WO2003038281A1 - Groupe moto-ventilateur - Google Patents

Groupe moto-ventilateur Download PDF

Info

Publication number
WO2003038281A1
WO2003038281A1 PCT/FR2002/003703 FR0203703W WO03038281A1 WO 2003038281 A1 WO2003038281 A1 WO 2003038281A1 FR 0203703 W FR0203703 W FR 0203703W WO 03038281 A1 WO03038281 A1 WO 03038281A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
ramp
air
volute
unit according
Prior art date
Application number
PCT/FR2002/003703
Other languages
English (en)
Inventor
Stéphane Talaucher
Bernard Boucheret
Original Assignee
Valeo Climatisation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Climatisation filed Critical Valeo Climatisation
Priority to BRPI0206261-5A priority Critical patent/BR0206261B1/pt
Publication of WO2003038281A1 publication Critical patent/WO2003038281A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • F04D25/082Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation the unit having provision for cooling the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system

Definitions

  • the invention relates to a motor-driven fan unit.
  • the field of application is in particular that of heating and / or air conditioning installations, in particular for motor vehicles.
  • a motor-fan unit comprising a volute, a turbine housed in the volute to generate a flow of air therein, a turbine drive motor axially aligned with it. ci, and a motor support defining a housing for at least a part of the motor which projects laterally with respect to the volute and forming a cover for closing the volute on one side thereof.
  • the object of the invention is to cool the motor in a motor-driven fan unit as defined at the head of the description, in a simple, inexpensive and space-saving manner.
  • This object is achieved because, in such a motor-fan unit, at least one engine cooling air circulation channel is formed by a recess in the internal wall of the engine support cover and extends laterally relative to the housing. motor from an air inlet located on the side of the volute, near the periphery thereof, to the bottom of the motor housing.
  • the cooling channel is simply formed by a relief of the engine support cover.
  • the channel inlet preferably opens on the internal surface of a rim of the engine cover which laterally closes the volute in the vicinity of its periphery.
  • the inlet of the cooling channel is connected to the internal surface of the rim of the engine cover by a first ramp which inclines from this rim towards the engine housing bottom.
  • the inclination of the first ramp as well as its progressive connection to the engine cooling channel are designed to facilitate the access of air inside the cooling channel.
  • downstream side is connected in the direction of air flow in the volute to the internal surface of the flange by a second descending ramp.
  • the cooling channel extends in a direction situated substantially in a radial plane.
  • cooling channels which are substantially diametrically opposite, which allows cooling air to be brought from two opposite sides at the level of the brushes of the motor.
  • the invention also relates to a heating and / or air conditioning installation comprising a motor-fan unit as defined above.
  • FIG. 1 is a schematic view of a heating installation and / or air conditioning for motor vehicles
  • FIG. 2 is a side elevational view of a motor-driven fan unit according to an embodiment of the invention.
  • FIG. 3 is a partial sectional view along the plane III-III of Figure 2;
  • - Figure 4 is a schematic perspective view showing the inside of the engine support cover of the fan motor assembly of Figures 2 and 3;
  • FIG. 5 and 6 are detail views in section and on an enlarged scale of the inlets of the engine cooling air circulation channels formed in the engine support cover of Figure 4, Figures 5 and 6 being developed according to the planes VV and VI-VI of FIG. 4;
  • FIGS. 7 and 8 are partial detail views on an enlarged scale of the inlets of the cooling air circulation channels as seen in the directions of arrows VII and VIII in FIGS. 5 and 6.
  • FIG. 1 very schematically shows a heating and air conditioning installation which comprises, in a well-known manner, a motor-fan unit 1, or fan, delivering an air flow 2 into a duct 3.
  • a motor-fan unit 1 or fan
  • a evaporator 4 of a refrigeration circuit when the air conditioning function is present
  • a liquid heat exchanger radiator 5 through which the vehicle engine coolant flows
  • an optional auxiliary electric radiator 6 In air conditioning mode, the air flow is deflected in a passage 7 bypassing the radiator 5. Downstream of the radiators 5 and 6, the air duct 3 distributes the air to outlet outlets (not shown) opening in the passenger compartment of the vehicle. The distribution and possible mixing of the air is done using controlled shutters (not shown).
  • the motor-fan unit 1 comprises (FIGS. 1 to 3) a volute 10 inside which a turbine 12 is housed. On one of its sides 10a, the volute has an opening closed by a cover 20 forming a support for a turbine drive motor 14 12. The motor 14 and turbine 12 are coaxial. The turbine is mounted on the motor output shaft 14a 14.
  • the motor support 20 defines a housing 22 for the motor which projects laterally on the side 10a of the volute.
  • the side of the volute opposite side 10a has a central air intake opening. The air sucked in and circulated by the turbine is extracted from the volute 10 by an outlet 10c connected to the conduit 3.
  • a control module 30, which makes it possible to control the drive of the motor 14 at variable speed as a function of the desired air flow rate at the outlet of the volute, is mounted on the engine support cover 20. More precisely, the module 30 is mounted on a flange 24 of the engine support cover 20 which surrounds the engine housing 22. The module 30 is connected by connectors and conductors (not shown) to a supply voltage source, to a control unit of the heating installation and air conditioning, and to the engine 14.
  • the engine 14 is provided with fixing lugs (not shown) which are inserted in housings 23 formed in the engine support cover 20. As shown in FIGS. 2 and 4, the housings 23 are defined by stamped parts or studs 25 of the rim 24 and open in the motor housing 22 at the opening, at the base thereof. The engine is fixed by screws or screw-nuts 27 which pass through the engine fixing lugs and the fixing studs 25.
  • the cooling air is brought to the bottom of the engine housing 22 by cooling channels 40, 40 ′ formed by recesses in the internal wall of the engine support cover.
  • the channels 40, 40 ′ are of substantially U-shaped cross section opening towards the inside of the motor housing 22 and extend in directions situated substantially in radial planes.
  • these recesses form ribs 41, 41 'which join the rim 24, in the vicinity of its periphery 24a, to the wall which defines the motor housing in the vicinity of the bottom thereof.
  • the two channels 40, 40 ′ are advantageously diametrically opposite so that they can open out at the level of the brushes 50 located in two zones opposite engine 14, the latter being mounted for this purpose relative to the cooling channels.
  • the ribs 41, 41 ′ which are of substantially constant width, further form ribs for stiffening the engine support cover 20.
  • the number of cooling channels can be different from two, for example equal to one or more than two. However, the possibilities for installing the channels are limited by the presence of the control module 30 and of the motor fixing studs 25.
  • the channels 40, 40 ' have their inputs 42, 42' which open in the volute 40, on the side 10a thereof and in the vicinity of the periphery of the volute.
  • the internal face of the rim 24 has an annular rim 28 which surrounds the opening of the motor housing 22 and which delimits, with the periphery 24a, a surface 29.
  • the housings 23 for the engine fixing lugs are formed in the rim 28
  • the latter has an outer diameter which corresponds substantially to that of the turbine.
  • the rim 28 penetrates slightly into the volute and forms a step 28a with the surface 29.
  • the latter located outside the path of the turbine forms a "turbine sidewalk". Due to the offset between the axes of the engine support cover and the engine, the turbine sidewalk 29 has a variable width along the periphery 24a.
  • the inlets 42 and 42 'of the channels 40 and 40' open into the rim 28 and the turbine sidewalk 29.
  • a ramp 44 is formed by local recess on the internal face of the rim 24.
  • the ramp 44 originates in the turbine sidewalk 29, upstream from the inlet 42, in the general direction of air flow in the volute (arrow F in Figure 4) and tilts away from the volute to gradually connect to the inlet 42 of the channel 40.
  • the inclination of the ramp 44 is such that a straight line joining the connection between the ramp 44 and the internal surface of the turbine sidewalk 29 (upstream end of the ramp) to the connection between the ramp 44 and the adjacent wall 40a of the channel 40 (downstream end of the ramp) makes an angle ⁇ preferably between 5 ° and 35 ° relative to the tangent plane P to the internal surface of the turbine sidewalk 29.
  • the ramp 44 has an internal rim 44a which is connected gradually to the corresponding side wall 40a of the channel 40 by a connecting wall, also to facilitate the access of air to the channel 40. It can be seen that the ramp 44 widens from its upstream end by narrowing the rim 28.
  • a straight line joining the connection zones to the level of the internal rim of the turbine sidewalk 29 (that is to say the recess 28a), and at the level of the wall 40a of the channel 40 makes an angle ⁇ preferably between 10 ° and 60 ° relative to the plane Q tangent to the internal edge of the turbine sidewalk at the connection of the latter with the internal edge 44a of the ramp 44.
  • the downstream edge 49 of the inlet 42 which is located at the turbine sidewalk, is at a different level from that of the downstream end of the ramp 44.
  • the edge 49 therefore forms a deflector which favors the entry of air in channel 40. In order to increase its effect, the deflector may protrude towards the inside of the volute.
  • a ramp 45 is then provided by local elevation of the internal face of the rim 24. The ramp 45 starts at the downstream edge 49 of the inlet 42, in the general direction of air flow in the volute (arrow F on the Figure 4) and tilts away from the volute to gradually connect to the turbine sidewalk 29.
  • the inclination of the ramp 45 is such that a straight line joining the connection between the ramp 45 and the downstream edge 49 (front end of the ramp) to the connection between the ramp 45 and the internal surface of the turbine sidewalk 29 (downstream end of the ramp) makes an angle ⁇ preferably between 0 ° and 35 ° relative to the tangent plane P to the internal surface of the turbine sidewalk 29.
  • a ramp 44' is provided by a localized recess in the internal wall of the rim 24.
  • the ramp 44 ′ (FIGS. 4, 6 and 8) originates in the turbine sidewalk 29 upstream of the inlet 42 ′ and tilts away from the interior of the volute to progressively connect to the entrance 42 '.
  • the angle ⁇ 'of inclination of the ramp 44' ( Figure 6) defined as above the angle ⁇ of inclination of the ramp 44, is also preferably between 5 ° and 35 °.
  • the downstream flange 49 'of the inlet 42' located at the level of the turbine sidewalk 29, forms a deflector favoring the entry of air into the channel 40 '.
  • the deflector 49 ′ may protrude towards inside the scroll.
  • a ramp 45 ′ is provided by local elevation of the internal face of the rim 24.
  • the angle ⁇ 'of inclination of the ramp 45' ( Figure 6) defined as above the angle ⁇ of inclination of the ramp 45, is also preferably between 0 ° and 35 °.
  • connection angle ⁇ ' made by a straight line joining the connection zones with the internal edge of the turbine sidewalk 29 and with the wall 40'a of the channel 40', defined as previously the angle ⁇ , is also preferably between 10 ° and 60 °.
  • the ramp 44 ' has, in the example illustrated, a substantially constant width. This is due to the fact that the ramp 44 ′ originates in an area of the turbine sidewalk 29 of greater width than that where the ramp 44 originates. A widening of the ramp 44 makes it possible to compensate for its "disadvantaged" location at the periphery of the volute so that the air flow admitted into the channel 40 is substantially of the same order as that admitted into the channel 40 '. In general, the air accesses to the cooling channels will be dimensioned to substantially balance the air flows in these channels.
  • the air is efficiently guided to the bottom of the engine housing 22, despite the fact that the channels 40, 40' extend perpendicular to the flange 24 and s 'open laterally in the motor housing 22 over their entire length.
  • cooling channel or channels are defined by reliefs of the engine support cover and can be produced in a single piece with the latter, by molding, as are the particular reliefs in level of the air inlets in the channels and the engine mounting studs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

L'invention concerne un groupe moto-ventilateur comportant une volute, une turbine (12) logée dans la volute pour engendrer un flux d'air dans celle-ci, un moteur d'entraînment de la turbine aligné axialement avec celle-ci, un support moteur (20) définissant un logement pour au moins une partie du moteur qui fait saillie latéralement par rapport à la volute et formant un capot d'obturation de la volute sur un côte de celle-ci, et des moyens permettant de prélever de l'air dans la volute pour refoidir le moteur. Au moins un canal (40, 40') de circulation d'air de refroidissement du moteur est formé par un renfoncement de la paroi interne du capot support moteur (20) et s'étend latéralement par rapport au logement moteur (22) depuis une entrée d'air située sur ledit côté de la volute, à proximité de la périphérie de celle-ci, jusqu'au fond du logement moteur.

Description

Titre de l'invention
GROUPE MOTO-VENTILATEUR
Arrière-plan de l'invention
L'invention concerne un groupe moto-ventilateur. Le domaine d'application est notamment celui des installations de chauffage et/ou de climatisation, en particulier pour les véhicules automobiles.
Pour de telles applications, il est connu de réaliser un groupe moto-ventilateur comportant une volute, une turbine logée dans la volute pour engendrer un flux d'air dans celle-ci, un moteur d'entraînement de la turbine aligné axialement avec celle-ci, et un support moteur définissant un logement pour au moins une partie du moteur qui fait saillie latéralement par rapport à la volute et formant un capot d'obturation de la volute d'un côté de celle-ci.
Dans un tel groupe moto-ventilateur, un des problèmes à résoudre est le refroidissement du moteur, en particulier au niveau des balais qui sont habituellement situés au fond du logement formé dans le capot support moteur. Il est connu à cet effet de tirer parti du flux d'air engendré dans la volute pour y prélever de l'air de refroidissement moteur et l'acheminer par conduit dans le fond du logement moteur.
La réalisation d'un ou plusieurs conduits pour l'acheminement d'air de refroidissement moteur complique la fabrication et accroît l'encombrement.
Objet et résumé de l'invention
L'invention a pour but de réaliser le refroidissement du moteur dans un groupe moto-ventilateur tel que défini en tête de la description, de façon simple, peu coûteuse et peu encombrante. Ce but est atteint du fait que, dans un tel groupe moto- ventilateur, au moins un canal de circulation d'air de refroidissement moteur est formé par un renfoncement de la paroi interne du capot support moteur et s'étend latéralement par rapport au logement moteur depuis une entrée d'air située sur le côté de la volute, à proximité de la périphérie de celle-ci, jusqu'au fond du logement moteur. Ainsi, le canal de refroidissement est simplement formé par un relief du capot support moteur.
L'entrée du canal s'ouvre de préférence à la surface interne d'un rebord du capot moteur qui ferme latéralement la volute au voisinage de sa périphérie.
Avantageusement, du côté amont dans le sens d'écoulement d'air dans la volute, l'entrée du canal de refroidissement se raccorde à la surface interne du rebord du capot moteur par une première rampe qui s'incline depuis ce rebord en direction du fond du logement moteur. L'inclinaison de la première rampe ainsi que son raccordement progressif au canal de refroidissement moteur sont conçus pour faciliter l'accès de l'air à l'intérieur du canal de refroidissement.
Avantageusement, le côté aval se raccorde dans le sens d'écoulement d'air dans la volute à la surface interne du rebord par une seconde rampe descendante.
Avantageusement, le canal de refroidissement s'étend dans une direction située sensiblement dans un plan radial.
Il est de préférence prévu deux canaux de refroidissement qui sont sensiblement diamétralement opposés, ce qui permet d'amener de l'air de refroidissement de deux côtés opposés au niveau des balais du moteur.
L'invention a aussi pour objet une installation de chauffage et/ou climatisation comportant un groupe moto-ventilateur tel que défini ci-dessus.
Brève description des dessins
L'invention sera mieux comprise à la lecture de la description faite ci-après, à titre illustratif mais non limitatif, en référence aux dessins annexés sur lesquels : - la figure 1 est une vue schématique d'une installation de chauffage et/ou de climatisation pour véhicule automobile ;
- la figure 2 est une vue en élévation latérale d'un groupe moto-ventilateur selon un mode de réalisation de l'invention ;
- la figure 3 est une vue partielle en coupe selon le plan III-III de la figure 2 ; - la figure 4 est une vue schématique en perspective montrant l'intérieur du capot support moteur du groupe moto-ventilateur des figures 2 et 3 ;
- les figures 5 et 6 sont des vues de détail en coupe et à échelle agrandie des entrées des canaux de circulation d'air de refroidissement moteur formés dans le capot support moteur de la figure 4, les figures 5 et 6 étant desNues développées selon les plans V-V et VI-VI de la figure 4 ; et
- les figures 7 et 8 sont des vues de détail partielles à échelle agrandie des entrées des canaux de circulation d'air de refroidissement telles que vues dans les directions des flèches VII et VIII des figures 5 et 6.
Description détaillée de modes de réalisation Un mode de réalisation de l'invention sera décrit ci-après dans le cadre de l'application à une installation de chauffage et/ou de climatisation de véhicule automobile. Un groupe moto-ventilateur selon l'invention est toutefois utilisable pour d'autres applications requérant la génération d'un flux d'air ou autre gaz. La figure 1 montre très schématiquement une installation de chauffage et de climatisation qui comporte, de façon bien connue, un groupe moto-ventilateur 1, ou pulseur, délivrant un flux d'air 2 dans un conduit 3. Dans ce dernier, sont disposés un évaporateur 4 d'un circuit de réfrigération (lorsque la fonction climatisation d'air est présente), un radiateur echangeur de chaleur à liquide 5 parcouru par le liquide de refroidissement du moteur du véhicule, et un radiateur électrique d'appoint éventuel 6. En mode de climatisation, le flux d'air est dévié dans un passage 7 en dérivation du radiateur 5. En aval des radiateurs 5 et 6, le conduit d'air 3 distribue l'air vers des bouches de sortie (non représentées) s'ouvrant dans l'habitacle du véhicule. La distribution et le mixage éventuel de l'air se font à l'aide de volets commandés (non représentés).
Le groupe moto-ventilateur 1 comporte (figures 1 à 3) une volute 10 à l'intérieur de laquelle est logée une turbine 12. Sur un de ses côtés 10a, la volute présente une ouverture fermée par un capot 20 formant support d'un moteur 14 d'entraînement de la turbine 12. Le moteur 14 et la turbine 12 sont coaxiaux. La turbine est montée sur l'arbre 14a de sortie du moteur 14. Le support moteur 20 délimite un logement 22 pour le moteur qui fait saillie latéralement sur le côté 10a de la volute. Le côté de la volute opposé au côté 10a présente une ouverture centrale d'admission d'air. L'air aspiré et mis en circulation par la turbine est extrait de la volute 10 par une sortie 10c raccordée au conduit 3.
Un module de commande 30, qui permet de commander l'entraînement du moteur 14 à vitesse variable en fonction du débit d'air désiré en sortie de la volute, est monté sur le capot support moteur 20. Plus précisément, le module 30 est monté sur un rebord 24 du capot support moteur 20 qui entoure le logement moteur 22. Le module 30 est relié par des connecteurs et conducteurs (non représentés) à une source de tension d'alimentation, à une unité de contrôle de l'installation de chauffage et climatisation, et au moteur 14. Le moteur 14 est muni de pattes de fixation (non représentées) qui s'insèrent dans des logements 23 formés dans le capot support moteur 20. Comme le montrent les figures 2 et 4, les logements 23 sont définis par des parties embouties ou plots 25 du rebord 24 et s'ouvrent dans le logement moteur 22 au niveau de l'ouverture, à la base de celui-ci. La fixation du moteur est réalisée par vis ou vis-écrous 27 qui traversent les pattes de fixation du moteur et les plots de fixation 25.
Le refroidissement du moteur 14, et notamment de sa partie comportant des balais 50, située au voisinage du fond du logement moteur 22, est assuré par prélèvement d'air dans la volute 10. Dans le mode de réalisation de l'invention illustré par les figures
2 à 8, l'air de refroidissement est amené au fond du logement moteur 22 par des canaux de refroidissement 40, 40' formés par des renfoncements de la paroi interne du capot support moteur. Les canaux 40, 40' sont à section sensiblement en U s'ouvrant vers l'intérieur du logement moteur 22 et s'étendent dans des directions situées sensiblement dans des plans radiaux.
Du côté extérieur, ces renfoncements forment des nervures 41, 41' qui joignent le rebord 24, au voisinage de son pourtour 24a, à la paroi qui définit le logement moteur au voisinage du fond de celui-ci. Les deux canaux 40, 40' sont avantageusement diamétralement opposés de sorte qu'ils peuvent déboucher au niveau des balais 50 situés dans deux zones opposées du moteur 14, celui-ci étant monté à cet effet par rapport aux canaux de refroidissement.
Les nervures 41, 41' qui sont de largeur sensiblement constante, forment en outre des nervures de rigidification du capot support moteur 20.
Le nombre de canaux de refroidissement peut être différent de deux, par exemple égal à un ou à plus de deux. Toutefois, les possibilités d'implantation des canaux sont limitées par la présence du module de commande 30 et des plots 25 de fixation du moteur. Les canaux 40, 40' ont leurs entrées 42, 42' qui s'ouvrent dans la volute 40, du coté 10a de celle-ci et au voisinage de la périphérie de la volute.
La face interne du rebord 24 présente un rebord annulaire 28, qui entoure l'ouverture du logement moteur 22 et qui délimite, avec le pourtour 24a, une surface 29. Les logements 23 pour les pattes de fixation du moteur sont formés dans le rebord 28. Ce dernier a un diamètre extérieur qui correspond sensiblement à celui de la turbine. Le rebord 28 pénètre légèrement dans la volute et forme un décrochement 28a avec la surface 29. Celle-ci, située à l'extérieur du parcours de la turbine forme un "trottoir de turbine". Du fait du décalage entre les axes du capot support moteur et du moteur, le trottoir de turbine 29 a une largeur variable le long du pourtour 24a. Les entrées 42 et 42' des canaux 40 et 40' s'ouvrent dans le rebord 28 et le trottoir de turbine 29.
Afin de faciliter l'accès de l'air au canal 40, une rampe 44 est ménagée par renfoncement localisé de la face interne du rebord 24. La rampe 44 prend naissance dans le trottoir de turbine 29, en amont de l'entrée 42, dans le sens général d'écoulement d'air dans la volute (flèche F sur la figure 4) et s'incline en s'éloignant de la volute pour se raccorder progressivement à l'entrée 42 du canal 40.
L'inclinaison de la rampe 44 est telle qu'une droite joignant le raccordement entre la rampe 44 et la surface interne du trottoir de turbine 29 (extrémité amont de la rampe) au raccordement entre la rampe 44 et la paroi adjacente 40a du canal 40 (extrémité aval de la rampe) fait un angle β de préférence compris entre 5° et 35° par rapport au plan tangent P à la surface interne du trottoir de turbine 29. En outre, la rampe 44 présente un rebord interne 44a qui est raccordé progressivement à la paroi latérale correspondante 40a du canal 40 par une paroi de liaison, également pour faciliter l'accès de l'air au canal 40. On voit que la rampe 44 s'élargit à partir de son extrémité amont par rétrécissement du rebord 28. Une droite joignant les zones de raccordement au niveau du rebord interne du trottoir de turbine 29 (c'est- à-dire le décrochement 28a), et au niveau de la paroi 40a du canal 40 fait un angle α de préférence compris entre 10° et 60° par rapport au plan Q tangent au rebord interne du trottoir de turbine au niveau du raccordement de celui-ci avec le rebord interne 44a de la rampe 44.
Le bord aval 49 de l'entrée 42, qui se situe au niveau du trottoir de turbine, est à un niveau différent de celui de l'extrémité aval de la rampe 44. Le bord 49 forme donc un déflecteur qui favorise l'entrée d'air dans le canal 40. Afin d'accroître son effet, le déflecteur pourra faire saillie vers l'intérieur de la volute. Une rampe 45 est alors ménagée par élévation localisée de la face interne du rebord 24. La rampe 45 prend naissance au bord aval 49 de l'entrée 42, dans le sens général d'écoulement d'air dans la volute (flèche F sur la figure 4) et s'incline en s'éloignant de la volute pour se raccorder progressivement au trottoir de turbine 29.
L'inclinaison de la rampe 45 est telle qu'une droite joignant le raccordement entre la rampe 45 et le bord aval 49 (extrémité avant de la rampe) au raccordement entre la rampe 45 et la surface interne du trottoir de turbine 29 (extrémité aval de la rampe) fait un angle γ de préférence compris entre 0° et 35° par rapport au plan tangent P à la surface interne du trottoir de turbine 29. De façon similaire, afin de faciliter l'accès de l'air au canal 40', une rampe 44' est ménagée par un renfoncement localisé de la paroi interne du rebord 24.
La rampe 44' (figures 4, 6 et 8) prend naissance dans le trottoir de turbine 29 en amont de l'entrée 42' et s'incline en s'éloignant de l'intérieur de la volute pour se raccorder progressivement à l'entrée 42'.
L'angle β' d'inclinaison de la rampe 44' (figure 6) défini comme précédemment l'angle β d'inclinaison de la rampe 44, est également compris de préférence entre 5° et 35°.
Le rebord aval 49' de l'entrée 42', situé au niveau du trottoir de turbine 29, forme un déflecteur favorisant l'entrée de l'air dans le canal 40'. Afin d'accroître son effet, le déflecteur 49' pourra faire saillie vers l'intérieur de la volute. Une rampe 45' est ménagée par élévation localisée de la face interne du rebord 24.
L'angle γ' d'inclinaison de la rampe 45' (figure 6) défini comme précédemment l'angle γ d'inclinaison de la rampe 45, est également compris de préférence entre 0° et 35°.
Le rebord interne 44'a de la rampe 44' se raccorde progressivement à la paroi latérale correspondante 40'a du canal 40'. L'angle de raccordement α' que fait une droite joignant les zones de raccordement avec le rebord interne du trottoir turbine 29 et avec la paroi 40'a du canal 40', défini comme précédemment l'angle α, est également compris de préférence entre 10° et 60°.
On note que, contrairement à la rampe 44, la rampe 44' a, dans l'exemple illustré, une largeur sensiblement constante. Ceci est dû au fait que la rampe 44' prend naissance dans une zone du trottoir de turbine 29 de plus grande largeur que celle où prend naissance la rampe 44. Un élargissement de la rampe 44 permet de compenser son emplacement "défavorisé" à la périphérie de la volute afin que le débit d'air admis dans le canal 40 soit sensiblement du même ordre que celui admis dans le canal 40'. D'une façon générale, les accès d'air aux canaux de refroidissement seront dimensionnes pour équilibrer sensiblement les flux d'air dans ces canaux. Grâce aux rampes 44 et 44' et à leurs raccordements avec les canaux, l'air est guidé efficacement jusqu'au fond du logement moteur 22, en dépit du fait que les canaux 40, 40' s'étendent perpendiculairement au rebord 24 et s'ouvrent latéralement dans le logement moteur 22 sur toute leur longueur.
Un avantage particulier de l'invention réside dans le fait que le ou les canaux de refroidissement sont définis par des reliefs du capot support moteur et peuvent être réalisés en une seule pièce avec celui-ci, par moulage, de même que les reliefs particuliers au niveau des entrées d'air dans les canaux et les plots de fixation du moteur.

Claims

REVENDICATIONS
1. Groupe moto-ventilateur comportant une volute (10), une turbine (12) logée dans la volute pour engendrer un flux d'air dans celle- ci, un moteur (14) d'entraînement de la turbine aligné axialement avec celle-ci, un support moteur (20) définissant un logement pour au moins une partie du moteur qui fait saillie latéralement par rapport à la volute et formant un capot d'obturation de la volute sur un côté de celle-ci, et des moyens permettant de prélever de l'air dans la volute pour refroidir le moteur, caractérisé en ce qu'au moins un canal (40, 40') de circulation d'air de refroidissement du moteur est formé par un renfoncement de la paroi interne du capot support moteur (20) et s'étend latéralement par rapport au logement moteur (22) depuis une entrée d'air (42, 42') située sur ledit côté de la volute (10), à proximité de la périphérie de celle-ci, jusqu'au fond du logement moteur, ladite entrée d'air (42, 420 se raccorde, du coté amont dans le sens d'écoulement d'air dans la volute (10), à une surface interne d'un rebord (24) du capot support moteur par une première rampe (44, 440 qui s'incline depuis ledit rebord en direction du fond du logement moteur, afin de faciliter l'entrée d'air dans le canal, et ladite première rampe définit un rebord interne (44a, 44'a) qui se raccorde progressivement avec une paroi (40a, 40'a) du canal de refroidissement (40, 400-
2. Groupe moto-ventilateur selon la revendication 1, caractérisé en ce que le rebord (24) du capot support moteur (20) ferme latéralement la volute (10) au voisinage de sa périphérie.
3. Groupe moto-ventilateur selon la revendication 1, caractérisé en ce que la première rampe (44, 44') prend naissance à son extrémité amont dans une zone de la surface interne du rebord (24) formant trottoir de turbine (29).
4. Groupe moto-ventilateur selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'une droite reliant le raccordement de la première rampe (44, 44') à la surface interne dudit rebord (24) et le raccordement de la première rampe (44, 44') à une paroi adjacente (40a, 40'a) du canal de refroidissement (40, 40'), forme un angle (β, β') compris entre 5° et 35° par rapport à la surface interne (P) dudit rebord.
5. Groupe moto-ventilateur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le côté aval (49, 49') de l'entrée (42, 42') du canal de refroidissement, forme déflecteur afin de favoriser l'entrée d'air dans le canal.
6. Groupe moto-ventilateur selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'une droite joignant les raccordements du rebord interne (44a, 44'a) de la première rampe (44, 44') à un rebord interne (28a) du trottoir de turbine (29) et à la paroi (40a, 40'a) du canal de refroidissement (40, 40'), fait un angle (α, α') compris entre 10° et 60° par rapport à un plan tangent au rebord interne du trottoir de turbine au niveau du raccordement entre celui-ci et le rebord interne (44a, 44'a) de la première rampe.
7. Groupe moto-ventilateur selon l'une quelconque des revendications 1 à 5 caractérisé en ce que le côté aval (49, 490 se raccorde dans le sens d'écoulement d'air dans la volute à la surface interne du rebord (24) par une seconde rampe descendante (45, 450-
8. Groupe moto-ventilateur selon la revendication 7, caractérisé en ce qu'une droite joignant le raccordement entre la seconde rampe (45,
450 et le bord aval (49, 490 au raccordement entre la seconde rampe (45, 450 et une surface interne du trottoir de turbine (29), fait un angle (γ, γ0 compris entre 0° et 35°.
9. Groupe moto-ventilateur selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le canal de refroidissement
(40, 40') s'étend dans une direction située sensiblement dans un plan radial.
10. Groupe moto-ventilateur selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il présente deux canaux (40, 40') de refroidissement moteur dont les emplacements sont sensiblement diamétralement opposés.
11. Groupe moto-ventilateur selon la revendication 8 caractérisé en ce que les 2 canaux (40, 400 débouchent au niveau des balais (50) situés dans deux zones opposées du moteur (14).
12. Groupe moto-ventilateur selon l'une quelconque des revendications 1 à 11, caractérisé en ce que le ou chaque canal de refroidissement (40, 40") s'étend dans une nervure (41, 41') raccordant un sommet du capot support moteur (20) à un rebord (24) de celui-ci.
13. Groupe moto-ventilateur selon l'une quelconque des revendications 1 à 12, caractérisé en ce que le capot support moteur (20) avec le ou chaque canal de refroidissement (40, 40') est moulé en une seule pièce.
14. Installation de chauffage et/ou de conditionnement d'air comprenant un groupe moto-ventilateur (1) selon l'une quelconque des revendications 1 à 13 et un conduit d'air (3) raccordé à une sortie de la volute et muni d'au moins un dispositif de chauffage (5, 6) ou de refroidissement (4) d'air.
PCT/FR2002/003703 2001-11-02 2002-10-28 Groupe moto-ventilateur WO2003038281A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BRPI0206261-5A BR0206261B1 (pt) 2001-11-02 2002-10-28 grupo motoventilador e instalação de aquecimento e/ou de condicionamento de ar.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0114239A FR2831928B1 (fr) 2001-11-02 2001-11-02 Groupe moto-ventilateur comportant des canaux de refroidissement integres
FR01/14239 2001-11-02

Publications (1)

Publication Number Publication Date
WO2003038281A1 true WO2003038281A1 (fr) 2003-05-08

Family

ID=8869037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/003703 WO2003038281A1 (fr) 2001-11-02 2002-10-28 Groupe moto-ventilateur

Country Status (3)

Country Link
BR (1) BR0206261B1 (fr)
FR (1) FR2831928B1 (fr)
WO (1) WO2003038281A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8020316B2 (en) * 2005-05-20 2011-09-20 Bsh Bosch Und Siemens Hausgeraete Gmbh Washing household device, in particular a clothes dryer
DE102010030184A1 (de) * 2010-06-16 2011-12-22 Behr Gmbh & Co. Kg Lüfteranordnung
CN104201810A (zh) * 2014-09-05 2014-12-10 杨永坚 光控真空泵用散热机罩
CN104314878A (zh) * 2014-10-29 2015-01-28 珠海格力电器股份有限公司 空调及其风机

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944394B1 (fr) 2009-04-08 2015-11-13 Valeo Systemes Thermiques Support moteur pour un moteur d'entrainement d'un groupe moto-ventilateur d'un appareil de chauffage, de ventilation et/ou de climatisation, d'un vehicule automobile
US9982674B2 (en) * 2014-09-08 2018-05-29 Regal Beloit America, Inc. Electrical machine and methods of assembling the same
EP4202229A1 (fr) * 2021-12-21 2023-06-28 Andreas Stihl AG & Co. KG Conduit d'air de refroidissement sur une soufflante électrique

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2067665A (en) * 1979-12-13 1981-07-30 Bosch Gmbh Robert Radial fan
EP0780579A1 (fr) * 1995-12-20 1997-06-25 TEMIC Automotive Electric Motors GmbH Soufflante radiale notamment pour systèmes de chauffage et climatisation de véhicules à moteur
US5878990A (en) * 1995-07-21 1999-03-09 Valeo Climatisation Device for supporting an electric motor driving a turbine, notably for heating and/or air conditioning equipment of a motor vehicle
US5954488A (en) * 1996-04-30 1999-09-21 Valeo, Inc. Blower assembly having integral air flow cooling duct
US6283726B1 (en) * 1999-03-04 2001-09-04 Temic Automotive Electric Motors Gmbh Radial blower, particularly for heating and air conditioning systems in automobiles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2067665A (en) * 1979-12-13 1981-07-30 Bosch Gmbh Robert Radial fan
US5878990A (en) * 1995-07-21 1999-03-09 Valeo Climatisation Device for supporting an electric motor driving a turbine, notably for heating and/or air conditioning equipment of a motor vehicle
EP0780579A1 (fr) * 1995-12-20 1997-06-25 TEMIC Automotive Electric Motors GmbH Soufflante radiale notamment pour systèmes de chauffage et climatisation de véhicules à moteur
US5954488A (en) * 1996-04-30 1999-09-21 Valeo, Inc. Blower assembly having integral air flow cooling duct
US6283726B1 (en) * 1999-03-04 2001-09-04 Temic Automotive Electric Motors Gmbh Radial blower, particularly for heating and air conditioning systems in automobiles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8020316B2 (en) * 2005-05-20 2011-09-20 Bsh Bosch Und Siemens Hausgeraete Gmbh Washing household device, in particular a clothes dryer
DE102010030184A1 (de) * 2010-06-16 2011-12-22 Behr Gmbh & Co. Kg Lüfteranordnung
CN104201810A (zh) * 2014-09-05 2014-12-10 杨永坚 光控真空泵用散热机罩
CN104314878A (zh) * 2014-10-29 2015-01-28 珠海格力电器股份有限公司 空调及其风机

Also Published As

Publication number Publication date
FR2831928B1 (fr) 2005-08-26
FR2831928A1 (fr) 2003-05-09
BR0206261B1 (pt) 2010-11-16
BR0206261A (pt) 2003-12-23

Similar Documents

Publication Publication Date Title
EP0886366A1 (fr) Alternateur à moyens de refroidissement perfectionnés, notamment pour véhicule automobile
WO2017103358A1 (fr) Pulseur d'aspiration destine a un dispositif de chauffage, ventilation et/ou climatisation d'un vehicule automobile et dispositif de chauffage, ventilation et/ou climatisation
EP2795135B1 (fr) Pulseur avec dispositif de refroidissement pour appareil de chauffage, de ventilation ou de climatisation
FR2737062A1 (fr) Dispositif pour supporter un moteur electrique entrainant une turbine, notamment pour appareil de chauffage et/ou climatisation de vehicule automobile
FR2746864A1 (fr) Ventilateur centrifuge a module de commande integre, notamment pour vehicule automobile
FR3051082A1 (fr) Moteur electrique comprenant un dispositif de refroidissement exterieur et une pluralite de circuits de refroidissement
WO2003038281A1 (fr) Groupe moto-ventilateur
FR2728116A1 (fr) Equipement regulateur de puissance pour moteur electrique et ventilateur centrifuge muni d'un tel equipement
EP1308631A1 (fr) Groupe moto-ventilateur
FR2742813A1 (fr) Ventilateur centrifuge, notamment pour vehicule automobile
EP3163091A1 (fr) Ensemble support moteur et installation de chauffage, de ventilation et/ou de climatisation pour véhicule automobile correspondante
FR2859579A1 (fr) Dispositif pour le support d'un moteur electrique entrainant une turbine, en particulier pour un appareil de chauffage, ventilation et/ou climatisation de vehicule automobile
FR2777512A1 (fr) Boitier d'admission d'air pour une installation de chauffage et/ou climatisation de vehicule automobile
WO2024046854A1 (fr) Support moteur et groupe moto-ventilateur d'une installation de chauffage, ventilation et/ou climatisation d'un vehicule notamment automobile correspondant
EP1068968B1 (fr) Véhicule comprenant une installation de chauffage-climatisation
WO2003037664A2 (fr) Groupe moto-ventilateur, notamment pour installation de chauffage et/ou de climatisation de vehicule automobile
FR2742606A1 (fr) Machine electrodynamique, notamment alternateur de vehicule automobile refroidi par eau
FR2991634A1 (fr) Systeme de conditionnement thermique d'un habitacle d'un vehicule, notamment un vehicule electrique.
EP0467751B1 (fr) Pulseur d'air pour installation de chauffage et/ou climatisation de véhicule automobile, et installation équipée de deux pulseurs d'air de ce type
FR2983525A1 (fr) Ensemble comportant un deflecteur pour vanne thermostatique dans un boitier de sortie d'eau
EP0522953B1 (fr) Moto-pulseur d'air
FR2536221A1 (fr) Dispositif de support et de connexion d'un moteur electrique
EP3899404B1 (fr) Cadre configuré pour le support d'un echangeur de chaleur
EP0771060A1 (fr) Alternateur pourvu de moyens de ventilation interne perfectionnés
FR3063781A1 (fr) Pulseur d'air pour vehicule automobile

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP