol A in a molten state was supplied to the granulation process, and acetone was supplied to the reaction process. A granulated product of bisphenol A was produced.
実施例 2  Example 2
参考例 1において、 造粒工程にトラブルが発生し、 造粒工程での処理能力が 半減したため、 脱フエノール工程からの溶融状態のビスフエノール Aの半量を 造粒工程に送り造粒すると共に、 残り半量の溶融状態のビスフエノール Aは実 施例 1と同様に返送ラインを通して濃縮工程に送った。 また、 これに伴い反応 工程にはァセトンの供給を半分の 1 4 0 g / h rとして反応を続けた。  In Reference Example 1, a trouble occurred in the granulation process and the processing capacity in the granulation process was reduced by half, so half of the bisphenol A in the molten state from the phenol removal process was sent to the granulation process and the remaining Half the amount of bisphenol A in the molten state was sent to the concentration step through the return line in the same manner as in Example 1. Along with this, in the reaction process, the reaction was continued with the supply of acetone being reduced by half to 140 g / hr.
比較例 1  Comparative Example 1
参考例 1において、 造粒工程で詰まりが発生し、 脱フエノール工程からの溶 融状態のビスフエノール Aを造粒工程に送ることができなくなつたため、 脱フ ェノール工程からの溶融状態のビスフエノール Aをスロップタンクに抜き出す と共に、 反応工程にはアセトンの供給を停止し、 フエノールのみを流しつづけ た。 6時間後、造粒工程の詰まりが解消したため、ァセトンの供給を再開した。 2 2時間後に造粒工程からビスフエノール Aの造粒物が製造される定常運転に 復帰した。 産業上の利用可能性  In Reference Example 1, clogging occurred in the granulation process, and the melted bisphenol A from the phenol removal process could not be sent to the granulation process. A was drawn into the slop tank, and the supply of acetone was stopped in the reaction process, and only phenol was kept flowing. Six hours later, the clogging of the granulation process was cleared, and the supply of acetone was resumed. Twenty-two hours later, the granulation process returned to the normal operation in which granulated bisphenol A was produced. Industrial applicability
本発明のビスフエノール Aの製造方法によれば、 ビスフエノール Aの溶融状 製品と粒状製品を同時に製造し得ると共に、 造粒工程のトラブルなどの異常時 に、 造粒系以外の装置の運転を止めなくてもよい上、 造粒系の停止時に生成し たビスフエノール Aを無駄なく有効に利用することができ、 造粒系の再スター トァップ時に定常運転までの時間を短縮することができる。  According to the method for producing bisphenol A of the present invention, a molten product and a granular product of bisphenol A can be produced at the same time, and at the time of abnormality such as a trouble in the granulation process, the operation of equipment other than the granulation system can be performed. It is not necessary to stop, and the bisphenol A generated when the granulation system is stopped can be effectively used without waste, and the time required for steady operation when the granulation system is restarted can be reduced.

Claims

請 求 の 範 囲  The scope of the claims
1 ビスフ ノール Aとフエノールとの付加物を加熱溶融工程にて加熱溶融さ せたのち、 得られた液状混合物を脱フエノール工程にて脱フェノール処理する ことにより、 溶融状態のビスフエノール Aを得、 次い'で造粒工程にて造粒させ てビスフエノール Aを製造する方法において、 造粒工程における処理能力に応 じて、 脱フエノール工程で得られた溶融状態のビスフエノール Aの少なくとも 一部を、造粒工程外へ移送することを特徴とするビスフエノール Aの製造方法。 (1) An adduct of bisphenol A and phenol is heated and melted in a heating and melting step, and the resulting liquid mixture is dephenolized in a dephenol step to obtain a molten bisphenol A, In the method for producing bisphenol A by granulation in the granulation step in the next step, at least a part of the bisphenol A in the molten state obtained in the phenol removal step according to the processing capacity in the granulation step Is transferred to the outside of the granulation step.
2 ビスフエノール Aとフエノールとの付加物が、 フエノールとァセトンを縮 合させる反応工程によりビスフエノール Aを含む反応混合物を得たのち、 該反 応混合物に、 低沸点成分除去工程、 濃縮工程、 晶析 ·固液分離工程を順次施す ことにより得られたものである請求項 1記載のビスフヱノール Aの製造方法。 (2) An adduct of bisphenol A and phenol is used to obtain a reaction mixture containing bisphenol A by a reaction step of condensing phenol and acetone, and then a low-boiling component removing step, a concentration step, 2. The method for producing bisphenol A according to claim 1, which is obtained by sequentially performing a precipitation / solid-liquid separation step.
3 フエノールとァセトンを縮合させる反応工程によりビスフエノール Aを含 む反応混合物を得たのち、 該反応混合物に、 低沸点成分除去工程、 濃縮工程、 晶析■固液分離工程、 加熱溶融工程、 脱フユノール工程及ぴ造粒工程を順次施 し、 ビスフエノール Aを製造する方法において、 造粒工程における処理能力に 応じて、 脱フエノール工程から抜き出されるビスフエノール Aの少なくとも一 部を濃縮工程へ返送することを特徴とするビスフエノール Aの製造方法。 3 After obtaining a reaction mixture containing bisphenol A by a reaction step of condensing phenol and acetone, the reaction mixture is subjected to a low-boiling-point component removal step, a concentration step, a crystallization-solid-liquid separation step, a heat-melting step, In the method of producing bisphenol A by sequentially performing the phenol process and the granulation process, at least a part of the bisphenol A extracted from the dephenol process is returned to the concentration process according to the processing capacity in the granulation process. A process for producing bisphenol A.
4 ビスフエノール Aとフエノールとの付加物の加熱溶融装置、 脱フエノール 装置及び造粒装置を有するビスフ ノール Aの製造装置において、 脱フエノー ル装置で得られた溶融状態のビスフエノール Aを造粒装置外に移送するための 配管を設けたことを特徴とするビスフエノール Aの製造装置。 4 In the bisphenol A production equipment that has a heating and melting device for adducts of bisphenol A and phenol, a dephenol device and a granulation device, the molten bisphenol A obtained by the dephenol device is granulated. Bisphenol A production equipment characterized by having a pipe for transporting it outside.
5 フエノールとアセトンとを縮合させる反応装置、 低沸点成分除去装置、 濃 縮装置、 晶析 ·固液分離装置、 加熱溶融装置、 脱フエノール装置及び造粒装置 を有するビスフエノール Aの製造装置において、 上記脱フエノール装置の出口 と濃縮装置の入口間に、 脱フエノール装置から抜き出されるビスフエノール A を濃縮装置に返送するための配管を設けたことを特徴とするビスフエノール A (5) Bisphenol A manufacturing equipment, which has a reaction device for condensing phenol and acetone, a low-boiling component removing device, a concentration device, a crystallization / solid-liquid separation device, a heating and melting device, a dephenol device, and a granulation device Outlet of the above dephenol unit Characterized in that a pipe for returning bisphenol A extracted from the dephenolizer to the concentrator is provided between the feeder and the inlet of the concentrator.
6 濃縮工程に返送されるビスフエノール Aの量に応じて、 反応工程に導入す るァセトン量を調節する請求項 3記載のビスフエノール Aの製造方法。 6. The method for producing bisphenol A according to claim 3, wherein the amount of acetone introduced into the reaction step is adjusted according to the amount of bisphenol A returned to the concentration step.
7 造粒工程外へ移送する溶融状態のビスフ ノール Aを、 水又は水酸化ナト リゥム水溶液に混合又は溶解させる請求項 1又は 2記載のビスフエノール Aの 製造方法。 7. The process for producing bisphenol A according to claim 1, wherein the bisphenol A in a molten state to be transported out of the granulation step is mixed or dissolved in water or an aqueous solution of sodium hydroxide.
8 造粒工程におけるトラブル発生時、 脱フエノール工程で得られた溶融状態 のビスフエノール Aの少なくとも一部を、 該ビスフェノール Aを製造原料とす る他の製造装置に移送する請求項 1、 2又は 7記載のビスフエノール Aの製造 方法。 (8) At the time of occurrence of a trouble in the granulation step, at least a part of the bisphenol A in a molten state obtained in the dephenol removal step is transferred to another manufacturing apparatus using the bisphenol A as a raw material. 7. The method for producing bisphenol A according to 7.
9 脱フエノール工程から抜き出されるビスフエノール Aの少なくとも一部を 濃縮工程へ返送し、 残りのビスフエノール Aの少なくとも一部を、 該ビスフエ ノール Aを製造原料とする他の製造装置に移送することを特徴とする請求項 3 記載のビスフェノ.ール Aの製造方法。 9 Return at least a part of the bisphenol A extracted from the dephenol removal step to the concentration step, and transfer at least a part of the remaining bisphenol A to another manufacturing apparatus that uses the bisphenol A as a raw material. The method for producing bisphenol A according to claim 3, wherein:
1 0 ビスフエノール Aを製造原料とする他の製造装置が、 ポリカーボネート 製造装置又はエポキシ樹脂製造装置である請求項 8又は 9記載のビスフエノー ル Aの製造方法。 10. The method for producing bisphenol A according to claim 8 or 9, wherein the other production apparatus using bisphenol A as a production raw material is a polycarbonate production apparatus or an epoxy resin production apparatus.
1 1 溶融状態のビスフエノール Aを造粒装置外に移送するための配管と共に、 造粒装置外へ移送する溶融状態のビスフユノール Aを、 水又は水酸化ナトリゥ ム水溶液に混合又は溶解させるための機構を設けてなる請求項 4記載のビスフ ノール Aの製造装置。 1 1 A mechanism for mixing or dissolving the bisphenol A in the molten state to be transported out of the granulator with water or sodium hydroxide aqueous solution, together with the piping for transporting the bisphenol A in the molten state outside the granulator. 5. The apparatus for producing bisphenol A according to claim 4, further comprising:
PCT/JP2002/011882 2001-11-22 2002-11-14 Process for producing bisphenol a and apparatus therefor WO2003043964A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-357022 2001-11-22
JP2001-357023 2001-11-22
JP2001357022A JP2003160523A (en) 2001-11-22 2001-11-22 Method and facility for producing bisphenol a
JP2001357023A JP2003160524A (en) 2001-11-22 2001-11-22 Method and facility for producing bisphenol a

Publications (1)

Publication Number Publication Date
WO2003043964A1 true WO2003043964A1 (en) 2003-05-30

Family

ID=26624647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/011882 WO2003043964A1 (en) 2001-11-22 2002-11-14 Process for producing bisphenol a and apparatus therefor

Country Status (2)

Country Link
TW (1) TW200303856A (en)
WO (1) WO2003043964A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110483710A (en) * 2019-08-09 2019-11-22 嘉兴北化高分子助剂有限公司 Poly alpha methylstyrene resorcinol formaldehyde resin production line

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05294872A (en) * 1992-04-17 1993-11-09 Nippon Steel Chem Co Ltd Production of bisphenol a purill
JPH06107582A (en) * 1992-09-30 1994-04-19 Nippon Steel Chem Co Ltd Production of bisphenol a
JPH08325184A (en) * 1995-05-30 1996-12-10 Mitsubishi Chem Corp Production of bisphenol a

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05294872A (en) * 1992-04-17 1993-11-09 Nippon Steel Chem Co Ltd Production of bisphenol a purill
JPH06107582A (en) * 1992-09-30 1994-04-19 Nippon Steel Chem Co Ltd Production of bisphenol a
JPH08325184A (en) * 1995-05-30 1996-12-10 Mitsubishi Chem Corp Production of bisphenol a

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110483710A (en) * 2019-08-09 2019-11-22 嘉兴北化高分子助剂有限公司 Poly alpha methylstyrene resorcinol formaldehyde resin production line
CN110483710B (en) * 2019-08-09 2022-05-20 嘉兴北化高分子助剂有限公司 Production line of poly alpha-methyl styrene resorcinol formaldehyde resin

Also Published As

Publication number Publication date
TW200303856A (en) 2003-09-16

Similar Documents

Publication Publication Date Title
TW515789B (en) Process for producing bisphenol A
JP5030472B2 (en) Manufacturing method and manufacturing equipment of high purity bisphenol A
WO2002055462A1 (en) Process for producing bisphenol a
KR102045735B1 (en) Method for producing bisphenol a
JP4658355B2 (en) Method for producing bisphenol A
WO2003082785A1 (en) Process for production of bisphenol a
EP1985602A1 (en) Process for producing bisphenol a
WO2002072515A1 (en) Method for producing bisphenol a
JP2004137193A (en) Method for granulating bisphenol a
WO2003043964A1 (en) Process for producing bisphenol a and apparatus therefor
JP4388893B2 (en) Method for producing bisphenol A
JP5421535B2 (en) Method for producing high quality granular bisphenol A
JP3981334B2 (en) Method for producing bisphenol A
WO2004035512A1 (en) Process for producing bisphenol a
JP2003160524A (en) Method and facility for producing bisphenol a
JP5150086B2 (en) Recovery method of bisphenol A
JP2003160523A (en) Method and facility for producing bisphenol a
JP4590188B2 (en) Method for producing prill of bisphenol A
JP2007224020A (en) Method for production of bisphenol a
JP2007112763A (en) Method for producing bisphenol a having good hue
WO2004050593A1 (en) Process for producing bisphenol a
JP2005068247A (en) Method for producing aromatic polycarbonate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN ID IN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase