WO2003041158A2 - Semiconductor package device and method of formation and testing - Google Patents
Semiconductor package device and method of formation and testing Download PDFInfo
- Publication number
- WO2003041158A2 WO2003041158A2 PCT/US2002/033083 US0233083W WO03041158A2 WO 2003041158 A2 WO2003041158 A2 WO 2003041158A2 US 0233083 W US0233083 W US 0233083W WO 03041158 A2 WO03041158 A2 WO 03041158A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- die
- integrated circuit
- pads
- package device
- substrate
- Prior art date
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims description 15
- 239000004065 semiconductor Substances 0.000 title description 6
- 230000015572 biosynthetic process Effects 0.000 title description 5
- 239000000758 substrate Substances 0.000 claims abstract description 48
- 239000000463 material Substances 0.000 claims description 48
- 239000000523 sample Substances 0.000 claims description 14
- 238000000151 deposition Methods 0.000 claims 4
- 238000005538 encapsulation Methods 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 239000004020 conductor Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000002991 molded plastic Substances 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000002390 adhesive tape Substances 0.000 description 2
- -1 for example Substances 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
- H01L21/568—Temporary substrate used as encapsulation process aid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/20—Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3107—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
- H01L23/3121—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3107—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
- H01L23/3121—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
- H01L23/3128—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L25/0657—Stacked arrangements of devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32135—Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/32145—Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48135—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/48145—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/48463—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
- H01L2224/48465—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73215—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/85001—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector involving a temporary auxiliary member not forming part of the bonding apparatus, e.g. removable or sacrificial coating, film or substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/8538—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/85399—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/04—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06506—Wire or wire-like electrical connections between devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/04—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/0651—Wire or wire-like electrical connections from device to substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/04—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06572—Auxiliary carrier between devices, the carrier having an electrical connection structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/04—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06582—Housing for the assembly, e.g. chip scale package [CSP]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/04—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06582—Housing for the assembly, e.g. chip scale package [CSP]
- H01L2225/06586—Housing with external bump or bump-like connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/04—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06596—Structural arrangements for testing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01004—Beryllium [Be]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15311—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
- H01L2924/1815—Shape
- H01L2924/1816—Exposing the passive side of the semiconductor or solid-state body
- H01L2924/18165—Exposing the passive side of the semiconductor or solid-state body of a wire bonded chip
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3025—Electromagnetic shielding
Definitions
- the invention relates generally to a semiconductor package device and more particularly to a method of forming and testing a semiconductor package device.
- FIGS. 1-12 include illustrations of sequential cross-sectional views of a package device formed in accordance with a one embodiment of the present invention
- FIGS. 13-23 include illustrations of sequential cross-sectional views of a package device formed in accordance with an alternate embodiment of the present invention.
- the stacking of a plurality of die using a cavity in a substrate to receive at least one of the plurality of die allows a lower profile package device to be used.
- pads used for testing purposes may be located on more than one side of the package device.
- layers between a plurality of die may be used to provide electrical shielding between selected die.
- FIG. 1 illustrates a package device 10 having a cavity 20 in accordance with one embodiment of the present invention.
- Package device 10 includes a package substrate 12 having a surface 50 and a surface 52. Note that surface 50 constitutes a first plane and that surface 52 constitutes a second plane.
- substrate 12 includes one or more bond fingers 14 and one or more pads 16.
- pads 16 are conductive and may be used for a variety of purposes. For example, pads 16 may be used to mount discrete devices, may be used to receive test probes for testing purposes, or may be used to receive conductive interconnects (e.g. solder balls).
- FIG. 1 illustrates a tape layer 18 which is applied to surface 52 of substrate 12.
- substrate 12 contains electrical conductors such as traces and vias which may be used to interconnect one or more die to external contacts (not shown).
- FIG. 2 illustrates one embodiment of package device 10 wherein a die attach material 24 has been placed overlying tape 18. A die 22 is then placed on top of die attach material 24. Alternate embodiments of the present invention may not use die attach material 24, but may instead directly attach die 22 to tape 18. Tape 18 is used as a supporting member to support die 22, and optionally die attach material 24. Tape 18 may or may not extend over the entire surface 52 of substrate 12.
- FIG. 3 illustrates one embodiment of package device 10 in which die 22 has been electrically connected to bond fingers 14 by way of wire bonds 26. Alternate embodiments of the present invention may use any number of wire bonds 26 and bond fingers 14.
- FIG. 4 illustrates one embodiment of package device 10 in which an encapsulating material 28 has been deposited over die 22, wire bonds 26, and bond fingers 14. Note that encapsulating material 28 may be any type of appropriate material for integrated circuits, such as, for example, a molded plastic or a liquid deposited glob material.
- FIG. 5 illustrates one embodiment of package device 10 in which tape 18 has been removed from the bottom surface 52 of substrate 12.
- FIG. 6 illustrates one embodiment of package device 10 in which die attach material 30 is placed to attach die 32 to package device 10.
- die attach material 30 is placed between die attach material 24 and die 32.
- die attach material 30 is placed between die 22 and die 32.
- package device 10 may be flipped at this point in processing so that the bottom surface 52 now becomes the top surface 52 and the top surface 50 now becomes the bottom surface 50.
- alternate embodiments of the present invention may orient package device 10 in any manner during its formation. For simplicity purposes, package device 10 will be shown in the same orientation throughout the remainder of the figures.
- FIG. 7 illustrates one embodiment of package device 10 in which die 32 has been electrically connected to bond fingers 14 by way of wire bonds 34. Alternate embodiments of the present invention may use any number of wire bonds 34 and bond fingers 14. For embodiments of the present invention using flip chip technology, die 32 may have no wire bonds 34, but may instead be electrically connected by way of surface 52.
- FIG. 8 illustrates one embodiment of package device 10 in which die attach material 36 is placed to attach die 38 to die 32. In one embodiment, die attach material 36 is placed between die 32 and die 38. In an alternate embodiment which uses flip chip technology, no die attach 36 is used; instead die 38 is directly electrically connected to die 32 using known flip chip techniques.
- FIG. 9 illustrates one embodiment of package device 10 in which die 38 has been electrically connected to bond fingers 14 by way of wire bonds 42, and die 38 has been electrically connected to die 32 by way of wire bond 40.
- Alternate embodiments of the present invention may use any number of wire bonds 40 and 42, and any number of bond fingers 14.
- die 38 may have no wire bonds 42, but may instead be directly electrically connected to die 32.
- FIG. 10 illustrates one embodiment of package device 10 where test probes 44 are illustrated to show one manner in which one or more of die 22, 32, and 38 may be electrically tested.
- test probes 44 may use one or more pads 16 located on just the top surface 50 of substrate 12, just the bottom surface 52 of substrate 12, or alternately on both the top and bottom surfaces 50, 52 of substrate 12.
- allowing test probes 44 access to both the top and bottom surfaces 50, 52 of substrate 12 may allow easier access to each individual die 22, 32, and 38. Note that when multiple die are used within a package, the number of pads 16 required for test may be significantly higher.
- FIG. 11 illustrates one embodiment of package device 10 wherein an encapsulation material 46 has been deposited overlying die 38, die 32, and bond fingers 14.
- encapsulating material 46 may be deposited over a larger portion of substrate 12.
- encapsulating material 46 may be deposited overlying pads 16 as well. Regardless of whether pads 16 are encapsulated by encapsulating material 46, pads 16 may be used to electrically couple discrete devices to one or more of die 22, 32, and 38.
- encapsulating material 46 may be any type of appropriate material for integrated circuits, such as, for example, a molded plastic or a liquid deposited glob material.
- FIG. 12 illustrates one embodiment of package device 10 in which conductive interconnects 48 have been placed overlying pads 16 at surface 50.
- conductive interconnects 48 may be solder balls.
- conductive interconnect 48 may be any type of electrically conductive material formed in any manner. Note that conductive interconnects 48 are optional. In some embodiments of the present invention, if encapsulating material 28 is flush with the top surface 50 of substrate 12, then conductive interconnects 48 may not be required and electrical connections can be made directly to pads 16 on surface 50 of substrate 12. Note again that traces and vias (not shown) within substrate 12 are used to selectively interconnect various portions of substrate 12.
- die attach materials 24, 30, and 36 may be any type of appropriate material, such as, for example, adhesive tape or non-solid adhesive (e.g. glue, epoxy).
- Die 22, 32, and 38 may be any type of integrated circuit, semiconductor device, or other type of electrically active substrate. Alternate embodiments of the present invention may have any number of die 22, 32, or 38 packaged within package device 10. For example, alternate embodiments may package only two die in package device 10. Note that the size and aspect ratios of die 22, 32, and may vary, and that die spacers (not shown) may be used between die. Note that die 22 is located within cavity 20 and that die 32 and die 38 are located outside of cavity 20.
- FIG. 13 illustrates a package device 100 having a cavity 120 in accordance with one embodiment of the present invention.
- Package device 100 includes a package substrate 112 having a surface 150 and a surface 152. Note that surface 150 constitutes a first plane and that surface 152 constitutes a second plane.
- substrate 112 includes one or more bond fingers 114 and one or more pads 116.
- pads 116 are conductive and may be used for a variety of purposes. For example, pads 116 may be used to mount discrete devices, may be used to receive test probes for testing purposes, or may be used to receive conductive interconnects (e.g. solder balls).
- FIG. 13 illustrates a layer 101 which is part of substrate 112 with its outer surface being surface 152.
- layer 101 includes supporting member 119, one or more bond fingers 114, and one or more pads 116. Alternate embodiments of the present invention may not require bond fingers 114 (e.g. when flip chip technology is used) and may not require pads 116 when an electrical connection to surface 152 is not desired.
- substrate 112 contains electrical conductors such as traces and vias which may be used to interconnect one or more die to external contacts (not shown).
- FIG. 14 illustrates one embodiment of package device 100 wherein a die attach material 124 has been placed overlying supporting member 119. A die 122 is then placed on top of die attach material 124.
- FIG. 15 illustrates one embodiment of package device 100 in which die 122 has been electrically connected to bond fingers 114 by way of wire bonds 126. Alternate embodiments of the present invention may use any number of wire bonds 126 and bond fingers 114. For embodiments of the present invention using flip chip technology, die 122 may have no wire bonds 126, but may instead be electrically connected by way of layer 101.
- FIG. 16 illustrates one embodiment of package device 100 in which an encapsulating material 128 has been deposited over die 122, wire bonds 126, and bond fingers 114. Note that encapsulating material 128 may be any type of appropriate material for integrated circuits, such as, for example, a molded plastic or a liquid deposited glob material.
- FIG. 17 illustrates one embodiment of package device 100 in which die attach material 130 is placed to attach die 132 to package device 100.
- die attach material 130 is placed between layer 101 and die 132.
- package device 100 may be flipped at this point in processing so that the bottom surface 152 now becomes the top surface 152 and the top surface 150 now becomes the bottom surface 150.
- alternate embodiments of the present invention may orient package device 100 in any manner during its formation. For simplicity purposes, package device 100 will be shown in the same orientation throughout the remainder of the figures.
- FIG. 18 illustrates one embodiment of package device 100 in which die 132 has been electrically connected to bond fingers 114 by way of wire bonds 134. Alternate embodiments of the present invention may use any number of wire bonds 134 and bond fingers 114. For embodiments of the present invention using flip chip technology, die 132 may have no wire bonds 134, but may instead be electrically connected by way of surface 152.
- FIG. 19 illustrates one embodiment of package device 100 in which die attach material 136 is placed to attach die 138 to die 132.
- die attach material 136 is placed between die 132 and die 138.
- no die attach 136 is used; instead die 138 is directly electrically connected to die 132 using known flip chip techniques.
- FIG. 20 illustrates one embodiment of package device 100 in which die 138 has been electrically connected to bond fingers 114 by way of wire bonds 142, and die 138 has been electrically connected to die 132 by way of wire bond 140. Alternate embodiments of the present invention may use any number of wire bonds 140 and 142, and any number of bond fingers 114. For embodiments of the present invention using flip chip technology, die 138 may have no wire bonds 142, but may instead be directly electrically connected to die 132.
- FIG. 21 illustrates one embodiment of package device 100 where test probes 144 are illustrated to show one manner in which one or more of die 122, 132, and 138 may be electrically tested.
- test probes 144 may use one or more pads 116 located on just the top surface 150 of substrate 112, just the bottom surface 152 of substrate 112, or alternately on both the top and bottom surfaces 150, 152 of substrate 112.
- allowing test probes 144 access to both the top and bottom surfaces 150, 152 of substrate 112 may allow easier access to each individual die 122, 132, and 138. Note that when multiple die are used within a package, the number of pads 116 required for test may be significantly higher.
- FIG. 22 illustrates one embodiment of package device 100 wherein an encapsulation material 146 has been deposited overlying die 138, die 132, and bond fingers 114.
- encapsulating material 146 may be deposited over a larger portion of substrate 112.
- encapsulating material 146 may be deposited overlying pads 116 as well. Regardless of whether pads 116 are encapsulated by encapsulating material 146, pads 116 may be used to electrically couple discrete devices to one or more of die 122, 132, and 138.
- encapsulating material 146 may be any type of appropriate material for integrated circuits, such as, for example, a molded plastic or a liquid deposited glob material.
- FIG. 23 illustrates one embodiment of package device 100 in which conductive interconnects 148 have been placed overlying pads 116 at surface 150.
- conductive interconnects 148 may be solder balls.
- conductive interconnect 148 may be any type of electrically conductive material formed in any manner. Note that conductive interconnects 148 are optional. In some embodiments of the present invention, if encapsulating material 128 is flush with the top surface 150 of substrate 112, then conductive interconnects 148 may not be required and electrical connections can be made directly to pads 116 on surface 150 of substrate 112. Note again that traces and vias (not shown) within substrate 112 are used to selectively interconnect various portions of substrate 112.
- die attach materials 124, 130, and 136 may be any type of appropriate material, such as, for example, adhesive tape or non-solid adhesive (e.g. glue, epoxy).
- Die 122, 132, and 138 may be any type of integrated circuit, semiconductor device, or other type of electrically active substrate. Alternate embodiments of the present invention may have any number of die 122, 132, or 138 packaged within package device 100. For example, alternate embodiments may package only two die in package device 100. Note that the size and aspect ratios of die 122, 132, and 138 may vary, and that die spacers (not shown) may be used between die. Note that die 122 is located within cavity 120 and that die 132 and die 138 are located outside of cavity 120.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Tests Of Electronic Circuits (AREA)
- Wire Bonding (AREA)
- Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
- Testing Of Individual Semiconductor Devices (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2002337875A AU2002337875A1 (en) | 2001-11-08 | 2002-10-16 | Semiconductor package device and method of formation and testing |
JP2003543094A JP2005535103A (en) | 2001-11-08 | 2002-10-16 | Semiconductor package device and manufacturing and testing method |
EP02773779A EP1481421A2 (en) | 2001-11-08 | 2002-10-16 | Semiconductor package device and method of formation and testing |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/008,800 US6916682B2 (en) | 2001-11-08 | 2001-11-08 | Semiconductor package device for use with multiple integrated circuits in a stacked configuration and method of formation and testing |
US10/008,800 | 2001-11-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2003041158A2 true WO2003041158A2 (en) | 2003-05-15 |
WO2003041158A3 WO2003041158A3 (en) | 2003-10-23 |
Family
ID=21733752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2002/033083 WO2003041158A2 (en) | 2001-11-08 | 2002-10-16 | Semiconductor package device and method of formation and testing |
Country Status (8)
Country | Link |
---|---|
US (1) | US6916682B2 (en) |
EP (1) | EP1481421A2 (en) |
JP (1) | JP2005535103A (en) |
KR (1) | KR100926002B1 (en) |
CN (1) | CN100477141C (en) |
AU (1) | AU2002337875A1 (en) |
TW (1) | TWI260076B (en) |
WO (1) | WO2003041158A2 (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG108245A1 (en) * | 2001-03-30 | 2005-01-28 | Micron Technology Inc | Ball grid array interposer, packages and methods |
JP2003243604A (en) * | 2002-02-13 | 2003-08-29 | Sony Corp | Electronic component and manufacturing method of electronic component |
US7573136B2 (en) * | 2002-06-27 | 2009-08-11 | Micron Technology, Inc. | Semiconductor device assemblies and packages including multiple semiconductor device components |
US6906415B2 (en) * | 2002-06-27 | 2005-06-14 | Micron Technology, Inc. | Semiconductor device assemblies and packages including multiple semiconductor devices and methods |
US7071545B1 (en) * | 2002-12-20 | 2006-07-04 | Asat Ltd. | Shielded integrated circuit package |
JP3867796B2 (en) * | 2003-10-09 | 2007-01-10 | セイコーエプソン株式会社 | Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus |
JP4556023B2 (en) * | 2004-04-22 | 2010-10-06 | 独立行政法人産業技術総合研究所 | System in package test inspection apparatus and test inspection method |
TWI270953B (en) * | 2005-08-17 | 2007-01-11 | Advanced Semiconductor Eng | Substrate and testing method thereof |
KR100690246B1 (en) * | 2006-01-10 | 2007-03-12 | 삼성전자주식회사 | Method for manufacturing flip chip system in package |
US8410594B2 (en) * | 2006-01-11 | 2013-04-02 | Stats Chippac Ltd. | Inter-stacking module system |
US20080251901A1 (en) * | 2006-01-24 | 2008-10-16 | Zigmund Ramirez Camacho | Stacked integrated circuit package system |
DE102006017059B4 (en) * | 2006-04-11 | 2008-04-17 | Infineon Technologies Ag | Semiconductor device system, and method for modifying a semiconductor device |
JP3942190B1 (en) * | 2006-04-25 | 2007-07-11 | 国立大学法人九州工業大学 | Semiconductor device having double-sided electrode structure and manufacturing method thereof |
KR100782774B1 (en) * | 2006-05-25 | 2007-12-05 | 삼성전기주식회사 | System in package module |
JP4930699B2 (en) * | 2006-12-06 | 2012-05-16 | 凸版印刷株式会社 | Semiconductor device |
US7973310B2 (en) * | 2008-07-11 | 2011-07-05 | Chipmos Technologies Inc. | Semiconductor package structure and method for manufacturing the same |
SG10201505279RA (en) | 2008-07-18 | 2015-10-29 | Utac Headquarters Pte Ltd | Packaging structural member |
US8742603B2 (en) * | 2010-05-20 | 2014-06-03 | Qualcomm Incorporated | Process for improving package warpage and connection reliability through use of a backside mold configuration (BSMC) |
US8664540B2 (en) * | 2011-05-27 | 2014-03-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Interposer testing using dummy connections |
US9472533B2 (en) * | 2013-11-20 | 2016-10-18 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of forming wire bondable fan-out EWLB package |
WO2017111773A1 (en) * | 2015-12-23 | 2017-06-29 | Juan Landeros | Reverse mounted gull wing electronic package |
US9721881B1 (en) | 2016-04-29 | 2017-08-01 | Nxp Usa, Inc. | Apparatus and methods for multi-die packaging |
US20180190776A1 (en) * | 2016-12-30 | 2018-07-05 | Sireesha Gogineni | Semiconductor chip package with cavity |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4850105A (en) * | 1987-07-04 | 1989-07-25 | Horiba, Ltd. | Method of taking out lead of semiconductor tip part |
GB2287123A (en) * | 1994-02-28 | 1995-09-06 | Mitsubishi Electric Corp | Semiconductor device substrate and test substrate |
WO1996041378A1 (en) * | 1995-06-07 | 1996-12-19 | The Panda Project | Semiconductor die carrier having double-sided die attach plate |
US5804467A (en) * | 1993-12-06 | 1998-09-08 | Fujistsu Limited | Semiconductor device and method of producing the same |
US5973392A (en) * | 1997-04-02 | 1999-10-26 | Nec Corporation | Stacked carrier three-dimensional memory module and semiconductor device using the same |
US5998864A (en) * | 1995-05-26 | 1999-12-07 | Formfactor, Inc. | Stacking semiconductor devices, particularly memory chips |
US6133629A (en) * | 1999-03-20 | 2000-10-17 | United Microelectronics Corp. | Multi-chip module package |
US6201302B1 (en) * | 1998-12-31 | 2001-03-13 | Sampo Semiconductor Corporation | Semiconductor package having multi-dies |
US20010006252A1 (en) * | 1996-12-13 | 2001-07-05 | Young Kim | Stacked microelectronic assembly and method therefor |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2439478A1 (en) * | 1978-10-19 | 1980-05-16 | Cii Honeywell Bull | FLAT HOUSING FOR DEVICES WITH INTEGRATED CIRCUITS |
US4729061A (en) * | 1985-04-29 | 1988-03-01 | Advanced Micro Devices, Inc. | Chip on board package for integrated circuit devices using printed circuit boards and means for conveying the heat to the opposite side of the package from the chip mounting side to permit the heat to dissipate therefrom |
JP2585006B2 (en) * | 1987-07-22 | 1997-02-26 | 東レ・ダウコーニング・シリコーン株式会社 | Resin-sealed semiconductor device and method of manufacturing the same |
US5219795A (en) * | 1989-02-07 | 1993-06-15 | Fujitsu Limited | Dual in-line packaging and method of producing the same |
US5200362A (en) * | 1989-09-06 | 1993-04-06 | Motorola, Inc. | Method of attaching conductive traces to an encapsulated semiconductor die using a removable transfer film |
US5172303A (en) * | 1990-11-23 | 1992-12-15 | Motorola, Inc. | Electronic component assembly |
US5383269A (en) * | 1991-09-03 | 1995-01-24 | Microelectronics And Computer Technology Corporation | Method of making three dimensional integrated circuit interconnect module |
US5468994A (en) | 1992-12-10 | 1995-11-21 | Hewlett-Packard Company | High pin count package for semiconductor device |
US5291062A (en) * | 1993-03-01 | 1994-03-01 | Motorola, Inc. | Area array semiconductor device having a lid with functional contacts |
US5747874A (en) * | 1994-09-20 | 1998-05-05 | Fujitsu Limited | Semiconductor device, base member for semiconductor device and semiconductor device unit |
JP2725637B2 (en) * | 1995-05-31 | 1998-03-11 | 日本電気株式会社 | Electronic circuit device and method of manufacturing the same |
JPH0917919A (en) | 1995-06-29 | 1997-01-17 | Fujitsu Ltd | Semiconductor device |
US5798564A (en) * | 1995-12-21 | 1998-08-25 | Texas Instruments Incorporated | Multiple chip module apparatus having dual sided substrate |
US5843808A (en) | 1996-01-11 | 1998-12-01 | Asat, Limited | Structure and method for automated assembly of a tab grid array package |
KR0179921B1 (en) * | 1996-05-17 | 1999-03-20 | 문정환 | Stacked semiconductor package |
US5723907A (en) * | 1996-06-25 | 1998-03-03 | Micron Technology, Inc. | Loc simm |
US5994166A (en) * | 1997-03-10 | 1999-11-30 | Micron Technology, Inc. | Method of constructing stacked packages |
US5815372A (en) * | 1997-03-25 | 1998-09-29 | Intel Corporation | Packaging multiple dies on a ball grid array substrate |
US5963429A (en) * | 1997-08-20 | 1999-10-05 | Sulzer Intermedics Inc. | Printed circuit substrate with cavities for encapsulating integrated circuits |
JPH11219984A (en) | 1997-11-06 | 1999-08-10 | Sharp Corp | Semiconductor device package, its manufacture and circuit board therefor |
US6133067A (en) * | 1997-12-06 | 2000-10-17 | Amic Technology Inc. | Architecture for dual-chip integrated circuit package and method of manufacturing the same |
FR2772516B1 (en) * | 1997-12-12 | 2003-07-04 | Ela Medical Sa | ELECTRONIC CIRCUIT, IN PARTICULAR FOR AN ACTIVE IMPLANTABLE MEDICAL DEVICE SUCH AS A CARDIAC STIMULATOR OR DEFIBRILLATOR, AND ITS MANUFACTURING METHOD |
JP2000208698A (en) * | 1999-01-18 | 2000-07-28 | Toshiba Corp | Semiconductor device |
JP3939429B2 (en) * | 1998-04-02 | 2007-07-04 | 沖電気工業株式会社 | Semiconductor device |
US6184463B1 (en) * | 1998-04-13 | 2001-02-06 | Harris Corporation | Integrated circuit package for flip chip |
US6329713B1 (en) * | 1998-10-21 | 2001-12-11 | International Business Machines Corporation | Integrated circuit chip carrier assembly comprising a stiffener attached to a dielectric substrate |
JP3512657B2 (en) | 1998-12-22 | 2004-03-31 | シャープ株式会社 | Semiconductor device |
JP3235589B2 (en) | 1999-03-16 | 2001-12-04 | 日本電気株式会社 | Semiconductor device |
JP3576030B2 (en) * | 1999-03-26 | 2004-10-13 | 沖電気工業株式会社 | Semiconductor device and manufacturing method thereof |
US6117704A (en) * | 1999-03-31 | 2000-09-12 | Irvine Sensors Corporation | Stackable layers containing encapsulated chips |
JP3575001B2 (en) * | 1999-05-07 | 2004-10-06 | アムコー テクノロジー コリア インコーポレーティド | Semiconductor package and manufacturing method thereof |
JP3418759B2 (en) * | 1999-08-24 | 2003-06-23 | アムコー テクノロジー コリア インコーポレーティド | Semiconductor package |
JP2001077301A (en) * | 1999-08-24 | 2001-03-23 | Amkor Technology Korea Inc | Semiconductor package and its manufacturing method |
JP2001077293A (en) * | 1999-09-02 | 2001-03-23 | Nec Corp | Semiconductor device |
JP2001094045A (en) * | 1999-09-22 | 2001-04-06 | Seiko Epson Corp | Semiconductor device |
JP3485507B2 (en) * | 1999-10-25 | 2004-01-13 | 沖電気工業株式会社 | Semiconductor device |
US6344687B1 (en) * | 1999-12-22 | 2002-02-05 | Chih-Kung Huang | Dual-chip packaging |
SG100635A1 (en) * | 2001-03-09 | 2003-12-26 | Micron Technology Inc | Die support structure |
SG108245A1 (en) * | 2001-03-30 | 2005-01-28 | Micron Technology Inc | Ball grid array interposer, packages and methods |
US6787916B2 (en) * | 2001-09-13 | 2004-09-07 | Tru-Si Technologies, Inc. | Structures having a substrate with a cavity and having an integrated circuit bonded to a contact pad located in the cavity |
-
2001
- 2001-11-08 US US10/008,800 patent/US6916682B2/en not_active Expired - Lifetime
-
2002
- 2002-10-16 EP EP02773779A patent/EP1481421A2/en not_active Withdrawn
- 2002-10-16 AU AU2002337875A patent/AU2002337875A1/en not_active Abandoned
- 2002-10-16 KR KR1020047006983A patent/KR100926002B1/en not_active IP Right Cessation
- 2002-10-16 WO PCT/US2002/033083 patent/WO2003041158A2/en active Application Filing
- 2002-10-16 CN CNB028245296A patent/CN100477141C/en not_active Expired - Fee Related
- 2002-10-16 JP JP2003543094A patent/JP2005535103A/en active Pending
- 2002-11-07 TW TW091132762A patent/TWI260076B/en not_active IP Right Cessation
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4850105A (en) * | 1987-07-04 | 1989-07-25 | Horiba, Ltd. | Method of taking out lead of semiconductor tip part |
US5804467A (en) * | 1993-12-06 | 1998-09-08 | Fujistsu Limited | Semiconductor device and method of producing the same |
GB2287123A (en) * | 1994-02-28 | 1995-09-06 | Mitsubishi Electric Corp | Semiconductor device substrate and test substrate |
US5998864A (en) * | 1995-05-26 | 1999-12-07 | Formfactor, Inc. | Stacking semiconductor devices, particularly memory chips |
WO1996041378A1 (en) * | 1995-06-07 | 1996-12-19 | The Panda Project | Semiconductor die carrier having double-sided die attach plate |
US20010006252A1 (en) * | 1996-12-13 | 2001-07-05 | Young Kim | Stacked microelectronic assembly and method therefor |
US5973392A (en) * | 1997-04-02 | 1999-10-26 | Nec Corporation | Stacked carrier three-dimensional memory module and semiconductor device using the same |
US6201302B1 (en) * | 1998-12-31 | 2001-03-13 | Sampo Semiconductor Corporation | Semiconductor package having multi-dies |
US6133629A (en) * | 1999-03-20 | 2000-10-17 | United Microelectronics Corp. | Multi-chip module package |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 12, 3 January 2001 (2001-01-03) & JP 2000 269409 A (NEC CORP), 29 September 2000 (2000-09-29) * |
Also Published As
Publication number | Publication date |
---|---|
WO2003041158A3 (en) | 2003-10-23 |
US6916682B2 (en) | 2005-07-12 |
KR20050037430A (en) | 2005-04-21 |
US20030085463A1 (en) | 2003-05-08 |
AU2002337875A1 (en) | 2003-05-19 |
EP1481421A2 (en) | 2004-12-01 |
TWI260076B (en) | 2006-08-11 |
JP2005535103A (en) | 2005-11-17 |
TW200300283A (en) | 2003-05-16 |
CN100477141C (en) | 2009-04-08 |
CN1602548A (en) | 2005-03-30 |
KR100926002B1 (en) | 2009-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6916682B2 (en) | Semiconductor package device for use with multiple integrated circuits in a stacked configuration and method of formation and testing | |
US7198980B2 (en) | Methods for assembling multiple semiconductor devices | |
US7573136B2 (en) | Semiconductor device assemblies and packages including multiple semiconductor device components | |
US6492726B1 (en) | Chip scale packaging with multi-layer flip chip arrangement and ball grid array interconnection | |
US7361987B2 (en) | Circuit device with at least partial packaging and method for forming | |
US7964946B2 (en) | Semiconductor package having discrete components and system containing the package | |
US7598599B2 (en) | Semiconductor package system with substrate having different bondable heights at lead finger tips | |
JP4808408B2 (en) | Multi-chip package, semiconductor device used for the same, and manufacturing method thereof | |
US6838776B2 (en) | Circuit device with at least partial packaging and method for forming | |
TWI469309B (en) | Integrated circuit package system | |
US7339258B2 (en) | Dual row leadframe and fabrication method | |
JP2002170918A (en) | Semiconductor device and its manufacturing method | |
KR20100050511A (en) | Packaged integrated circuit devices with through-body conductive vias, and methods of making same | |
KR20020021597A (en) | Semiconductor device and process of production of same | |
US20080237831A1 (en) | Multi-chip semiconductor package structure | |
US7154171B1 (en) | Stacking structure for semiconductor devices using a folded over flexible substrate and method therefor | |
JP2004063824A (en) | Semiconductor device and its manufacturing method | |
KR100592785B1 (en) | Stack package stacking chip scale packageCSP | |
KR100533761B1 (en) | semi-conduSSor package | |
KR100762871B1 (en) | method for fabricating chip scale package | |
US20070176279A1 (en) | Circuit board, semiconductor package having the same, and method of manufacturing the circuit board | |
US7750450B2 (en) | Stacked die package with stud spacers | |
KR100422359B1 (en) | Cylindrical semiconductor package and cable-type package module using the cylindrical package | |
TWI400773B (en) | Circuit device with at least partial packaging and method for forming |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1020047006983 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003543094 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002773779 Country of ref document: EP Ref document number: 20028245296 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2002773779 Country of ref document: EP |