WO2003037498A2 - Dispositif de fabrication de poudre par pyrolyse d'aerosol - Google Patents

Dispositif de fabrication de poudre par pyrolyse d'aerosol Download PDF

Info

Publication number
WO2003037498A2
WO2003037498A2 PCT/FR2002/003650 FR0203650W WO03037498A2 WO 2003037498 A2 WO2003037498 A2 WO 2003037498A2 FR 0203650 W FR0203650 W FR 0203650W WO 03037498 A2 WO03037498 A2 WO 03037498A2
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
liquid solution
aerosol
injection
enclosure
Prior art date
Application number
PCT/FR2002/003650
Other languages
English (en)
Other versions
WO2003037498A3 (fr
Inventor
Guy Baret
Original Assignee
Dgtec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dgtec filed Critical Dgtec
Priority to AU2002363186A priority Critical patent/AU2002363186A1/en
Publication of WO2003037498A2 publication Critical patent/WO2003037498A2/fr
Publication of WO2003037498A3 publication Critical patent/WO2003037498A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/04Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a gaseous medium

Definitions

  • the invention relates to a device for manufacturing powder by aerosol pyrolysis comprising means for producing an aerosol, from a liquid solution comprising precursors of the powder to be produced, and an enclosure comprising means for drying and aerosol heat treatment.
  • Powdered materials are manufactured by numerous techniques depending on the nature of the material to be produced, the desired grain size, the crystalline state sought, etc. They can, in particular, be manufactured by aerosol pyrolysis.
  • the main advantage of this manufacturing process is to produce powders whose grain size is very little dispersed around the central value. It is thus possible to produce powders whose average diameter is, for example, 1 ⁇ m with less than 2% of the particles with a diameter less than 0.7 ⁇ m and less than 2% of the particles with a diameter greater than 2 ⁇ m.
  • the aerosol pyrolysis process consists in generating a mist or aerosol 1 from a liquid solution 2 in which a precursor of the product to be produced is dissolved in a solvent, for example in water, in an alcohol or in a water-alcohol mixture. Aerosol 1 is made up of droplets whose diameter is little dispersed around the average value. Aerosol 1 is introduced into an oven 3, in which it is dried and subjected to a treatment at high temperature (typically 400 ° C to 1500 ° C). A powder 4 is thus obtained whose grains have an average diameter which is a function of the size of the droplets of aerosol 1 and of the concentration of the precursor in solution 2.
  • the aerosol pyrolysis process therefore comprises the following stages:
  • a carrier gas 5 preferably air or nitrogen
  • Droplets are emitted above the surface by the geyser and are carried away by the carrier gas. It is thus possible to form droplets of very uniform size (average diameter between 0.5 ⁇ m and 20 ⁇ m), which essentially depends on the viscosity of the solution and the frequency of the ultrasound (between 1 and 5 MHz).
  • the production of the aerosol 1 using an ultrasonic source always leads to relatively low densities at the inlet of the oven 3 because it is difficult to extract and entrain the droplets as soon as they are produced above of the geyser.
  • the need to transport the aerosol 1 between the place of production and the entrance to the oven leads to a coalescence of the droplets: two droplets have a non-negligible probability of merging to form a larger droplet.
  • the uniformity of size of the droplets, and therefore of the grains, is degraded by this process. It is important to note that this coalescence phenomenon is all the more marked the greater the density of the fog produced.
  • the object of the invention is a device for manufacturing powders by aerosol pyrolysis which does not have these drawbacks and which makes it possible, more particularly, to supply a large quantity of aerosol to the inlet of the oven.
  • the means for producing the aerosol comprise compression means for pressurizing the liquid solution and injection means for injecting the liquid solution under pressure into the enclosure. , the pressure of the liquid solution upstream of the injection means being much greater than the pressure inside the enclosure, immediately downstream of the injection device, and greater than 10 bars.
  • the injection means are brought to a very high electrical potential, for example between 10 and 100 V.
  • an electrical potential of predetermined value is applied to the walls of cavities of the enclosure.
  • the device comprises heating means for overheating the liquid solution under pressure.
  • FIG. 1 represents a device for manufacturing powders according to the prior art.
  • FIG. 2 illustrates a particular embodiment of a device according to the invention.
  • FIG. 3 represents the constitution of a particular example of liquid solution and its transformation after injection.
  • the device according to the invention differs from the devices known essentially by the method of generation of the aerosol. This is produced by high pressure injection through a small diameter orifice.
  • the liquid solution 2 is pressurized by a pump 6.
  • the liquid pressurized solution is then injected, by an injection device 8, directly into an enclosure 7, in which drying and heat treatment of the aerosol will be carried out.
  • the expansion of the pressurized liquid through the small diameter orifice produces a bursting of the liquid stream into multiple droplets constituting the aerosol 1 at the inlet of the enclosure 7
  • the injection device 8 in which the trigger is created can be produced in the form of an orifice whose thickness is small compared to its diameter.
  • the bursting is more effective when it is constituted by a cylindrical nozzle, the length of which is at least equal to the diameter, by a conical nozzle, as shown in FIG. 2, or by a nozzle of substantially parabolic section.
  • the injection device 8 is constituted by a nozzle of the same type as the fuel injection nozzles in heat engines or in diesel type engines with high pressure injection.
  • Document WO-A-9502711 and the corresponding patent US Pat. No. 5,945,162 describe the use of an automobile engine injector for introducing a liquid precursor or a solution of solid precursors into a chemical vapor deposition (CVD) enclosure. .
  • the precursors are kept under pressure in a tank at a pressure of the order of 1 to 5 times atmospheric pressure.
  • This device allows, by calibrating the opening time of the injection nozzle, to control the quantity injected. However, it does not allow the liquid to burst into fine droplets, nor to obtain droplets of uniform size, which is essential for the manufacture of powders.
  • the upstream pressure that is to say before expansion in the injection device 8 is much higher than the downstream pressure, after expansion, so that the liquid stream bursts completely into fines very uniform size droplets.
  • the diameter of the orifice of the injection device 8 is between 15 and 300 ⁇ and the upstream pressure is greater than 10 bars, preferably between 10 bars and 1000 bars and more particularly between 50 and 500 bars.
  • the pressure in the enclosure, immediately downstream of the injection device 8 is generally between 0.5 and 25 bars and, preferably, of the order of bar.
  • the device according to the invention allows the creation of an aerosol with a high density of droplets directly at the entrance to a drying zone of the enclosure 7. Consequently, drying begins as soon as it leaves the injection device 8 and the solvent in the droplets can evaporate before the droplets have been able to coalesce.
  • the heat treatment steps causing the precursor to decompose (into an oxide if the carrier gas is air) and crystallization in the form of particles, are then carried out, in continuation of the drying or later. It is, moreover, possible to use solutions 2 having a very wide range of viscosity, and therefore to use solutions concentrated as a precursor.
  • the walls of cavities of the enclosure 7 in which the particles pass during drying, decomposition or crystallization treatment can also be brought to a potential of the same electrical polarity as the previous one, but of value possibly different, so that there is repulsion between the particles and the walls and that there is no accumulation of grains on the walls.
  • the manufacturing device also includes a heating device 9 for superheating the liquid solution under pressure.
  • the heating device 9 is preferably disposed between the pump 6 and the injection device 8.
  • the boiling point of a liquid increasing with pressure the liquid solution under pressure is brought to a temperature above its boiling temperature at atmospheric pressure. Since the pressure downstream of the injection device 8 is generally equal to or very close to the atmosphere (0.9 to 1.1 atmospheres), an expansion occurs as soon as it leaves the injection device 8 and the solution then passes from the liquid state to a mist.
  • a part of the solvent for example water
  • the diameter of the droplets depends on the fraction of liquid that is vaporized. The more the solution is overheated, but always in the liquid state, therefore at sufficient pressure, the smaller the droplets.
  • the average diameter can thus be chosen, for example between 1 ⁇ m and more than 50 ⁇ m.
  • the droplets formed are of very uniform size, with a dispersion of the diameter of the order of 30% around the average diameter Rm, that is to say that 95% of the droplets have a diameter between 0.7Rm and 1, 3rm.
  • the droplets formed are enriched in precursor.
  • the concentration of the precursor may possibly exceed the solubility limit and start to crystallize in each droplet.
  • the device according to the invention can, for example, be used to manufacture a powder of yttrium oxide.
  • a solution 2 of yttrium nitrate in water is prepared by dissolving 200 grams of yttrium oxide hexahydrate in a liter of water at 80 ° C.
  • a pump 6 for example a piston pump
  • this solution is then compressed to 200 bars and sent, via a pipe 10, for example constituted by a tube in stainless steel, in an expansion nozzle constituting the injection device 8.
  • An electric heating device 9 is arranged on the piping between the pump 6 and the nozzle 8, so as to heat the solution by thermal transfer through the stainless steel tube .
  • the temperature of the solution at the inlet of the expansion nozzle is 200 ° C.
  • a burst of the liquid stream bursts which forms numerous droplets of the solvent
  • a depression relative to atmospheric pressure for example an absolute pressure of the order of 500 mbar, is caused in the volume of the enclosure 7 located immediately downstream of the injection device 8 and the solution is heated upstream of the injector to a temperature close to its boiling point at atmospheric pressure.
  • a mixture of solvents can be used to prepare the liquid solution 2.
  • a mixture of a solvent with a high boiling temperature (such as water) and a solvent with a low boiling temperature can be used, like methanol or acetone. The solvent at low boiling temperature is then preferably vaporized during expansion.
  • the emulsion consists of micro-domains 11 (FIG. 3) of the solvent Y, in which the precursor is dissolved, in the solvent X.
  • the micro-domains 11, from Y to X have a typical dimension of a few micrometers (0 , 5 to 20 ⁇ m).
  • the solvent X is generally chosen so that, at the preheating temperature of the solution, it is liquid at the pressure upstream of the nozzle (high pressure) and gaseous at the pressure downstream of the nozzle (low pressure) .
  • the temperature chosen for superheating has an intermediate value between the boiling temperature of the solvents X and Y at the downstream pressure.
  • the solvents X and Y are therefore both in the liquid state in the emulsion, compressed and superheated, upstream of the injection device 8 (left part of FIG. 3).
  • the solvent X is vaporized, that is to say passes to the gaseous state and releases the micro-domains 11 of solvent Y (still in liquid state) containing the precursor.
  • the micro-domains 11, which were disjoint in the emulsion remain disjoint in the gas phase. It is therefore possible to use injection conditions such that relatively large droplets of this emulsion are produced, for example from a few tens to a few hundred micrometers, at the entrance to the drying zone of the enclosure 7
  • a yttrium oxide powder can be made from an emulsion, in methyl ethyl ketone, from a solution obtained by dissolution. 100 grams of yttrium oxide hexahydrate in one liter of water at 20 ° C. The emulsion compressed to 300 bars is heated to 160 ° C. before the injection device 8. As soon as it leaves the injection device 8, the emulsion bursts, forming numerous droplets. The subsequent processing is identical to that described in the previous example.
  • the powders can be formed from a precursor or from a mixture of precursors.
  • yttrium nitrate can be put in water to make yttrium oxide.
  • a more complex oxide for example a yttrium oxide doped with europium, one will start from a mixture of yttrium nitrate and europium nitrate in the desired concentration ratio.
  • the carrier gas is often air but it is possible to use nitrogen or any other gas whose chemical characteristics are of interest.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

La poudre est fabriquée par pyrolyse d'aérosol à partir d'un solution liquide (2) comportant des précurseurs de la poudre à élaborer. La solution liquide est mise sous pression (6), pius injectée par un dispositif d'injection (8) dans une enceinte (7) de manière à former un aérosol à l'entrée de l'enceinte. L'aérosol est ensuite séché et soumis à un traitement thermique dans l'enceinte. La pression de la solution liquide en amont du dispositif d'injection (8) est très supérieure à la pression à l'intérieur de l'enceinte et supérieure à 10 bars, de préférence comprise entre 10 et 1000bars, de manière à ce que les gouttelettes de l'aérosol soient très fines et de taille uniforme. La solution liquide sous pression est, de préférence, surchauffée (9) et le dispositif d'injection porté à un potentiel électrique élevé (V), par exemple compris entre 10 et 100kV.

Description

Dispositif de fabrication de poudre par pyrolyse d'aérosol
Domaine technique de l'invention
L'invention concerne un dispositif de fabrication de poudre par pyrolyse d'aérosol comportant des moyens de production d'un aérosol, à partir d'une solution liquide comportant des précurseurs de la poudre à élaborer, et une enceinte comportant des moyens de séchage et de traitement thermique de l'aérosol.
État de la technique
Les matériaux en poudre sont fabriqués par de nombreuses techniques suivant la nature du matériau à produire, la taille de grain souhaitée, l'état cristallin recherché, etc.. Ils peuvent, notamment, être fabriqués par pyrolyse d'aérosol. Le principal avantage de ce procédé de fabrication est de produire des poudres dont la taille de grain est très peu dispersée autour de la valeur centrale. On peut ainsi produire des poudres dont le diamètre moyen est, par exemple, de 1μm avec moins de 2% des particules de diamètre inférieur à 0.7 μm et moins de 2% des particules avec un diamètre supérieur à 2 μm.
Le procédé de pyrolyse d'aérosol, schématiquement représenté à la figure 1 , consiste à générer un brouillard ou aérosol 1 à partir d'une solution liquide 2 dans laquelle un précurseur du produit à élaborer est dissous dans un solvant, par exemple dans l'eau, dans un alcool ou dans un mélange eau-alcool. L'aérosol 1 est constitué de gouttelettes dont le diamètre est peu dispersé autour de la valeur moyenne. L'aérosol 1 est introduit dans un four 3, dans lequel il est séché et soumis à un traitement à haute température (typiquement 400°C à 1500°C). On obtient ainsi une poudre 4 dont les grains ont un diamètre moyen qui est fonction de la taille des gouttelettes de l'aérosol 1 et de la concentration du précurseur dans la solution 2.
Le procédé de pyrolyse d'aérosol comporte donc les étapes suivantes :
- génération d'un aérosol 1 à partir d'une solution liquide 2, dans laquelle est dissous un précurseur du produit à élaborer,
- transport de l'aérosol dans un four 3 par un gaz vecteur 5, de préférence de l'air ou de l'azote, ,
- séchage des gouttelettes constituant l'aérosol 1 , c'est-à-dire évaporation du solvant, ce qui produit des particules sèches du précurseur, ces particules ayant des dimensions peu dispersées autour de la valeur moyenne,
- décomposition du précurseur en oxyde, par pyrolyse, au cours d'un traitement thermique à une température typiquement entre 400°C et 1500°C, plus particulièrement entre 400°C et 600°C, cette décomposition menant généralement à un composé amorphe,
- cristallisation du composé amorphe, sous forme de particules,
- filtration du mélange gaz vecteur-particules, soit par un filtre électrostatique, soit par un filtre classique,
- récupération, à l'extérieur du four 3, de la poudre 4.
Ce procédé permet de produire des poudres dont la taille de grain moyenne varie entre 0,1 μm et quelques micromètres, avec une faible dispersion sur le diamètre. Cette uniformité dans la taille des grains dépend fortement de l'uniformité sur la taille des gouttelettes. Le diamètre des gouttelettes constituant l'aérosol doit donc être aussi uniforme que possible. De plus, pour permettre une exploitation industrielle, la quantité de gouttelettes dans l'aérosol doit être aussi élevée que possible. Le document WO-A-9837165, décrit un procédé de fabrication de poudres par pyrolyse d'aérosol, dans lequel l'aérosol est formé par ultrasons. Un transducteur ultrasonore crée un mouvement de la surface de la solution liquide 2 qui génère un geyser. Des gouttelettes sont émises au-dessus de la surface par le geyser et sont emportées par le gaz vecteur. Il est ainsi possible de former des gouttelettes de taille très uniforme (diamètre moyen compris entre 0,5 μm et 20 μm), qui dépend essentiellement de la viscosité de la solution et de la fréquence des ultrasons (entre 1 et 5 MHz).
La production de l'aérosol par l'intermédiaire d'un transducteur ultrasonore, utilisée en laboratoire, est cependant une contrainte pour une utilisation industrielle de la pyrolyse d'aérosol. En effet, la capacité de production d'un procédé de fabrication de poudre par pyrolyse d'aérosol dépend presque exclusivement de la quantité d'aérosol que l'on peut introduire dans le four par unité de temps. Il faut donc pouvoir produire un aérosol avec une très grande densité, c'est-à-dire un grand nombre de gouttelettes par unité de volume.
Or la production de l'aérosol 1 à l'aide d'une source ultrasonore mène toujours à des densités relativement faibles à l'entrée du four 3 car il est difficile d'extraire et d'entraîner les gouttelettes dès leur production au-dessus du geyser. D'autre part la nécessité de transporter l'aérosol 1 entre le lieu de production et l'entrée du four entraîne une coalescence des gouttelettes : deux gouttelettes ont une probabilité non négligeable de fusionner pour former une gouttelette plus grosse. L'uniformité de taille des gouttelettes, et donc des grains, est dégradée par ce processus. Il est important de remarquer que ce phénomène de coalescence est d'autant plus marqué que la densité du brouillard produit est grande. Enfin la génération à partir d'un dispositif à ultrasons ne permet d'utiliser que des solutions dont la tension de surface (ou interfaciale avec l'air) est faible et la viscosité inférieure ou égale à celle de l'eau. C'est d'ailleurs pourquoi on ajoute souvent du méthanol à l 'eau dans les solutions afin d'en diminuer la tension de surface. En résumé, plus on veut augmenter la capacité de production, plus il faut produire un brouillard dense, plus le phénomène de coalescence est important et plus l'uniformité de la taille des grains est médiocre.
Objet de l'invention
L'invention a pour but un dispositif de fabrication de poudres par pyrolyse d'aérosol ne présentant pas ces inconvénients et permettant, plus particulièrement, de fournir une grande quantité d'aérosol à l'entrée du four.
Selon l'invention, ce but est atteint par le fait que les moyens de production de l'aérosol comportent des moyens de compression pour mettre sous pression la solution liquide et des moyens d'injection pour injecter la solution liquide sous pression dans l'enceinte, la pression de la solution liquide en amont des moyens d'injection étant très supérieure à la pression à l'intérieur de l'enceinte, immédiatement en aval du dispositif d'injection, et supérieure à 10 bars.
Selon un premier développement de l'invention, les moyens d'injection sont portés à un potentiel électrique très élevé, par exemple compris entre 10 et 100 V.
Selon un second développement de l'invention, un potentiel électrique de valeur prédéterminée est appliqué à des parois de cavités de l'enceinte. Selon un autre développement de l'invention, le dispositif comporte des moyens de chauffage pour surchauffer la solution liquide sous pression.
Description sommaire des dessins
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs, et représentés aux dessins annexés, dans lesquels :
La figure 1 représente un dispositif de fabrication de poudres selon l'art antérieur.
La figure 2 illustre un mode de réalisation particulier d'un dispositif selon l'invention.
La figure 3 représente la constitution d'un exemple particulier de solution liquide et sa transformation après injection.
Description de modes particuliers de réalisation.
Le dispositif selon l'invention se distingue des dispositifs connus essentiellement par la méthode de génération de l'aérosol. Celui-ci est produit par injection à haute pression à travers un orifice de petit diamètre. Dans le mode de réalisation particulier illustré à la figure 2, la solution liquide 2 est mise sous pression par une pompe 6. La solution liquide sous pression est ensuite injectée, par un dispositif d'injection 8, directement dans une enceinte 7, dans laquelle seront réalisés le séchage et le traitement thermique de l'aérosol. La détente du liquide sous pression à travers l'orifice de petit diamètre produit un éclatement du filet de liquide en de multiples gouttelettes constituant l'aérosol 1 à l'entrée de l'enceinte 7
Le dispositif d'injection 8, dans lequel se crée la détente, peut-être réalisé sous la forme d'un orifice dont l'épaisseur est petite par rapport à son diamètre. Cependant, l'éclatement est plus efficace lorsqu'il est constitué par une buse cylindrique, dont la longueur est au moins égale au diamètre, par une buse conique, comme représenté à la figure 2, ou par une tuyère de section sensiblement parabolique.
Dans un mode de réalisation préférentiel, le dispositif d'injection 8 est constitué par une buse du même type que les buses d'injection du carburant dans les moteurs thermiques ou dans les moteurs de type Diesel à injection haute pression. Le document WO-A-9502711 et le brevet US 5945162 correspondant décrivent l'utilisation d'un injecteur de moteur d'automobile pour introduire un précurseur liquide ou une solution de précurseurs solides, dans une enceinte de dépôt chimique en phase vapeur (CVD). Les précurseurs sont maintenus sous pression dans un réservoir à une pression de l'ordre de 1 à 5 fois la pression atmosphérique. Ce dispositif permet, en calibrant le temps d'ouverture de la buse d'injection, de contrôler la quantité injectée. Cependant, il ne permet pas d'éclater le liquide en fines gouttelettes, ni d'obtenir des gouttelettes de taille uniforme, ce qui est indispensable pour la fabrication de poudres.
Selon l'invention, la pression amont, c'est-à-dire avant détente dans le dispositif d'injection 8, est très supérieure à la pression aval, après détente, de manière à ce que le filet de liquide éclate complètement en fines gouttelettes de taille très uniforme. Typiquement le diamètre de l'orifice du dispositif d'injection 8 est compris entre 15 et 300 μ et la pression amont est supérieure à 10 bars, de préférence comprise entre 10 bars et 1000 bars et plus particulièrement entre 50 et 500 bars. La pression dans l'enceinte, immédiatement en aval du dispositif d'injection 8 est généralement comprise entre 0,5 et 25 bars et, de préférence, de l'ordre du bar.
Le dispositif selon l'invention permet la création d'un aérosol avec une forte densité de gouttelettes directement à l'entrée d'une zone de séchage de l'enceinte 7. En conséquence, le séchage commence dès la sortie du dispositif d'injection 8 et le solvant contenu dans les gouttelettes peut s'évaporer avant que les gouttelettes n'aient pu coalescer. Les étapes de traitement thermique, provoquant la décomposition du précurseur (en un oxyde si le gaz vecteur est de l'air) et la cristallisation sous forme de particules, sont réalisées ensuite, en continuité du séchage ou ultérieurement. Il est, de plus, possible d'utiliser des solutions 2 ayant une très large gamme de viscosité, et donc d'utiliser des solutions concentrées en précurseur.
Avec le dispositif décrit ci-dessus, une coalescence résiduelle, bien que faible, peut néanmoins subsister en raison de la très forte densité de gouttelettes créées. Cette coalescence résiduelle peut être supprimée en portant le dispositif d'injection 8 à un potentiel électrique V très élevé, de préférence compris entre 10 et 100kV. L'application d'une tension élevée au dispositif d'injection 8 charge électrostatiquement la solution liquide sous pression au cours de son transit dans le dispositif d'injection 8. Cette charge électrostatique portée par la solution entraîne un éclatement plus efficace, c'est-à-dire en gouttelettes plus uniformes, du filet de solution au sortir du dispositif d'injection 8. De plus, une tension électrostatique ainsi appliquée à la solution avant sa sortie du dispositif d'injection 8 a pour effet que chaque gouttelette porte une charge électrique identique à celle de ses voisines, et provoque ainsi une répulsion entre les gouttelettes, ce qui évite pratiquement tout risque de coalescence. D'autre part, les parois de cavités de l'enceinte 7 dans lesquelles transitent les particules au cours du séchage, de la décomposition ou du traitement de cristallisation peuvent également être portés à un potentiel de même polarité électrique que le précédent, mais de valeur éventuellement différente, afin qu'il y ait répulsion entre les particules et les parois et qu'il n'y ait pas d'accumulation des grains sur les parois.
Dans un mode de réalisation préférentiel, le dispositif de fabrication comporte également un dispositif de chauffage 9 pour surchauffer la solution liquide sous pression. Le dispositif de chauffage 9 est, de préférence, disposé entre la pompe 6 et le dispositif d'injection 8. La température d'ébullition d'un liquide augmentant avec la pression, la solution liquide sous pression est portée à une température supérieure à sa température d'ébullition à la pression atmosphérique. La pression en aval du dispositif d'injection 8 étant généralement égale ou très proche de l'atmosphère (0,9 à 1 ,1 atmosphère), il se produit une détente dès la sortie du dispositif d'injection 8 et la solution passe alors de l'état liquide à un brouillard. Une partie du solvant (par exemple l'eau) se vaporise pendant que l'autre partie reste à l'état liquide mais est divisée sous forme de microscopiques gouttelettes de solution de solvant dans lequel est dissous le précurseur. Le diamètre des gouttelettes dépend de la fraction de liquide qui est vaporisée. Plus la solution est surchauffée, mais toujours à l'état liquide, donc à une pression suffisante, plus les gouttelettes sont petites. Le diamètre moyen peut ainsi être choisi, par exemple entre 1//m et plus de 50μm.
Les gouttelettes formées sont de taille très uniforme, avec une dispersion du diamètre de l'ordre de 30% autour du diamètre moyen Rm, c'est-à-dire que 95% des gouttelettes ont un diamètre compris entre 0,7Rm et 1 ,3Rm. Comme une partie du solvant est évaporée, les gouttelettes formées sont enrichies en précurseur. La concentration du précurseur peut éventuellement dépasser la limite de solubilité et commencer à cristalliser dans chaque gouttelette.
Le dispositif selon l'invention peut, par exemple être utilisé pour fabriquer une poudre d'oxyde d'yttrium. Pour cela, on prépare une solution 2 de nitrate d'yttrium dans l'eau par dissolution de 200 grammes d'oxyde d'yttrium hexahydraté dans un litre d'eau à 80°C. A l'aide d'une pompe 6, par exemple d'une pompe à piston, on comprime alors cette solution à 200 bars et on l'envoie, par l'intermédiaire d'une canalisation 10, par exemple constituée par un tube en inox, dans une buse de détente constituant le dispositif d'injection 8. Un dispositif 9 de chauffage électrique est disposé sur la tuyauterie entre la pompe 6 et la buse 8, de manière à chauffer la solution par transfert thermique à travers le tube en inox. La température de la solution à l'entrée de la buse de détente est de 200°C. Il se produit dans l'enceinte 7, dès la sortie de la buse, un éclatement du filet liquide qui forme de nombreuses gouttelettes du solvant
(l'eau) contenant le soluté (le nitrate d'yttrium). Le volume d'entrée de l'enceinte 7, à la sortie de la buse, est balayé par un courant d'air 5 préchauffé à 120°C qui a pour effet de sécher immédiatement les gouttelettes et de former des grains microscopiques de nitrate d'yttrium hydraté. Ces particules sont alors envoyées dans un four tubulaire chauffé à 500°C pour produire la décomposition du nitrate d'yttrium en oxyde d'yttrium amorphe. Une étape ultérieure à 1200°C permet de cristalliser l'oxyde.
Dans une variante de réalisation, une dépression par rapport à la pression atmosphérique, par exemple une pression absolue de l'ordre de 500 mbars, est provoquée dans le volume de l'enceinte 7 situé immédiatement en aval du dispositif d'injection 8 et la solution est chauffée en amont de l'injecteur à une température proche de sa température d'ébullition à la pression atmosphérique. Un mélange de solvants peut être utilisé pour préparer la solution liquide 2. En particulier, on peut utiliser un mélange d'un solvant à forte température d'ébullition (comme l'eau) et d'un solvant à faible température d'ébullition, comme du méthanol ou de l'acétone. Le solvant à faible température d'ébullition est alors vaporisé préférentiellement lors de la détente.
Il est également possible d'utiliser une émulsion, dans un solvant X, d'une solution du précurseur dans un solvant Y, les solvants X et Y n'étant pas miscibles. L'émulsion est constituée de micro-domaines 11 (figure 3) du solvant Y, dans lequel est dissous le précurseur, dans le solvant X. Les micro-domaines 11 , de Y dans X, ont une dimension typique de quelques micromètres (0,5 à 20 μm). Le solvant X est généralement choisi de manière à ce que, à la température de préchauffage de la solution, il soit liquide à la pression en amont de la buse (haute pression) et gazeux à la pression en aval de la buse (basse pression). Autrement dit, la température choisie pour la surchauffe a une valeur intermédiaire comprise entre la température d'ébullition des solvants X et Y à la pression aval. Les solvants X et Y sont donc tous deux à l'état liquide dans l'émulsion, comprimée et surchauffée, en amont du dispositif d'injection 8 (partie gauche de la figure 3). Par contre, à la sortie du dispositif d'injection 8 (partie droite de la figure 3), le solvant X est vaporisé, c'est-à-dire passe à l'état gazeux et libère les micro-domaines 11 de solvant Y (toujours à l'état liquide) contenant le précurseur. Les micro-domaines 11 , qui étaient disjoints dans l'émulsion, restent disjoints dans la phase gazeuse. On peut donc utiliser des conditions d'injection telles que l'on produit des gouttelettes de cette émulsion relativement grosses, par exemple de quelques dizaines à quelques centaines de micromètres, à l'entrée de la zone de séchage de l'enceinte 7
A titre d'exemple, on peut fabriquer une poudre d'oxyde d'yttrium à partir d'une émulsion, dans du méthyl-éthyl-cétone, d'une solution obtenue par dissolution de 100 grammes d'oxyde d'yttrium hexahydraté dans un litre d'eau à 20°C. L'émulsion comprimée à 300 bars est chauffée à 160°C avant le dispositif d'injection 8. Dès la sortie du dispositif d'injection 8, l'émulsion éclate en formant nombreuses gouttelettes. Le traitement ultérieur est identique à celui décrit dans l'exemple précédent.
L'invention n'est pas limitée aux modes de réalisation particuliers décrits ci- dessus. En particulier, les poudres peuvent être formées à partir d'un précurseur ou d'un mélange de précurseurs. Par exemple, on peut mettre du nitrate d'yttrium dans de l'eau pour fabriquer de l'oxyde d'yttrium. Pour fabriquer un oxyde plus complexe, par exemple un oxyde d'yttrium dopé à l'europium, on partira d'un mélange de nitrate d'yttrium et de nitrate d'europium dans le rapport de concentration voulu. Le gaz vecteur est souvent de l'air mais on peut utiliser de l'azote ou tout autre gaz dont les caractéristiques chimiques présentent un intérêt.

Claims

Revendications
1. Dispositif de fabrication de poudre par pyrolyse d'aérosol comportant des moyens de production d'un aérosol, à partir d'une solution liquide (2) comportant des précurseurs de la poudre à élaborer, et une enceinte (7) comportant des moyens de séchage et de traitement thermique de l'aérosol, dispositif caractérisé en ce que les moyens de production de l'aérosol comportent des moyens de compression (6) pour mettre sous pression la solution liquide et des moyens d'injection (8) pour injecter la solution liquide sous pression dans l'enceinte (7), la pression de la solution liquide en amont des moyens d'injection (8) étant très supérieure à la pression à l'intérieur de l'enceinte, immédiatement en aval du dispositif d'injection (8), et supérieure à 10 bars.
2. Dispositif selon la revendication 1 , caractérisé en ce que la pression de la solution liquide en amont des moyens d'injection (8) est comprise entre 10 bars et 1000 bars.
3. Dispositif selon l'une des revendications 1 et 2, caractérisé en ce que la pression dans l'enceinte (7), immédiatement en aval du dispositif d'injection (8), est comprise entre 0,5 et 25 bars.
4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les moyens d'injection (8) comportent un orifice de 15 à 300 μm de diamètre.
5. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les moyens d'injection (8) sont constitués par un orifice de faible épaisseur.
6. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les moyens d'injection (8) sont sensiblement cylindriques.
7. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les moyens d'injection (8) sont coniques.
8. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les moyens d'injection (8) ont la forme d'une tuyère, de section sensiblement parabolique.
9. Dispositif selon l'une quelconque des revendications 1 à 8, caractérisé en ce que les moyens d'injection (8) sont portés à un potentiel électrique (V) très élevé.
10. Dispositif selon la revendication 9, caractérisé en ce que le potentiel électrique (V) est compris entre 10 et 10OkV.
11. Dispositif selon l'une quelconque des revendications 1 à 10, caractérisé en ce qu'un potentiel électrique de valeur prédéterminée est appliqué à des parois de cavités de l'enceinte (7).
12. Dispositif selon l'une quelconque des revendications 1 à 11 , caractérisé en ce qu'il comporte des moyens de chauffage (9) pour surchauffer la solution liquide sous pression.
13. Dispositif selon la revendication 12, caractérisé en ce que les moyens de chauffage (9) sont disposés entre les moyens de compression (6) et les moyens d'injection (8).
14. Dispositif selon l'une des revendications 12 et 13, caractérisé en ce que la solution liquide sous pression est portée à une température supérieure à sa température d'ébullition à la pression atmosphérique.
15. Dispositif selon la revendication 14, caractérisé en ce que, les précurseurs étant dissous dans de l'eau, la température de la solution liquide sous pression surchauffée est de l'ordre de 200°C.
16. Dispositif selon l'une des revendications 12 et 13, caractérisé en ce qu'une dépression par rapport à la pression atmosphérique est provoquée dans l'enceinte (7) immédiatement en aval du dispositif d'injection (8) et en ce que la solution liquide sous pression est portée à une température proche de sa température d'ébullition à la pression atmosphérique
17. Dispositif selon la revendication 16, caractérisé en ce que la pression dans l'enceinte (7) immédiatement en aval du dispositif d'injection 8 est de l'ordre de 500 mbars.
18. Dispositif selon l'une quelconque des revendications 1 à 17, caractérisé en ce que la solution est constituée par une émulsion, dans un premier solvant (X), d'une solution d'un précurseur dans un second solvant (Y), les premier et seconds solvants n'étant pas miscibles.
19. Dispositif selon la revendication 18, caractérisé en ce que l'émulsion sous pression est surchauffée à une température comprise entre la température d'ébullition des premier et second solvants (X, Y).
PCT/FR2002/003650 2001-10-30 2002-10-24 Dispositif de fabrication de poudre par pyrolyse d'aerosol WO2003037498A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002363186A AU2002363186A1 (en) 2001-10-30 2002-10-24 Device for producing powder by aerosol pyrolysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0114015A FR2831466B1 (fr) 2001-10-30 2001-10-30 Dispositif de fabrication de poudre par pyrolyse d'aerosol
FR01/14015 2001-10-30

Publications (2)

Publication Number Publication Date
WO2003037498A2 true WO2003037498A2 (fr) 2003-05-08
WO2003037498A3 WO2003037498A3 (fr) 2003-10-09

Family

ID=8868868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/003650 WO2003037498A2 (fr) 2001-10-30 2002-10-24 Dispositif de fabrication de poudre par pyrolyse d'aerosol

Country Status (3)

Country Link
AU (1) AU2002363186A1 (fr)
FR (1) FR2831466B1 (fr)
WO (1) WO2003037498A2 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032377A (en) * 1988-06-10 1991-07-16 Bayer Aktiengesellschaft Chromium oxide green, a process for its production and its use
WO1993014023A1 (fr) * 1992-01-15 1993-07-22 Niro Holding A/S Procede de production d'une poudre constituee de particules fines et installation pour sa mise en ×uvre
WO1998037165A1 (fr) * 1997-02-24 1998-08-27 Superior Micropowders Llc Luminophores oxygenes, procedes de production de luminophores et dispositifs comprenant ces luminophores
US5945162A (en) * 1993-07-12 1999-08-31 Centre National De La Recherche Scientifique Method and device for introducing precursors into chamber for chemical vapor deposition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032377A (en) * 1988-06-10 1991-07-16 Bayer Aktiengesellschaft Chromium oxide green, a process for its production and its use
WO1993014023A1 (fr) * 1992-01-15 1993-07-22 Niro Holding A/S Procede de production d'une poudre constituee de particules fines et installation pour sa mise en ×uvre
US5945162A (en) * 1993-07-12 1999-08-31 Centre National De La Recherche Scientifique Method and device for introducing precursors into chamber for chemical vapor deposition
WO1998037165A1 (fr) * 1997-02-24 1998-08-27 Superior Micropowders Llc Luminophores oxygenes, procedes de production de luminophores et dispositifs comprenant ces luminophores

Also Published As

Publication number Publication date
FR2831466B1 (fr) 2004-01-23
FR2831466A1 (fr) 2003-05-02
WO2003037498A3 (fr) 2003-10-09
AU2002363186A1 (en) 2003-05-12

Similar Documents

Publication Publication Date Title
CA1260381A (fr) Deposition d'un revetement et formation de poudre par projection moleculaire d'un fluide supercritique
US4734227A (en) Method of making supercritical fluid molecular spray films, powder and fibers
US4734451A (en) Supercritical fluid molecular spray thin films and fine powders
EP1515911B1 (fr) Procede et dispositif de depot par pyrolyse de nanotubes de carbone ou de nanotubes de carbone dopes a l azote
US6228434B1 (en) Method of making a conformal coating of a microtextured surface
AU709384B2 (en) Methods and apparatus for particle precipitation and coating using near-critical and supercritical antisolvents
US6509065B2 (en) Plasma enhanced chemical deposition of conjugated polymer
US6471782B1 (en) Precursor deposition using ultrasonic nebulizer
EP0730671B1 (fr) Procede et dispositif d'introduction de precurseurs dans une enceinte de depot chimique en phase vapeur
CH629398A5 (fr) Procede de revetement d'une surface avec des matieres solides filmogenes.
JP2002361125A (ja) 機能性材料放出装置および方法
US20060275542A1 (en) Deposition of uniform layer of desired material
EP0506552A1 (fr) Procédé pour traiter par exemple la surface d'un substrat par projection d'un flux de plasma, et dispositif pour la mise en oeuvre du procédé
WO2003037498A2 (fr) Dispositif de fabrication de poudre par pyrolyse d'aerosol
FR2565677A1 (fr) Lithium enrobe, procede d'enrobage de lithium metallique et source d'energie utilisant du lithium enrobe.
WO2016001445A1 (fr) Procede de preparation de co-cristaux par evaporation flash
WO2013117671A1 (fr) Préparation de nanoparticules par évaporation flash
EP1374276A2 (fr) Procede de traitement de surface par plasma et dispositif pour la mise en oeuvre du procede
FR2897281A1 (fr) Procede de fabrication par nanocristallisation de composes energetiques ou inertes
WO2020161863A1 (fr) Procédé de lyophylisation sous vide et dispositif de séchage par congélation sous vide
US20030175442A1 (en) Method and apparatus for low-pressure pulsed coating
FR3061439A1 (fr) Particules du type coeur-ecorce
FR3044021A1 (fr) Procede d'ionisation d'argon
FR2929294A1 (fr) Appareil pour le traitement par plasma de corps creux
WO1995007768A1 (fr) Procede pour la realisation de materiaux ou revetements composites et installation pour sa mise en ×uvre

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP