WO2003036893A1 - Annuleur d'interferences entre symboles - Google Patents

Annuleur d'interferences entre symboles Download PDF

Info

Publication number
WO2003036893A1
WO2003036893A1 PCT/FR2002/003624 FR0203624W WO03036893A1 WO 2003036893 A1 WO2003036893 A1 WO 2003036893A1 FR 0203624 W FR0203624 W FR 0203624W WO 03036893 A1 WO03036893 A1 WO 03036893A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
samples
filter
series
transmission channel
Prior art date
Application number
PCT/FR2002/003624
Other languages
English (en)
Inventor
Christophe Laot
Charlotte Langlais
Maryline Helard
Original Assignee
France Telecom (Sa)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom (Sa) filed Critical France Telecom (Sa)
Priority to EP02790534A priority Critical patent/EP1438815B1/fr
Priority to US10/493,463 priority patent/US7277514B2/en
Priority to AT02790534T priority patent/ATE298957T1/de
Priority to DE60204903T priority patent/DE60204903T2/de
Publication of WO2003036893A1 publication Critical patent/WO2003036893A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • H04L25/03057Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception with a recursive structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1081Reduction of multipath noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03592Adaptation methods
    • H04L2025/03598Algorithms
    • H04L2025/03605Block algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03592Adaptation methods
    • H04L2025/03598Algorithms
    • H04L2025/03611Iterative algorithms

Definitions

  • the present invention relates to a device for canceling inter-symbol interference in a sampled digital signal.
  • the invention finds more particularly its application in the field of digital transmissions, and is in particular intended to be incorporated in a digital signal receiver in order to cancel the interference between symbols resulting from the presence of multiple paths in the data transmission channel. digital.
  • FIG. 1 illustrates a chain of transmission of complex symbols ⁇ d n ⁇ ne N emitted by a source of symbols.
  • This transmission chain includes a modulator, a transmission filter, a transmission medium, a reception filter, a demodulator, an adder introducing samples of white Gaussian noise ⁇ W n ⁇ n 6N and a sampling period sampler T.
  • the modulator, transmission filter, transmission medium, reception filter and demodulator assembly forms an equivalent discrete transmission channel generating interference between symbols (IES).
  • the transmission chain delivers a series of complex symbols ⁇ r n ⁇ ne m defined by the following relation:
  • T is the time period separating two consecutive complex symbols in the sequence of complex symbols ⁇ r n ⁇ n e.
  • H n (f) the transfer function H n (f) in the following description.
  • This interference canceler comprises a first filter 10, called the front filter, to treat the sequence of complex symbols ⁇ r n ⁇ ne N, a second filter 20, called rear filter for processing a sequence of complex symbols ⁇ a n ⁇ n eN and a subtractor circuit 30 for subtracting from the output of the filter 10 the output of the filter 20.
  • the subtractor circuit 30 delivers a series of complex symbols ⁇ d n ⁇ ne N free of the interference between symbols generated by the transmission channel.
  • the sequence ⁇ d n ⁇ ne N represents either the complex symbols transmitted through the transmission channel by the transmission source if the system uses a training sequence, or complex symbols which are an estimate of the complex symbols transmitted by the emission source.
  • the sequence of symbols ⁇ d n ⁇ ne N is supplied by another member of the receiver, for example a transverse linear equalizer or a maximum likelihood equalizer.
  • ⁇ n corresponds to the estimated power of the transmission channel.
  • the filter 10 of the device converges towards a filter adapted to the transmission channel.
  • the optimal coefficients, for example within the meaning of the criterion of minimum mean square error, of the filter 10 are therefore those of the filter adapted to the transmission channel.
  • the optimal transfer function of this filter is therefore
  • H * (f) denotes the conjugate of the
  • the filter 20 is for its part intended to reconstruct the interference between symbols present at the output of the filter 10.
  • the filter 20 therefore converges towards a filter of
  • the coefficients of the filters are supplied as the processing is carried out either by a channel estimation algorithm or by an adaptation algorithm aimed at minimizing a given optimization criterion.
  • the invention proceeds from research carried out with respect to interference cancellers between symbols with a view to restricting the size of the filters necessary for their implementation, which will make it possible to limit the degradations provided by too many coefficients and reduce the convergence time of the coefficients.
  • the invention relates to a device for canceling interference between symbols in a series of input samples of a digital signal coming from a transmission channel defined by its transfer function H (f) in the frequency domain, each sample being representative of a complex symbol, characterized in that it comprises:
  • a first filter which converges towards a transfer function filter H (f), which first filter receives as input a series of samples representative of the digital signal transmitted at the input of said transmission channel,
  • an output circuit intended to combine the output of said second filter and the series of samples representative of the digital signal transmitted at the input of said transmission channel to generate a series of complex symbols free of interference between symbols caused by the transmission channel.
  • the output circuit is for example an adder circuit intended to add the output of said second filter with said series of samples representative of the digital signal transmitted at the input of said transmission channel.
  • the samples of the series representative of the digital signal transmitted at the input of the transmission channel which are processed by the adder circuit are assigned an amplitude correcting coefficient.
  • This interference canceling device includes two filters using a reduced number of coefficients.
  • the amplitude correcting coefficient is a function of the estimated power of the transmission channel and of the variance additive noise.
  • the invention also relates to a digital signal receiver characterized in that it includes a device for canceling interference between symbols as described above and a dedicated circuit for generating said series of samples. representative of the digital signal transmitted at the input of said transmission channel.
  • the dedicated circuit is for example a transverse linear equalizer or a maximum likelihood equalizer receiving as input the series of input samples.
  • the invention also relates to a turbo-equalization device comprising a plurality of turbo-equalization modules in series, characterized in that each turbo-equalization module of rank greater than 1 in said series of modules comprises an interference cancellation device as described above and in that, for each interference cancellation device, the series of samples representative of the digital signal transmitted at the input of the transmission channel is supplied by the lower-order turbo-equalization module.
  • the invention also relates to a device for canceling interference between symbols in J sequences of input samples of a digital signal originating from J transmission channels defined by their transfer functions H (l) (f) in the frequency domain.
  • J being an integer greater than or equal to 2
  • each sample being representative of a complex symbol, characterized in that it comprises: - a first set of J filters which each converge towards a transfer function filter H (j) (f), I [l, ..., J], each of the filters of said first set receiving as input a series of samples representative of the digital signal transmitted at the input of said transmission channels, a set of J subtractor circuits for subtracting the outputs of said J filters from the first set to said J suites of input samples respectively,
  • each filter of said second set receiving as input the output of one of said J subtractor circuits, and
  • an output circuit intended to combine the output of said first adder circuit and the series of samples representative of the digital signal transmitted at the input of said transmission channels to generate a series of complex symbols free of the interference between symbols generated by said transmission channels .
  • This device is used in the event of multiple reception or so-called fractional reception of the symbols sent.
  • the coefficients of the filters of said first and second sets of filters are determined by a digital processing circuit implementing an adaptation algorithm based on an optimization criterion aimed at minimizing the influence of interference between symbols at the output from said device or by a circuit for estimating the transmission channels.
  • the invention also relates to a turbo-equalization device comprising a plurality of turbo-equalization modules in series, characterized in that each turbo-equalization module of rank greater than 1 in said series of modules includes a device for canceling interference between symbols such as as described above for multiple or fractional reception of symbols and in that, for each interference cancellation device, said series of samples representative of the digital signal transmitted at the input of the transmission channel is provided by the lower rank turbo equalization.
  • FIG. 1 already described, schematically illustrates a discrete transmission channel
  • FIG. 2 already described, represents the diagram of an interference canceller between symbols of the prior art
  • FIG. 3 represents an equivalent diagram of the structure of the inverter of FIG. 2
  • FIG. 4 represents the diagram of an interference canceller between symbols according to the invention
  • FIG. 5 represents an interference canceller between symbols according to the invention comprising a channel estimation circuit for determining the coefficients of the two filters of the canceller
  • FIG. 6 represents an interference canceller between symbols according to the invention comprising a digital processing circuit implementing an adaptation algorithm for determining the coefficients of the two filters of the inverter
  • FIG. 7 shows an application of the interference canceller of the invention in a turbo-equalization device
  • FIG. 8 shows an improved embodiment of the interference canceller in the context of a turbo-equalization with channel estimation
  • FIG. 9 schematically illustrates the transmission channels in the event of multiple receptions at the level of the interference canceller of the invention
  • FIG. 10 represents the diagram of an interference canceller of the prior art used in the event of multiple receptions
  • - Figure 11 shows the diagram of an interference canceller according to the invention used in the event of multiple receptions.
  • the conventional structure of the interference canceller between symbols shown in FIG. 2 requires the implementation of a first filter with L coefficients and a second filter with 2L-1 coefficients.
  • the invention aims to determine a canceller structure requiring a more limited number of coefficients.
  • the filter 20 can be broken down into two filters, 21 and 22, connected in cascade and a subtracting circuit 23.
  • the filter 21 converges towards a transfer function filter H (f) and the filter 22 towards a transfer function filter 1
  • the subtractor circuit 23 is responsible for subtracting from the series of complex samples from the cascade of filters 21 and 22 the series of complex samples ⁇ d n ⁇ n eN assigned the ⁇ n amplitude correcting coefficient ——.
  • branches of the canceller namely the branch processing complex samples ⁇ r n ⁇ ne N and the branch processing complex samples ⁇ d n ⁇ ne N.
  • FIG. 4 represents a structure of the interference canceller of the invention.
  • the symbol interference interference canceller of the invention has a first filter, 100, which converges to a transfer function filter H (f).
  • This filter 100 receives as input the sequence of complex symbols ⁇ d n ⁇ n eN and delivers a sequence of symbols
  • ⁇ d n ⁇ n ⁇ N is for example provided by a transverse linear equalizer or a maximum likelihood equalizer provided in the receiver.
  • a subtractor circuit 110 is provided for subtracting from the sequence of complex symbols (r n ⁇ n eN the sequence of symbols
  • the filter 120 is a filter which converges towards a transfer function filter
  • the interference canceller comprises two filters, 100 and 120, at L coefficients instead of an L coefficients filter and a 2L-1 coefficients filter.
  • the filter coefficients can be determined either by a circuit for estimating the transmission channel as shown in dotted lines in FIG. 5, or by a digital processing circuit implementing an adaptation algorithm minimizing a given optimization criterion as shown in dotted lines in Figure 6.
  • the coefficients of the filters 100 and 120 are determined from a channel estimation circuit. More precisely, the channel estimation is used to calculate the coefficients of the filter 100 and to deduce therefrom the coefficients of the filter 120.
  • the channel estimation consists in calculating the coefficients of the impulse response of the transmission channel. These coefficients are determined for example by an estimation method of the RLS (Recursive Least Square) or LMS (Least Mean Square) type.
  • RLS Recursive Least Square
  • LMS Least Mean Square
  • the coefficients of the filters of the canceller are determined adaptively using an adaptation algorithm which directly calculates the filter coefficients based on a given optimization criterion aiming to minimize interference between symbols at the output of the canceller.
  • This criterion being directly linked to the mini isation of interference between symbols at the output of the canceller, it is optimal for the correction of interference between symbols when the transmission channel is invariant in time.
  • the device of the invention is particularly suitable for eliminating the interference generated by a radio channel during the transmission of digital data.
  • turbo-equalization device It can be used in a turbo-equalization device.
  • the principle of turbo-equalization is described in patent application No. 97 05978 filed by the present applicant.
  • FIG. 7 A block diagram of a turbo-equalization device is shown in FIG. 7. This device comprises several identical equalization and decoding modules connected in series. Each module receives the series of samples
  • Each module of rank greater than 1 includes an interference canceller between symbols according to the invention, a deinterlacer, an M-ary / binary converter, a channel decoder, a binary / M-ary converter and a deinterlacer.
  • d denotes the series of samples delivered by the turbo-equalization module of rank p.
  • the structure of the interference canceller can be improved when the coefficients of the filters are determined by a channel estimate.
  • the value of the transfer function of the filter 120 as well as the value of the amplitude correcting coefficient are modified.
  • This improved structure is shown in FIG. 8 where G (f) denotes the new transfer function of the filter 120 and go / ⁇ denotes the amplitude correcting coefficient.
  • the expressions of G (f), g 0 and ⁇ are as follows:
  • the interference canceller of the first modules of the turbo-equalization device also plays the role of an equalizer.
  • the canceller structure described so far treated a unique series of samples ⁇ r n ⁇ n ⁇ N. corresponding to the SISO case (a transmission, a reception), the signal received by the canceller being sampled at symbol time.
  • the interference canceller has so far had only one receiving antenna.
  • This case can be generalized to the SIMO case (one transmission, several receptions), the signals being received by several reception antennas.
  • Figure 9 illustrates the chain of transmission of complex symbols ⁇ d n ⁇ ne N for this case. This figure is to be compared with FIG. 1.
  • the canceller receives a plurality of series of samples r ⁇ j) , je [1, ..., J], having transited by different transmission channels of transfer function H ⁇ j) (f).
  • the transfer function H ⁇ (f) is denoted H (j) (f) in the following description.
  • the chain of transmission as shown in Figure 9 delivers the sequences of complex symbols
  • n and L (j) represent the number of past and future complex symbols causing interference on the current complex symbol.
  • Figure 10 is a generalization of Figure 2 for the SIMO case.
  • the filter 10 is replaced by J filters 10 (j) of transfer function P (j) (f), j G [1, ..., J], each processing the series of samples r ⁇ and an adder circuit 15 for adding the symbols delivered by the filters 10 (j) .
  • Q (f) designates the transfer function of filter 20.
  • the mathematical expressions of the transfer functions P (j) (f) and Q (f) are as follows: H (j) * (f)
  • FIG. 11 The canceller making it possible to suppress the intersymbol interference produced by these transmission channels is represented in FIG. 11. This figure is to be compared with FIG. 4 (SISO case). Filter 100 is replaced by J filters 100 ⁇ ; i) of transfer function
  • ÎOO 13 denoted d ⁇ with j G [1, ..., J], are respectively subtracted from the symbols r ⁇ j) by means of subtracting circuits 110 (j) .
  • the output of the subtractor circuits 110 (: i) is then filtered by a filter
  • This intersymbol interference canceller has the same advantages as that of FIG. 4, namely that it comprises filters of reduced size (low number of coefficients).
  • the coefficients of the filters can be determined either by a circuit for estimating the transmission channel, or by a digital processing circuit implementing an adaptation algorithm minimizing a given optimization criterion.
  • the so-called split reception case is equivalent to the SIMO case.
  • the so-called fractional reception consists in picking up the signals with a single reception antenna, then in producing several sequences of samples offset between them by a fraction 1 / m of the symbol period T, the sampling period of these sequences remaining equal to T. If m is an integer, these sequences can then be treated as shown in Figure 11.
  • the transfer functions in the form of Fourier transforms (at f). These can also be expressed more generally according to a z-transform, in an equivalent manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Noise Elimination (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Dc Digital Transmission (AREA)
  • Prostheses (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Traffic Control Systems (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

L'invention concerne un dispositif pour annuler les interférences entre symboles dans un signal numérique échantillonné. Le dispositif comporte un premier filtre (100) dont la fonction de transfert optimale est identique à celle du canal de transmission et qui reçoit une suite d'échantillons ({d∼n}n∈N) représentative du signal numérique émis à l'entrée du canal de transmission, un circuit soustracteur (110) pour retrancher de la suite d'échantillons d'entrée ({rn}n∈N) la sortie ({d∼n}n∈N) du premier filtre, un second filtre (120) adapté au canal de transmission, dont la fonction de transfert optimale est H*(f), qui reçoit la sortie ({en}n∈N) du circuit soustracteur (110), et un circuit additionneur (130) pour additionner la sortie du second filtre (120) avec la suite d'échantillons ({d∼n}n∈N) représentative du signal numérique émis à l'entrée dudit canal de transmission et générer ainsi une suite de symboles complexes ({d≈n}n∈N) sans interférences entre symboles.

Description

ANNULEUR D'INTERFERENCES ENTRE SYMBOLES
La présente invention concerne un dispositif pour annuler les interférences entre symboles dans un signal numérique échantillonné. L'invention trouve plus particulièrement son application dans le domaine des transmissions numériques, et est notamment prévue pour être incorporée dans un récepteur de signaux numériques afin d'annuler les interférences entre symboles résultant de la présence de trajets multiples dans le canal de transmission des données numériques.
La figure 1 illustre une chaîne de transmission de symboles complexes {dn}neN émis par une source de symboles . Cette chaîne de transmission comprend un modulateur, un filtre d'émission, un milieu de transmission, un filtre de réception, un démodulateur, un additionneur introduisant des échantillons de bruit blanc gaussien {Wn}n6N et un échantillonneur de période d'échantillonnage T. L'ensemble modulateur, filtre d'émission, milieu de transmission, filtre de réception et démodulateur forme un canal de transmission discret équivalent engendrant des interférences entre symboles (IES) . La chaîne de transmission délivre une suite de symboles complexes {rn}nem définis par la relation suivante :
Figure imgf000003_0001
où les (r_L+1(n),...,ro(n),...,rL (n) ) sont les coefficients éventuellement complexes du canal de transmission discret équivalent à l'instant n, et L2 et Lχ-1 représentent respectivement le nombre de symboles complexes passés et futurs engendrant 1 ' interférence sur le symbole complexe courant .
La fonction de transfert du canal de transmission discret équivalent qui introduit les interférences entre symboles est, à l'instant n, :
Hn(f)= 2rk(n)ep(-j2πfT) (2) k=- ,+l où T est la période temporelle séparant deux symboles complexes consécutifs dans la suite des symboles complexes { rn }ne .
Par souci de simplification, la fonction de transfert Hn(f) est notée H(f) dans la suite de la description.
Dans les équations (1) et (2), on a considéré que la réponse impulsionnelle du canal de transmission discret équivalent (correspondant à la transformée de Fourier inverse de la fonction de transfert) définie par L = Lι+L2 coefficients .
Un des annuleurs d'interférences entre symboles les plus connus est décrit dans le document intitulé "Adaptive Cancellation of Intersymbol Interférence for Data Transmission" de A.Gersho et T.L Lim, Bell Systems technical journal, Vol.11, n°60, pρl997-2021, Nov 1981. Un schéma de la structure de cet annuleur d'interférences entre symboles est représenté à la figure 2 de la présente demande.
Cet annuleur d'interférences comprend un premier filtre 10, appelé filtre avant, pour traiter la suite de symboles complexes {rn}neN, un deuxième filtre 20, appelé filtre arrière, pour traiter une suite de symboles complexes {dn}neN et un circuit soustracteur 30 pour retrancher de la sortie du filtre 10 la sortie du filtre 20. Le circuit soustracteur 30 délivre une suite de symboles complexes {dn}neN débarrassés des interférences entre symboles engendrées par le canal de transmission.
La suite { dn }neN représente soit les symboles complexes émis à travers le canal de transmission par la source d'émission si le système utilise une séquence d'apprentissage, soit des symboles complexes qui sont une estimation des symboles complexes émis par la source d'émission. Dans ce deuxième cas, la suite de symboles { dn }neN est fournie par un autre organe du récepteur, par exemple un égaliseur linéaire transverse ou un égaliseur à maximum de vraisemblance.
Par souci de généralisation, on suppose que le canal de transmission est variant dans le temps. Les coefficients de la réponse impulsionnelle ne sont donc pas normalisés. On a alors la relation suivante: ∑|rk(n)| =αn . On suppose par ailleurs que le signal
émis est de puissance unité, et donc que la variance des symboles émis σ^ est égale à 1. Dans cette hypothèse, αn correspond à la puissance estimée du canal de transmission.
Le filtre 10 du dispositif converge vers un filtre adapté au canal de transmission. Les coefficients optimaux, par exemple au sens du critère du minimum d'erreur quadratique moyenne, du filtre 10 sont donc ceux du filtre adapté au canal de transmission. La fonction de transfert optimale de ce filtre est donc
égale à — H (f) . H*(f) désigne le conjugué de la
fonction de transfert H(f) et σ^, désigne la variance du bruit gaussien.
Le filtre 20 est quant à lui destiné à reconstruire les interférences entre symboles présentes en sortie du filtre 10. Le filtre 20 converge donc vers un filtre de
fonction de transfert _i_|H(f)|2 - n). Les filtres 10
et 20 sont donc respectivement de taille L et 2L-1. Les coefficients des filtres sont fournis au fur et à mesure du traitement soit par un algorithme d'estimation de canal, soit par un algorithme d'adaptation visant à minimiser un critère d'optimisation donné. L'invention procède d'une recherche menée relativement aux annuleurs d'interférences entre symboles en vue de restreindre la taille des filtres nécessaires à leur mise en œuvre, ce qui va permettre de limiter les dégradations apportées par un trop grand nombre de coefficients et réduire le temps de convergence des coefficients .
L'invention concerne un dispositif pour annuler les interférences entre symboles dans une suite d'échantillons d'entrée d'un signal numérique provenant d'un canal de transmission défini par sa fonction de transfert H(f) dans le domaine fréquentiel, chaque échantillon étant représentatif d'un symbole complexe, caractérisé en ce qu'il comporte :
- un premier filtre qui converge vers un filtre de fonction de transfert H(f) , lequel premier filtre reçoit en entrée une suite d'échantillons représentative du signal numérique émis à l'entrée dudit canal de transmission,
- un circuit soustracteur pour retrancher la sortie dudit premier filtre à ladite suite d'échantillons d' entrée,
- un second filtre qui converge vers un filtre adapté au canal de transmission, lequel second filtre reçoit en entrée la sortie dudit circuit soustracteur, et
- un circuit de sortie destiné à combiner la sortie dudit second filtre et la suite des échantillons représentative du signal numérique émis à l'entrée dudit canal de transmission pour générer une suite de symboles complexes débarrassés des interférences entre symboles engendrées par le canal de transmission.
Le circuit de sortie est par exemple un circuit additionneur destiné à additionner la sortie dudit second filtre avec ladite suite des échantillons représentative du signal numérique émis à l'entrée dudit canal de transmission.
De préférence, les échantillons de la suite représentative du signal numérique émis à 1 ' entrée du canal de transmission qui sont traités par le circuit additionneur sont affectés d'un coefficient correcteur d' amplitude .
Le principal avantage de ce dispositif d'annulation d'interférences est qu'il comprend deux filtres utilisant un nombre réduit de coefficients .
Selon une caractéristique de l'invention, dans le cas d'un canal de transmission perturbé par un bruit additif ayant des coefficients variant dans le temps, le coefficient correcteur d'amplitude est fonction de la puissance estimée du canal de transmission et de la variance du bruit additif.
L ' invention concerne également un récepteur de signaux numériques caractérisé en ce qu'il comporte un dispositif d'annulation des interférences entre symboles tel que décrit précédemment et un circuit dédié pour générer ladite suite d'échantillons représentative du signal numérique émis à l'entrée dudit canal de transmission. Le circuit dédié est par exemple un égaliseur linéaire transverse ou un égaliseur à maximum de vraisemblance recevant en entrée la suite d'échantillons d'entrée.
L'invention concerne également un dispositif de turboegalisation comportant une pluralité de modules de turboegalisation en série caractérisé en ce que chaque module de turboegalisation de rang supérieur à 1 dans ladite série de modules comporte un dispositif d'annulation d'interférences tel que décrit précédemment et en ce que, pour chaque dispositif d'annulation d'interférences, la suite d'échantillons représentative du signal numérique émis à l'entrée du canal de transmission est fournie par le module de turboegalisation de rang inférieur.
L'invention concerne également un dispositif pour annuler les interférences entre symboles dans J suites d'échantillons d'entrée d'un signal numérique provenant de J canaux de transmission définis par leurs fonctions de transfert H(l)(f) dans le domaine fréquentiel, J étant un entier supérieur ou égal à 2 , chaque échantillon étant représentatif d'un symbole complexe, caractérisé en ce qu'il comporte : - un premier ensemble de J filtres qui convergent chacun vers un filtre de fonction de transfert H(j)(f), je[l,...,J], chacun des filtres dudit premier ensemble recevant en entrée une suite d'échantillons représentative du signal numérique émis à l'entrée desdits canaux de transmission, un ensemble de J circuits soustracteurs pour retrancher les sorties desdits J filtres du premier ensemble auxdites J suites d'échantillons d'entrée respectivement,
- un second ensemble de J filtres qui convergent vers des filtres adaptés auxdits J canaux de transmission, chaque filtre dudit second ensemble recevant en entrée la sortie d'un desdits J circuits soustracteurs, et
- un premier circuit additionneur pour additionner les échantillons délivrés par les J filtres dudit second ensemble,
- un circuit de sortie destiné à combiner la sortie dudit premier circuit additionneur et la suite des échantillons représentative du signal numérique émis à l'entrée desdits canaux de transmission pour générer une suite de symboles complexes débarrassés des interférences entre symboles engendrées par lesdits canaux de transmission. Ce dispositif est utilisé en cas de réceptions multiples ou de réception dite fractionnée des symboles émis.
Comme précédemment, les coefficients des filtres desdits premier et second ensembles de filtres sont déterminés par un circuit de traitement numérique mettant en œuvre un algorithme d'adaptation se basant sur un critère d'optimisation visant à minimiser 1 ' influence des interférences entre symboles à la sortie dudit dispositif ou par un circuit d'estimation des canaux de transmission. Enfin, l'invention concerne également un dispositif de turboegalisation comportant une pluralité de modules de turboegalisation en série caractérisé en ce que chaque module de turboegalisation de rang supérieur à 1 dans ladite série de modules comporte un dispositif d'annulation d'interférences entre symboles tel que décrit précédemment pour une réception multiple ou fractionnée des symboles et en ce que, pour chaque dispositif d'annulation d'interférences, ladite suite d'échantillons représentative du signal numérique émis à l'entrée du canal de transmission est fournie par le module de turboegalisation de rang inférieur.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit et qui est faite en référence aux dessins annexés, parmi lesquels :
La figure 1, déjà décrite, illustre schématiquement un canal de transmission discret; la figure 2, déjà décrite, représente le schéma d'un annuleur d'interférences entre symboles de l'art antérieur; la figure 3 représente un schéma équivalent de la structure d' nnuleur de la figure 2; la figure 4 représente le schéma d'un annuleur d'interférences entre symboles selon l'invention; la figure 5 représente un annuleur d'interférences entre symboles conforme à 1 ' invention comprenant un circuit d'estimation de canal pour déterminer les coefficients des deux filtres de l' annuleur; la figure 6 représente un annuleur d'interférences entre symboles conforme à 1 ' invention comprenant un circuit de traitement numérique mettant en œuvre un algorithme d'adaptation pour déterminer les coefficients des deux filtres de l' nnuleur; la figure 7 montre une application de l' annuleur d'interférences de l'invention dans un dispositif de turbo-égalisation; la figure 8 montre un mode de réalisation amélioré de l' annuleur d'interférences dans le cadre d'une turbo-égalisation avec estimation de canal; la figure 9 illustre schématiquement les canaux de transmission en cas de réceptions multiples au niveau de l' annuleur d'interférences de l'invention; la figure 10 représente le schéma d'un annuleur d'interférences de l'art antérieur employé en cas de réceptions multiples; et - la figure 11 représente le schéma d'un annuleur d'interférences selon l'invention employé en cas de réceptions multiples.
Comme indiqué précédemment, la structure classique de 1' annuleur d'interférences entre symboles montrée à la figure 2 nécessite la mise en œuvre d'un premier filtre à L coefficients et d'un second filtre à 2L-1 coefficients. L'invention vise à déterminer une structure d' annuleur nécessitant un nombre plus restreint de coefficients. Comme montré à la figure 3, le filtre 20 peut être décomposé en deux filtres, 21 et 22, montés en cascade et un circuit soustracteur 23. Le filtre 21 converge vers un filtre de fonction de transfert H(f) et le filtre 22 vers un filtre de fonction de transfert 1
•H (f) . Ces deux filtres étant linéaires, ils σf„ + α„ peuvent être intervertis. Le circuit soustracteur 23 est chargé de soustraire de la suite d'échantillons complexes issue de la cascade des filtres 21 et 22 la suite des échantillons complexes { dn }neN affectés du αn coefficient correcteur d'amplitude —— . Le filtre
adapté au canal de transmission de fonction de
1 * transfert — H (f) est présent dans les deux
branches de l' annuleur, à savoir la branche traitant les échantillons complexes {rn}neN et la branche traitant les échantillons complexes {dn}neN.
Selon l'invention, on supprime cette redondance du filtre adapté au canal de transmission pour diminuer le nombre de coefficients nécessaires à la mise en œuvre de l' annuleur. La figure 4 représente une structure de 1' annuleur d'interférences de l'invention.
L' annuleur d'interférences entre symboles de l'invention comporte un premier filtre, 100, qui converge vers un filtre de fonction de transfert H(f) . Ce filtre 100 reçoit en entrée la suite de symboles complexes {dn}neN et délivre une suite de symboles
complexes {dn}neN. La suite de symboles complexes
{dn}nεN est par exemple fournie par un égaliseur linéaire transverse ou un égaliseur à maximum de vraisemblance prévu dans le récepteur. Un circuit soustracteur 110 est prévu pour soustraire de la suite de symboles complexes (rn}neN la suite de symboles
complexes {dn}neN et délivrer une suite de symboles
complexes {en}neN. Cette dernière est ensuite filtrée par un second filtre 120. Le filtre 120 est un filtre qui converge vers un filtre de fonction de transfert
1
H (f) . La suite de symboles complexes délivrée σ„, + α„ par ce filtre, notée {en}neN, est additionnée avec la
suite des symboles complexes {dn}neN affectés du αn coefficient correcteur d ' amplitude — — - — au moyen +«„ d 'un circuit additionneur 130 , lequel délivre la suite de symboles complexes { dn }neN .
Cette structure d' annuleur est équivalente en terme de filtrage à celle de la figure 2. Elle permet toutefois de diminuer sensiblement la taille des filtres de 1 ' annuleur . Selon 1 ' invention, 1 ' annuleur d'interférences comporte deux filtres, 100 et 120, à L coefficients au lieu d'un filtre à L coefficients et d'un filtre à 2L-1 coefficients.
Les coefficients de filtre peuvent êtres déterminés soit par un circuit d'estimation du canal de transmission comme montré en traits pointillés à la figure 5, soit par un circuit de traitement numérique mettant en œuvre un algorithme d'adaptation minimisant un critère d'optimisation donné comme montré en traits pointillés à la figure 6.
En référence à la figure 5, les coefficients des filtres 100 et 120 sont déterminés à partir d'un circuit d'estimation de canal. Plus exactement, l'estimation de canal est utilisée pour calculer les coefficients du filtre 100 et en déduire les coefficients du filtre 120. L'estimation de canal consiste à calculer les coefficients de la réponse impulsionnelle du canal de transmission. Ces coefficients sont déterminés par exemple par une méthode d'estimation de type RLS (Recursive Least Square) ou LMS (Least Mean Square). L'estimation de canal est particulièrement intéressante pour suivre les variations du canal de transmission lorsque celui-ci varie dans le temps. Cependant, cette solution est sous-optimale lorsque le canal de transmission ne varie pas ou peu dans le temps car elle ne minimise pas directement les interférences entre symboles à la sortie de l' annuleur. Dans le cas de la figure 6, les coefficients des filtres de 1 ' annuleur sont déterminés de manière adaptative à l'aide d'un algorithme d'adaptation qui calculé directement les coefficients de filtre en se basant sur un critère d'optimisation donné visant à minimiser les interférences entre symboles à la sortie de l' annuleur. Ce critère étant directement lié à la mini isation des interférences entre symboles à la sortie de l' annuleur, il est optimal pour la correction des interférences entre symboles lorsque le canal de transmission est invariant dans le temps.
Le dispositif de l'invention est tout particulièrement adapté pour supprimer les interférences engendrées par un canal hertzien lors de la transmission de données numériques .
Il peut être employé dans un dispositif de turbo- égalisation. Le principe de la turbo-égalisation est décrit dans la demande de brevet n°97 05978 déposée par la présente demanderesse. Un schéma de principe d'un dispositif de turbo-égalisation est représenté à la figure 7. Ce dispositif comporte plusieurs modules d'égalisation et de décodage identiques montés en série. Chaque module reçoit la suite d'échantillons
{rn}neN issue du canal de transmission et retardée d'une quantité égale au temps de traitement des modules précédents et, pour les modules de rang supérieur à 1, la sortie du module précédent. Chaque module de rang supérieur à 1 comprend un annuleur d'interférences entre symboles conforme à l'invention, un désentrelaceur, un convertisseur M-aire/binaire, un décodeur de canal, un convertisseur binaire/M-aire et un désentrelaceur. Dans cette application, la suite d'échantillons { dn }neN nécessaires au fonctionnement de
1 ' annuleur d'interférence d'un module donné est fournie par le module précédent. Dans la figure 7, d désigne la suite d'échantillons délivrée par le module de turbo-égalisation de rang p.
Dans le cadre de la turbo-égalisation, la structure de 1 ' annuleur d'interférences peut être améliorée lorsque les coefficients des filtres sont déterminés par une estimation de canal. Dans cette structure améliorée, la valeur de la fonction de transfert du filtre 120 ainsi que la valeur du coefficient correcteur d'amplitude sont modifiées. Cette structure améliorée est montrée à la figure 8 où G(f) désigne la nouvelle fonction de transfert du filtre 120 et go/β désigne le coefficient correcteur d'amplitude. Les expressions de G(f), g0 et β sont les suivantes :
Figure imgf000017_0001
En turbo-égalisation, la variance E d varie à chaque
itération. Ainsi, la fonction de transfert G(f) et le coefficient correcteur d'amplitude go varient à chaque itération jusqu'à tendre vers les expressions indiquées dans les figures 4 à 6.
Avec cette structure, l' annuleur d'interférences des premiers modules du dispositif de turbo-égalisation joue également le rôle d'un égaliseur.
La structure d' annuleur décrite jusqu'à présent traitait une suite unique d'échantillons {rn}nεN. correspondant au cas SISO (une émission, une réception), le signal reçu par 1 ' annuleur étant échantillonné au temps symbole. L' annuleur d'interférences ne comportait jusqu'à présent qu'une seule antenne de réception.
Ce cas peut être généralisé au cas SIMO (une émission, plusieurs réceptions) , les signaux étant reçus par plusieurs antennes de réception.
La figure 9 illustre la chaîne de transmission des symboles complexes {dn}neN pour ce cas-là. Cette figure est à comparer avec la figure 1. L' annuleur reçoit une pluralité de suites d'échantillons r^j) , j e [1,...,J], ayant transité par différents canaux de transmission de fonction de transfert H^j)(f) . Comme précédemment, par souci de simplification, la fonction de transfert H^(f) est notée H(j)(f) dans la suite de la description.
La chaîne de transmission telle que représentée à la figure 9 délivre les suites de symboles complexes
{ r„j) }neN/ avec j G [1,...,J], définis par la relation suivante :
Figure imgf000019_0001
où les ( Ij (n) ) sont les coefficients éventuellement complexes de la fonction de transfert H(j)(f) de l'un
des canaux de transmission à 1 ' instant n et L(j) représentent le nombre de symboles complexes passés et futurs engendrant 1 ' interférence sur le symbole complexe courant .
La figure 10 est une généralisation de la figure 2 pour le cas SIMO. Dans cette figure, le filtre 10 est remplacé par J filtres 10(j) de fonction de transfert P(j)(f),j G [1,...,J], traitant chacun la suite d'échantillons r^ et un circuit additionneur 15 pour additionner les symboles délivrés par les filtres 10(j). Q(f) désigne la fonction de transfert du filtre 20. Les expressions mathématiques des fonctions de transfert P(j)(f) et de Q(f) sont les suivantes : H(j)*(f)
Figure imgf000020_0001
G(f) = ∑P(j)(f)-H(j)(f)-τJ∑P(j)(f)-H(j)(f)df j=l BN j=l
Figure imgf000020_0002
L ' annuleur permettant de supprimer les interférences intersymboles produits par ces canaux de transmission est représenté à la figure 11. Cette figure est à rapprocher de la figure 4 (cas SISO) . Le filtre 100 est remplacé par J filtres 100<;i) de fonction de transfert
H(j)(f) , j [1 , ..., J] , traitant chacun la suite d'échantillons dn . Les symboles en sortie des filtres
ÎOO13 , notés d^ avec j G [1,...,J], sont soustraits respectivement aux symboles r^j) par 1 ' intermédiaire de circuits soustracteurs 110(j). La sortie des circuits soustracteurs 110(:i) est ensuite filtrée par un filtre
120(j) de fonction de transfert P(j)(f) . Les symboles délivrés par les J filtres P(j)(f) , j G [1,...,J], sont ensuite additionnés entre eux par un circuit additionneur 125. Enfin, les symboles obtenus à la sortie du circuit additionneur 125 sont additionnés aux symboles complexes de la suite {dn}neN affectés du coefficient correcteur d'amplitude g0 au moyen du circuit additionneur 130, lequel délivre la suite de symboles complexes {dn}neN.
Cet annuleur d'interférences intersymboles présente les mêmes avantages que celui de la figure 4, à savoir qu'il comporte des filtres de taille réduite (faible nombre de coefficients) . Les coefficients des filtre peuvent êtres déterminés soit par un circuit d'estimation du canal de transmission, soit par un circuit de traitement numérique mettant en œuvre un algorithme d'adaptation minimisant un critère d'optimisation donné.
Comme le dispositif de la figure 4, il peut également être utilisé dans un dispositif de turbo-égalisation.
Bien qu'il ne soit pas décrit de manière détaillée, le cas dit de réception fractionnée est équivalent au cas SIMO. La réception dite fractionnée consiste à capter les signaux avec une antenne de réception unique, puis à produire plusieurs suites d'échantillons décalées entre elles d'une fraction 1/m dé la période symbole T, la période d'échantillonnage de ces suites restant égale à T. Si m est un nombre entier, ces suites peuvent alors être traitées comme montré à la figure 11. Nous avons, dans cette description, exprimer les fonctions de transfert sous forme de transformées de Fourier (en f) . Celles-ci peuvent également s'exprimer de façon plus générale selon une transformée en z, de manière équivalente .

Claims

REVENDICATIONS
1) Dispositif pour annuler les interférences entre symboles dans une suite d'échantillons d'entrée ({rn}neN) d'un signal numérique provenant d'un canal de transmission défini par sa fonction de transfert H(f) dans le domaine fréquentiel, chaque échantillon étant représentatif d'un symbole complexe, caractérisé en ce qu'il comporte : - un premier filtre (100) qui converge vers un filtre de fonction de transfert H(f) , lequel premier filtre reçoit en entrée une suite d'échantillons ({dn}neN) représentative du signal numérique émis à l'entrée dudit canal de transmission, - un circuit soustracteur (110) pour retrancher la sortie ({dn}neN) dudit premier filtre à ladite suite d'échantillons d'entrée ({rn}neN),
- un second filtre (120) qui converge vers un filtre adapté au canal de transmission, lequel second filtre reçoit en entrée la sortie ({en}nεN) dudit circuit soustracteur (110) , et
- un circuit de sortie (130) destiné à combiner la sortie dudit second filtre (120) et la suite des échantillons ({dn}nM) représentative du signal numérique émis à 1 ' entrée dudit canal de transmission pour générer une suite de symboles complexes ({dn}N) débarrassés des interférences entre symboles engendrées par le canal de transmission. 2) Dispositif selon la revendication 1, caractérisé en ce que ledit circuit de sortie est un circuit additionneur (130) destiné à additionner la sortie dudit second filtre (120) avec ladite suite des échantillons ({dn}neN) représentative du signal numérique émis à l'entrée dudit canal de transmission.
3) Dispositif selon la revendication 2, caractérisé en ce que les échantillons ({dn}nεN) de la suite représentative du signal numérique émis à 1 ' entrée du canal de transmission qui sont traités par ledit circuit additionneur (130) sont affectés d'un coefficient correcteur d'amplitude.
4) Dispositif selon la revendication 3, caractérisé en ce que, dans le cas d'un canal de transmission perturbé par un bruit additif ayant des coefficients variant dans le temps, le coefficient correcteur d'amplitude est fonction de la puissance estimée du canal de transmission et de la variance du bruit additif.
5) Dispositif selon la revendication 4, caractérisé en ce que, dans le cas d'un canal de transmission perturbé par un bruit additif de variance σ^, ayant des coefficients rk(n) variant dans le temps tel que, à
l'instant n, ∑|rk(n)| =on, le coefficient correcteur k=-L,+l d'amplitude affecté à la suite d'échantillons ({dn}neN) représentative du signal numérique émis à l'entrée
dudit canal de transmission est égal a —-— -— et la
fonction de transfert du filtre vers lequel converge le
second filtre est — H(f)| -ocn). σwn
6) Dispositif selon la revendication 4, caractérisé en ce que, dans le cas d'un canal de transmission perturbé par un bruit additif de variance σ^, , le coefficient correcteur d'amplitude affecté à la suite d'échantillons ({dn}neN) représentative du signal numérique émis à l'entrée dudit canal de transmission
de variance σd est égal à g0 = avec
Figure imgf000025_0001
où T représente la
Figure imgf000025_0002
période des symboles émis, et la fonction de transfert du filtre vers lequel converge le second filtre est
Figure imgf000025_0003
7) Dispositif selon l'une des revendications 1 à 5, caractérisé en ce que les coefficients desdits premier et second filtres (100,120) sont déterminés par un circuit de traitement numérique mettant en œuvre un algorithme d'adaptation se basant sur un critère d'optimisation visant à minimiser l'influence des interférences entre symboles à la sortie dudit dispositif.
8) Dispositif selon l'une des revendications 1 à 6, caractérisé en ce que les coefficients desdits premier et second filtres (100,120) sont déterminés par un circuit d'estimation du canal de transmission.
9) Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est utilisé pour la réception de données numériques transmises à travers un canal hertzien.
10) Récepteur de signaux numériques caractérisé en ce qu'il comporte un dispositif d'annulation des interférences entre symboles selon l'une des revendications 1 à 9 et un circuit dédié pour générer ladite suite d'échantillons ({dn}neN) représentative du signal numérique émis à l'entrée dudit canal de transmission.
11) Récepteur selon la revendication 10, caractérisé en ce que ledit circuit dédié est un égaliseur linéaire transverse ou un égaliseur à maximum de vraisemblance recevant en entrée ladite suite d'échantillons d'entrée
({rn}neN) .
12) Dispositif de turboegalisation comportant une pluralité de modules de turboegalisation en série caractérisé en ce que chaque module de turboegalisation de rang supérieur à 1 dans ladite série de modules comporte un dispositif d'annulation d'interférences entre symboles selon l'une revendications 1 à 9 et en ce que, pour chaque dispositif d'annulation d'interférences, ladite suite d'échantillons ({dn}neN) représentative du signal numérique émis à 1 ' entrée du canal de transmission est fournie par le module de turboegalisation de rang inférieur.
13) Dispositif pour annuler les interférences entre symboles dans J suites d'échantillons d'entrée
( ( r^ }nN) d'un signal numérique provenant de J canaux de transmission définis par leurs fonctions de transfert H(l)(f) dans le domaine fréquentiel, J étant un entier supérieur ou égal à 2 , chaque échantillon étant représentatif d'un symbole complexe, caractérisé en ce qu'il comporte : un premier ensemble de J filtres (100(:ι)) qui convergent chacun vers un filtre de fonction de transfert H(j)(f) , JG[1,...,J], chacun des filtres dudit premier ensemble recevant en entrée une suite d'échantillons ({dn}neN) représentative du signal numérique émis à l'entrée desdits canaux de transmission,
- un ensemble de J circuits soustracteurs (110(:i)) pour retrancher les sorties ({dn J)'}neN) desdits J filtres du premier ensemble auxdites J suites d'échantillons d'entrée ({r^}ne ) respectivement, un second ensemble de J filtres (120(D>) qui convergent vers des filtres adaptés auxdits J canaux de transmission, chaque filtre dudit second ensemble recevant en entrée la sortie d'un desdits J circuits soustracteurs (110<:i))/ et un premier circuit additionneur (125) pour additionner les échantillons délivrés par les J filtres (120(;i)) dudit second ensemble,
- un circuit de sortie (130) destiné à combiner la sortie dudit premier circuit additionneur (125) et la suite des échantillons ({dn}neN) représentative du signal numérique émis à 1 ' entrée desdits canaux de transmission pour générer une suite de symboles complexes ({dn}neN) débarrassés des interférences entre symboles engendrées par lesdits canaux de transmission.
14) Dispositif selon la revendication 13, caractérisé en ce que ledit circuit de sortie est un deuxième circuit additionneur (130) destiné à additionner la sortie dudit premier circuit additionneur (125) avec ladite suite des échantillons ({dn}neN) représentative du signal numérique émis à l'entrée desdits canaux de transmission.
15) Dispositif selon la revendication 14, caractérisé en ce que les échantillons ({dn}nεN) de la suite représentative du signal numérique émis à l'entrée desdits canaux de transmission qui sont traités par ledit deuxième circuit additionneur (130) sont affectés d'un coefficient correcteur d'amplitude.
16) Dispositif selon l'une des revendications 13 à 15, caractérisé en ce que les coefficients des filtres desdits premier et second ensembles (100 (j) , 120(:i> ) sont déterminés par un circuit de traitement numérique mettant en œuvre un algorithme d'adaptation se basant sur un critère d'optimisation visant à minimiser 1 ' influence des interférences entre symboles à la sortie dudit dispositif.
17) Dispositif selon l'une des revendications 13 à 15, caractérisé en ce que les coefficients des filtres desdits premier et second ensembles (100 <j) , 120(;i) ) sont déterminés par un circuit d'estimation des canaux de transmission.
18) Récepteur de signaux numériques caractérisé en ce qu'il comporte un dispositif d'annulation des interférences entre symboles selon l'une des revendications 13 à 17 et un circuit dédié pour générer ladite suite d'échantillons ({dn}neN) représentative du signal numérique émis à 1 ' entrée desdits canaux de transmission.
19) Récepteur selon la revendication 18, caractérisé en ce que ledit circuit dédié est un égaliseur linéaire transverse ou un égaliseur à maximum de vraisemblance recevant en entrée lesdites J suites d'échantillons d'entrée ({rn (j)}neN) .
20) Dispositif de turboegalisation comportant une pluralité de modules de turboegalisation en série caractérisé en ce que chaque module de turboegalisation de rang supérieur à 1 dans ladite série de modules comporte un dispositif d'annulation d'interférences entre symboles selon l'une revendications 13 à 17 et en ce que, pour chaque dispositif d'annulation d'interférences, ladite suite d'échantillons ({dn}nεN) représentative du signal numérique émis à l'entrée du canal de transmission est fournie par le module de turboegalisation de rang inférieur.
PCT/FR2002/003624 2001-10-26 2002-10-23 Annuleur d'interferences entre symboles WO2003036893A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP02790534A EP1438815B1 (fr) 2001-10-26 2002-10-23 Annuleur d interferences entre symboles
US10/493,463 US7277514B2 (en) 2001-10-26 2002-10-23 Inter-symbol interference canceller
AT02790534T ATE298957T1 (de) 2001-10-26 2002-10-23 Zwischensymbolstörungslöscher
DE60204903T DE60204903T2 (de) 2001-10-26 2002-10-23 Zwischensymbolstörungslöscher

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR01/13991 2001-10-26
FR0113991A FR2831735B1 (fr) 2001-10-26 2001-10-26 Annuleur d'interferences entre symboles

Publications (1)

Publication Number Publication Date
WO2003036893A1 true WO2003036893A1 (fr) 2003-05-01

Family

ID=8868854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/003624 WO2003036893A1 (fr) 2001-10-26 2002-10-23 Annuleur d'interferences entre symboles

Country Status (7)

Country Link
US (1) US7277514B2 (fr)
EP (1) EP1438815B1 (fr)
AT (1) ATE298957T1 (fr)
DE (1) DE60204903T2 (fr)
ES (1) ES2244825T3 (fr)
FR (1) FR2831735B1 (fr)
WO (1) WO2003036893A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2873877A1 (fr) * 2004-08-02 2006-02-03 Wavecom Sa Procede de conception d'un filtre de reception numerique et dispositif de reception correspondant
US7251302B2 (en) 2003-12-05 2007-07-31 Dell Products L.P. Method, system and apparatus for quantifying the contribution of inter-symbol interference jitter on timing skew budget

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070098088A1 (en) * 2005-10-31 2007-05-03 Chih-Yuan Lin Equalizer applied in mimo-ofdm system and related method
CN101601200B (zh) * 2007-02-16 2014-07-09 日本电气株式会社 无线传输方式及干涉补偿方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993022854A1 (fr) * 1992-04-27 1993-11-11 The Commonwealth Of Australia Modem de radiocommunication assurant la reception et l'estimation d'un symbole transmis
EP0833484A1 (fr) * 1996-09-30 1998-04-01 THOMSON multimedia Dispositif et procédé d'égalisation vectorielle d'un signal OFDM
US5787131A (en) * 1995-12-22 1998-07-28 Ericsson Inc. Method and apparatus for mitigation of self interference using array processing
US6307901B1 (en) * 2000-04-24 2001-10-23 Motorola, Inc. Turbo decoder with decision feedback equalization

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5774505A (en) * 1996-04-04 1998-06-30 Hewlett-Packard Company Intersymbol interference cancellation with reduced complexity
US6363104B1 (en) * 1998-10-02 2002-03-26 Ericsson Inc. Method and apparatus for interference cancellation in a rake receiver
US6717985B1 (en) * 2000-03-08 2004-04-06 Telefonaktiebolaget Lm Ericsson (Publ) Technique for efficiently equalizing a transmission channel in a data transmission system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993022854A1 (fr) * 1992-04-27 1993-11-11 The Commonwealth Of Australia Modem de radiocommunication assurant la reception et l'estimation d'un symbole transmis
US5787131A (en) * 1995-12-22 1998-07-28 Ericsson Inc. Method and apparatus for mitigation of self interference using array processing
EP0833484A1 (fr) * 1996-09-30 1998-04-01 THOMSON multimedia Dispositif et procédé d'égalisation vectorielle d'un signal OFDM
US6307901B1 (en) * 2000-04-24 2001-10-23 Motorola, Inc. Turbo decoder with decision feedback equalization

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GERSHO A ET AL: "ADAPTIVE CANCELLATION OF CHANNEL NONLINEARITIES FOR DATA TRANSMISSION", LINKS FOR THE FUTURE. AMSTERDAM, MAY 14 - 17, 1984, INTERNATIONAL CONFERENCE ON COMMUNICATIONS, AMSTERDAM, NORTH-HOLLAND, NL, vol. 3, May 1984 (1984-05-01), pages 1239 - 1242, XP000793863 *
REED J H ET AL: "A frequency domain time-dependent adaptive filter for interference rejection", IEEE, 1984, XP010071970 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7251302B2 (en) 2003-12-05 2007-07-31 Dell Products L.P. Method, system and apparatus for quantifying the contribution of inter-symbol interference jitter on timing skew budget
US7889785B2 (en) 2003-12-05 2011-02-15 Dell Products L.P. Method, system and apparatus for quantifying the contribution of inter-symbol interference jitter on timing skew budget
FR2873877A1 (fr) * 2004-08-02 2006-02-03 Wavecom Sa Procede de conception d'un filtre de reception numerique et dispositif de reception correspondant
WO2006024712A1 (fr) * 2004-08-02 2006-03-09 Wavecom Procede de conception d'un filtre de reception numerique et dispositif de reception correspondant
US7991047B2 (en) 2004-08-02 2011-08-02 Wavecom Method for designing a digital reception filter and corresponding receiving device

Also Published As

Publication number Publication date
EP1438815A1 (fr) 2004-07-21
EP1438815B1 (fr) 2005-06-29
ATE298957T1 (de) 2005-07-15
US7277514B2 (en) 2007-10-02
ES2244825T3 (es) 2005-12-16
DE60204903T2 (de) 2006-05-11
US20050031063A1 (en) 2005-02-10
FR2831735B1 (fr) 2004-01-30
DE60204903D1 (de) 2005-08-04
FR2831735A1 (fr) 2003-05-02

Similar Documents

Publication Publication Date Title
EP0710947B1 (fr) Procédé et dispositif de suppression de bruit dans un signal de parole, et système avec annulation d&#39;écho correspondant
EP0748555B1 (fr) Annuleur d&#39;echo acoustique avec filtrage en sous-bandes
EP3188426B1 (fr) Procede de lutte anti-interference adaptatif dans un recepteur multi-voies
FR2571566A1 (fr) Dispositif de reception de donnees numeriques comportant un dispositif de recuperation adaptative de rythme
EP0106406A1 (fr) Egaliseur auto-adaptatif pour signal de données en bande de base
EP0146979B1 (fr) Procédé et dispositif pour la détermination de la position optimale du coefficient de référence d&#39;un égaliseur adaptatif
EP0576359B1 (fr) Procédé et dispositif égaliseur à retour de décisions pour la transmission par blocs de symboles d&#39;information
FR2517906A1 (fr) Annulateur d&#39;echo a commande automatique de gain pour systemes de transmission
EP0140809B1 (fr) Dispositif de correction d&#39;échos, notamment pour système de télédiffusion de données
FR2693611A1 (fr) Procédé et dispositif de compensation de bruit dans un processus d&#39;égalisation de signaux reçus.
EP0599722B1 (fr) Dispositif de récupération du rythme baud dans un récepteur pour modem
EP0669729B1 (fr) Procédé permettant une égalisation multivoie dans un récepteur radioélectrique, en présence d&#39;interférences et de multitrajets de propagation
EP1438815B1 (fr) Annuleur d interferences entre symboles
EP0127544B1 (fr) Annuleur d&#39;écho à filtre numérique adaptatif pour système de transmission
EP1774660A1 (fr) Procede de conception d&#39;un filtre de reception numerique et dispositif de reception correspondant
EP0275790B1 (fr) Terminal de transmission de données sur une voie analogique bidirectionnelle avec annulation d&#39;écho couplée au rythme réception
EP0511698B1 (fr) Egaliseur adaptatif semi-récursif
EP0981881B1 (fr) Dispositif d&#39;egalisation et de decodage pour un canal de transmission numerique selectif en frequence
EP0860963B1 (fr) Procédé et dispositif d&#39;égalisation autodidacte d&#39;un canal de transmission de signaux à module sensiblement constant
EP1478096B1 (fr) Dispositif et procédé de réjection d&#39;interférences auto-adaptatif
WO2008037925A1 (fr) Reduction de bruit et de distorsion dans une structure de type forward
EP1155497A1 (fr) Procede et systeme de traitement de signaux d&#39;antenne
EP1478146A1 (fr) Réception de deux signaux décorrélés transmis sur un unique canal
WO2011091928A1 (fr) Procede de reduction de longueur de canal, filtre et signal correspondants
FR2735635A1 (fr) Procede permettant une egalisation multicapteur dans un recepteur radioelectrique, en presence d&#39;interferences et de multitrajets de propagation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002790534

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002790534

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10493463

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2002790534

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP