WO2003037081A1 - Animal transgenique a gene hcv - Google Patents

Animal transgenique a gene hcv Download PDF

Info

Publication number
WO2003037081A1
WO2003037081A1 PCT/JP2002/009767 JP0209767W WO03037081A1 WO 2003037081 A1 WO2003037081 A1 WO 2003037081A1 JP 0209767 W JP0209767 W JP 0209767W WO 03037081 A1 WO03037081 A1 WO 03037081A1
Authority
WO
WIPO (PCT)
Prior art keywords
hepatitis
virus
full
gene
animal
Prior art date
Application number
PCT/JP2002/009767
Other languages
English (en)
French (fr)
Inventor
Michinori Kohara
Hiroshi Suzuki
Otoya Ueda
Kou-Ichi Jishage
Asao Katsume
Original Assignee
Tokyo Metropolitan Organization For Medical Research
Chugai Seiyaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Organization For Medical Research, Chugai Seiyaku Kabushiki Kaisha filed Critical Tokyo Metropolitan Organization For Medical Research
Priority to US10/494,177 priority Critical patent/US20060174354A1/en
Priority to JP2003539438A priority patent/JPWO2003037081A1/ja
Priority to EP02768013A priority patent/EP1454524A4/en
Publication of WO2003037081A1 publication Critical patent/WO2003037081A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0337Animal models for infectious diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24211Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
    • C12N2770/24222New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/30Vector systems comprising sequences for excision in presence of a recombinase, e.g. loxP or FRT

Definitions

  • the present invention relates to a transgenic animal expressing full-length human hepatitis C virus (HCV) for the purpose of constructing a screening system for a therapeutic agent for human hepatitis C.
  • HCV human hepatitis C virus
  • HCV hepatitis C virus
  • HCV poliovirus
  • the receptor gene has been introduced into mice
  • HCV the receptor gene
  • the HCV gene was difficult to integrate into mouse individuals, and in most cases, even when successfully integrated, no HCV protein was produced.
  • the protein was produced from the fetal period and became immune-tolerant. Nakata.
  • the present inventors introduced a vector previously constructed so as to perform switching expression of a partial cDNA derived from HCV into a mouse fertilized egg by microinjection, whereby the mouse became similar to human hepatitis C in a mouse. Successfully developed a disease state (Japanese
  • switching expression refers to the expression of a specific gene at a desired time. Is an expression system that can express
  • HCV-derived proteins can be produced, the problem of immune tolerance, which has been a problem in hepatitis C model animals, could be avoided.
  • the present inventors have succeeded in constructing a vector capable of switchingly expressing the full-length HCV gene (Japanese Patent Application Laid-Open No. 2000-152793). However, at the time of establishing the vector, the gene was stably obtained. There was no report that a transgenic animal expressing the gene was produced. Disclosure of the invention
  • An object of the present invention is to provide a hepatitis C model animal that expresses the HCV full-length gene and a method for producing the model animal.
  • the present inventors have conducted intensive studies on the production of a hepatitis C model animal, and as a result, a vector constructed so as to express HCV full-length cDNA by switching is expressed via an ES cell.
  • the present inventors have found that a transgenic animal line capable of stably expressing the HCV gene can be created by introducing the gene into the present invention, and have completed the present invention.
  • the present invention has the following matters.
  • a transgenic hepatitis C model animal capable of integrating the full-length DNA of hepatitis C virus and expressing the full-length HCV gene.
  • the means for switching expression of full-length thigh A of hepatitis C virus is based on the stuffer gene in which a 1 oxP sequence is inserted between the full-length DNA of the hepatitis C virus and the promoter.
  • Generating a hepatitis C model animal having a full-length HCV gene which comprises introducing a vector containing the full-length DNA of hepatitis C virus into ES cells and generating the ES cells through a chimeric embryo.
  • the means to switch and express the full-length DNA of hepatitis C virus is to interpose a stuffer gene sandwiched between 1 oxP sequences between the full-length DNA of hepatitis C virus and the motor. , (8).
  • a method for screening a therapeutic agent for hepatitis C virus-related disease or a substance that suppresses the growth of hepatitis C virus comprising the following steps.
  • the method for producing a transgenic animal used in the present invention which comprises introducing a gene of interest into totipotent cells and generating the totipotent cells individually, is particularly useful for proteins and the like that have been conventionally difficult to express. It is considered that the method is suitable for producing transgenic mice capable of expressing E. coli. Therefore, proteins and the like that are difficult to express in transgenic mice produced by other methods can be expressed by the transgenic production method used in the present invention.
  • a protein or the like that is difficult to express refers to a protein or the like in which the expression of protein or the like cannot be confirmed in whole or in part because the expression level is low in the transgenic animal. This refers to evening protein that is too strong to be lethal in transgenic animals produced by other methods.
  • the present invention is a disease model animal into which a full-length HCV DNA gene has been introduced so that it can be expressed, and the model animal is lined and capable of transmitting the introduced gene to progeny.
  • the vector used for producing the model animal of the present invention is preferably a vector constructed so that both ends of the HCV gene can be transcribed accurately and uniformly.
  • RNA virus gene In order to accurately and uniformly transcribe both ends of the RNA virus gene, a liposome that cleaves by self-processing at the 5'-end upstream and 3'-end downstream of the DNA encoding the HCV virus gene is used.
  • a method for arranging the encoding DNA can be exemplified, but is not limited thereto. Examples of such DNA include DNA encoding hammerhead lipozyme (Japanese Patent Application Laid-Open No. 2000-152793).
  • a vector containing the full-length HCV gene was prepared by a method described in JP-A-2000-152793, in which a DNA fragment containing two DNAs encoding the lipozyme and the HCV gene as described above was prepared by PCR or the like. This DNA fragment can be prepared by inserting the DNA fragment into a vector containing an appropriate promoter and evening mineral (p5, -3 'RBZ).
  • the vector of the present invention may be one that can be expressed immediately after it has been transferred into a host cell, but one that starts expression only after a specific treatment is preferred.
  • Means for initiating expression by a specific treatment include means using a promoter that is not recognized by the RNA polymerase of the host cell, Cre / loxP expression system (Nat sternberg et al., J. Molecular Biologyl 50, p467-486, For example, means using Kaihei 10-84813) can be used.
  • Cre / loxP expression system Non sternberg et al., J. Molecular Biologyl 50, p467-486, For example, means using Kaihei 10-84813
  • RNA polymerase capable of recognizing a promoter in a vector is expressed in a host cell.
  • the target gene can be initiated.
  • expression of the target gene can be initiated by expressing the Cre enzyme in the host cell.
  • the Cre / loxP expression system consists of an inserted gene (Stuiier, which intervenes between the promoter and the gene of interest and represses the expression of that gene), and the inserted gene. And a P1 phage CreDNA recombinase (hereinafter simply referred to as “Cre”) that removes a gene together with a single ⁇ sequence.
  • the target gene can be expressed at any time by allowing Cre to act.
  • the stuffer is not limited to a specific gene; for example, a neomycin resistance gene is listed as a stuffer.
  • the ⁇ sequence is a 34 bp long DNA derived from the gene of Escherichia coli P1 phage.
  • Cre is a DNA recombinase derived from E. coli P1 phage with a molecular weight of about 38 kD. Cre can act, for example, by infecting an adenovirus expressing Cre. By switching expression of HCV-derived cDNA, an animal can produce HCV-derived protein at a certain stage of growth.
  • a vector containing a promoter and a ⁇ sequence having the function of switching expression can be prepared according to the method described in JP-A-10-84813 (pCALN / pBR). Deposited with the National Institute of Advanced Industrial Science and Technology (AIST), Patent Organism Depositary, Senyuichi (1-1-1, Higashi 1-chome, Tsukuba, Ibaraki, Japan), deposited under the accession number FERM P-1 5753 on July 22, 1997. .
  • the vector (pCALN / HCV RBZ) can be produced according to the method described in JP-A-2000-152793.
  • the Escherichia coli transfected with the pCALN / HCV RBZ was transferred to the National Institute of Advanced Industrial Science and Technology (AIST) at the Patent Organism Depositary Center (1-1-1, Higashi, Tsukuba, Ibaraki, Japan) under the accession number FERM BP-6763 in 1997 Deposited on October 31.
  • Transgenic animals include, for example, Pro. Natl. Acad. Sci. USA 77: 7380-7384,
  • the transgene is introduced into a totipotent cell of a mammal, the cell is generated into an individual, and an individual having the transgene integrated in somatic cells and germ cell chromosomes is selected. Can be produced. Generate to individual As the totipotent cells, it is desirable to select totipotent cells in which the degree of expression of the target protein is preferable. Mammals are preferably rodents such as mice, rats, and hams. Among them, a large number of inbred strains have been produced, and techniques for culturing fertilized eggs, in vitro fertilization, etc. Well equipped mice are preferred, but technically it is possible to cover all animal species except humans.
  • totipotent cells into which a gene is introduced include fertilized eggs and early embryos, as well as cultured cells such as ES cells having multipotency.
  • the efficiency of transgenic animal production and the genes introduced into the next generation In consideration of the transmission efficiency of the cells, it is desirable to use ES cells.
  • ES cells When ES cells are injected into blastocysts, they mix with the inner cell mass of the host embryo and contribute to the formation of mouse embryos and fetuses, resulting in chimeric mice. In some cases, a mouse whose fetal body consists only of ES cells may be formed.
  • ES cells contribute to the formation of primordial germ cells that form eggs and sperm in chimeric mice in the future, germline chimeras are created, and by crossing the chimeric mice, mouse cells derived from ES cells can be obtained. It can.
  • a known electrostatic pulse method, ribosome method, calcium phosphate method and the like can be used, but an electroporation method is preferred.
  • the transgene is introduced into the cell chromosome.
  • a marker-gene is used in the gene transfer vector, cells into which the desired gene has been introduced will obtain the marker gene, so that selection can be performed using this marker gene as an index.
  • cells into which the desired gene has been introduced can be selected by culturing the cells after the vector introduction in the presence of a lethal concentration of the drug.
  • the above-mentioned mammalian cells are assembled with an early embryo or injected into a blastocyst cavity to obtain a chimeric embryo, which is transplanted into a pseudopregnant female uterus, and This can be done by generating When ES cells are used as cells to be injected into an embryo, chimeric embryos can be produced by injecting the cells into blastocysts.
  • the blastocysts used for injection can be obtained by perfusing the uterus of pregnant females.
  • the external characteristics (eg, coat color) of the created individual are derived from the injected cell so that it can be tested after the individual has been created whether the cells injected into the embryo have been incorporated into the developing and developing embryo. Part differs from the part derived from the blastocyst Thus, it is desirable to select a line from which a blastocyst is obtained. From the obtained animals, those having full-length HCV DM are selected, and those in which HCV-derived DNA is expressed by switching are selected to obtain the hepatitis C model animal of the present invention.
  • the hepatitis C model animal of the present invention can also be obtained by breeding the chimeric animal with a homologous animal of an appropriate strain to obtain a litter. it can.
  • DNA is extracted from the obtained animal, is converted into type II, an oligonucleotide corresponding to the introduced DNA is synthesized to obtain a primer, and PCR is performed. If HCV cDNA is introduced, amplified HCV DNA is detected, but if HCV DNA is not introduced, amplified HCV DNA is not detected. In addition, whether or not the HCV DNA is expressed by switching is determined by removing the sequence that inhibits the expression of the HCV DNA and producing a protein corresponding to the DNA in vitro or in vivo. Should be checked. Whether or not a protein corresponding to the HCV DNA is produced can be examined by Western blotting, fluorescent antibody staining, or the like.
  • the hepatitis C model animal of the present invention does not develop hepatitis as it is, and in order to develop hepatitis, the sequence that suppresses the expression of the DNA is removed. It is necessary to.
  • a DNA recombinase can be used.
  • the suppressor sequence is a ⁇ sequence, it is infected with the adenovirus AxNCre that expresses Cre, an enzyme that removes 1 oxP sequence. It should be done. Cre and AxNCre can be prepared as described in Yumi Kanegawa et al., Nucl. Acids Res. 23, 19, 38 16-21, 1995.
  • the method for producing a transgenic animal expressing the HCV gene of the present invention can be applied to not only a full-length HCV gene but also a partial HCV gene.
  • the transgenic animal expressing the HCV gene of the present invention may be further treated for the purpose of expressing more HCV.
  • the amount of HCV expression in the transgenic animal expressing the HCV gene of the present invention is for further purposes, the transgenic animal of the present invention can be deficient-suppressed for its immune function to be in an immunodeficient state.
  • Cre-expressed adenovirus-infected cells administered to induce HCV expression are immune cells such as CD8 antigen-positive cytotoxic T cells. May be excluded by In such a case, if the transgenic animal of the present invention is in an immunodeficient state, elimination of Cre-expressing adenovirus-infected cells is unlikely to occur, and it is thought that HCV can be expressed efficiently.
  • the transgenic animal of the present invention in an immunodeficient state is not particularly limited as long as it is an animal in which all or part of the immune function is deficient or all or part of the immune function is suppressed.
  • Examples of a method for producing such an immunodeficient transgenic animal include a method in which the transgenic animal of the present invention is bred to an immunodeficient animal, and a method in which a drug is administered to the transgenic animal of the present invention. Examples include, but are not limited to, a method of suppressing immunity by administration and a method of causing tolerance in the transgenic animal of the present invention.
  • an immunodeficient animal to be bred with the transgenic animal of the present invention can be appropriately selected by those skilled in the art.
  • the animal is a mouse, for example, a nude mouse, sdd mouse, scid-NOD mouse, RAG-1K0 mouse, RAG-2K0 mouse, IRF-1K0 mouse, and the like.
  • Specific examples of the drug administered to render the transgenic animal of the present invention immunodeficient include an immunosuppressant.
  • the immunosuppressive agent is not particularly limited as long as it has an immunosuppressive effect.
  • examples include commercially available cyclosporin, evening clolimus, steroids, certain anticancer agents, and antibodies with known immunosuppressive effects such as anti-CD8 antibody. Can be used.
  • Tolerance is a condition in which an antigen-specific immune response has been lost, and multiple doses of a tolerogenic antigen are administered to a fetus or newborn animal, or the gene encoding the tolerogen in the animal. Can be caused by, for example, the expression of Therefore, for example, when it is difficult to eliminate adenovirus, an antigen derived from adenovirus may be used as a tolerogen.
  • the transgenic animal expressing the HCV gene of the present invention includes a transgenic animal further treated to express more HCV, such as a transgenic animal into which an immunodeficiency state has been introduced. Is also included.
  • a therapeutic agent for hepatitis C virus-related disease or a substance that suppresses the growth of hepatitis C virus can be screened.
  • a test substance is administered to a transgenic animal expressing the full-length HCV gene of the present invention, and the amount of hepatitis C virus in the animal is measured and compared with the amount of hepatitis C virus and no inflammation virus when the test substance is not administered.
  • This makes it possible to screen for a substance that reduces the amount of hepatitis C virus, that is, a therapeutic agent for a hepatitis C virus-related disease or a substance that suppresses the growth of hepatitis C virus.
  • any amount of HCV may be measured as long as it directly or indirectly indicates the amount of HCV as well as HCV itself.
  • the amount of virus in blood may be measured directly, or the amount of HCV may be measured using serum biochemical values (ALT, AST) as indicators of hepatitis as an index.
  • serum biochemical values ALT, AST
  • a simple method is to directly measure the amount of virus in blood, and any known method such as absorbance measurement, RT-PCR, and TMA-HPA.
  • FIG. 1 is a diagram showing the construction of a vector used for producing the transgenic animal of the present invention.
  • FIG. 1A shows the construction up to p5′-3′RBZ
  • FIG. 1B shows the construction of p5′-3′RBZ. The construction from to pCALN / HCV RB Z is shown.
  • Fig. 2 is a table showing the results of transgenic mice produced by the microinjection method.
  • FIG. 3 is a table showing the results of gene transfer into ES cells.
  • FIG. 4 is a table showing the results of production of transgenic mice produced via ES cells.
  • Figure 5 is a diagram showing the expression of HCV gene in trans diethyl nick mouse t
  • the numbers attached to the figure of the plasmid at the bottom represent the number from the first base of the EcoRI site to the first base of the restriction enzyme site, assuming that the first base is 1.
  • Xhol and Xbol sites are not only shown in the figure. It is constructed by sequentially connecting the cytomegalovirus (CMV) enhancer and the chicken jS actin promoter, ⁇ sequence, neomycin resistance gene, ⁇ sequence, lipozyme, HCV full-length cDNA and lipozyme.
  • CMV cytomegalovirus
  • jS actin promoter cytomegalovirus
  • ⁇ sequence neomycin resistance gene
  • ⁇ sequence neomycin resistance gene
  • lipozyme HCV full-length cDNA and lipozyme
  • the DNA fragment was recovered.
  • the recovered DNA fragment was purified by Gel Extraction kit from QIAGEN, and then extracted with phenol Z-form and then with form, and precipitated with ethanol. The precipitate was washed with 70% ethanol and dissolved in sterile PBS.
  • pronuclear fertilized eggs of C57BL / 6J (B6) or BAL B / c mice were used.
  • B6 strain frozen fertilized eggs were thawed and used.
  • BAL B / c fertilized eggs were obtained by mating superovulated females with males of the same strain, and collecting the following morning from the tubal ampulla of the female whose plug was confirmed.
  • the recovered eggs were treated with hyaluronidase to remove cumulus cells, washed with Wliit ten's (WM + EDTA) medium supplemented with IOOM EDTA, and then selected for pronuclear fertilized eggs. .
  • Wliit ten's Wliit ten's
  • the introduced fragment was diluted with PBS and adjusted to about 3 ng / 1, and microinjected into the pronucleus of a fertilized egg using a micromanipulator.
  • the microinjection was performed using the “C57BL / 6 mice Method for Generating Transgenic Mouse "Latest Technology of Gene Targeting Separate Volume Experimental Medicine (Yodosha) (2000) PP 190-207, Ueda Otoya, Terasha Koichi, Suzuki Hiroshi
  • Yodosha (2000) PP 190-207, Ueda Otoya, Terasha Koichi, Suzuki Hiroshi
  • the next day, embryos developed at the 2-cell stage were transferred to recipient female oviducts. Litters were obtained 19 days after transplantation by cesarean section or spontaneous delivery.
  • Genotyping was performed by Southern blot.
  • the probe can be used to remove the neomycin resistance gene or a part of the HCV core protein gene contained in the introduced fragment.
  • the core protein was detected by a quantitative method, and the NS5B protein was detected by Western blot.
  • Five founders (# 4 male, 5 male, 8 female, 9 female and 10 male) were obtained using B6 fertilized eggs. When these Founders were crossed, next-generation individuals derived from three Founders (# 4, 5 and 10) were obtained.
  • the number of founders obtained using BALB / c fertilized eggs was 10 (# 5, 5-11, 2-23, 3-5, 4-1, 4-3, 4-12, 4-21 , 5-9 and 5-15). Among them, # 1-5 and # 4-1 were obtained in the next generation, but transmission of the transgene was not confirmed. As a result of the Founder's cross, 8 lines could be converted into lines.
  • the Mouse Kit (Lexicon) was used. ES cell culture and transformant screening were performed basically according to the protocol attached to the kit. Gene transfer was carried out by electroporation of 40 g of the introduced DNA fragment at 230 V, 500 conditions. 48 hours after electroporation, the medium was replaced with a medium supplemented with 200 g / ml G418, and the introduced clone was selectively cultured. Colonies grown on the G418-supplemented medium were picked up and grown on a 96-well plate. Of the expanded clone Some were genotyped by Southern blot.
  • the clone with the expected signal was grown to about 1 ⁇ 10 6 and HCV gene expression was achieved by removing the Stuiier sequence by introducing the Cre gene with an adenovirus vector (Ad / Cre). And examined the expression levels of core protein and NS5B.
  • Chimeric mice were produced from ES cell clones with high expression of HCV core protein and NS5B protein by Ad / Cre.
  • As the host embryos C57BL6 (B6) based equine chorionic gonadotropin in c 48 hour intervals using the blastocysts (eCG) and human Bok placental chorionic gonadotropin (hCG), each 5 iu.
  • the abdominal cavity A female mouse superovulated by intravenous administration is mated with a male of the same strain, and embryos from the 8th cell stage to the morula stage are collected on the 5th day of pregnancy from the female whose plug formation has been confirmed the next morning.
  • the blastocysts obtained after further culturing for 24 hours were used for ES cell injection.
  • the injection was performed using a piezo micromanipulator, and after the injection, the animal was transplanted into the recipient female uterus on the second day of pseudopregnancy. Litters were obtained 17 days after transplantation by spontaneous delivery or cesarean section (Kawase et al., Conte Immediately Top Lab AnimSci, 40, 31-34, March (2001)).
  • the contribution ratio of ES cells was estimated based on the ratio of wild-color hair color derived from ES cells.
  • Germline transmission of ES cells was examined by the coat color of offspring obtained by mating male chimeric mice with B6 female mice after sexual maturation.
  • NS5B protein was detected in 7 clones in which the core protein had an expression of 400 pg / mg protein or more. Clear signals were observed in 3 of the clones (# A20, A26 and A41).
  • 240 G418-resistant clones were obtained.
  • 143 clones showed a signal at a normal position.
  • 52 clones were expanded and subjected to protein expression analysis.
  • NS5B protein was detected in 3 of the 5 clones whose core protein was 400 pg / mg protein or more. (# B15, B20 and B27) (Fig. 3).
  • the transgenic mouse of the present invention is the world's first mouse in which the expression of HCV protein was observed by introducing a full-length expression unit.
  • the transgenic animal of the present invention can express the full-length HCV protein, and can also transmit the full-length HCV gene to offspring by mating, elucidating the onset mechanism of hepatitis C, and developing a therapeutic agent for human hepatitis C. Useful for the development of screening systems.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Environmental Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Husbandry (AREA)
  • Virology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

明細書
HCV遺伝子トランスジエニック動物 技術分野
ヒ卜 C型肝炎治療薬のスクリーニング系構築を目的とした、 ヒト C型肝炎ウィル ス(HCV)の全長を発現するトランスジエニック動物に関する。 背景技術
C型肝炎ウィルス (以下, 「HCV」 という) の遺伝子をマウスなどの小動物に導 入し、 導入した遺伝子を発現させて肝炎の発症モデル動物を作ろうという試みは これまでも多く行われてきた(C. Pasduinelliら Abstract book of 2nd internat ional meeting on hepatitis C virus and related viruses (July 3ト August 5, 1994 San Diego, USA) ; C. Pasauinelli ら Abstract book of 3rd internatio nal meeting on hepatitis C virus and related viruses (August 28, Septemb er 3, 1995 Gold coast, Australia) ; Kazuhiko Koikeら、 J. General Virologyゝ 76、 p3031 - 3038、 1995; T. Kato、 Arch Virol、 141、 p951-958、 1996)。 HCVと同 様にヒトゃチンパンジーにしか感染性がないポリオウイルスでは、 受容体遺伝子 をマウスに導入したトランスジエニックマウスが開発されており、 ワクチンの評 価系に利用されている。 しかし、 HCVについてはウィルスの受容体遺伝子や感染 後の細胞内での挙動など、 不明な点が多い。 ほかの多くの遺伝子と異なり、 HCV 遺伝子はマウス個体への組み込みが困難であり、 また、 うまく組み込まれても HC V蛋白質の産生が認められない例がほとんどであった。 さらに、 HCV蛋白質の産生 が認められた極めて稀な例でも胎児期より蛋白質が産生され、 免疫寛容になるた めに、 生後も典型的な肝炎症状を呈するものはなく、 肝炎モデルにはなり得なか つた。
本発明者らは、 先に HCV由来の部分 cDNAをスィツチング発現するように構築し たべクタ一をマウスの受精卵へマイクロインジェクシヨンにより導入することに より、 マウスにヒトの C型肝炎と似た病態を発現させることに成功した (特開平 1
0 - 84813号公報) 。 ここで、 スイッチング発現とは、 所望の時期に特定の遺伝子 を発現させることができる発現システムをいい、 動物がある程度成長した段階で
HCV由来蛋白質を産生することができるため、 C型肝炎モデル動物で問題となって いた免疫寛容の問題を回避することができた。
しかし、 該発明において発現するのは、 HCVの部分遺伝子であり、 全長遺伝子 を発現したという報告はなかった。
全長 HCV遺伝子をマウスに導入し、 HCV発現モデル動物を作成しょうとする試み もあった (Matsuda ら、 Jpn. J. Cancer Res. , 89, 150-158, February 1998) c しかし、 上述のような発現制御はされておらず、 さらに子孫マウスにおいて全長 HCVが発現されているというデー夕は、 得られていない。
一方、 本発明者らは、 HCVの全長遺伝子をスイッチング発現させることが可能 なベクターの構築に成功していたが (特開 2000-152793号公報) 、 該ベクター確 立の時点では、 安定に遺伝子を発現するトランスジエニック動物を作出したとい う報告はされていなかった。 発明の開示
本発明は、 HCV全長遺伝子を発現する C型肝炎モデル動物および該モデル動物を 作出する方法の提供を課題とする。
本発明者らは、 上記問題点に鑑み、 C型肝炎モデル動物の作出について鋭意検 討を行った結果、 HCVの全長 cDNAをスウイツチング発現するように構築したべク ターを ES細胞を介して動物に導入することにより、 安定的に HCV遺伝子を発現す るトランスジエニック動物ラインが作出できることを見出し、 本発明を完成させ るに至った。
すなわち、 本発明は以下の事項を要旨とする。
( 1 ) C型肝炎ウィルスの全長 DNAを組み込み、 HCV遺伝子全長を発現することが できる、 トランスジエニック C型肝炎モデル動物。
( 2 ) 動物がマウスである (1 ) の C型肝炎モデル動物。
( 3 ) C型肝炎ウィルスの全長 DNAが、 スイッチング発現するように導入されて いる、 (1 ) または (2 ) の C型肝炎モデル動物。
( 4 ) C型肝炎ウィルスの全長腿 Aをスイッチング発現させる手段が、 C型肝炎 ゥィルスの全長 DNAとプロモーターの間に 1 oxP配列に挟まれたスタッファ一遺伝 子を介在させることである、 (3) の C型肝炎モデル動物。
(5) C型肝炎ウィルスの全長 DNAを導入した ES細胞 (胚性幹細胞) をキメラ胚 を介して個体発生して得られる哺乳動物およびその子孫動物であって、 体細胞染 色体および生殖細胞中に上記全長 HCV遺伝子を保有する、 (1) 〜 (4) のいず れかの C型肝炎モデル動物。
(6) C型肝炎ウィルスの全長 DNAを含むベクターを ES細胞に導入し、 該 ES細胞 をキメラ胚を介して個体発生させることを含む、 全長 HCV遺伝子を保有する C型肝 炎モデル動物の作出方法。
(7) 動物がマウスである、 (6) の作出方法。
(8) C型肝炎ウィルスの全長 DNAが、 スイッチング発現するように導入される、 (6) または (7) の作出方法。
(9) C型肝炎ウィルスの全長 DNAをスイッチング発現させる手段が、 C型肝炎 ウィルスの全長 DNAとプ口モータ一の間に 1 oxP配列に挟まれたスタッファ一遺伝 子を介在させることである、 (8) の作出方法。
(10) 以下の工程を含む C型肝炎ウィルス関連疾患治療剤又は C型肝炎ウィル スの増殖を抑制する物質のスクリーニング方法。
(a) (1) 〜 (5) のいずれかの動物に被験物質を投与する工程、
(b) 上記動物の C型肝炎ウィルス量を測定する工程、 および
(c) 被験物質を投与しない場合と比較して、 C型肝炎ウィルス量を減少させる物 質を選択する工程
(11) 免疫不全状態が導入された (1) 〜 (5) のいずれかの C型肝炎モデ ル動物。
本発明で用いた、 全能性細胞に目的の遺伝子を導入し、 該全能性細胞を個体発 生させることを特徴とするトランスジエニック動物作出方法は、 特に、 従来発現 が困難であったタンパク質等を発現することが可能な卜ランスジエニックマウス の作出に好適であると考えられる。 従って、 他の方法で作出したトランスジェニ ックマウスでは発現の困難であったタンパク質等でも、 本発明で用いたトランス ジエニック作出法ならば、 発現することが可能である。 ここでいう、 発現の困難 なタンパク質等とは、 トランスジエニック動物中では発現量が少ないために、 夕 ンパク質等全体もしくは一部分の発現が確認できないタンパク質等または発現が 強すぎて他の方法で作出したトランスジエニック動物では致死となってしまうよ うな夕ンパク質等のことをいう。
本発明は、 全長 HCV DNA遺伝子が発現可能に導入された病態モデル動物であり, 該モデル動物は、 ライン化されており導入遺伝子を子孫に伝達することが可能で ある。
1 . 全長 HCV遺伝子を含むベクタ一の取得
本発明のモデル動物の作出に用いるベクターは、 HCV遺伝子の両末端が正確か つ均一に転写できるように構築されているベクターが好ましい。
ここで、 「両末端を正確に転写できる」 とは、 DNAから作られる RNAが、 ウィル ス本来のゲノム RNAと全く同一かあるいは翻訳能力に影響を与えない程度の塩基 配列の差異しか存在しない、 という意味である。 また、 「両末端を均一に転写で きる」 とは、 一定の再現性をもって特定の塩基配列を持つ RNAを作ることができ る、 という意味である。
RNAウィルスの遺伝子の両末端を正確かつ均一に転写するためには、 HCVウィル スの遺伝子をコードする DNAの 5'末端の上流及び 3'末端の下流のそれぞれにセル フプロセッシングにより切断するリポザィムをコードする DNAを配置する方法を 例示することができるが、 これに限定されるわけではない。 このような DNAとし てハンマーへッドリポザィムをコードする DNAが挙げられる (特開平 2000- 152793 号公報) 。
全長 HCV遺伝子を含むベクターは、 特開平 2000- 152793号公報に記載の方法に従 つて、 上述したようなリポザィムをコードする 2つの DNAと HCV遺伝子とを含む DN A断片を PCRなどにより作製し、 この DNA断片を適当なプロモーターと夕一ミネ一 タ一を含むベクターに挿入することにより作製できる(p5,- 3' RBZ)。
本発明のベクターは、 宿主細胞内に移入された後、 直ちに発現するものであつ てもよいが、 特定の処理によりはじめて発現を開始するものの方が好ましい。 特 定の処理により発現を開始させる手段としては、 宿主細胞の RNAポリメラーゼに 認識されないプロモーターを使用する手段、 Cre/loxP発現システム(Nat sternbe rg et al. , J. Molecular Biologyl50, p467- 486、 特開平 10- 84813号公報)を使 用する手段などを例示することができる。 前者の手段では、 ベクタ一中のプロモ 一夕一を認識できる RNAポリメラ一ゼを宿主細胞内で発現させることにより、 目 的遺伝子の発現を開始させることができる。 後者の手段では、 Cre酵素を宿主細 胞内で発現させることにより、 目的遺伝子の発現を開始させることができる。
Cre/loxP発現システムは、 2つの ΙοχΡ配列にはさまれた挿入遺伝子 (Stuiier、 これが、 プロモー夕一と目的とする遺伝子の間に介在し、 その遺伝子の発現を抑 制する) と、 挿入遺伝子を 1つの ΙοχΡ配列とともに除去する P 1ファージ CreDNA組 換え酵素 (以下、 単に 「Cre」 という) とからなり、 Creを作用させることにより 任意の時期に目的の遺伝子を発現させることができる。 スタッファ一は、 特定の 遺伝子に限定されず、 例えば、 ネオマイシン耐性遺伝子がスタッファ一として挙 げられる。 ΙοχΡ配列は、 大腸菌 P1ファージの遺伝子に由来する長さ 34bpの DNAで ある。 Creは、 大腸菌 P1ファージに由来する分子量約 38kDの DNA組換え酵素である。 Creは例えば、 Creを発現するアデノウイルスを感染させることにより作用させる ことができる。 HCV由来の cDNAをスイッチング発現させることにより、 動物があ る程度成長した段階で HCV由来の蛋白質を産生させることができる。
スィツチング発現する機能を有する、 プロモーターと ΙοχΡ配列を含むベクタ一 は、 特開平 10- 84813号公報に記載の方法に従って作製でき (pCALN/pBR) 、 該 pCA LN/pBRを導入した大陽菌は、 独立行政法人 産業技術総合研究所 特許生物寄託 セン夕一 (日本国茨城県つくば市東 1丁目 1番地 1中央第 6 ) に受託番号 FERM P-1 5753として 1997年 7月 22日に寄託されている。
前記全長 HCV遺伝子を含むベクターとスィツチング発現する機能を有する、 プ 口モータ一と ΙοχΡ配列を含むベクターを用いて、 本発明の全長 HCV遺伝子を有す るモデル動物の作出に直接用いるベクター(pCALN/HCV RBZ)を特開平 2000-152793 号公報に記載の方法に従って作製することができる。 該 pCALN/HCV RBZを導入し た大腸菌は、 独立行政法人 産業技術総合研究所 特許生物寄託センター (日本 国茨城県つくば市東 1丁目 1番地 1中央第 6 ) に受託番号 FERM BP-6763として 1997 年 10月 31日に寄託されている。
2 . 全長 HCV遺伝子発現トランスジエニック動物の作出
トランスジエニック動物は、 例えば、 Pro. Nat l. Acad. Sc i. USA 77: 7380-7384,
1980の方法等に従って、 上記導入遺伝子を哺乳動物の全能性細胞に導入し、 この 細胞を個体へと発生させ、 体細胞および生殖細胞染色体中に導入遺伝子が組み込 まれた個体を選別することによって作出することができる。 個体へと発生させる 全能性細胞は、 目的のタンパク質の発現の程度が好ましい全能性細胞を選択して おくことが望ましい。 哺乳動物としては、 好ましくはマウス、 ラット、 ハムス夕 一などのげつ歯類であり、 それらの中でも特に近交系が多数作出されており、 し かも受精卵の培養、 体外受精等の技術が整っているマウスが好ましいが、 技術的 にはヒトを除く全ての動物種を対象とすることが可能である。 遺伝子を導入する 全能性細胞としては、 受精卵や初期胚のほか、 多分化能を有する ES細胞のような 培養細胞が挙げられるが、 トランスジエニック動物個体の産出効率や次代への導 入遺伝子の伝達効率を勘案した場合、 ES細胞を用いることが望ましい。 ES細胞を 胚盤胞の中に注入すると、 宿主胚の内部細胞塊と混ざりあってマウス胚と胎仔の 形成に寄与してキメラマウスができる。 また、 胎仔本体が ES細胞だけからなるマ ウスができることもある。 キメラマウスの中で ES細胞が将来卵や精子を形成する 始原生殖細胞の形成に寄与した場合、 生殖系列キメラができ、 このキメラマウス を交配することにより、 ES細胞由来のマウス個体を得ることができる。 培養細胞 への遺伝子導入法としては、 公知の静電パルス法、 リボソーム法、 リン酸カルシ ゥム法等も利用できるが、 エレクトロポレーシヨン法が好ましい。
HCV全長遺伝子導入を行った一部の ES細胞においては、 細胞染色体中に導入遺 伝子が導入される。 遺伝子導入ベクターにおいてマーカ一遺伝子を利用している 場合には、 所望の遺伝子導入が行われた細胞はマーカー遺伝子を得ることとなる ので、 このマーカー遺伝子を指標とすることにより選抜を行うことができる。 例 えば、 マーカー遺伝子として薬剤耐性遺伝子を用いた場合には、 ベクター導入後 の細胞を、 致死濃度の薬剤存在下で培養することにより所望の遺伝子導入が行わ れた細胞を選抜することができる。
本発明の哺乳動物作出は、 上述の哺乳動物細胞を初期胚と集合、 あるいは胚盤 胞腔に注入してキメラ胚を得、 該キメラ胚を偽妊娠させた雌の子宮に移植し、 個 体まで発生させることによって行うことができる。 胚に注入する細胞として、 ES 細胞を用いた場合には、 これを胚盤胞に注入することによりキメラ胚を作製する ことができる。 注入に用いる胚盤胞は、 妊娠した雌の子宮を灌流することによつ て得ることができる。 胚に注入した細胞が発生分化中の胚に取り込まれたか否か を個体作出後に検定できるようにするため、 作出された個体の外部的特徴 (例え ば、 毛色) が、 注入した細胞に由来する部分と胚盤胞に由来する部分とで異なる ように、 胚盤胞を得る系統を選択することが望ましい。 得られた動物の中から全 長 HCV DMを有しているものを選抜し、 さらに HCV由来の DNAがスイッチング発現 するものを選抜して、 本発明の C型肝炎モデル動物を得ることができる。 また、 キメラ動物の生殖細胞が注入した細胞に由来すれば、 キメラ動物を適当な系統の 同種動物と交配させ産仔を得ることによつても本発明の C型肝炎モデル動物を得 ることができる。
得られた動物から DNAを抽出し、 それを铸型とし、 導入した DNAに対応するオリ ゴヌクレオチドを合成してプライマ一とし、 PCRを行う。 HCVの cDNAが導入されて いれば増幅 HCV DNAが検出されるが、 HCVの DNAが導入されていなければ増幅 HCV D NAは検出されない。 また、 HCVの DNAがスイッチング発現しているかどうかは、 HC Vの DNAの発現を阻害している配列を除去し、 in vi troまたは in vivoで該 DNAに対 応する蛋白質が産生されているかどうかを調べればよい。 HCVの DNAに対応する蛋 白質が産生されているかどうかは、 ウエスタンブロット法ゃ蛍光抗体染色法など により調べることができる。
HCVの DNAは、 スイッチング発現するので本発明の C型肝炎モデル動物は、 その ままの状態では肝炎を発症せず、 肝炎を発症させるためには当該 DNAの発現を抑 制している配列を除去することが必要である。 そのような抑制配列を除去するに は、 DNA組換え酵素を用いればよく、 例えば、 抑制配列が、 ΙοχΡ配列であれば、 1 oxP配列を除去する酵素である Creを発現するアデノウイルス AxNCreを感染させれ ばよい。 Creおよび AxNCreは、 Yumi Kanegawaら Nuc l. Ac ids Res. 23, 19, 38 16- 21, 1995の記載に従 て作製することができる。
導入遺伝子の存在が確認された個体を初代 (Founder) として、 交配により HCV 遺伝子を染色体の一部に安定的に発現可能に組み込んだ動物を効率よく作出する ことができる。
また、 本発明の HCV遺伝子発現トランスジエニック動物の作出方法は、 全長 HCV 遺伝子だけではなく、 部分 HCV遺伝子にも応用できる。
本発明においては、 さらに多くの HCVを発現させる目的で、本発明の HCV遺伝子 発現トランスジエニック動物にさらなる処置を施してもよい。
例えば、 本発明の HCV遺伝子発現トランスジエニック動物における HCV発現量を さらに多くする目的で、 本発明の卜ランスジエニック動物の免疫機能を欠損-抑 制し、 免疫不全の状態にすることも可能である。 具体的な例としては、 Cre/l oxP 発現システムを用いている場合、 HCVの発現を誘導する為に投与された Cre発現ァ デノウィルス感染細胞が、 CD8抗原陽性細胞障害性 T細胞などの免疫細胞によつ て排除されることが考えられる。 そのような場合、 本発明のトランスジエニック 動物が免疫不全の状態であれば、 Cre発現アデノウイルス感染細胞の排除が起こ りにくくなり、 効率よく HCVの発現ができると考えられる。 免疫不全の状態にな つた本発明のトランスジエニック動物は、 免疫機能の全部又は一部が欠損してい たり、 免疫機能の全部又は一部が抑制されている動物であれば特に制限されない。 そのような免疫不全なトランスジエニック動物を作製する方法としては、 例えば、 本発明のトランスジエニック動物を免疫不全動物と交配させて得る方法や、 本発 明の卜ランスジエニック動物に薬剤を投与して免疫を抑制する方法、 本発明の卜 ランスジエニック動物に免疫寛容を引き起こす方法などが挙げられるが、 これら に限定されるものではない。
免疫不全状態のトランスジエニック動物を作製する為に、 本発明のトランスジ エニック動物と交配させる免疫不全動物は当業者が適宜選択することができるが、 動物がマウスの場合には、 例えばヌードマウス、 sddマウス、 sc i d- NODマウス、 RAG- 1K0マウス、 RAG- 2K0マウス、 IRF- 1K0マウス、 などを挙げることができる。 本発明のトランスジエニック動物を免疫不全状態にする為に投与される薬剤の 具体的な例としては、 免疫抑制剤を挙げることができる。 免疫抑制剤は免疫抑制 効果があれば特に制限されず、 例えば市販されているサイクロスポリン、 夕クロ リムス、 ステロイド、 ある種の抗癌剤、 抗 CD8抗体等の免疫抑制効果が知られて いる抗体などを便用することが可能である。
免疫寛容は、 抗原特異的に免疫応答が失われている状態であり、 胎児期または 生後間もない動物に寛容原となる抗原を複数回投与したり、 動物の体内で寛容原 をコードする遺伝子を発現させること等によって引き起こすことが可能である。 従って、 例えば、 アデノウイルスの排除を起こりにくくする場合には、 アデノウ ィルス由来の抗原を寛容原として用いればよい。 本発明の HCV遺伝子発現トランスジエニック動物には、 免疫不全状態が導入さ れたトランスジエニック動物などのように、 さらに多くの HCVを発現させる為に 更なる処置が施されたトランスジエニック動物も含まれる。
3 . C型肝炎ウィルス関連疾患治療剤又は C型肝炎ウィルスの増殖を抑制する物質 のスクリーニング
全長 HCV遺伝子発現トランスジエニック動物を用いて、 C型肝炎ウィルス関連疾 患治療剤又は C型肝炎ウィルスの増殖を抑制する物質のスクリーニングを行うこ とができる。
本発明の全長 HCV遺伝子を発現するトランスジエニック動物に被験物質を投与 し、 該動物中の C型肝炎ウィルス量を測定し、 被験物質を投与しない場合の C型肝 、炎ウィルス量と比較することにより、 C型肝炎ウィルス量を減少させる物質、 す なわち C型肝炎ウィルス関連疾患治療剤又は C型肝炎ウィルスの増殖を抑制する物 質をスクリーニングすることが可能である。 ―
本スクリーニング方法において、 HCV量は、 HCVそのもののみならず HCV量を直 接あるいは間接的に示すものならば何を測定してもよい。 例えば、 血中のウィル ス量を直接測定してもよいし、 肝炎の指標である血清生化学値 (ALT、 AST) など を指標として HCV量を測定してもよい。 簡便なのは血中のウィルス量を直接測定 することであり、 その塲合の測定方法としては吸光度測定、 RT- PCR、 TMA-HPA. E LISAなど公知のいずれの方法を用いてもよい。 図面の簡単な説明
図 1は、 本発明のトランスジエニック動物の作出に用いるベクターの構築を示 す図であり、 図 1 Aは p5'- 3'RBZまでの構築を、 図 1 Bは p5'-3'RBZから pCALN/HCV RB Zまでの構築を示す。
図 2は、 マイクロインジェクション法により作出した、 トランスジエニックマ ウスの作出の結果を示す表である。
図 3は、 ES細胞への遺伝子導入の結果を示す表である。
図 4は、 ES細胞を介して作出したトランスジエニックマウスの作出の結果を示 す表である。 図 5は、 トランスジエニックマウスにおける HCV遺伝子の発現を示す図である t
発明を実施するための最良の形態
以下、 実施例を用いて本発明を更に詳細に説明する。 但し、 本発明の技術的範 囲は、 実施例により限定されるものではない。
〔実施例 1〕 導入 DNAコンストラクト
リポザィムによる感染性 HCVを産生するプラスミドの構築の略図を示す (図
1 ) 。 図 1中、 最下段のプラスミドの図に付された数字は、 EcoRIサイトの最初 の塩基を 1として、 その位置から制限酵素サイトの最初の塩基までの数を表して いる。 Xholおよび Xbolサイトは図に表記以外にも存在する。 サイトメガロウィル ス(CMV)ェンハンサ一とニヮトリ jSァクチンプロモーター、 Ι οχΡ配列、 ネオマイ シン耐性遺伝子、 ΙοχΡ配列、 リポザィム、 HCV全長 cDNAおよびリポザィムを順に 接続した構築となっている。 導入 DNAフラグメントは EcoRVおよび Xmn Iで切り出す ことができる。 制限酵素処理したベクターをァガロースゲル電気泳動し、 必要な
DNAフラグメントを回収した。.回収した DNAフラグメントは QIAGEN社の Ge l ext rac t ion ki tで精製した後に、 フエノール Zクロ口ホルム、 次いでクロ口ホルム抽出 し、 エタノール沈殿した。 沈殿を 70 %エタノールで洗浄した後に、 滅菌 PBSで溶 解した。
〔比較例 1〕 受精卵へのマイクロインジェクションによるトランスジエニック マウスの作出
( 1 ) マイクロインジェクション
DNAフラグメントのマイクロインジェクションには C57BL/6J (B6)系あるいは BAL B/c系マウスの前核期受精卵を用いた。 B6系は凍結受精卵を融解して用いた。 BAL B/c系受精卵は過剰排卵処理を施した雌を同系の雄と交配し、 翌朝プラグ確認さ れた雌の卵管膨大部より回収した。 回収した卵子はヒアルロニダーゼ処理して卵 丘細胞を除去し、 I OO Mの EDTAを添加した Wlii t ten' s (WM+EDTA)培地で洗浄した後 に前核期受精卵を選別して用いた。 導入フラグメントは PBSで希釈して約 3ng/ 1 に調製したものを、 マイクロマニピュレータを用いて受精卵前核へマイクロイン ジェクシヨンした。 マイクロインジェクションは、 「C57BL/6系マウスを用いた トランスジエニックマウスの作製法」 ジーンターゲテイングの最新技術 別冊 実験医学 (羊土社) (2000) PP 190-207, 上田乙也、 寺社下浩一、 鈴木宏志に記載 の方法で行った。 翌日に 2細胞期に発生した胚を受容雌卵管に移植した。 移植 19 日後に帝王切開あるいは自然分娩にて産仔を得た。
遺伝子型解析は、 サザンブロットにより実施した。 プローブは導入フラグメン トに含まれるネオマイシン耐性遺伝子あるいは HCVコア蛋白遺伝子の一部を、 ひ
[32P] dCTPで標識して用いた。
コア蛋白は定量法にて、 NS5B蛋白はウエスタンブロットにて検出を行なった。 B6系受精卵を用いて得られた Founderは 5匹 (#4雄、 5雄、 8雌、 9雌および 10 雄) であった。 これらの Founderを交配したところ、 うち 3匹の Founder (#4、 5お よび 10)に由来する次世代個体が得られた。 また、 BALB/c系受精卵を用いて得ら れた Founderは 10匹(#卜 5、 卜 11、 2-23、 3 - 5、 4 - 1、 4-3、 4-12、 4-21、 5- 9および 5-15)であった。 うち # 1-5および #4-1は次世代は得られるものの導入遺伝子の伝 達が確認されなかった。 Founderの交配の結果、 ライン化できたのは 8ラインであ つた。 これらの Tgm (トランスジエニックマウス) を用いて遺伝子発現の確認を 行った。 遺伝子発現の解析はアデノウイルスベクタ一により Cre遺伝子を導入し て、 スタッファーであるネオマイシン耐性遺伝子を除去することによって下流の HCV遺伝子の発現を誘導した後に、 コア蛋白および NS5B蛋白の検出を試みた。 そ の結果、 明瞭に HCV遺伝子の発現があると判断できるラインは得られなかった。 有用なラインを得るためには、 非常に多くのラインを樹立する必要があるが、 前 核へのマイクロインジェクション法では作出効率が 1〜 2 %と極めて低いので樹立 可能なライン数に限界がある (図 2 ) 。
〔実施例 2〕 ES細胞への遺伝子導入およぴキメラマウスの作出
The Mouse Ki t (Lexicon)を使用した。 ES細胞の培養や卜ランスフォーマントの スクリーニングは基本的にキット添付のプロトコールに従って実施した。 遺伝子 導入は 40 gの導入 DNAフラグメントを 230V, 500 の条件でエレクトロポレーシ ョンによって行なった。 エレクトロポレーシヨン 48時間後に 200 g/mlの G418を 添加した培地に交換し、 導入クローンを選択培養した。 G418添加培地で生育した コロニーをピックアップし、 96穴プレートで増殖させた。 増殖させたクローンの 一部をサザンブロッ卜で遺伝子型解析した。 期待されるシグナルが得られたクロ ーンを 1 X 106程度に増殖させ、 Cre遺伝子をアデノウイルスベクター(Ad/Cre)に より導入することによって S tuiier配列を除去することで HCV遺伝子の発現を認導 し、 コア蛋白および NS5Bの発現量を検討した。
Ad/Creにより HCVコア蛋白および NS5B蛋白の発現の高い ES細胞クローンからキ メラマウスの作製を行なった。 ホスト胚としては C57BL6 (B6)系の胚盤胞を用いた c 48時間間隔で妊馬血清性性腺刺激ホルモン(eCG)およびヒ卜胎盤絨毛性性腺刺激 ホルモン(hCG)、 各 5 iu.を腹腔内投与することにより過剰排卵処理を施した雌マ ウスを同系統の雄と交配し、 翌朝プラグ形成が確認された雌より妊娠 2. 5日に 8細 胞期から桑実期の胚を回収し、 さらに 24時間培養して得られた胚盤胞を ES細胞の 注入に用いた。 注入はピエゾマイクロマニピュレータを用いて行い、 注入後に偽 妊娠 2日の受容雌子宮内に移植した。 移植 17日後に自然分娩あるいは帝王切開し て産仔を得た (Kawaseら、 Conte即 Top Lab Anim Sc i, 40, 31-34, March (200 1) ) 。 離乳時に ES細胞に由来する野生色の毛色の割合により、 ES細胞の寄与率を 推定した。 雄キメラマウスを性成熟後に B6系雌マウスと交配して得られた産仔の 毛色により ES細胞の生殖系列伝達を検討した。
2回のエレクトロポレーシヨン(EP)を実施した。 1回目の EP後に行った選択培養 により 45個の G418耐性クローンが得られた。 うち 43クローンが PCR陽性であった が、 サザンブロットでの検出により正常な位置のシグナルが得られたのはサザン プロッ卜が実施可能であった 37クローンのうち 27クローンであった。 異常な位置 にシグナルが認められたクロ—ンはその後の解析には使用せず、 正常なもののみ 増殖させて蛋白発現解析に供した。
その結果、 コア蛋白が 400pg/mg protein以上の発現がある 7クローンについて N S5B蛋白の検出を実施したところ、 うち 3クロ一ン(#A20、 A26および A41)に明瞭 なシグナルが認められた。
2回目の EP後には 240個の G418耐性クローンが得られたが、 サザンプロット解析 が可能であった 201個のうち正常な位置にシグナルが認められたのは 143クローン であった。 うち 52クローンを増殖させて蛋白発現解析に供した。 コア蛋白が 400p g/mg prote in 以上であった 5クローンのうち、 NS5B蛋白が検出されたのは 3クロ ーン(#B15、 B20および B27)であった (図 3 ) 。
キメラマウス作製成績を図に示す。 作製を行った 5クローンのうち 4クローンで 毛色キメラマウスが得られた。 このうち、 3クローンで生殖系列が伝達するか否 かの確認を行った。 クローン #A26、 #B15および #B20において毛色での判定により ES細胞に由来する産仔が得られた (図 4 ) 。
さらに、 B15ライン 7匹、 B20ライン 2匹を用いて、 マウス腎より初代培養を作成 し、 Cre発現アデノウイルス感染によって発現誘導を試みたところ、 両ラインと も定量可能なレベルのコア蛋白の発現が観察された。 この際、 同時に解析した A4 1キメラマウス (不妊によりライン確立を断念したライン) では、 わずかな発現 しか観察されなかった。 また、 ウエスタンプロットによる NS5B蛋白の発現を確認 したところ両ラインとも NS5Bが検出され、 導入遺伝子が確実に機能していること が判明した (図 5 ) 。 さらに、 マウスに直接 Cre発現アデノウイルスを接種した ところ、 肝臓中でコア蛋白の発現が観察された。 これらの結果は、 作出したトラ ンスジエニックマウスラインが全蛋白を発現していることを示している。 本発明 のトランスジエニックマウスは、 全長発現ュニットを揷入して HCV蛋白の発現が 観察された世界初のマウスである。
産業上の利用可能性
本発明のトランスジエニック動物は、 HCVの全長蛋白を発現し、 しかも交配に より子孫に HCV全長遺伝子を伝達することができ、 C型肝炎の発症機構の解明、 ヒ ト C型肝炎治療薬のスクリーニング系の開発に有用である。
本明細書に引用されたすベての刊行物は、 その内容の全体を本明細書に取 り込むものとする。 また、 添付の請求の範囲に記載される技術思想および発 明の範囲を逸脱しない範囲内で本発明の種々の変形および変更が可能である ことは当業者には容易に理解されるであろう。 本発明はこのような変形およ び変更をも包含することを意図している。

Claims

請求の範囲
I . C型肝炎ウィルスの全長 DNAを組み込み、 HCV遺伝子全長を発現することが できる、 トランスジエニック C型肝炎モデル動物。
2 . 動物がマウスである請求項 1記載の C型肝炎モデル動物。
3 . C型肝炎ウィルスの全長 DNAが、 スイッチング発現するように導入されてい る、 請求項 1または 2記載の C型肝炎モデル動物。
4 . C型肝炎ウィルスの全長 DNAをスイッチング発現させる手段が、 C型肝炎ゥ ィルスの全長 DNAとプロモーターの間に 1 oxP配列に挟まれたスタッファ一遺伝子 を介在させることである、 請求項 3記載の C型肝炎モデル動物。
5 . C型肝炎ウィルスの全長 DNAを導入した ES細胞 (胚性幹細胞) を構成要素と するキメラ胚を個体発生して得られる哺乳動物およびその子孫動物であって、 体 細胞および生殖細胞染色体中に上記全長 HCV遺伝子を保有する、 請求項 1〜4の いずれか 1項記載の C型肝炎モデル動物。
6 . C型肝炎ウィルスの全長 DNAを含むベクタ一を ES細胞に導入し、 該 ES細胞構 成要素とするキメラ胚を仮親中で個体発生させることを含む、 全長 HCV遺伝子を 保有する C型肝炎モデル動物の作出方法。
7 . 動物がマウスである、 請求項 6記載の作出方法。
8 . C型肝炎ウィルスの全長 DNAが、 スイッチング発現するように導入される、 請求項 6または 7記載の作出方法。
9 . C型肝炎ウィルスの全長 DNAをスイッチング発現させる手段が、 C型肝炎ゥ ィルスの全長 DNAとプロモータ一の間に 1 oxP配列に挟まれたスタッファ一遺伝子 を介在させることである、 請求項 8記載の作出方法。
1 0 . 以下の工程を含む C型肝炎ウィルス関連疾患治療剤又は C型肝炎ウィルス の増殖を抑制する物質のスクリーニング方法。
(a) 請求項 1〜 5のいずれか 1項記載の動物に被験物質を投与する工程、
(b) 上記動物の C型肝炎ウィルス量を測定する工程、 および
(c) 被験物質を投与しない場合と比較して、 C型肝炎ウィルス量を減少させる物 質を選択する工程
I I . 免疫不全状態が導入された請求項 1〜5のいずれか 1項記載の C型肝炎 モデル動物。
PCT/JP2002/009767 2001-10-30 2002-09-24 Animal transgenique a gene hcv WO2003037081A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/494,177 US20060174354A1 (en) 2001-10-30 2002-09-24 Hcv gene transgenic animal
JP2003539438A JPWO2003037081A1 (ja) 2001-10-30 2002-09-24 Hcv遺伝子トランスジェニック動物
EP02768013A EP1454524A4 (en) 2001-10-30 2002-09-24 HCV GENE TRANSGENIC ANIMAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-332475 2001-10-30
JP2001332475 2001-10-30

Publications (1)

Publication Number Publication Date
WO2003037081A1 true WO2003037081A1 (fr) 2003-05-08

Family

ID=19147888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/009767 WO2003037081A1 (fr) 2001-10-30 2002-09-24 Animal transgenique a gene hcv

Country Status (4)

Country Link
US (1) US20060174354A1 (ja)
EP (1) EP1454524A4 (ja)
JP (1) JPWO2003037081A1 (ja)
WO (1) WO2003037081A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024875A1 (ja) * 2009-08-28 2011-03-03 財団法人 東京都医学研究機構 C型肝炎ウイルスの新規株由来のポリヌクレオチド及びその利用
USRE43014E1 (en) 2006-01-04 2011-12-13 Aerovironment, Inc. Wind turbine assembly and related method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090017070A1 (en) * 2004-09-30 2009-01-15 Liang Jake T In vitro model for hepatitis c virion production

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH099965A (ja) * 1995-06-30 1997-01-14 Chemo Sero Therapeut Res Inst C型肝炎ウイルス遺伝子の全長配列を有するトランスジェニック動物
WO1998003060A1 (fr) * 1996-07-24 1998-01-29 The Tokyo Metropolitan Institute Of Medical Science Modeles animaux de l'hepatite c
WO1998037757A1 (fr) * 1997-02-28 1998-09-03 Kirin Beer Kabushiki Kaisha Cellules multipotentes comprenant des genes intrinseques dissocies
WO1999067394A1 (fr) * 1998-06-24 1999-12-29 Chugai Seiyaku Kabushiki Kaisha Vecteur exprimant le gene pleine longueur de virus a arn et son utilisation
JP2001299140A (ja) * 2000-04-24 2001-10-30 Sumitomo Pharmaceut Co Ltd Hcvを増幅しうる細胞及び非ヒト動物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997033979A1 (en) * 1996-03-13 1997-09-18 The General Hospital Corporation Transgenic model of hepatitis c virus infection
JP3977898B2 (ja) * 1996-07-24 2007-09-19 財団法人 東京都医学研究機構 C型肝炎モデル動物
JP2000152793A (ja) * 1998-06-24 2000-06-06 Tokyoto Igaku Kenkyu Kiko Rnaウイルスの完全長遺伝子を発現するベクタ―及びその用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH099965A (ja) * 1995-06-30 1997-01-14 Chemo Sero Therapeut Res Inst C型肝炎ウイルス遺伝子の全長配列を有するトランスジェニック動物
WO1998003060A1 (fr) * 1996-07-24 1998-01-29 The Tokyo Metropolitan Institute Of Medical Science Modeles animaux de l'hepatite c
WO1998037757A1 (fr) * 1997-02-28 1998-09-03 Kirin Beer Kabushiki Kaisha Cellules multipotentes comprenant des genes intrinseques dissocies
WO1999067394A1 (fr) * 1998-06-24 1999-12-29 Chugai Seiyaku Kabushiki Kaisha Vecteur exprimant le gene pleine longueur de virus a arn et son utilisation
JP2001299140A (ja) * 2000-04-24 2001-10-30 Sumitomo Pharmaceut Co Ltd Hcvを増幅しうる細胞及び非ヒト動物

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 273, no. 15, 1998, pages 9001 - 9006, XP001061320 *
JOURNAL OF MEDICAL VIROLOGY, vol. 62, no. 3, 2000, pages 308 - 317, XP008000700 *
JPN. J. CANCER RES., vol. 89, no. 2, 1998, pages 150 - 158, XP002904935 *
NICHIDAI IGAKU ZASSHI, vol. 59, no. 11, 2000, pages 532 - 537, XP002904921 *
PROC. NATL. ACAD. SCI. USA, vol. 77, no. 12, 1980, pages 7380 - 7384, XP009033107 *
See also references of EP1454524A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE43014E1 (en) 2006-01-04 2011-12-13 Aerovironment, Inc. Wind turbine assembly and related method
WO2011024875A1 (ja) * 2009-08-28 2011-03-03 財団法人 東京都医学研究機構 C型肝炎ウイルスの新規株由来のポリヌクレオチド及びその利用
JPWO2011024875A1 (ja) * 2009-08-28 2013-01-31 公益財団法人東京都医学総合研究所 C型肝炎ウイルスの新規株由来のポリヌクレオチド及びその利用
US8609403B2 (en) 2009-08-28 2013-12-17 Tokyo Metropolitan Institute Of Medical Science Polynucleotide derived from novel hepatitis C virus strain and use thereof

Also Published As

Publication number Publication date
EP1454524A1 (en) 2004-09-08
EP1454524A4 (en) 2004-12-08
US20060174354A1 (en) 2006-08-03
JPWO2003037081A1 (ja) 2005-02-17

Similar Documents

Publication Publication Date Title
US10278373B2 (en) HLA class I-expressing non-human animal
CN105518132B (zh) 缺乏lincRNA的非人类动物
CN104797132B (zh) 基因敲入非人动物
US11051496B2 (en) Urokinase-type plasminogen activator transgenic mouse
US7582741B2 (en) Conditional disruption of dicer1 in cell lines and non-human mammals
US7456333B2 (en) Transgenic non-human mammals as models for human pathologies of stem cell origin
EP2992759B1 (en) Atopic dermatitis model animal and use thereof
CN107955817B (zh) 人源化基因改造动物模型的制备方法及应用
CN106978416B (zh) 一种基因定位整合表达系统及其应用
JP2005530509A (ja) 動物モデルの開発のための方法
US6642433B1 (en) Fgl-2 knockout mice
WO2003037081A1 (fr) Animal transgenique a gene hcv
KR102680060B1 (ko) 바이러스에 의한 감염으로부터 돼지 태아를 보호하는 방법
US6610905B1 (en) Transgenic mouse model for Kaposi's sarcoma
JP5605718B2 (ja) アルツハイマー病モデル動物およびその用途
Pinkert Genetic engineering of farm mammals
JP4030342B2 (ja) 遺伝子欠損細胞
CN116463376A (zh) Baffr和/或baff基因人源化非人动物的构建方法及应用
JP2004154093A (ja) 新しい病態モデルとしてのhsf1遺伝子欠損動物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003539438

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002768013

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002768013

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006174354

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10494177

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10494177

Country of ref document: US