WO2003042724A1 - Method for modifying the surface of biomedical articles - Google Patents
Method for modifying the surface of biomedical articles Download PDFInfo
- Publication number
- WO2003042724A1 WO2003042724A1 PCT/EP2002/012658 EP0212658W WO03042724A1 WO 2003042724 A1 WO2003042724 A1 WO 2003042724A1 EP 0212658 W EP0212658 W EP 0212658W WO 03042724 A1 WO03042724 A1 WO 03042724A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radical
- alkyl
- formula
- alkylene
- substituted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/34—Macromolecular materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
- G02B1/043—Contact lenses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/18—Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
Definitions
- the present invention relates to a method of modifying the surface of an inorganic or organic bulk material such as contact lenses and other biomedical articles by at least partially coating the surfaces of such materials with a hydrophilic polymer.
- contact lenses may require relatively high oxygen permeability through the bulk of the lens to maintain good corneal health.
- materials that exhibit exceptionally high oxygen permeability e.g. polysiloxanes
- a contact lens will generally have a core bulk material that is highly oxygen permeable und hydrophobic, and a surface that has been treated or coated to increase hydrophilic properties. This hydrophilic surface allows the lens to move relatively freely on the eye without adhering excessive amounts of tear lipid and protein.
- WO 99/57581 discloses to first of all provide the article surface with covalently bound photoinitiator molecules, coating the modified surface with a layer of a polymerizable macromonomer and then subjecting it to a heat or radiation treatment whereby the macromonomer is graft polymerized thus forming the novel article surface.
- the covalent binding of the photoinitiator molecules to the article surface is created by first subjecting the article surface to a plasma treatment thereby providing the surface with functional groups, and then reacting said functional groups with co-reactive groups of a functional photoinitiator.
- a plasma treatment requires a considerable investment in equipment and is furthermore difficult to be integrated in an automated production process.
- a plasma treatment requires that the article to be treated is dry before exposure to the plasma.
- a polymeric article such as a contact lens that is wet from prior hydration or extraction must be dried previously, thereby adding time in the overall lens production process as well as imposing added costs of obtaining a drying equipment. Therefore, it would be highly desirable to modify the surface functionalization step of the process disclosed in WO 99/57581 such that the plasma treatment is avoided and replaced by a technique which is easy to perform with standard equipment and which is thus more feasible for an automated production process.
- hydrophobic articles may be readily f unctionalized by applying at least one polyelectrolyte comprising covalently bound photoinitiator moieties for radical polymerization to the article surface followed by graft polymerization of suitable hydrophilic macromonomers onto the article surface.
- the present invention therefore in one aspect relates to a process for coating a material surface comprising the steps of:
- step (c) applying the polyionic material of step (b) to the bulk material of step (a), thereby forming a hydrophilic layer on the bulk material surface;
- suitable bulk materials are quartz, ceramics, glasses, silicate minerals, silica gels, metals, metal oxides, carbon materials such as graphite or glassy carbon, natural or synthetic organic polymers, or laminates, composites or blends of said materials, in particular natural or synthetic organic polymers or modified biopolymers which are known in large number.
- polymers are polyaddition and polycondensation polymers (polyurethanes, epoxy resins, polyethers, polyesters, polyamides and polyimides); vinyl polymers (polyacrylates, polymethacrylates, polyacrylamides, polymethacrylamides, polystyrene, polyethylene and halogenated derivatives thereof, polyvinyl acetate and polyacrylonitrile); or elastomers (silicones, polybutadiene and polyisoprene).
- polyurethanes epoxy resins, polyethers, polyesters, polyamides and polyimides
- vinyl polymers polyacrylates, polymethacrylates, polyacrylamides, polymethacrylamides, polystyrene, polyethylene and halogenated derivatives thereof, polyvinyl acetate and polyacrylonitrile
- elastomers siliconcones, polybutadiene and polyisoprene
- a preferred group of materials to be coated are those being conventionally used for the manufacture of biomedical devices, e.g. contact lenses, in particular contact lenses for extended wear, which are not hydrophilic per se.
- Such materials are known to the skilled artisan and may comprise for example polysiloxanes, perfluoroalkyl polyethers, fluorinated poly(meth)acrylates or equivalent fluorinated polymers derived e.g.
- fluorinated polyolefines such as fluorinated ethylene or propylene, for example tetrafluoroethylene, preferably in combination with specific dioxols, such as perfluoro-2,2-dimethyl-1 ,3-dioxol.
- suitable bulk materials are e.g.
- Teflon AF materials such as Teflon AF 1600 or Teflon AF 2400 which are copolymers of about 63 to 73 mol % of perfluoro-2,2-dimethyl-1 ,3-dioxol and about 37 to 27 mol % of tetrafluoroethylene, or of about 80 to 90 mol % of perfluoro-2,2-dimethyl-1 ,3-dioxol and about 20 to 10 mol % of tetrafluoroethylene.
- amphiphilic segmented copolymers comprising at least one hydrophobic segment and at least one hydrophilic segment which are linked through a bond or a bridge member.
- examples are silicone hydrogels, for example those disclosed in PCT applications WO 96/31792 and WO 97/49740.
- a particular preferred group of bulk materials comprises organic polymers selected from polyacrylates, polymethacrylates, polyacrylamides, poly(N,N-dimethylacrylamides), polymethacrylamides, polyvinyl acetates, polysiloxanes, perfluoroalkyl polyethers, fluorinated polyacrylates or -methacrylates and amphiphilic segmented copolymers comprising at least one hydrophobic segment, for example a polysiloxane or perfluoroalkyl polyether segment or a mixed polysiloxane/perfluoroalkyl polyether segment, and at least one hydrophilic segment, for example a polyoxazoline, poly(2-hydroxyethylmethacrylate), polyacrylamide, poly(N,N-dimethylacrylamide), polyvinylpyrrolidone polyacrylic or polymethacrylic acid segment or a copolymeric mixture of two or more of the underlying monomers.
- organic polymers selected from polyacrylates, polyme
- the material to be coated may also be any blood-contacting material conventionally used for the manufacture of renal dialysis membranes, blood storage bags, pacemaker leads or vascular grafts.
- the material to be modified on its surface may be a polyurethane, polydimethylsiloxane, polytetrafluoroethylene, polyvinylchloride, DacronTM or SilasticTM type polymer, or a composite made therefrom.
- the material to be coated may also be an inorganic or metallic base material without suitable reactive groups, e.g. ceramic, quartz, or metals, such as silicon or gold, or other polymeric or non-polymeric substrates. E.g. for implantable biomedical applications, ceramics are very useful.
- hydrophilically coated base materials are expected to reduce nonspecific binding effects if the structure of the coating is well controlled. Biosensors may require a specific carbohydrate coating on gold, quartz, or other non-polymeric substrates.
- the form of the material to be coated may vary within wide limits. Examples are particles, granules, capsules, fibres, tubes, films or membranes, preferably moldings of all kinds such as ophthalmic moldings, for example intraocular lenses, artificial cornea or in particular contact lenses.
- Suitable substances that may be utilized to form the polymeric layer according to step (c) of the present invention include various polyionic materials which comprise reactive functional groups, to some of which initiator moieties for radical polymerization are covalently bound.
- the ratio of free reactive functional groups to functional groups bound to initiator moieties for radical polymerization may vary within wide limits, for example from 10:1 to 200:1.
- a polymeric layer according to step (c) may comprise a single polymer, a first and a second ionic polymer having opposite charges or different polymers having the same or different charges.
- Said polymeric layer may also comprise polyionic materials, which are devoid of covalently bound initiator moieties for radical polymerization.
- the polyionic materials to which initiator moieties for radical polymerization are covalently bound for use in step (b) include polyanionic and/or polycationic polymers.
- suitable anionic materials include, for example, a synthetic polymer, a biopolymer or modified polymer comprising carboxy, sulfo, sulfato, phosphono or phosphato groups or mixtures thereof, or a salt thereof, for example a biomedically acceptable salt and especially an ophthalmically acceptable salt thereof when the substrate to be coated is an ophthalmic device.
- Examples of synthetic anionic materials are: a linear polyacrylic acid (PAA), a branched polyacrylic acid, for example a Carbophil or Carbopol type from Goodrich Corp., a polymethacrylic acid (PMA), a polyacrylic acid or polymethacrylic acid copolymer, for example a copolymer of acrylic or methacrylic acid and a further vinylmonomer, for example acrylamide, N,N-dimethyl acrylamide or N-vinylpyrrolidone, a maleic orfumaric acid copolymer, a poly(styrenesulfonic acid) (PSS), a polyamido acid, for example a carboxy- terminated polymer of a diamine and a di- or polycarboxylic acid, for example carboxy- terminated StarburstTM PAMAM dendrimers (Aldrich), a poly(2-acrylamido-2- methylpropanesulfonic acid) (poly-(AMPS
- anionic biopolymers or modified biopolymers are: hyaluronic acid, glycosaminoglycanes such as heparin or chondroitin sulfate, fucoidan, polyaspartic acid, poly-glutamic acid, carboxymethyl cellulose, carboxymethyl dextranes, alginates, pectins, gellan, carboxyalkyl chitins, chitosan, carboxymethyl chitosans, sulphated polysaccharides.
- a preferred anionic polymer is a linear or branched polyacrylic acid or an acrylic acid copolymer.
- a more preferred anionic polymer is a linear or branched polyacrylic acid.
- a branched polyarylic acid in this context is to be understood as meaning a polyacrylic acid obtainable by polymerizing acrylic acid in the presence of suitable (minor) amounts of a di- or polyvinyl compound.
- a suitable cationic polymer is, for example, a synthetic polymer, biopolymer or modified biopolymer comprising primary or secondary amino groups or a suitable salt thereof, preferably an ophthalmically acceptable salt thereof, for example a hydrohalogenide such as a hydrochloride thereof.
- PAH polyallylamine
- PEI polyethyleneimine
- a polytvinylbenzyl-tri-CrC ⁇ alkylammonium salt for example a poly(vinylbenzyl-tri- methyl ammoniumchloride);
- a polymer of an aliphatic or araliphatic dihalide and an aliphatic N.N.N'.N'-tetra-CrCj- alkyl-alkylenediamine for example a polymer of (a) propylene-1 ,3-dichloride or -dibromide or p-xylylene dichloride or dibromide and (b) N.N.N'.N'-tetramethyl-l ,4-tetramethylene diamine;
- R 2 and R 2 ' are each independently C C 4 -alkyl, in particular methyl, and
- An " is a, for example, a halide anion such as the chloride anion;
- a homo- or copolymer of a quaternized di-C ⁇ -C 4 -alkyl-aminoethyl acrylate or methacrylate for example a poly ⁇ -hydroxy-S-methacryloylpropyltri-CrCa-alkylammonium salt) homopolymer such as a a poly(2-hydroxy-3-methacryloylpropyltri-methylammonium chloride), or a quaternized poly(2-dimethylaminoethyl methacrylate or a quaternized poly(vinylpyrrolidone-co-2-dimethylaminoethyl methacrylate);
- a polyaminoamide for example a linear PAMAM or a PAMAM dendrimer such as a amino-terminated StarbustTM PAMAM dendrimer (Aldrich).
- Suitable modifier units of the polyallylamine (i) are known, for example from WO 00/31150.
- the molecular weight of the anionic and cationic polymers used in step (b) may vary within wide limits depending on the desired characteristics such as adhesion on the bulk material, coating thickness and the like. In general, a weight average molecular weight of from about 5000 to about 5000000, preferably from 10000 to 1000000, more preferably from 15000 to 500000, even more preferably from 20000 to 200000 and in particular from 40000 to 150000, has proven as valuable both for anionic and cationic polymers used in step (b),
- cationic biopolymers or modified biopolymers that may be used for the preparation of polyionic materials comprising covalently bound initiator moieties for radical polymerization according to step b) include: basic peptides, proteins or glucoproteins, for example, a poly- ⁇ -lysine, albumin or collagen, aminoalkylated polysaccharides such as a chitosan or aminodextranes.
- PI is the radical of a photoinitiator, the total of (g + h) is an integer from 15 to 10000; and the ratio of g : h is from 200 : 1 to 10 :1.
- Preferred is a ratio of g : h is from 40 : 1 to 20 : 1.
- Another preferred anionic materials for use in step b) are hyarulonic acid derivatives comprising structural units of formula
- PI is the radical of a photoinitiator, the total of (g + h) is an integer from 15 to 25000; and wherein the ratio of g : h is from 200 : 1 to 10 :1.
- Preferred is a ratio of g : h is from 40 : 1 to 10 : 1.
- a preferred cationic material for use in step b) is a polyethyleneimine derivative comprising structural units of formula wherein wherein P is the radical of a photoinitiator; the total of (g + h) is an integer from 10 to10000; and wherein the ratio of g : h is from 200 : 1 to 10 :1.
- Preferred is a ratio of g : h is from 40 : 1 to 20 : 1.
- Another preferred cationic material for use in step b) is a derivative of polyallylamine comprising structural units of formula
- Pl ⁇ is the radical of a photoinitiator; the total of (g + h) is an integer from 15 to 1000; and the ratio of g : h is from 200 : 1 to 10 :1.
- Preferred is a ratio of g : h is from 40 : 1 to 20 : 1.
- Suitable photoinitiator radicals PI for polyionic materials of formula (3) and (4) are, for example, photoinitiator radicals Pl ⁇ of formula
- Z is bivalent -O-, -NH- or -NR i2 -; Z is -O-, -O-(O)C-, -C(O)-O- or -O-C(O)-O-; R 3 is H, Ci-Ci 2 -alkyl, C C ⁇ 2 -alkoxy or N-C ⁇ -C ⁇ 2 -alkylamino; R 4 and R 5 are each independently of the other H, linear or branched d-C ⁇ -alkyl, C ⁇ -C 8 -hydroxyalkyl or C 6 -C ⁇ 0 -aryl, or the groups R 4 -(O)bi- and R -(O) 2 - together are -(CH 2 ) C - wherein c is an integer from 3 to 5, or the groups R 4 -(O) b ⁇ -, R 4 -(O) b 2- and R 5 -(O ⁇ )b3- together are a radical of the formula
- R 2 is a direct bond or linear or branched d-C 8 -alkylene that is unsubstituted --CH,
- Ri is branched C 3 -C 18 -alkylene, unsubstituted or d-C 4 -alkyl- or C ⁇ -C 4 -alkoxy-substituted C 6 -C 10 -arylene, or unsubstituted or C ⁇ -C 4 -alkyl- or C ⁇ -C 4 -alkoxy- substituted C 7 -C 18 -aralkylene, unsubstituted or d-d-alkyl- or d-d-alkoxy-substituted C 3 - C 8 -cycloalkylene, unsubstituted or d-C 4 -alkyl- or Ci-d-alkoxy-substituted C 3 -C 8 -cyclo- alkylene-CyH ⁇ y-
- Z 2 is a direct bond or -O-(CH 2 ) d - or -(OCH 2 CH 2 )d- wherein d is an O integer from 1 to 6 and the terminal CH 2 group of which is each linked to the adjacent T in formula (3c);
- R 8 is linear or branched Ci-C ⁇ -alkyI, C 2 -C 8 -alkenyl or Ce-Cio-aryl-d-C ⁇ -alkyI;
- R 9 independently of R 8 has the same definitions as R 8 or is C 6 -C ⁇ 0 -aryl, or R 8 and R g together are -(CH 2 ) ⁇ - wherein e is an integer from 2 to 6;
- Rio and Rn are each independently of the other linear or branched Ci-C ⁇ -alkyI that may be substituted by d-C -alkoxy, or C 6 -do-aryl- d-C 8 -alky
- photoinitators especially preferred for the covalent attachment to the polyionic material are isocyanate bearing compounds of formula
- the photoinitiator groups of the polyionic materials of step b) are covalently bound to reactive functional groups of the requisite polymer by using a photoinitiator with a co- reactive functional group.
- reaction of amino or hydroxy groups of a polyionic material with isocyanato or isothiocyanato groups of a photoinitiator may be carried out in an organic solvent such as, for example petroleum ether, methylcyclohexane, toluene, acetonitrile, chloroform, methylene chloride and the like, or an ether, for example diethyl ether, tetrahydrofurane, dioxane, or a more polar solvent such as DMSO, DMA, N-methyl- pyrrolidone, at a temperature of from 0 to 100 °C, preferably from 0 to 50 °C and particularly preferably at room temperature, optionally in the presence of a catalyst, for example a tertiary amine such as triethylamine or tri-n-butylamine, 1 ,4-diazabicyclooctane, or a tin compound such as dibutyltin
- an organic solvent
- the reaction of the carboxy group with an amino or hydroxy group of a functionalized photoinitiator, or vice versa the reaction of an amino or hydroxy group of the polyionic material with a carboxy functionalized polymerisation initiator, may be carried out under the conditions that are customary for ester or amide formation, for example in an polar solvent at a temperature from about room temperature to about 100°C.
- esterification or amidation reaction in the presence of an activating agent, for example N- ethyl-N'-(3-dimethylaminopropyl)carbodiimide (EDC), N-hydroxy succinimide (NHS), sulfo-N- hydroxy succinimide or N,N'-dicyclohexyl carbodiimide (DCC) or in the presence of an o- (benztriazole)- uronium salt such as o-(benztriazol-1-y-)-N,N,N,N-tetramethyluronium hexafluorophosphate.
- an activating agent for example N- ethyl-N'-(3-dimethylaminopropyl)carbodiimide (EDC), N-hydroxy succinimide (NHS), sulfo-N- hydroxy succinimide or N,N'-dicyclohexyl carbodiimide (DCC) or in the presence of an
- step (b) may be accomplished according to processes known per se.
- the bulk material is immersed in a solution of the anionic and cationic polymer, or one or more layers each of the anionic and cationic polymer are successively deposited on the modified bulk material surface, for example by dipping, spraying, printing, spreading, pouring, rolling, spin coating or vacuum vapor deposition, spraying or particularly dipping being preferred.
- the bulk material may be rinsed or dried before the deposition of the next ionic polymer having opposite charges.
- a preferred dip method involves the steps of (i) applying a coating of a first ionic polymer, for example of a cationic or preferably of an anionic polymer, to the bulk material by immersing the bulk material in a solution of the first ionic polymer; (ii) optionally, rinsing the bulk material by immersing it in a rinsing solution; (iii) optionally, drying said bulk material; and (iv) applying a coating of a second ionic polymer having charges opposite of the charges of the first ionic polymer, for example an anionic or preferably a cationic polymer, to the bulk material by immersing the bulk material in a solution of the second ionic polymer.
- a first ionic polymer for example of a cationic or preferably of an anionic polymer
- a more preferred dip method involves the steps of applying a coating of the first and second ionic polymer by immersing the bulk material successively in a solution each of the first and second ionic polymer without a rinsing or drying step in between.
- a further dip method involves immersing the bulk material in a solution comprising both the anionic and cationic polymer.
- At least one of the ionic polymers for example the cationic or the anionic, or both, comprise a covalently bound photoinitiator.
- the dip solutions of the anionic and cationic polymer in general comprise the respective polymer diluted in one or more different solvents.
- Suitable solvents are, for example, water or an aqueous solution comprising a water-miscible organic solvent, for example a C ⁇ -C 4 - alkanol such as methanol or ethanol; the preferred solvent is pure water.
- the aqueous solutions of the cationic or anionic polymer advantageously each have a slightly acidic pH value, for example a pH from about 2 to about 5 and preferably from about 2.5 to about 4.5.
- the concentration of the dip solutions may vary within wide limits depending, for example, on the particular ionic polymer involved. However, it is generally preferred to formulate relatively dilute solutions of the ionic polymers.
- a preferred anionic or cationic polymer concentration is from about 0.0001 to about 0.25 weight percent, more preferably from 0.0005 to 0.15 weight percent and in particular from 0.001 to 0.1 percent by weight, relative to the total weight of the solution.
- a suitable rinsing solution is preferably an aqueous solution, in particular an aqueous solution buffered at a pH of about 2 to about 7, more preferably from 2 to 5 and even more preferably from 2.5 to 4.5.
- Partial drying or removal of excess rinsing solution from the surface between solution applications may be accomplished by a number of means known in the art. While the bulk material may be partially dried by merely allowing the lens to remain in an air atmosphere for a certain period of time, it is preferable to accelerate the drying by application of a mild stream of air to the surface. The flow rate may be adjusted as a function of the strength of the material being dried and the mechanical fixturing of the material. It should be noted that there is no requirement to completely dry the bulk material.
- the "partial drying” step refers to a removal of droplets of solution which cling to the lens surface, rather than a desiccation of the lens. Thus, it is preferred to dry only to the extent that any water or solution film on the surface is removed.
- Hydrophilic ethylenically unsaturated macromonomers for graft polymerization from the bulk material surface according to step (d) of the process of the present invention are known, for example, from WO 99/57581.
- a suitable macromonomer is, for example of formula
- R.32 wherein R3 2 is hydrogen, Ci-Ce-alkyl or a radical -COOR';
- R, R' and R 32 ' are each independently of the other hydrogen or d-C 6 -alkyl
- A is a direct bond or is a radical of formula
- a and R 32 together with the adjacent double bond, are a radical of formula
- a 1 is -O-C 2 -Ci 2 -alkylene which is unsubstituted or substituted by hydroxy, or is -O-C 2 -C 12 -alkylene-NH-C(O)- or -O-C 2 -Ci 2 -alkylene-O-C(O)-NH-R 33 -NH-C(O)- or -NH-(Alk*)-C(O)-, wherein (Alk * ) is d-C 6 -alkylene and R 33 is linear or branched C ⁇ -C 18 - alkylene or unsubstituted or C ⁇ -C 4 -alkyl- or d-C 4 -alkoxy-substituted C 6 -C 10 -arylene, C 7 -Ci 8 - aralkylene, C ⁇ -Cio-arylene-d-C ⁇ -alkylene-Ce-do-arylene, C 3 -C 8 -
- (alk * ) is C 2 -C 12 -alkylene; and (oligomer) denotes
- (alk) is C 2 -C 12 -alkylene
- Q is a monovalent group that is suitable to act as a polymerization chain-reaction terminator
- p and q are each independently of another an integer from 0 to 350, wherein the total of
- (p+q) is an integer from 2 to 350, and B and B 1 are each independently of the other a 1 ,2-ethylene radical derivable from a copolymerizable vinyl monomer by replacing the vinylic double bond by a single bond, at least one of the radicals B and B' being substituted by a hydrophilic substituent; or
- R ⁇ 9 is hydrogen or unsubstituted or hydroxy-substituted d-C 12 -alkyl, u is an integer from 2 to 250 and Q' is a radical of a polymerization initiator; or (iii) the radical of formula
- V _ — CH 2 — rjj-CH- CH -XH (8b 1 ), O
- R 19 wherein R 19 , X and u are as defined above, or (iv) the radical of an oligomer of formula
- R 2 o and R 2 o' are each independently d-C 4 -alkyl,
- An " is an anion, v is an integer from 2 to 250, and Q" is a monovalent group that is suitable to act as a polymerization chain-reaction terminator; or
- A is not a direct bond if (oligomer) is a radical of formula (8a);
- A is a radical of formula (7a), (7b) or (7d) or A and R 32 , together with the adjacent double bond, are a radical of formula (7f) if (oligomer) is a radical of formula (8b), (8c), (8d) or (8e) or is the radical of an oligosaccharide;
- A is a direct bond if (oligomer) is a radical of formula (8b 1 );
- A is a radical of formula (7c) or (7e) if (oligomer) is a radical of formula (8d').
- R' is preferably hydrogen or d-C -alkyl, more preferably hydrogen or d-C 2 -alkyl and particularly preferably hydrogen.
- R 32 is preferably hydrogen, methyl or carboxyl, and particularly preferably hydrogen.
- R is preferably hydrogen or methyl.
- X is preferably a bivalent group -O- or -NH-. X is particularly preferably the group -NH- if
- (oligomer) is a radical of formula (8a); (8c) or (8d), and is particularly preferably the group
- (oligomer) is a radical of formula (8b) or (8e) or is the radical of an oligosaccharide.
- X' is preferably -O- or -NH- and more preferably -NH-.
- Xi is preferably -O- or -NH-.
- the radical R33 has a symmetrical or, preferably, an asymmetrical structure.
- R 3 s is preferably linear or branched C 6 -C 10 alkylene; cyclohexylene-methylene or cyclohexylene- methylene-cyclohexylene each unsubstituted or substituted in the cyclohexyl moiety by from 1 to 3 methyl groups; or phenylene or phenylene-methylene-phenylene each unsubstituted or substituted in the phenyl moiety by methyl.
- the bivalent radical R ⁇ is derived preferably from a diisocyanate and most preferably from a diisocyanate selected from the group isophorone diisocyanate (IPDI), toluylene-2,4-diisocyanate (TDI), 4,4'- methylenebis(cyclohexyl isocyanate), 1 ,6-diisocyanato-2,2,4-trimethyl-n-hexane (TMDI), methylenebis(phenyl isocyanate), methylenebis(cyclohexyl-4-isocyanate) and hexamethylene diisocyanate (HMDI).
- IPDI isophorone diisocyanate
- TDI toluylene-2,4-diisocyanate
- TMDI 4,4'- methylenebis(cyclohexyl isocyanate), 1 ,6-diisocyanato-2,2,4-trimethyl-n-hexane
- A1 are unsubstituted or hydroxy-substituted -O-C 2 -C 8 -alkylene or a radical -O-C 2 -C 6 -alkylene-NH-C(O)- and particularly -O-(CH 2 ) 2 . 4 -, -O-CH 2 -CH(OH)-CH 2 - or a radical -O-(CH 2 ) 2 - -NH-C(O)-.
- a particularly preferred meaning of A is the radical -O-(CH 2 ) 2 -NH-C(O)-.
- a 2 is preferably d-C 6 -alkylene, phenylene or benzylene, more preferably d-C 4 -alkylene and even more preferably d-C 2 -alkylene.
- n is an integer of 0 or preferably 1.
- m is preferably an integer of 1.
- R 32 ' is preferably hydrogen or methyl and particularly preferably hydrogen.
- (oligomer) is a radical of formula (8a), (8b), (8c), (8d) or (8e) or is the radical of an oligosaccharide
- (oligomer) is a radical of formula (8a), (8b), (8c), (8d) or (8e) or is the radical of an oligosaccharide
- a preferred group of hydrophilic macromonomers according to the invention comprises compounds of the above formula (6), wherein R is hydrogen or methyl, R 32 is hydrogen, methyl or carboxyl, R 32 ' is hydrogen, A is a radical of the formula (7a) or (7b) and (oligomer) is a radical of formula (6a), (8b), (8c), (8d) or (8e) or is the radical of an oligosaccharide.
- An even more preferred group of hydrophilic macromonomers comprises compounds of the above formula (4), wherein R is hydrogen or methyl, R 32 and R 32 ' are each hydrogen, A is a radical of the formula (7a) and (oligomer) is a radical of formula (8a).
- a further group of preferred macromonomers comprises compounds of formula (6), wherein A is a radical of formula (7e) above and (oligomer) is a radical of formula (8a).
- (Alk * ) is preferably methylene, ethylene or 1 ,1-dimethyl-methylene, in particular a radical -CH 2 - or -C(CH 3 ) 2 -.
- alk and (alk * ) are each independently preferably C 2 -C 8 -alkylene, more preferably C 2 -C 6 - alkylene, even more preferably C 2 -C 4 -alkylene and particularly preferably 1 ,2-ethylene.
- the alkylene radicals (alk) and (alk * ) may be branched or preferably linear alkylene radicals.
- Q is for example hydrogen.
- the total of (p+q) is preferably an integer from 2 to 150, more preferably from 5 to 100, even more preferably from 5 to 75 and particularly preferably from 10 to 50.
- q is 0 and p is an integer from 2 to 250, preferably from 2 to 150, more preferably from 5 to 100, even more preferably from 5 to 75 and particularly preferably from 10 to 50.
- Suitable hydrophilic substituents of the radicals B or B' are those described in WO 99/57581 on pages 16 to 24.
- a group of preferred non-ionic substituents of B or B' comprises d-C 2 -alkyl, which is unsubstituted or substituted by -OH or -NR 23 R 23 ', wherein R 23 and R 23 ' are each independently of the other hydrogen or d-C 2 -alkyl; a radical -COOY wherein Y is C 1 -C 4 - alkyl; C 2 -C 4 -alkyl which is substituted by -OH, -NR 23 R 23 ' wherein R 23 and R 23 ' are each independently of another hydrogen or d-di-alkyl, or Y is a radical -C 2 -C 4 -alkylene-NH-C(O)- O-G wherein -O-G is the radical of a saccharide; a radical -C(O)-NY 1 Y 2 , wherein Y, and Y 2 are each independently of the other hydrogen or C ⁇ -C 6 -alkyl which is
- a group of more preferred non-ionic substituents of B or B' comprises a radical -COOY, wherein Y is d-C 2 -alkyl, C 2 -C 3 -alkyl, which is substituted by hydroxy, amino or N,N-di-d-C 2 - alkylamino, or is a radical -C 2 -C 4 -alkylene-NH-C(O)-O-G wherein -O-G is the radical of trehalose; a radical -CO-NY 1 Y 2 , wherein Yi and Y 2 are each independently of the other hydrogen or C ⁇ -C 4 -alkyl which is unsubstituted or substituted by hydroxy, or Yi and Y 2 together with the adjacent N-atom form a N-d-C 2 -alkylpiperazino or morpholino ring; or a heterocyclic radical selected from the group consisting of N-pyrrolidonyl, 2- or 4-pyridinyl,
- a particularly preferred group of non-ionic substituents of B or B' comprises the radicals
- Particularly preferred anionic substituents of B or B' are -COOH, -SO 3 H, o-, m- or p- sulfophenyl, o-, m- or p-sulfomethylphenyl or a radical -CONY 5 Y ⁇ wherein Y 5 is C 2 -C 4 -alkyl substituted by sulfo, and Y 6 is hydrogen.
- a preferred cationic substituent of B or B' is a radical -C(O)OY 7 wherein Y 7 is C 2 -C 4 -alkyl, which is substituted by -N(d-C 2 -alkyl) 3 + An " and is further substituted by hydroxy, and An " is an anion, for example the radical -C(O)O-CH 2 -CH(OH)-CH 2 -N(CH 3 ) 3 + An ' .
- a preferred group of zwitter-ionic substituents -R 24 -Zw corresponds to the formula
- (alk 1 ) is preferably C 2 -C 8 -alkylene, more preferably C 2 -C 6 -alkylene and most preferably C 2 - d-alkylene.
- (alk") is preferably C 2 -C ⁇ 2 -alkylene, more preferably C 2 -C 6 -alkylene and particularly preferably C 2 -C 3 -alkylene which is in each case unsubstituted or substituted by hydroxy or by a radical -OY 8 .
- (alk'”) is preferably C 2 -C 4 -alkylene and more preferably C 2 -C 3 - alkylene.
- R 3 is hydrogen or d-C 4 -alkyl, more preferably methyl or ethyl and particularly preferably methyl.
- a preferred zwitterionic substituent of B or B' is of formula
- R 25 is hydrogen or d-C 4 -alkyl, preferably hydrogen or methyl
- R 26 is a hydrophilic substituent, wherein the above given meanings and preferences apply
- R 27 is d-C 4 -alkyl, phenyl or a radical -C(O)OY 9 , wherein Y 9 is hydrogen or unsubstituted or hydroxy- substituted C C 4 -alkyl
- R 28 is a radical -C(O)Y 9 ' or -CH 2 -C(O)OY 9 ' wherein Y 9 ' independently has the meaning of Y 9 .
- R 27 is preferably CrC 2 -alkyl, phenyl or a group -C(O)OY 9 .
- R 28 is preferably a group - C(O)OY 9 ' or -CH 2 -C(O)OY 9 ' wherein Y 9 and Y 9 ' are each independently of the other hydrogen, C ⁇ -C 2 -alkyl or hydroxy-C ⁇ -C 2 -alkyl.
- Particularly preferred -CHR 27 -CHR 28 - units according to the invention are those wherein R 27 is methyl or a group -C(O)OY 9 and R 28 is a group -C(O)OY 9 ' or -CH 2 -C(O)OY 9 ' wherein Y 9 and Y ' are each hydrogen, C ⁇ -C 2 -alkyl or hydroxy-d-C 2 -alkyl.
- B' independently may have one of the meanings given above for B.
- radical -(alk)-S-[B] p -[B'] q -Q preferably denotes a radical of formula even more preferably of the formula
- R 25 , R 26 , Q, p and q the above-given meanings and preferences apply, for R 25 ' independently the meanings and preferences given before for R 25 apply, and for R 26 ' independently the meanings and preferences given before for R 26 apply.
- a preferred group of suitable hydrophilic macromonomers for use in step (d) of the invention comprises compounds of formula
- R is hydrogen or methyl
- a ⁇ is -O-(CH 2 ) 2 . 4 -, -O-CH 2 -CH(OH)-CH 2 - or a radical -O-(CH 2 ) 2 . 4 -NH-C(O)-
- X is -O- or -NH-
- (alk) is C 2 -C 4 -alkylene
- Q is a monovalent group that is suitable to act as a polymerization chain-reaction terminator
- p is an integer from 5 to 50
- R 25 and R 25 ' are each independently of the other hydrogen or methyl
- for R 26 and R 6 ' each independently the above given meanings and preferences apply.
- R wherein for R, R 2 s, R26, Q, (alk) and p the above-given meanings and preferences apply.
- a particularly preferred group of hydrophilic macromonomers are compounds of the above formula (4b) wherein R is hydrogen or methyl, (alk) is C 2 -C 4 -alkylene, R 25 is hydrogen or methyl, p is an integer of 5 to 50, Q is as defined before, and for R 28 the above given meanings and preferences apply; in particular R 26 of this embodiment is a radical
- (oligomer) is a radical (ii) of formula (6b)
- Q' in formula (6b) is for example d-C 12 -alkyl, phenyl or benzyl, preferably d-C 2 -alkyl or benzyl and in particular methyl.
- R 19 is preferably unsubstituted or hydroxy-substituted C ⁇ -C 4 -alkyl and in particular methyl, u is preferably an integer from 2 to 150, more preferably from 5 to 100, even more preferably from 5 to 75 and particularly preferably from 10 to 50.
- (oligomer) is a radical of formula (8b 1 ), the above given meanings and preferences apply for the variables R 19 and u contained therein.
- X in formula (8b') is preferably hydroxy or amino.
- R 20 and R 20 ' are each preferably ethyl or in particular methyl; v is preferably an integer from 2 to 150, more preferably from 5 to 100, even more preferably from 5 to 75 and particularly preferably from 10 to 50; Q" is for example hydrogen; and An " is as defined before.
- t is preferably an integer from 2 to 150, more preferably from 5 to 100, even more preferably from 5 to 75 and particularly preferably from 10 to 50.
- R 34 is preferably hydrogen or C ⁇ -C ⁇ 8 -alkyl, more preferably hydrogen or d-C 12 -alkyl, even more preferably hydrogen, methyl or ethyl, and particularly preferably hydrogen or methyl
- (alk " ) is preferably a C 2 -C 3 -alkylene radical
- z is preferably 0.
- r and s are each independently preferably an integer from 0 to 100 wherein the total of (r+s) is 5 to 100.
- r and s are each independently more preferably an integer from 0 to 50 wherein the total of (r+s) is 8 to 50.
- r is an integer from 8 to 50 and particularly 9 to 25, and s is 0.
- oligomer as the radical of an oligosaccharide (vii) may be, for example, a di- or polysaccharide including carbohydrate containing fragments from a biopolymer.
- examples are the radical of a cyclodextrin, trehalose, cellobiose, maltotriose, maltohexaose, chitohexaose or a starch, hyaluronic acid, deacetylated hyaluronic acid, chitosan, agarose, chitin 50, amylose, glucan, heparin, xylan, pectin, galactan, glycosaminoglycan, mucin, dextran, aminated dextran, cellulose, hydroxyalkylcellulose or carboxyalkylcellulose oligomer, each of which with a molecular weight average weight of, for example, up to 25,000 Da, preferably up to 10,000 Da.
- Formulae (8a), (8a 1 ) or (8e) are to be understood as a statistic description of the respective oligomeric radicals, that is to say, the orientation of the monomers and the sequence of the monomers (in case of copolymers) are not fixed in any way by said formulae.
- the arrangement of B and B' in formula (6a) or of the ethyleneoxide and propyleneoxide units in formula (6e) thus in each case may be random or blockwise.
- the weight average molecular weight of the hydrophilic macromonomer for use in step (d) depends principally on the desired properties and is for example from 300 to 25000 Da, preferably from 300 to 12,000 Da, more preferably from 300 to 8000 Da, even more preferably from 300 to 5000 Da, and particularly preferably from 500 to 4000 Da.
- the macromonomers of formula (6) may be prepared by methods known per se, as described in, for example, WO 99/57581.
- the macromonomers of formula (6) may be applied to the initiator-modified bulk material surface and polymerized there according to processes known per se.
- the bulk material is immersed in a solution of the macromonomer, or a layer of macromonomer is first of all deposited on the modified bulk material surface, for example, by dipping, spraying, spreading, knife coating, pouring, rolling, spin coating or vacuum vapor deposition.
- the polymerization of the macromonomer on the bulk material surface then may be initiated, for example, thermally by the action of heat or preferably by irradiation, particularly by UV radiation.
- Suitable light sources for the irradiation are known to the artisan and comprise for example mercury lamps, high-pressure mercury lamps, xenon lamps, carbon arc lamps or sunlight.
- the time period of irradiation may depend for example on the desired properties of the resulting composite material but is usually in the range of up to 30 minutes, preferably from 10 seconds to 10 minutes, and particularly preferably from 0.5 to 5 minutes. It is advantageous to carry out the irradiation in an atmosphere of inert gas.
- any non-covalently bonded polymers, oligomers or non- reacted macromonomers formed can be removed, for example by treatment with suitable solvents.
- the macromonomers may be grafted to the bulk material surface with formation of a coating having for example a so-called bottle brush-type structure (BBT) composed of tethered "hairy” chains.
- BBT structures in one embodiment comprise a long hydrophilic or hydrophobic backbone, which carries relatively densely packed comparatively short hydrophilic side chains (called primary bottle brushes).
- primary bottle brushes carries relatively densely packed comparatively short hydrophilic side chains
- secondary bottle brushes which are characterized in that the hydrophilic side chains themselves carry densely packed hydrophilic "secondary" side chains.
- Polymeric coatings of said primary and secondary BBT structures to a certain extent mimic highly water-retaining structures occurring in the human body, for example in cartilage or mucosal tissue.
- the coating thickness of the macromonomers depends principally on the desired properties. It can be, for example, from 0.001 to 1000 ⁇ m, preferably from 0.01 to 500 ⁇ m, more preferably from 0.01 to 100 ⁇ m, even more preferably from 0.05 to 50 ⁇ m, especially preferably from 0.1 to 5 ⁇ m and particularly preferably from 0.1 to 1 ⁇ m.
- Example A-1 Synthesis of a photoinitiator with a reactive amino group
- the filtrate is evaporated at 60 °C/200 mbar using a Rotavapor.
- the resulting yellow oil is then dissolved in 800 mL of CH 2 CI 2 .
- the organic phase is washed 1x with 400 mL of deionized water, 2x with 400 mL of acidic water (pH ⁇ 1) and finally with 400 mL of deionized water.
- the organic phase is dried over MgSO 4 , filtered and concentrated to constant weight by evaporating the CH 2 CI 2 under reduced pressure at a Rotavapor to give crude 4-(2-mesyloxyethoxy)phenyl-2-hydroxy-2- propyl-ketone.
- Example A-2 Synthesis of a photoinitiator with a reactive ester group
- EDAC ethyl dimethylaminopropylcarbodiimide
- Example B-1 Synthesis of polyacrylic acid with pendant photoinitiator groups
- PAA aqueous polyacrylic acid
- aqueous polyacrylic acid diluted with 500 ml of deionized water
- 1.9 g (0.01 Mol) of 1 -[3-(dimethylamino)propyl]-3- ethylcarbodiimide hydrochloride Sigma-Aldrich # 161462
- sulfo-NHS N-hydroxysulfosuccinimide sodium salt
- sulfo-NHS N-hydroxysulfosuccinimide sodium salt
- reaction mixture is adjusted to pH 9 by adding aqueous 1 N NaOH solution and stirred at RT overnight. Subsequently, the pH is adjusted to 7 by adding 1 N HCI.
- the product is purified by reverse osmosis, using Millipore cartridge with a cut-off at 1000 Da and then freeze-dried yielding 6.5g of solid product.
- Example B-2 (Synthesis of polyallylamine with pendant photoinitiator groups) To a solution of 447 mg (1 mmol) of the photoinitiator prepared by the addition reaction of isophorone diisocyanate and 4-(2-hydroxyethoxy)phenyl 2-hydroxy-propyl ketone (Darocure® 2959) (synthesis see EP 0 632 329) in 5 mL of acetonitrile, is added 41.75 g of a 4.8% aqueous solution of polyallylamine (96.2% amino, 3.8% hydrochloride). After observing a slight opacity, additional 20 mL of acetonitrile are added to the reaction mixture.
- Example B-3 (Synthesis of hyaluronic acid with pendant photoinitiator groups) To a stirred solution of 4 g of hyaluronic acid (Denki Kagaku Kogyo, M practic ⁇ 1.2x10 6 Da) dissolved in 800 mL of deionized water are subsequently added aqueous solutions of 1 -[3- (dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (Sigma-Aldrich # 161462, 0.19 g in 5 mL of water) and of N-hydroxysulfosuccinimide sodium salt ("sulfo-NHS", Fluka # 56485, 0.14 g in 5 mL water).
- Example B-4 (Synthesis of polvethylenimine with pendant photoinitiator groups)
- a 100 mL three-necked round botton flask equipped with thermometer, stirrer and condenser is charged with 5.508 g of a 50% aqueous solution of polyethylenimine (Fluka # 03880) and 50 ml of deionized water.
- To the stirred solution is slowly added 0.8 g (0,003 mol) of the photoinitiator with an active ester group (Example A-2, formula 12).
- the reaction mixture is stirred at 80 °C for 1 h.
- Example C-1 (Preparation of surface functionalized lenses by deposition of a PAA polymer carrying pendant photoinitiator groups) a.) An approx. 0.001 M aqueous solution of a polyacrylic acid with pendant photoinitiator groups is prepared by dissolving 0.058 g of the polyacrylic acid with pendant photoinitiator groups from Example B-1 in 200 mL of ultra-pure water in a beaker, adjusting the pH of the solution to 2.5 by adding 1 N HCI and filtering the solution through qualitative filter paper, b.) An approx.
- PAH polyallylamine hydrochloride
- Aldrich # 28.322-3 solution is prepared by adding 0.093 g PAH (solid) into a small beaker; dissolving in ultra-pure (UP) water and transferring into a bigger beaker with a final volume of 1000 mL aqueous solution. Adding 1 N HCI adjusts the pH to 4.5. The solution is then filtered through filter paper. c.) Swollen non-coated Lotrafilcon A lenses (polysiloxane/perfluoroalkylpolyether copolymer) in iso-propanol are individually immersed into the solution a.) for 5 minutes.
- Lotrafilcon A lenses polysiloxane/perfluoroalkylpolyether copolymer
- the lenses are withdrawn from the solution a.) and directly immersed into the solution b.) for additional 5 min.
- the lenses are then withdrawn from the solution b.) and directly immersed again into the solution a. for additional 5 min.) No water rinse is done between these three dips. After that, the lenses are released into UP water and stored at 4 °C for further use.
- Example C-2 (Preparation of surface functionalized lenses bv deposition of polymers carrying pendant photoinitiator groups) a.) An approx.0.001 M aqueous solution of a polyacrylic acid with pendant photoinitiator groups is prepared by adding 0.058 g of the polyacrylic acid with pendant photoinitiator groups from Example B-1 to 200 mL of ultra-pure water in a beaker. Subsequently, the pH of the solution is adjusted to 2.5 by adding 1 N HCI and the solution is filtered using qualitative filter paper.
- a 0.001 M aqueous solution of a polyallylamine with pendant photoinitiator groups is prepared by adding 0.019 g of the polyallylamine with pendant photoinitiator groups from Example B-2 into a small beaker; dissolving in ultra-pure (UP) water and transferring into a bigger beaker with a final volume of 200 ml aqueous solution.
- the pH is then adjusted to 4.5 as measured by pH meter.
- the solution is then filtered using qualitative filter paper, c.) Swollen non-coated Lotrafilcon
- a lenses in iso-propanol are individually immersed into the solution a.) for 5 minutes.
- the lenses are withdrawn from the solution a.) and directly immersed into the solution b.) for additional 5 minutes. No water rinse is done between these two dips. After this, the lenses are released into UP water and stored at 4 °C for further use.
- Example C-3 (Preparation of surface functionalized lenses bv deposition of polymers carrying pendant photoinitiator groups) a.) An approx. 0.001 M aqueous solution of a polyacrylic acid with pendant photoinitiator groups is prepared by adding 0.289 g of the polyacrylic acid with pendant photoinitiator groups from example B-1 to 1000 mL of ultra-pure water in a beaker. Then the pH of the solution is adjusted to 2.5 by adding 1 N HCI and the solution is filtered using qualitative filter paper b.) An approx.
- 0.001 M aqueous solution of a polyallylamine with pendant photoinitiator groups is prepared by adding 0.1 g of the polyallylamine with pendant photoinitiator groups from example B-2 into a small beaker; dissolving in ultra-pure (UP) water and transferring into a bigger beaker with a final volume of 1000 mL aqueous solution.
- the pH is then adjusted to 4.5 by adding 1 N HCI as measured by pH meter.
- the solution is then filtered through filter paper.
- Swollen non-coated Lotrafilcon A lenses in iso-propanol (IPA) are individually immersed into the solution a.) for 5 minutes.
- the lenses are withdrawn from the solution a.) and directly immersed into the solution b.) for additional 5 minutes.
- the lenses are than withdrawn from the solution b.) and directly immersed again into the solution a.) for additional 5 min.
- the lenses are withdrawn from the solution a.) and directly immersed into the solution b.) for additional 5 min. No water rinse is done between these four dips. After that, the lenses are released into UP water and stored at 4 C C for further use.
- Example C-4 (Preparation of surface functionalized lenses bv deposition of polymers carrying pendant photoinitiator groups) a.) An approx. 0.01 % aqueous solution of a hyaluronic acid with pendant photoinitiator groups is prepared by adding 0.1 g of the hyaluronic acid with pendant photoinitiator groups from Example B-3 to 200 ml of water in a beaker. After complete dissolution (overnight), the pH of the solution is adjusted to 4.5 by adding 1 N HCI and the solution is filtered trough a filter paper. b.) 100 mL of an approx.
- 0.01 % solution of polyethyleneimine with pendant photoinitiator groups is prepared by adding 0.01 g of the polyethyleneimine with pendant photoinitiator groups from Example B-4 into 200 mL of ultra-pure water. The pH is then adjusted to 3.5 by adding 1N HCI as measured by pH meter. The solution is then filtered using qualitative filter paper. c.) Swollen non-coated Lotrafilcon A lenses in iso-propanol (IPA) are individually immersed into the solution a.) for 10 min. The lenses are withdrawn from the solution a.) rinsed with ultra-pure water and immersed into the solution b.) for additional 10 min. After this, the lenses are released into ultra-pure water and stored at 4 °C for further use.
- IPA iso-propanol
- cysteamine hydrochloride (Fluka 30080) are added to the cooled solution under nitrogen atmosphere.
- the clear and slightly yellowish solution is acidified with a few drops of hydrochloric acid (32%) to pH 3.
- this solution is cooled to 5 °C and slowly introduced onto an flow-through-reactor' consisting of an 2000 mL three-necked round-bottom flask, reflux condenser, thermometer, magnetic stirrer and a 30 cm Liebig-condenser, filled with glass wool.
- the Liebig condenser is heated to 70 °C, the flask is heated to 60 °C.
- the cooled solution is slowly dropped through the Liebig-condenser into the stirred flask using the Chromatography Pump B ⁇ chi 681. This took 1 h 40 min. During this time the temperature in the flask is kept between 58-65 °C. After the completed addition, the solution is stirred for 2 h at 60 °C.
- a 1000 mL round bottom flask is charged with a solution of 99.5 g (1.46 mol) acrylamide, 1.27 g (4.68 mmol) ⁇ , ⁇ '-azodiisobutyramidine dihydrochloride and 15.9 g (0.14 mol) cysteamine hydrochloride in 300 mL of water.
- the clear and slightly yellowish solution is acidified with a few drops of hydrochloric acid (32%) to pH 3.
- the stirred acidic solution is evacuated to 50 mbar and filled with argon. This is repeated three times.
- this solution is poured into a 500 mL dropping funnel which is put onto an 'flow-through-reactor' consisting of an 1000 mL three-necked round-bottom flask, reflux condenser, thermometer, magnetic stirrer and a 30 cm Liebig-condenser, which is filled with glass wool.
- the whole apparatus is constantly purged with Argon.
- the dropping funnel is put onto the Liebig condenser, which is heated to 65 °C.
- the flask is heated to 60 °C.
- the solution is slowly dropped through the Liebig-condenser into the stirred flask. This takes 2 h. During this time the temperature in the flask is kept between 58- 65 °C.
- the solution is stirred for 2 h at 60 °C.
- Sodium hydroxide solution (30%) is added to the clear and slightly yellowish solution until pH 10 is reached.
- the product is purified through reverse osmosis, using Millipore cartridge with a cut-off at 1000 Da and then freeze-dried for 18 h. A bright-white solid product is obtained in 77 % yield.
- Example D-3 (Synthesis of an N.N-Dimethylacrylamide telomer of Mn-1850) A 2000 mL round bottom flask is charged with a solution of 198.2 g (2 mol) Acrylamide, 2.72 g (10 mmol) ⁇ , ⁇ '-azodiisobutyramidine dihydrochloride and 24.8 g (0.22 mol) Cysteamine hydrochloride in 600 mL of water.
- the clear and slightly yellowish solution is acidified with a few drops of hydrochloric acid (32%) to pH3.
- the stirred acidic solution is evacuated to 50 mbar and filled with argon. This is repeated three times. With a constant stream of Argon, this solution is poured into a 1000 mL dropping funnel which is put onto an 'flow-through-reactor' consisting of an 1000 mL three-necked round-bottom flask, reflux condenser, thermometer, magnetic stirrer and a 30 cm Liebig-condenser, which is filled with glass wool.
- the whole apparatus is constantly purged with Argon.
- the dropping funnel is put onto the Liebig condenser, which is heated to 60 °C.
- the flask is also heated to 60 °C.
- the solution is slowly dropped through the Liebig- condenser into the stirred flask. This takes 2.5 h. During this time the temperature in the flask is kept between 58-65 °C. After the completed addition, the solution is stirred for 2 h at 60 °C.
- Sodium hydroxide solution (30%) is added to the clear and slightly yellowish solution until pH 10 is reached.
- the product is purified through reverse osmosis, using Millipore cartridge with a cut-off at 1000 Da and freeze-dried. A bright-white solid product is obtained in 75 % yield.
- the concentration of amino groups is determined via functional group titration (0.54mEq/g). M n -1850 Da.
- IEM isocyanatoethyl methacrylate
- IEM isocyanatoethyl methacrylate
- IEM isocyanatoethyl methacrylate
- IEM isocyanatoethyl methacrylate
- IEM isocyanatoethyl methacrylate
- Example F-1 Photografting of lEM-functionalized acrylamide telomers onto a contact lens surface
- 1 ml of the lEM-functionalized acrylamide telomer solution from Example E-1 is introduced into a small Petri dish of a volume of about 2 mL.
- the lens from Example C-1 carrying covalently linked photoinitiator molecules on its surface, is then placed into this solution and an additional 0.5 mL of the degassed solution is added on the lens in order to cover the whole lens with the solution.
- the Petri dish with the lens in the solution is exposed to 3.34 mW/cm 2 ultraviolet light for a period of 2 min.
- the modified lens is then withdrawn from the solution, washed twice in distilled water, continuously extracted in ultra pure water for 16 h and analyzed by AFM, ATR-FTIR and contact angle measurements.
- Water/air contact angles on the modified lens are 0° adv., 0° rec, 0° hysteresis.
- the contact angles of non-modified lens are 101° adv., 64° rec, 37° hysteresis.
- the lens held continuous water layer on the surface for over 1 min.
- Example F-2 Photografting of lEM-functionalized acrylamide telomers onto a contact lens surface
- Example C-1 Two lenses from Example C-1 are coated in accordance with Example F-1 , but instead of 2 min of exposition, 3 min exposition time is used for photografting.
- Water/air contact angles on the modified lenses are 33° adv., 26° rec, 7° hysteresis.
- Example F-3 Photografting of lEM-functionalized N.N-dimethylacrylamide telomers onto a contact lens surface
- 1 ml of the lEM-functionalized N,N-dimethylacrylamide telomer solution from Example E-2 is introduced into a small Petri dish of a volume of about 2 mL in a glove box.
- the lens from Example C-3, carrying covalently linked photoinitiator molecules on its surface, is then placed into this solution and an additional 0.5 mL of the degassed solution is added on the lens in order to cover the whole lens with the solution.
- the Petri dish with the lens in the solution is exposed to 14.5 mW/cm z ultraviolet light for a period of 1.5 min.
- the lens is then turned over and the exposition is repeated by applying 14.5 mW/cm 2 U V light for an additional 1.5 min.
- the modified lens is then withdrawn from the solution, washed twice in distilled water, continuously extracted in ultra pure water for 16 h and analyzed by AFM, ATR-FTIR and contact angle measurements.
- Water/air contact angles on the modified lens are 11° adv., 3° rec, 8° hysteresis.
- the contact angles of non-modified lens are 101° adv., 64° rec, 37° hysteresis.
- Example F-4 Photografting of lEM-functionalized acrylamide telomers onto a contact lens surface under ambient conditions
- a laminar flow hood 1 mL of the lEM-functionalized acrylamide telomer solution from Example E-4 is introduced into a small Petri dish of a volume of about 2 mL.
- the lens from Example C-1 carrying covalently linked photoinitiator molecules on its surface, is then placed into this solution and an additional 0.5 mL of the degassed solution is added on the lens in order to cover the whole lens with the solution.
- the Petri dish with the lens in the solution is exposed to ultraviolet light 3.34 mW/cm 2 (MACAM-UV-Lamp) for a period of 2 min.
- the modified lens is then withdrawn from the solution, washed twice in distilled water, continuously extracted in ultra pure water for 16 h and analyzed by AFM, ATR-FTIR and contact angle measurements.
- the thickness of the coating is in the range of 100-200 nm as determined by AFM.
- Water/air contact angles on the modified lens are 0° adv., 0° rec, 0° hysteresis.
- the contact angles of non-modified lens are 101° adv., 64° rec, 37° hysteresis.
- the lens held continuous water layer on the surface for over 1 min.
- Example F-5 Photografting of I EM-f unctionalized acrylamide telomers onto a contact lens surface
- Example C-1 Two lenses from Example C-1 are coated in accordance with Example F-4, but instead of 2 min of exposition, 1.5 min exposition time is used for photografting with UV energy 2.4 mW/cm 2 .
- Example F-6 Photografting of lEM-functionalized acrylamide telomers onto a contact lens surface
- the modified lens is then withdrawn from the solution, washed twice in distilled water, continuously extracted in ultra pure water for 16 h and analyzed by ATR-FTIR and contact angle measurements.
- Water/air contact angles on the modified lens are 33° adv., 10° rec, 23° hysteresis.
- the contact angles of non-modified lens are 101° adv., 64° rec, 37° hysteresis.
- Example F-7 Photografting of lEM-functionalized acrylamide telomers onto a contact lens surface
- the modified lens is then withdrawn from the solution, washed twice in distilled water, continuously extracted in ultra pure water for 16 h and analyzed by ATR-FTIR and contact angle measurements.
- Water/air contact angles on the modified lens are 0° adv., 0° rec, 0° hysteresis.
- the contact angles of non-modified lens are 101° adv., 64° rec, 37° hysteresis.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Materials For Medical Uses (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Eyeglasses (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE60223589T DE60223589T2 (de) | 2001-11-13 | 2002-11-12 | Verfahren zum modifizieren der oberfläche von biomedizinischen gegenständen |
| EP02779553A EP1451615B1 (en) | 2001-11-13 | 2002-11-12 | Method for modifying the surface of biomedical articles |
| CA002467092A CA2467092A1 (en) | 2001-11-13 | 2002-11-12 | Method for modifying the surface of biomedical articles |
| JP2003544501A JP2005512115A (ja) | 2001-11-13 | 2002-11-12 | 生医学的物品の表面を修飾する方法 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP01811088.2 | 2001-11-13 | ||
| EP01811088 | 2001-11-13 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2003042724A1 true WO2003042724A1 (en) | 2003-05-22 |
Family
ID=8184238
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2002/012658 Ceased WO2003042724A1 (en) | 2001-11-13 | 2002-11-12 | Method for modifying the surface of biomedical articles |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US6878399B2 (enExample) |
| EP (1) | EP1451615B1 (enExample) |
| JP (1) | JP2005512115A (enExample) |
| AT (1) | ATE378612T1 (enExample) |
| CA (1) | CA2467092A1 (enExample) |
| DE (1) | DE60223589T2 (enExample) |
| TW (1) | TW200407367A (enExample) |
| WO (1) | WO2003042724A1 (enExample) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007537005A (ja) * | 2004-05-12 | 2007-12-20 | サーモディクス,インコーポレイティド | 医療用具のための天然生分解性多糖コーティング |
| US8124188B2 (en) | 2006-08-18 | 2012-02-28 | Commonwealth Scientific And Industrial Research Organisation | Polymeric coatings and methods for forming them |
| EP2679254A1 (en) * | 2006-07-25 | 2014-01-01 | Coloplast A/S | Photo-curing of thermoplastic coatings |
| WO2014095690A1 (en) | 2012-12-17 | 2014-06-26 | Novartis Ag | Method for making improved uv-absorbing ophthalmic lenses |
| US8795782B2 (en) | 2006-08-18 | 2014-08-05 | Commonwealth Scientific And Industrial Research Organisation | Polymeric coatings and methods for forming them |
| EP3135314A1 (en) * | 2015-08-27 | 2017-03-01 | Sumitomo Rubber Industries, Ltd. | Surface-modified metal and method for modifying metal surface |
| WO2018092038A1 (en) | 2016-11-18 | 2018-05-24 | Novartis Ag | Method for making ophthalmic lenses |
Families Citing this family (46)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1245272A1 (en) * | 2001-03-30 | 2002-10-02 | Ucb S.A. | Substrates, preparation and use |
| US20060057209A1 (en) * | 2004-09-16 | 2006-03-16 | Predicant Biosciences, Inc. | Methods, compositions and devices, including microfluidic devices, comprising coated hydrophobic surfaces |
| EP1948750A1 (en) * | 2005-11-16 | 2008-07-30 | FUJIFILM Corporation | Surface-hydrophilic structure |
| JP5094081B2 (ja) * | 2005-11-17 | 2012-12-12 | 富士フイルム株式会社 | 親水性部材及びその製造方法 |
| JP2007252699A (ja) * | 2006-03-24 | 2007-10-04 | Mcrotech Kk | ゲル組成物、それを用いた移植用材料及びそれらの製造方法 |
| US8012591B2 (en) * | 2006-09-21 | 2011-09-06 | Fujifilm Corporation | Hydrophilic composition and hydrophilic member |
| JP2008238711A (ja) * | 2007-03-28 | 2008-10-09 | Fujifilm Corp | 親水性部材及び下塗り組成物 |
| US20090029179A1 (en) * | 2007-05-14 | 2009-01-29 | Fujifilm Corporation | Two-liquid composition, hydrophilic composition and hydrophilic member |
| SG188917A1 (en) * | 2008-03-18 | 2013-04-30 | Novartis Ag | Coating process for ophthalmic lenses |
| JP2009227809A (ja) * | 2008-03-21 | 2009-10-08 | Fujifilm Corp | 親水性組成物及び親水性処理部材 |
| JP5449803B2 (ja) * | 2009-03-06 | 2014-03-19 | 日本ゴア株式会社 | フッ素系弾性チューブ |
| US8409599B2 (en) * | 2009-11-04 | 2013-04-02 | Novartis Ag | Silicone hydrogel lens with a grafted hydrophilic coating |
| TWI483996B (zh) * | 2009-12-08 | 2015-05-11 | Novartis Ag | 具有共價貼合塗層之聚矽氧水凝膠鏡片 |
| EP4657144A2 (en) | 2010-07-30 | 2025-12-03 | Alcon Inc. | Silicone hydrogel lenses with water-rich surfaces |
| WO2012109239A1 (en) * | 2011-02-07 | 2012-08-16 | The Trustees Of The University Of Pennsylvania | Multifunctional chitosan grafted surfaces and uses thereof |
| US9005700B2 (en) | 2011-10-12 | 2015-04-14 | Novartis Ag | Method for making UV-absorbing ophthalmic lenses |
| HUE027313T2 (en) | 2011-11-15 | 2016-10-28 | Novartis Ag | Silicone hydrogel lens with cross-linked hydrophilic coating |
| TWI544843B (zh) * | 2011-11-22 | 2016-08-01 | 松下知識產權經營股份有限公司 | 可撓性貼金屬基材、可撓性貼金屬基材之製造方法、印刷配線板、多層可撓印刷配線板、及軟硬複合印刷配線板 |
| US9422447B2 (en) | 2012-06-14 | 2016-08-23 | Novartis Ag | Azetidinium-containing copolymers and uses thereof |
| US9605175B2 (en) | 2012-10-29 | 2017-03-28 | Ariste Medical, Llc | Polymer coating compositions and coated products |
| US9575332B2 (en) * | 2012-12-11 | 2017-02-21 | Novartis Ag | Method for applying a coating onto a silicone hydrogel lens |
| US11052177B2 (en) | 2013-09-06 | 2021-07-06 | The Trustees Of The University Of Pennsylvania | Antimicrobial polymer layers |
| WO2015054484A1 (en) * | 2013-10-09 | 2015-04-16 | The University Of Akron | Integrated zwitterionic conjugated polymers for bioelectronics, biosensing, regenerative medicine, and energy applications |
| US9708087B2 (en) | 2013-12-17 | 2017-07-18 | Novartis Ag | Silicone hydrogel lens with a crosslinked hydrophilic coating |
| AU2015249769A1 (en) * | 2014-04-22 | 2016-11-10 | Ariste Medical, Llc. | Methods and processes for application of drug delivery polymeric coatings |
| CN106661224B (zh) | 2014-08-26 | 2019-10-11 | 诺华股份有限公司 | 聚(噁唑啉-共-乙烯亚胺)-表氯醇共聚物及其用途 |
| WO2016032926A1 (en) | 2014-08-26 | 2016-03-03 | Novartis Ag | Method for applying stable coating on silicone hydrogel contact lenses |
| EP3268804B1 (en) | 2015-03-11 | 2020-11-04 | University of Florida Research Foundation, Inc. | Mesh size control of lubrication in gemini hydrogels |
| JP6592189B2 (ja) | 2015-09-04 | 2019-10-16 | ノバルティス アーゲー | その上に耐久性潤滑性コーティングを有するコンタクトレンズを製造するための方法 |
| MY186090A (en) | 2015-12-03 | 2021-06-21 | Alcon Inc | Contact lens packaging solutions |
| MY184638A (en) | 2015-12-15 | 2021-04-13 | Alcon Inc | Method for applying stable coating on silicone hydrogel contact lenses |
| CN108367517A (zh) | 2015-12-15 | 2018-08-03 | 诺华股份有限公司 | 用于生产具有润滑表面的接触镜片的方法 |
| US10718960B2 (en) | 2016-10-31 | 2020-07-21 | Alcon Inc. | Method for producing contact lenses with wearing comfort |
| US10406972B2 (en) | 2017-02-24 | 2019-09-10 | Tesla, Inc. | Vehicle technologies for automated turn signaling |
| CA3061585C (en) | 2017-06-07 | 2021-11-16 | Alcon Inc. | Silicone hydrogel contact lenses |
| CN110621483B (zh) | 2017-06-07 | 2021-10-29 | 爱尔康公司 | 硅氧烷水凝胶隐形眼镜 |
| US10809181B2 (en) | 2017-08-24 | 2020-10-20 | Alcon Inc. | Method and apparatus for determining a coefficient of friction at a test site on a surface of a contact lens |
| EP3724698B1 (en) | 2017-12-13 | 2021-12-15 | Alcon Inc. | Method for producing mps-compatible water gradient contact lenses |
| DE102018127812B4 (de) | 2018-11-07 | 2020-06-18 | Fachhochschule Kiel | Kontaktlinse mit einer Oberflächenbeschichtung und Herstellungsverfahren |
| HUE069794T2 (hu) | 2019-11-04 | 2025-04-28 | Alcon Inc | Eljárás különbözõ puhaságú felületekkel rendelkezõ kontaktlencsék elõállítására |
| KR102747607B1 (ko) | 2019-12-16 | 2025-01-02 | 알콘 인코포레이티드 | 습윤성 실리콘 히드로겔 콘택트 렌즈 |
| EP4189469B1 (en) | 2020-07-28 | 2024-09-25 | Alcon Inc. | Contact lenses with softer lens surfaces |
| US20220372391A1 (en) | 2021-04-22 | 2022-11-24 | Alcon Inc. | Method for applying a coating onto a non-silicone hydrogel lens |
| WO2024038390A1 (en) | 2022-08-17 | 2024-02-22 | Alcon Inc. | A contact lens with a hydrogel coating thereon |
| WO2024161344A1 (en) | 2023-02-02 | 2024-08-08 | Alcon Inc. | Water gradient silicone hydrogel contact lenses |
| WO2024220971A1 (en) * | 2023-04-21 | 2024-10-24 | Azul 3D, Inc. | Optical lenses, optical components, and methods of manufacturing optical components |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1996020796A1 (en) * | 1994-12-30 | 1996-07-11 | Novartis Ag | Process for the functionalisation of surfaces |
| WO1999035520A1 (en) * | 1998-01-09 | 1999-07-15 | Novartis Ag | Coating of polymers |
| WO1999057581A1 (en) * | 1998-04-30 | 1999-11-11 | Novartis Ag | Organic articles |
| EP1095711A2 (en) * | 1999-10-27 | 2001-05-02 | Novartis AG | Process for coating a material surface |
| EP1095966A2 (en) * | 1999-10-27 | 2001-05-02 | Novartis AG | Process for the modification of a material surface |
| WO2001092924A1 (en) * | 2000-05-30 | 2001-12-06 | Novartis Ag | Coated articles |
| WO2002094331A1 (en) * | 2001-05-21 | 2002-11-28 | Novartis Ag | Bottle-brush type coatings with entangled hydrophilic polymer |
Family Cites Families (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS59500800A (ja) | 1982-05-14 | 1984-05-10 | アストラ・メデイテツク・アクチエボラ−グ | バイオコンパチブルな表面層を有する物品およびそのような表面層を有する物品の製造方法 |
| US5258041A (en) | 1982-09-29 | 1993-11-02 | Bio-Metric Systems, Inc. | Method of biomolecule attachment to hydrophobic surfaces |
| US4929685A (en) | 1986-06-07 | 1990-05-29 | Nippon Oil And Fats Co., Ltd. | Method for modifying the surface of polycarbonate resin |
| US5080924A (en) | 1989-04-24 | 1992-01-14 | Drexel University | Method of making biocompatible, surface modified materials |
| TW328535B (en) | 1993-07-02 | 1998-03-21 | Novartis Ag | Functional photoinitiators and their manufacture |
| TW307775B (en) | 1994-02-15 | 1997-06-11 | Novartis Erfind Verwalt Gmbh | Unsaturated carbohydrate derivatives, polymers thereof and their use |
| JP4375811B2 (ja) | 1994-12-30 | 2009-12-02 | ノバルティス アクチエンゲゼルシャフト | Nco末端を有するビニルテロマー |
| TW434456B (en) | 1994-12-30 | 2001-05-16 | Novartis Ag | A compound as functionalized photoinitiator, its production process, its corresponding oligomers or polymers and its application in coating a substrate |
| US6169127B1 (en) | 1996-08-30 | 2001-01-02 | Novartis Ag | Plasma-induced polymer coatings |
| AR009439A1 (es) | 1996-12-23 | 2000-04-12 | Novartis Ag | Un articulo que comprende un sustrato con un recubrimiento polimerico primario que porta grupos reactivos predominantemente en su superficie, unmetodo para preparar dicho articulo, un articulo que posee un recubrimiento de tipo hibrido y una lente de contacto |
| US6521358B1 (en) | 1997-03-04 | 2003-02-18 | Matsushita Electric Industrial Co., Ltd. | Lead frame for semiconductor device and method of producing same |
| US6451871B1 (en) | 1998-11-25 | 2002-09-17 | Novartis Ag | Methods of modifying surface characteristics |
| WO2001002032A1 (en) * | 1999-06-30 | 2001-01-11 | Novartis Ag | Ophthalmic molding |
| JP2001163932A (ja) * | 1999-10-27 | 2001-06-19 | Novartis Ag | 材料表面を改質する方法 |
| JP2001158813A (ja) * | 1999-10-27 | 2001-06-12 | Novartis Ag | 材料表面を被覆する方法 |
| US6589665B2 (en) * | 2000-05-30 | 2003-07-08 | Novartis Ag | Coated articles |
| US6428839B1 (en) * | 2000-06-02 | 2002-08-06 | Bausch & Lomb Incorporated | Surface treatment of medical device |
| EP1315985B1 (en) | 2000-08-24 | 2017-07-26 | Novartis Ag | Process for surface modifying substrates and modified substrates resulting therefrom |
-
2002
- 2002-11-11 TW TW091133009A patent/TW200407367A/zh unknown
- 2002-11-12 DE DE60223589T patent/DE60223589T2/de not_active Expired - Lifetime
- 2002-11-12 AT AT02779553T patent/ATE378612T1/de not_active IP Right Cessation
- 2002-11-12 US US10/292,836 patent/US6878399B2/en not_active Expired - Fee Related
- 2002-11-12 CA CA002467092A patent/CA2467092A1/en not_active Abandoned
- 2002-11-12 EP EP02779553A patent/EP1451615B1/en not_active Expired - Lifetime
- 2002-11-12 JP JP2003544501A patent/JP2005512115A/ja active Pending
- 2002-11-12 WO PCT/EP2002/012658 patent/WO2003042724A1/en not_active Ceased
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1996020796A1 (en) * | 1994-12-30 | 1996-07-11 | Novartis Ag | Process for the functionalisation of surfaces |
| WO1999035520A1 (en) * | 1998-01-09 | 1999-07-15 | Novartis Ag | Coating of polymers |
| WO1999057581A1 (en) * | 1998-04-30 | 1999-11-11 | Novartis Ag | Organic articles |
| EP1095711A2 (en) * | 1999-10-27 | 2001-05-02 | Novartis AG | Process for coating a material surface |
| EP1095966A2 (en) * | 1999-10-27 | 2001-05-02 | Novartis AG | Process for the modification of a material surface |
| WO2001092924A1 (en) * | 2000-05-30 | 2001-12-06 | Novartis Ag | Coated articles |
| WO2002094331A1 (en) * | 2001-05-21 | 2002-11-28 | Novartis Ag | Bottle-brush type coatings with entangled hydrophilic polymer |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007537005A (ja) * | 2004-05-12 | 2007-12-20 | サーモディクス,インコーポレイティド | 医療用具のための天然生分解性多糖コーティング |
| EP2679254A1 (en) * | 2006-07-25 | 2014-01-01 | Coloplast A/S | Photo-curing of thermoplastic coatings |
| US10252291B2 (en) | 2006-07-25 | 2019-04-09 | Coloplast A/S | Photo-curing of thermoplastic coatings |
| US8124188B2 (en) | 2006-08-18 | 2012-02-28 | Commonwealth Scientific And Industrial Research Organisation | Polymeric coatings and methods for forming them |
| US8795782B2 (en) | 2006-08-18 | 2014-08-05 | Commonwealth Scientific And Industrial Research Organisation | Polymeric coatings and methods for forming them |
| WO2014095690A1 (en) | 2012-12-17 | 2014-06-26 | Novartis Ag | Method for making improved uv-absorbing ophthalmic lenses |
| US10338408B2 (en) | 2012-12-17 | 2019-07-02 | Novartis Ag | Method for making improved UV-absorbing ophthalmic lenses |
| EP3135314A1 (en) * | 2015-08-27 | 2017-03-01 | Sumitomo Rubber Industries, Ltd. | Surface-modified metal and method for modifying metal surface |
| WO2018092038A1 (en) | 2016-11-18 | 2018-05-24 | Novartis Ag | Method for making ophthalmic lenses |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2467092A1 (en) | 2003-05-22 |
| US6878399B2 (en) | 2005-04-12 |
| US20030219533A1 (en) | 2003-11-27 |
| DE60223589T2 (de) | 2008-11-20 |
| JP2005512115A (ja) | 2005-04-28 |
| DE60223589D1 (de) | 2007-12-27 |
| EP1451615B1 (en) | 2007-11-14 |
| EP1451615A1 (en) | 2004-09-01 |
| ATE378612T1 (de) | 2007-11-15 |
| TW200407367A (en) | 2004-05-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1451615B1 (en) | Method for modifying the surface of biomedical articles | |
| EP1299753B1 (en) | Coated articles | |
| US6589665B2 (en) | Coated articles | |
| US6852353B2 (en) | Process for surface modifying substrates and modified substrates resulting therefrom | |
| US6465056B1 (en) | Process for coating a material surface | |
| US6835410B2 (en) | Bottle-brush type coatings with entangled hydrophilic polymer | |
| EP1095711B1 (en) | Process for coating a material surface | |
| US6586038B1 (en) | Process for the modification of a material surface | |
| US6521352B1 (en) | Process for the modification of a material surface | |
| EP1351780B1 (en) | Process for coating a material surface | |
| WO2002016974A2 (en) | Process for surface modifying substrates and modified substrates resulting therefrom | |
| EP1095966B1 (en) | Process for the modification of a material surface | |
| EP1095965B1 (en) | Process for the modification of a material surface | |
| CA2400335A1 (en) | Reactive polymers | |
| EP1227120A2 (en) | Process for modifying a surface |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LT LU LV MA MD MK MN MX NO NZ OM PH PL PT RO RU SE SG SI SK TJ TM TN TR TT UA US UZ VC VN YU ZA ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2002779553 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2467092 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2003544501 Country of ref document: JP |
|
| WWP | Wipo information: published in national office |
Ref document number: 2002779553 Country of ref document: EP |
|
| WWG | Wipo information: grant in national office |
Ref document number: 2002779553 Country of ref document: EP |