WO2003036329A1 - Detecteur de rayonnement x a l'etat solide - Google Patents

Detecteur de rayonnement x a l'etat solide Download PDF

Info

Publication number
WO2003036329A1
WO2003036329A1 PCT/FR2002/003681 FR0203681W WO03036329A1 WO 2003036329 A1 WO2003036329 A1 WO 2003036329A1 FR 0203681 W FR0203681 W FR 0203681W WO 03036329 A1 WO03036329 A1 WO 03036329A1
Authority
WO
WIPO (PCT)
Prior art keywords
scintillator
ray detector
sensor
support
detector according
Prior art date
Application number
PCT/FR2002/003681
Other languages
English (en)
Inventor
Gérard Vieux
Didier Monin
Original Assignee
Trixell S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trixell S.A.S. filed Critical Trixell S.A.S.
Priority to US10/492,597 priority Critical patent/US7402814B2/en
Priority to EP02790545A priority patent/EP1438606A1/fr
Priority to CA002463078A priority patent/CA2463078C/fr
Priority to JP2003538770A priority patent/JP4510453B2/ja
Publication of WO2003036329A1 publication Critical patent/WO2003036329A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2002Optical details, e.g. reflecting or diffusing layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a solid state X-ray detector comprising a photosensitive sensor associated with a radiation converter.
  • the fields of application of this type of detector are in particular radiology: radiography, fluoroscopy, mammography, but also non-destructive testing.
  • Such radiation detectors are known, for example, from French patent FR 2 605 166 in which a sensor formed from amorphous silicon photodiodes is associated with a radiation converter.
  • the photosensitive sensor is generally produced from photosensitive elements in the solid state arranged in a matrix.
  • the photosensitive elements are made from semiconductor materials, most often monocrystalline silicon for CCD or CMOS type sensors, polycrystalline or amorphous silicon.
  • a photosensitive element comprises at least one photodiode, a phototransistor or a photo resistance. These elements are deposited on a substrate, generally a glass slab.
  • the photosensitive sensor is associated with a radiation converter which comprises a layer of a scintillating substance.
  • This substance has the property, when excited by such radiation, of emitting radiation of longer wavelength, for example visible or near visible light, to which the sensor is sensitive.
  • the light emitted by the radiation converter illuminates the photosensitive elements of the sensor which carry out a photoelectric conversion and deliver electrical signals which can be exploited by suitable circuits.
  • the radiation converter will be called a scintillator in the following description.
  • Certain scintillating substances from the family of alkali halides or rare earth oxysulfides are frequently used for their good performance.
  • cesium iodide doped with sodium or thallium depending on whether an emission around 400 nanometers or around 550 nanometers is desired, is known for its high absorption of X-rays and for its excellent fluorescence yield. It comes in the form of fine needles which are grown on a support. These needles are substantially perpendicular to this support and they partially confine the light emitted towards the sensor. Their finesse conditions the resolution of the detector.
  • Lanthanum and gadolinium oxysulfides are also widely used for the same reasons.
  • cesium iodide With regard to cesium iodide, its decomposition gives cesium hydroxide Cs + OH " and free iodine l 2 which can then combine with iodide ions to give the complex l 3 " . With regard to lanthanum oxysulfide, its decomposition gives chemically very aggressive hydrogen sulfide H 2 S.
  • Humidity is extremely difficult to remove. Ambient air and the glue used to assemble the detector always contain it. The presence of moisture in the adhesive is due either to ambient air, or as a by-product of polymerization if it results from the condensation of two chemical species, which is common.
  • One of the important aspects when making these detectors will be to minimize the amount of moisture initially present inside the detector, and in contact with the scintillator, and to avoid the diffusion of this humidity inside. of the sensor during its operation.
  • the radiation detectors have an entry window traversed by the X-ray upstream of the scintillator.
  • the scintillating substance is generally deposited on a metal support.
  • the support and the scintillating substance then form the scintillator.
  • the entry window must withstand without damage the thermal stresses of the deposition and treatment of the scintillator and preferably have a coefficient of expansion of the same order of magnitude as that of the scintillator and that of the sensor, more particularly that of its substrate.
  • the window has a low modulus of elasticity, which makes it possible to remove differential stresses between on the one hand the window and the scintillator and on the other hand the window and the sensor, or more particularly the substrate of the sensor. This eliminates the risk of cracking of the scintillator and breakage of the sensor substrate.
  • the surface condition of the entry window must also allow, in particular for cesium iodide, the finest possible needle growth, in the most uniform manner possible.
  • the fineness of the needles is a quality factor for the resolution of the detector.
  • the supports are aluminum.
  • the transparency of aluminum to the radiation to be detected is excellent, its optical properties are good.
  • After treatment of the aluminum a satisfactory surface condition can be obtained for depositing the scintillator there.
  • its coefficient of expansion is very different from that of the sensor.
  • This seal is necessarily flexible to absorb the differences in expansion between the support of the scintillator and the sensor during thermal cycles, and to minimize the stresses and the risks of breakage.
  • flexible materials are generally permeable to moisture. This results in insufficient protection of the scintillator like this humidity, which reduces the life of the detector.
  • the present invention proposes a radiation detector with an increased lifetime, the functions of which are an entry window and a seal. are not produced, as in the current state of the art, by the sole support of the scintillator.
  • the subject of the invention is a solid state X-ray detector comprising a photosensitive sensor, a scintillator transforming the X-ray into radiation to which the sensor is sensitive, and an entry window traversed by the X-ray upstream of the scintillator, characterized in that the entry window is placed on the scintillator, without being fixed to the scintillator, and in that a moisture-tight sealing joint fixes the entry window and the sensor.
  • the stresses to which the scintillator support was subjected are distributed between the support and the new entrance window proper.
  • the scintillator support remains subject to the same reflectivity and surface condition constraints for depositing scintillator as in the state of the art.
  • it is no longer subjected to the sealing and support constraints of the sealing joint. These constraints are carried over to the new additional input window.
  • This structure makes it possible to define an entry window material which is compatible with the material of which the sensor is made, in particular in terms of compatibility of their respective expansion coefficients which must allow the use of a harder sealing joint, and therefore more impermeable to humidity.
  • the invention can be implemented in two configurations for assembling the scintillator and the sensor.
  • the scintillator substance is deposited on a support that the radiation to be detected must pass through before reaching the sensor.
  • the assembly is then glued to the sensor.
  • the entry window is placed on the support without being fixed to it. This keeps a degree of freedom of the input window relative to the support.
  • the entry window can for example slide relative to the support to absorb possible differential expansions during changes in temperature of the detector.
  • the sensor serves as a support for the scintillating substance which is then in direct and intimate contact with the sensor.
  • the scintillating substance is then covered with a protective sheet.
  • the first configuration allows the scintillator and the sensor to be optimized separately.
  • the scintillator can then receive heat treatments, even if these are incompatible with the sensor.
  • cesium iodide it is evaporated by heating and it is deposited on the support by condensing.
  • An annealing operation is then carried out at approximately 300 ° C. in order to achieve an optimum fluorescence yield.
  • direct deposition a compromise must be made on the annealing temperature so as not to damage the sensor.
  • Another advantage of the first configuration known as the attached scintillator, is that the sensor and the scintillator are only assembled if they have been successfully tested, which improves the overall manufacturing yield.
  • the second configuration called direct deposit, each time the scintillator is defective, the sensor is discarded because there is no risk of trying to recycle it.
  • the thickness of adhesive for the assembly brings some losses in terms of spatial resolution of the X-ray detector and of light collection.
  • the direct deposition of the scintillator on the sensor offers the best optical coupling conditions.
  • the configuration in which the scintillator is carried by the support allows better management of production flows by allowing the separate production of the two elements that are the scintillator with its support on the one hand, and the sensor on the other hand.
  • the cost of the support as described in the first configuration is lower than that of the sensor serving as support for the scintillating substance in the second configuration.
  • the first configuration can be applied to photosensitive elements consisting of sets of several butted elements, as for example described in the French patents published under the numbers FR 2 758 654 and FR 2 758 656.
  • the second configuration cannot be applied to such photosensitive assemblies made up of assemblies of several butted elements, due to the poor dimensional stability of such assemblies at a temperature of 300 ° C, which temperature is necessary for the implementation of the scintillating substance after its deposition on its support.
  • the entrance window must meet the following requirements: be as transparent as possible to the radiation to be detected, be moisture-tight, and have mechanical properties compatible with the manipulations undergone by the detector.
  • FIG. 1 represents a radiology detector according to the first configuration.
  • FIG. 2 represents a radiology detector according to the second configuration.
  • the scales are not respected for the sake of clarity.
  • the first configuration known as the attached scintillator, is represented in FIG. 1.
  • the radiation sensor bears the reference 1. It comprises a substrate 2, in principle a glass slab, supporting photosensitive elements 3. Each photosensitive element 3 is mounted between a row conductor and a column conductor so that it can be addressed. The conductors are not visible in the figure for the purpose of simplification.
  • the photosensitive elements 3 and the conductors are generally covered with a passivation layer 4 intended to protect them from humidity.
  • the sensor 1 cooperates with a scintillator 5 which in the example is optically coupled to the sensor 1 with optical glue 6.
  • the scintillator 5 comprises a layer of scintillating substance 7, represented with a needle structure, deposited on a support 8.
  • the support 8 thus carries the scintillating substance 7.
  • the scintillating substance 7 belongs for example to the family of alkali halides such as cesium iodide which is particularly sensitive to wet oxidation, but it could also belong to the family of rare earth oxysulfides some members of which are also not very stable like lanthanum oxysulfide.
  • the scintillator substance 7 is deposited directly on the sensor 1 and a sheet 9 covers the scintillator substance 7.
  • the sheet 9 is used to protect the scintillator substance 7.
  • the assembly formed by the scintillator substance 7 and the sheet 9 will bear the mark 5 and will be called scintillator as in the first configuration.
  • an input window 10 is placed on the scintillator 5 without being fixed on it.
  • a sealed seal 11 fixes the entry window O to the sensor 1 or more precisely to its substrate 2.
  • the choice of a material for the seal is made according to the materials of the entry window and the sensor.
  • the sealing joint can be made from mineral material. This type of seal has very good impermeability but it requires a high processing temperature, of the order of 400 ° C.
  • the sealing joint can be made from organic material. These materials have a poorer seal than mineral materials. But on the other hand their processing temperature is lower, of the order of 200 ° C. Among the organic materials the best sealing is ensured by an epoxy adhesive
  • the input window 10 for its part, can be made of any material whose coefficient of thermal expansion is close to that of the material of which the sensor 1 is formed.
  • the coefficient of expansion of the input window is lower to that of aluminum.
  • the entry window 10 can be covered with any deposit which can improve its reflectivity or its chemical resistance to any corrosion, which can come inter alia from residues of decomposition of the scintillator in a humid environment.
  • the entrance window may include glass. The is mono component and therefore easy to implement. In addition, when the substrate 2 of the sensor 1 is produced from a glass slab, it is easy to choose a sealing joint whose compatibility is only checked with a single material, in this case glass. Carbon fibers can also be used to make the entrance window. Carbon fibers have better X-ray transparency than glass and are also less fragile. In carbon fibers, which are often held together with epoxy resin, are more difficult to seal due to their rough surface condition.
  • the entrance window may include a ceramic material whose X-ray transparency is close to that of glass.
  • the entrance window can also include an organic material such as polyester.
  • This material has better X-ray transparency than glass. Its fragility is also less than that of glass. It is a homogeneous material having a smooth surface state when it is obtained by rolling. Nevertheless, the sealing of polyester is more difficult to achieve than that of glass.
  • the support 8 of the scintillator, or the sheet 9 depending on the configuration chosen may include any metallic material such as aluminum, titanium or the like. It can also include any ceramic or organic material such as for example a polyimide, or even a composite material based on carbon fiber.
  • the material chosen must be transparent to X-rays, chemically compatible with the scintillating substance, and compatible with the operations for producing a luminescent scintillator, such as for example vacuum deposition and annealing.
  • the chosen material absorbs or reflects the light produced by the scintillator 5 but does not transmit it. Indeed, the light produced by the scintillator 5 is generally visible or near visible light. If the chosen material transmitted the light produced by the scintillator 5, the detector would no longer be optically impermeable to outside light, and the sensor 1 could receive outside light, which would disturb its operation.

Abstract

La présente invention concerne un détecteur de rayonnement X à l'état solide comportant un capteur photosensible associé à un convertisseur de rayonnement, appelé scintillateur (5), transformant le rayonnement X en un rayonnement auquel le capteur (1) est sensible, et un fenêtre d'entrée (10) traversée par le rayonnement X en amont du scintillateur (5). La fenêtre d'entrée (10) est posée sur le scintillateur (5), sans être fixée au scintillateur (5), et un joint de scellement (11) étanche à l'humidité fixe la fenêtre d'entrée (10) et le capteur (1). Le scintillateur (5) comporte un support (8) et une substance scintillatrice (7). Le support (8) est distinct du capteur (1). Les domaines d'application de ce type de détecteur sont notamment la radiologie: radiographie, fluoroscopie, mammographie, mais également le contrôle non destructif.

Description

DETECTEUR DE RAYONNEMENT X A L'ETAT SOLIDE
La présente invention concerne un détecteur de rayonnement X à l'état solide comportant un capteur photosensible associé à un convertisseur de rayonnement. Les domaines d'application de ce type de détecteur sont notamment la radiologie : radiographie, fluoroscopie, mammographie, mais également le contrôle non destructif.
De tels détecteurs de rayonnement sont connus par exemple par le brevet français FR 2 605 166 dans lequel un capteur formé de photodiodes en silicium amorphe est associé à un convertisseur de rayonnement.
Le fonctionnement et la structure d'un tel détecteur de rayonnement vont être rappelés succinctement.
Le capteur photosensible est généralement réalisé à partir d'éléments photosensibles à l'état solide arrangés en matrice. Les éléments photosensibles sont réalisés à partir de matériaux semiconducteurs, le plus souvent du silicium mono cristallin pour les capteurs de type CCD ou CMOS, du silicium poly cristallin ou amorphe. Un élément photosensible comporte au moins une photodiode, un phototransistor ou une photo résistance. Ces éléments sont déposés sur un substrat, généralement une dalle de verre.
Ces éléments ne sont généralement pas sensibles directement aux rayonnements de longueurs d'ondes très courtes comme le sont les rayons X ou gamma. C'est pourquoi, on associe le capteur photosensible à un convertisseur de rayonnement qui comporte une couche d'une substance scintillatrice. Cette substance a la propriété, lorsqu'elle est excitée par de tels rayonnements, d'émettre un rayonnement de longueur d'onde supérieure, par exemple de la lumière visible ou proche du visible, auquel est sensible le capteur. La lumière émise par le convertisseur de rayonnement illumine les éléments photosensibles du capteur qui effectuent une conversion photoélectrique et délivrent des signaux électriques exploitables par des circuits appropriés. Le convertisseur de rayonnement sera appelé scintillateur dans la suite de la description.
Certaines substances scintillatrices de la famille des halogénures alcalins ou des oxysulfures de terres rares sont fréquemment employées pour leurs bonnes performances. Parmi les halogénures alcalins, l'iodure de césium dopé au sodium ou au thallium selon que l'on souhaite une émission vers 400 nanomètres ou vers 550 nanomètres respectivement, est connu pour sa forte absorption des rayons X et pour son excellent rendement de fluorescence. Il se présente sous la forme de fines aiguilles que l'on fait croître sur un support. Ces aiguilles sont sensiblement perpendiculaires à ce support et elles confinent en partie la lumière émise vers le capteur. Leur finesse conditionne la résolution du détecteur. Les oxysulfures de lanthane et de gadolinium sont aussi très employés pour les mêmes raisons.
Mais parmi ces substances scintillatrices, certaines ont comme inconvénient d'être peu stables, elles se décomposent partiellement lorsqu'elles sont exposées à l'humidité et leur décomposition libère des espèces chimiques qui migrent soit vers le capteur soit à l'opposé du capteur. Ces espèces sont très corrosives. L'iodure de césium et l'oxysulfure de lanthane ont notamment cet inconvénient.
En ce qui concerne l'iodure de césium, sa décomposition donne de l'hydroxyde de césium Cs+ OH" et de l'iode libre l2 qui peut ensuite se combiner avec des ions iodures pour donner le complexe l3 ". En ce qui concerne l'oxysulfure de lanthane sa décomposition donne du sulfure d'hydrogène H2S chimiquement très agressif.
L'humidité est extrêmement difficile à supprimer. L'air ambiant ainsi que la colle utilisée pour l'assemblage du détecteur en contiennent toujours. La présence d'humidité dans la colle est du soit à l'air ambiant, soit comme sous-produit de la polymérisation si celle-ci résulte de la condensation de deux espèces chimiques, ce qui est fréquent.
L'un des aspects importants lors de la réalisation de ces détecteurs sera de minimiser la quantité d'humidité présente initialement à l'intérieur du détecteur, et en contact avec le scintillateur, et d'éviter la diffusion de cette humidité à l'intérieur du capteur lors de son fonctionnement.
Les détecteurs de rayonnement comportent une fenêtre d'entrée traversée par le rayonnement X en amont du scintillateur. Par ailleurs, la substance scintillatrice est généralement déposée sur un support métallique. Le support et la substance scintillatrice forment alors le scintillateur. De plus, il est connu d'utiliser le support comme fenêtre d'entrée. Lorsque la substance scintillatrice est déposée sur la fenêtre d'entrée pour former le scintillateur qui est ensuite rapporté sur le capteur, la fenêtre d'entrée doit supporter sans dommage les contraintes thermiques du dépôt et du traitement du scintillateur et posséder préférentiellement un coefficient de dilatation du même ordre de grandeur que celui du scintillateur et que celui du capteur, plus particulièrement celui de son substrat. On peut aussi prévoir que la fenêtre ait un module d'élasticité faible, ce qui permet de supprimer des contraintes différentielles entre d'une part la fenêtre et le scintillateur et d'autre part la fenêtre et le capteur, ou plus particulièrement le substrat du capteur. On supprime ainsi les risques de craquèlement du scintillateur et de bris du substrat du capteur.
L'état de surface de la fenêtre d'entrée doit de plus permettre, notamment pour l'iodure de césium, une croissance d'aiguilles les plus fines possibles, de la manière la plus uniforme possible. La finesse des aiguilles est un facteur de qualité pour la résolution du détecteur.
Actuellement les supports sont en aluminium. La transparence de l'aluminium au rayonnement à détecter est excellente, ses propriétés optiques sont bonnes. On peut obtenir après traitement de l'aluminium un état de surface satisfaisant pour y déposer le scintillateur. Malheureusement, son coefficient de dilatation est très différent de celui du capteur. Pour éviter des contraintes mécaniques importantes à l'interface entre les deux éléments à l'occasion de cycles thermiques, on est réduit à utiliser un joint de scellement souple capable d'encaisser sans dommage les déformations liées à ces cycles thermiques. Ce joint est nécessairement souple pour encaisser les différences de dilatation entre le support du scintillateur et le capteur lors des cycles thermiques, et de minimiser les contraintes et les risques de casse. Or, les matériaux souples sont en général perméables à l'humidité. Il en résulte une protection insuffisante du scintillateur comme cette humidité, ce qui réduit la durée de vie du détecteur. Il est souhaitable que de tels détecteurs de rayonnement aient une durée de vie comparable avec la durée d'amortissement des appareils de radiologie ou autre sur lesquels ils sont montés, cette durée étant de l'ordre de 10 ans. La présente invention propose un détecteur de rayonnement à durée de vie accrue dont les fonctions de fenêtre d'entrée et étanchéité ne sont pas réalisées, comme dans l'état de l'art actuel, par le seul support du scintillateur.
A cet effet, l'invention a pour objet, un détecteur de rayonnement X à l'état solide comportant un capteur photosensible, un scintillateur transformant le rayonnement X en un rayonnement auquel le capteur est sensible, et une fenêtre d'entrée traversée par le rayonnement X en amont du scintillateur, caractérisé en ce que la fenêtre d'entrée est posée sur le scintillateur, sans être fixée au scintillateur, et en ce qu'un joint de scellement étanche à l'humidité fixe la fenêtre d'entrée et le capteur.
Selon l'invention, les contraintes auxquelles était soumis le support du scintillateur sont réparties entre le support et la nouvelle fenêtre d'entrée proprement dite. Le support du scintillateur reste soumis aux mêmes contraintes de réflectivité et d'état de surface pour le dépôt de scintillateur que dans l'état de l'art. Par contre, il n'est plus soumis aux contraintes d'étanchéité et de support du joint de scellement. Ces contraintes sont reportées sur la nouvelle fenêtre d'entrée additionnelle.
Cette structure permet de définir un matériau de fenêtre d'entrée qui soit compatible avec le matériau dont est constitué le capteur, notamment en termes de compatibilité de leurs coefficients de dilatation respectifs qui doit permettre l'utilisation d'un joint de scellement plus dur, et donc plus imperméable à l'humidité.
En séparant les fonctions de fenêtre d'entrée et de support du scintillateur, le choix de matériau utilisable pour réaliser la fenêtre d'entrée est beaucoup plus ouvert.
L'invention peut être mise en œuvre dans deux configurations d'assemblage du scintillateur et du capteur.
Dans une première configuration, dite du scintillateur rapporté, la substance scintillatrice est déposée sur un support que le rayonnement à détecter doit traverser avant d'atteindre le capteur. L'ensemble est alors collé sur le capteur. Dans cette configuration, la fenêtre d'entrée est posée sur le support sans y être fixée. Cela permet de conserver un degré de liberté de la fenêtre d'entrée par rapport au support. La fenêtre d'entrée peut par exemple glisser par rapport au support pour absorber d'éventuelles dilatations différentielles lors de changements de température du détecteur. Dans une seconde configuration, dite du dépôt direct, le capteur sert de support à la substance scintillatrice qui est alors en contact direct et intime avec le capteur. La substance scintillatrice est ensuite recouverte d'une feuille de protection. Les deux configurations présentent chacune des avantages et des inconvénients.
La première configuration permet d'optimiser séparément le scintillateur et le capteur. Le scintillateur peut alors recevoir des traitements thermiques, même si ceux-ci sont incompatibles avec le capteur. Pour déposer de l'iodure de césium, on l'évaporé par chauffage et il se dépose sur le support en se condensant. On effectue ensuite une opération de recuit à environ 300°C pour atteindre un optimum de rendement de fluorescence. Lorsque la substance scintillatrice est déposée directement sur le capteur dans la seconde configuration, dite du dépôt direct, il faut faire un compromis sur la température de recuit pour ne pas endommager le capteur.
Un autre avantage de la première configuration, dite du scintillateur rapporté, est que le capteur et le scintillateur ne sont assemblés que s'ils ont été testés avec succès ce qui permet d'améliorer le rendement global de fabrication. Dans la seconde configuration, dite du dépôt direct, chaque fois que le scintillateur est défectueux, le capteur est mis au rebut car on ne se risque pas à tenter de le recycler.
Dans la première configuration, dite du scintillateur rapporté, l'épaisseur de colle pour l'assemblage apporte quelques pertes en termes de résolution spatiale du détecteur de rayonnement X et de collection de lumière. Le dépôt direct du scintillateur sur le capteur offre au contraire les meilleures conditions de couplage optique.
La configuration dans laquelle le scintillateur est porté par le support permet une meilleure gestion des flux de production en permettant la fabrication séparée des deux éléments que sont le scintillateur avec son support d'une part, et le capteur d'autre part.
Par ailleurs, le coût du support tel que décrit dans la première configuration est inférieur à celui du capteur servant de support à la substance scintillatrice dans la seconde configuration. On fera ainsi face à une moindre perte dans le cas d'un dépôt de substance scintillatrice déficiente qui pousserait à l'élimination du scintillateur et de son support. Enfin, la première configuration peut s'appliquer à des éléments photosensibles constitués d'ensembles de plusieurs éléments raboutés, tels que par exemple décrits dans les brevets français publiés sous les numéros FR 2 758 654 et FR 2 758 656. La seconde configuration ne peut pas s'appliquer à de tels ensembles photosensibles constitués d'ensembles de plusieurs éléments raboutés, du fait de la mauvaise stabilité dimensionnelle de tels ensembles à une température de 300°C, laquelle température est nécessaire à la mise en oeuvre de la substance scintillatrice après son dépôt sur son support.
Dans les deux configurations, la fenêtre d'entrée doit répondre aux exigences suivantes : être la plus transparente possible au rayonnement à détecter, être étanche à l'humidité, et avoir des propriétés mécaniques compatibles avec les manipulations subies par le détecteur.
Lorsqu'on désire disposer d'un détecteur dont la résolution est très bonne, on a intérêt à prévoir une fenêtre d'entrée qui absorbe la lumière émise par le scintillateur vers l'arrière c'est à dire à l'opposé du capteur par rapport au scintillateur. Mais on perd en sensibilité.
Au contraire, lorsqu'on désire disposer d'un détecteur dont la sensibilité est grande, on a intérêt à prévoir une fenêtre d'entrée qui réfléchit vers le capteur la lumière émise par le scintillateur vers l'arrière. On accroît ainsi le signal lumineux reçu par le capteur pour une même quantité de rayonnement. Ce gain en sensibilité se fait au détriment de la résolution car à partir d'un photon X, la lumière transmise directement et la lumière réfléchie peuvent atteindre le capteur en des points d'impact différents. L'image obtenue est un peu moins nette que dans le cas précédent. Avec les détecteurs radiologiques actuels, dans les conditions de rapport signal sur bruit de la radiographie générale, il peut être globalement plus intéressant de réduire la réflectivité de la fenêtre d'entrée. En effet, plusieurs centaines d'électrons sont créés par un photon X absorbé, car le scintillateur transforme un photon X en un grand nombre de photons lumineux. L'essentiel est que chaque photon X soit détecté par le capteur après transformation en électron. Si le bruit de lecture dans le capteur est comparable au signal résultant de l'absorption d'un photon X, le fait de réduire la réflectivité permet, sans dégrader le rapport signal sur bruit et la sensibilité, d'améliorer la résolution. L'invention sera mieux comprise et d'autres caractéristiques et avantages apparaîtront à la lecture de la description qui suit en référence aux figures annexées : La figure 1 représente un détecteur de radiologie selon la première configuration.
La figure 2 représente un détecteur de radiologie selon la seconde configuration. Sur ces figures, les échelles ne sont pas respectées dans un souci de clarté.
La première configuration, dite du scintillateur rapporté, est représentée sur la figure 1. Le capteur de rayonnement porte la référence 1. Il comporte un substrat 2, en principe une dalle en verre, supportant des éléments photosensibles 3. Chaque élément photosensible 3 est monté entre un conducteur de ligne et un conducteur de colonne de manière à pouvoir être adressé. Les conducteurs ne sont pas visibles sur la figure dans un but de simplification. Les éléments photosensibles 3 et les conducteurs sont généralement recouverts d'une couche de passivation 4 destinée à les protéger de l'humidité.
Dans cette configuration, le capteur 1 coopère avec un scintillateur 5 qui dans l'exemple est couplé optiquement au capteur 1 avec de la colle optique 6. Le scintillateur 5 comporte une couche de substance scintillatrice 7, représentée avec une structure en aiguilles, déposée sur un support 8. Le support 8 porte ainsi la substance scintillatrice 7. La substance scintillatrice 7 appartient par exemple à la famille des halogénures alcalins tel l'iodure de césium qui est particulièrement sensible à l'oxydation humide, mais elle pourrait également appartenir à la famille des oxysulfures de terres rares dont certains membres sont également peu stables comme l'oxysulfure de lanthane.
Dans la seconde configuration, représentée sur la figure 2, configuration dite du dépôt direct, au lieu de déposer la substance scintillatrice 7 sur le support 8 et de rapporter cet ensemble formant le scintillateur 5 sur le capteur 1 , comme l'illustre la figure 1 , la substance scintillatrice 7 est déposée directement sur le capteur 1 et une feuille 9 recouvre la substance scintillatrice 7. La feuille 9 sert à la protection de la substance scintillatrice 7. Par souci de simplicité, dans la seconde configuration, l'ensemble formé par la substance scintillatrice 7 et la feuille 9 portera le repère 5 et sera dénommée scintillateur comme dans la première configuration. Dans les détecteurs de rayonnement X représentés sur les figures 1 et 2, une fenêtre d'entrée 10 est posée sur le scintillateur 5 sans être fixée sur lui. Un joint de scellement 11 étanche fixe la fenêtre d'entréelO au capteur 1 ou plus précisément à son substrat 2. Le choix d'un matériau pour le joint de scellement est fait en fonction des matériaux de la fenêtre d'entrée et du capteur. Le joint de scellement peut être réalisé à base de matériau minéral. Ce type de joint présente une très bonne imperméabilité mais il nécessite une température de mise en oeuvre élevée, de l'ordre de 400°C. A titre d'alternative, le joint de scellement peut être réalisé à base de matériau organique. Ces matériaux présentent une moins bonne étanchéité que les matériaux minéraux. Mais en revanche leur température de mise en œuvre est plus basse, de l'ordre de 200°C. Parmi les matériaux organiques la meilleure étanchéité est assurée par un adhésif époxy
La fenêtre d'entrée 10, quant à elle, peut être constituée de tout matériau dont le coefficient de dilatation thermique est proche de celui du matériau dont est formé le capteur 1. Avantageusement, le coefficient de dilatation de la fenêtre d'entrée est inférieur à celui de l'aluminium. La proximité des coefficients de dilatation des 2 matériaux à assembler, à savoir celui de la fenêtre d'entrée et celui du capteur rend possible l'utilisation d'un joint de scellement dur.
La fenêtre d'entrée 10 peut être recouverte de tout dépôt pouvant améliorer sa réflectivité ou sa résistance chimique à toute corrosion, pouvant provenir entre autres des résidus de décomposition du scintillateur en milieu humide.
Plusieurs matériaux peuvent convenir pour réaliser la fenêtre d'entrée. Les matériaux contenant peu d'éléments lourds conviennent en général du fait de leur bonne transparence aux rayons X. La fenêtre d'entrée peut comporter du verre. Le
Figure imgf000010_0001
est mono composant et donc facile à mettre en œuvre. De plus, lorsque le substrat 2 du capteur 1 est réalisé à partir d'une dalle de verre, il est aisé de choisir un joint de scellement dont on ne vérifie la compatibilité qu'avec un seul matériau, en l'occurrence le verre. Des fibres de carbone peuvent également être utilisées pour réaliser la fenêtre d'entrée. Les fibres de carbone ont une meilleure transparence aux rayons X que le verre et sont aussi moins fragiles. En revanche, les fibres de carbone, souvent maintenues avec de la résine époxy sont plus difficiles à sceller du fait de leur état de surface rugueux.
A titre d'alternative, la fenêtre d'entrée peut comporter un matériau céramique dont la transparence aux rayons X est voisine de celle du verre.
La fenêtre d'entrée peut également comporter un matériau organique comme par exemple du polyester. Ce matériau présente une meilleure transparence aux rayons X que le verre. Sa fragilité est également moindre que celle du verre. C'est un matériau homogène présentant un état de surface lisse lorsqu'il est obtenu par laminage. Néanmoins, Le scellement du polyester est plus délicat à réaliser que celui du verre.
Le support 8 du scintillateur, ou la feuille 9 suivant la configuration retenue, peut comporter tout matériau métallique tel que l'aluminium, le titane ou autre. Il peut également comporter tout matériau céramique ou organique tel que par exemple un polyimide, ou encore un matériau composite à base de fibre de carbone. Le matériau choisi doit être transparent aux rayons X, compatible chimiquement avec la substance scintillatrice, et compatible avec les opérations de réalisation d'un scintillateur luminescent, telles que par exemple dépôts sous vide et recuits. Avantageusement, le matériau choisi absorbe ou réfléchit la lumière produite par le scintillateur 5 mais ne la transmet pas. En effet, la lumière produite par le scintillateur 5 est en général de la lumière visible ou proche du visible. Si le matériau choisi transmettait la lumière produite par le scintillateur 5, le détecteur ne serait plus étanche optiquement à la lumière extérieure, et le capteur 1 pourrait recevoir de la lumière extérieure, ce qui perturberait son fonctionnement.

Claims

REVENDICATIONS
1. Détecteur de rayonnement X à l'état solide comportant un capteur photosensible, un scintillateur (5) transformant le rayonnement X en un rayonnement auquel le capteur (1 ) est sensible, et une fenêtre d'entrée (10) traversée par le rayonnement X en amont du scintillateur (5), caractérisé en ce que la fenêtre d'entrée (10) est posée sur le scintillateur (5), sans être fixée au scintillateur (5), en ce qu'un joint de scellement (1 1 ) étanche à l'humidité fixe la fenêtre d'entrée (10) et le capteur (1), en ce que le scintillateur (5) comporte un support (8) et une substance scintillatrice (7), et en ce que le support (8) est distinct du capteur (1 ).
2. Détecteur de rayonnement X selon la revendication 1 , caractérisé en ce que le coefficient de dilatation de la fenêtre d'entrée (10) est inférieur à celui de l'aluminium.
3. Détecteur de rayonnement X selon la revendication 2, caractérisé en ce que la fenêtre d'entrée (10) comporte du verre.
4. Détecteur de rayonnement X selon la revendication 2, caractérisé en ce que la fenêtre d'entrée (10) comporte des fibres de carbone.
5. Détecteur de rayonnement X selon la revendication 2, caractérisé en ce que la fenêtre d'entrée (10) comporte un matériau céramique.
6. Détecteur de rayonnement X selon la revendication 2, caractérisé en ce que la fenêtre d'entrée (10) comporte un matériau organique.
7. Détecteur de rayonnement X selon l'une des revendications précédentes, caractérisé en ce que le joint de scellement (1 1) est réalisé à base de matériau minéral.
8. Détecteur de rayonnement X selon l'une des revendications 1 à 6, caractérisé en ce que le joint de scellement (11) est réalisé à base de matériau organique.
9. Détecteur de rayonnement X selon l'une des revendications
1 à 6, caractérisé en ce que le joint de scellement (11) est réalisé à base d'adhésif époxy.
10. Détecteur de rayonnement X selon l'une des revendications précédentes, caractérisé en ce que le scintillateur (5) comporte un matériau appartenant à la famille des halogénures alcalins tel que l'iodure de césium ou des oxysulfures de terres rares tel que l'oxysulfure de lanthane.
11. Détecteur de rayonnement X selon l'une des revendications précédentes, caractérisé en ce que le support (8) est métallique.
12. Détecteur de rayonnement X selon la revendication 11 , caractérisé en ce que le support (8) est en aluminium.
13. Détecteur de rayonnement X selon la revendication 11, caractérisé en ce que le support (8) est en titane.
14. Détecteur de rayonnement X selon l'une des revendications précédentes, caractérisé en ce que le support (8) est organique ou céramique.
15. Détecteur de rayonnement X selon la revendication 14, caractérisé en ce que le support (8) est un support polyimide.
PCT/FR2002/003681 2001-10-26 2002-10-25 Detecteur de rayonnement x a l'etat solide WO2003036329A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/492,597 US7402814B2 (en) 2001-10-26 2002-10-25 Solid-state x-ray detector
EP02790545A EP1438606A1 (fr) 2001-10-26 2002-10-25 Detecteur de rayonnement x a l'etat solide comportant un scintillateur
CA002463078A CA2463078C (fr) 2001-10-26 2002-10-25 Detecteur de rayonnement x a l'etat solide
JP2003538770A JP4510453B2 (ja) 2001-10-26 2002-10-25 固体x線検出器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR01/13899 2001-10-26
FR0113899A FR2831671B1 (fr) 2001-10-26 2001-10-26 Detecteur de rayonnement x a l'etat solide

Publications (1)

Publication Number Publication Date
WO2003036329A1 true WO2003036329A1 (fr) 2003-05-01

Family

ID=8868782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/003681 WO2003036329A1 (fr) 2001-10-26 2002-10-25 Detecteur de rayonnement x a l'etat solide

Country Status (7)

Country Link
US (1) US7402814B2 (fr)
EP (1) EP1438606A1 (fr)
JP (1) JP4510453B2 (fr)
CN (1) CN1276269C (fr)
CA (1) CA2463078C (fr)
FR (1) FR2831671B1 (fr)
WO (1) WO2003036329A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142217A (ja) * 2013-01-23 2014-08-07 Konica Minolta Inc 放射線画像撮影装置

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2848677B1 (fr) * 2002-12-17 2005-04-15 Trixell Sas Detecteur de rayonnement x a l'etat solide
FR2868546B1 (fr) * 2004-04-02 2006-09-08 Trixell Sas Sa Assemblage d'un detecteur de rayonnement
EP1738411A4 (fr) * 2004-04-22 2012-06-27 Panasonic Corp Dispositif de capteur, système de capteur et procédés de fabrication de ceux-ci
FR2891401B1 (fr) * 2005-09-23 2007-10-26 Thales Sa Realisation d'un detecteur de rayonnement.
DE102006033716A1 (de) * 2006-07-20 2008-02-14 Siemens Ag Röntgendiagnostikeinrichtung mit einem digitalen Röntgendetektor und integrierter Dosismessung
DE102006038969B4 (de) * 2006-08-21 2013-02-28 Siemens Aktiengesellschaft Röntgenkonverterelement und Verfahren zu dessen Herstellung
FR2916575B1 (fr) 2007-05-23 2009-09-18 Trixell Sas Soc Par Actions Si Procede de realisation d'un detecteur de rayonnement
US8003950B2 (en) * 2008-01-18 2011-08-23 Kabushiki Kaisha Toshiba Radiation detector, X-ray CT apparatus, and method for manufacturing radiation detector
JP5343970B2 (ja) * 2008-07-25 2013-11-13 コニカミノルタ株式会社 放射線画像検出装置
WO2010041191A2 (fr) * 2008-10-07 2010-04-15 Koninklijke Philips Electronics, N.V. Boîtier pour cristal à scintillation hygroscopique pour imagerie nucléaire
FR2938705B1 (fr) * 2008-11-14 2011-02-25 Trixell Detecteur de rayonnement x a l'etat solide
US8130904B2 (en) 2009-01-29 2012-03-06 The Invention Science Fund I, Llc Diagnostic delivery service
US8111809B2 (en) 2009-01-29 2012-02-07 The Invention Science Fund I, Llc Diagnostic delivery service
JP5597930B2 (ja) * 2009-03-19 2014-10-01 コニカミノルタ株式会社 放射線画像検出装置とその製造方法
DE102009026946B4 (de) * 2009-06-15 2012-03-08 Bruker Nano Gmbh Störungsarmer Sensorkopf für einen Strahlungsdetektor sowie diesen störungsarmen Sensorkopf enthaltender Strahlungsdetektor
KR101202787B1 (ko) 2009-12-02 2012-11-19 (주)바텍이우홀딩스 엑스선 검출장치 및 이의 제조방법
JP6059534B2 (ja) * 2009-12-15 2017-01-11 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 放射線量に基づく撮像検出器タイルのパラメタの補償
JP2012247402A (ja) * 2011-05-31 2012-12-13 Fujifilm Corp 放射線撮影装置
JP2012247401A (ja) * 2011-05-31 2012-12-13 Fujifilm Corp 放射線撮影装置
US9012859B2 (en) * 2012-05-18 2015-04-21 General Electric Company Tiled X-ray imager panel and method of forming the same
JP2014074595A (ja) * 2012-10-02 2014-04-24 Canon Inc 放射線撮像装置、放射線撮像システム、及び、放射線撮像装置の製造方法
JP6092568B2 (ja) * 2012-10-11 2017-03-08 キヤノン株式会社 放射線検出装置及び放射線検出システム
FR3000345B1 (fr) 2012-12-21 2016-03-04 Trixell Embase pour cassette radiologique numerique portable
CN103200754A (zh) * 2013-03-25 2013-07-10 合肥海明科技开发有限责任公司 一种用于钢绳芯输送带检测的x射线发射机
WO2014187502A1 (fr) * 2013-05-24 2014-11-27 Teledyne Dalsa B.V. Structure de protection contre l'humidité pour dispositif et son procédé de fabrication
US10712454B2 (en) 2014-07-25 2020-07-14 General Electric Company X-ray detectors supported on a substrate having a metal barrier
US9513380B2 (en) 2014-07-25 2016-12-06 General Electric Company X-ray detectors supported on a substrate having a surrounding metal barrier
US9334443B1 (en) * 2014-10-31 2016-05-10 Sun Harmonics, Ltd. Synthesis of CsSnI3 by a solution based method
WO2016076824A1 (fr) 2014-11-10 2016-05-19 Halliburton Energy Services, Inc. Appareil, procédés et systèmes de détection d'énergie
DE102014225396B3 (de) * 2014-12-10 2016-04-28 Siemens Aktiengesellschaft Sensorboard für ein Detektormodul und Verfahren zu dessen Herstellung
CN108140650B (zh) * 2015-10-14 2022-08-30 深圳帧观德芯科技有限公司 具有高空间解析度的x射线检测器
US20220299664A1 (en) * 2021-03-16 2022-09-22 Canon Kabushiki Kaisha Radiation imaging apparatus and radiation imaging system
JP2023108947A (ja) 2022-01-26 2023-08-07 キヤノン株式会社 放射線撮影装置および放射線撮影システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0528676A1 (fr) * 1991-08-21 1993-02-24 General Electric Company Détecteur de radiations à l'état solide avec un revêtement réflecteur et protecteur
EP0529981A2 (fr) * 1991-08-29 1993-03-03 General Electric Company Détecteur plan de rayons X ayant une structure scellée résistant à l'humidité
JPH09257944A (ja) * 1996-03-27 1997-10-03 Canon Inc 放射線検出器
US6042267A (en) * 1997-04-09 2000-03-28 Hamamatsu Photonics K.K. X-ray image pickup apparatus for intraoral radiography
US6172371B1 (en) * 1998-06-15 2001-01-09 General Electric Company Robust cover plate for radiation imager
WO2001051951A1 (fr) * 2000-01-13 2001-07-19 Hamamatsu Photonics K.K. Capteur d'image radiologique et panneau de scintillateur

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142101B1 (en) * 1977-07-20 1991-02-19 Low intensity x-ray and gamma-ray imaging device
US4418031A (en) * 1981-04-06 1983-11-29 Van Dresser Corporation Moldable fibrous mat and method of making the same
US4975762A (en) * 1981-06-11 1990-12-04 General Electric Ceramics, Inc. Alpha-particle-emitting ceramic composite cover
US6448544B1 (en) * 1998-06-08 2002-09-10 Brandeis University Low noise, high resolution image detection system and method
US6272207B1 (en) * 1999-02-18 2001-08-07 Creatv Microtech, Inc. Method and apparatus for obtaining high-resolution digital X-ray and gamma ray images
US6414315B1 (en) * 1999-10-04 2002-07-02 General Electric Company Radiation imaging with continuous polymer layer for scintillator
JP4040879B2 (ja) * 2000-01-11 2008-01-30 浜松ホトニクス株式会社 X線像検出装置
EP1879050A3 (fr) * 2000-09-11 2008-03-26 Hamamatsu Photonics K.K. Panneau scintillateur, capteur radiographique et procédés de prodcution
US6770885B2 (en) * 2001-08-29 2004-08-03 General Electric Company Systems and methods for detecting ionizing radiation with an imaging system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0528676A1 (fr) * 1991-08-21 1993-02-24 General Electric Company Détecteur de radiations à l'état solide avec un revêtement réflecteur et protecteur
EP0529981A2 (fr) * 1991-08-29 1993-03-03 General Electric Company Détecteur plan de rayons X ayant une structure scellée résistant à l'humidité
JPH09257944A (ja) * 1996-03-27 1997-10-03 Canon Inc 放射線検出器
US6042267A (en) * 1997-04-09 2000-03-28 Hamamatsu Photonics K.K. X-ray image pickup apparatus for intraoral radiography
US6172371B1 (en) * 1998-06-15 2001-01-09 General Electric Company Robust cover plate for radiation imager
WO2001051951A1 (fr) * 2000-01-13 2001-07-19 Hamamatsu Photonics K.K. Capteur d'image radiologique et panneau de scintillateur

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 02 30 January 1998 (1998-01-30) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142217A (ja) * 2013-01-23 2014-08-07 Konica Minolta Inc 放射線画像撮影装置

Also Published As

Publication number Publication date
JP4510453B2 (ja) 2010-07-21
JP2005506552A (ja) 2005-03-03
US20040245474A1 (en) 2004-12-09
CA2463078C (fr) 2010-01-19
CN1575423A (zh) 2005-02-02
CA2463078A1 (fr) 2003-05-01
US7402814B2 (en) 2008-07-22
CN1276269C (zh) 2006-09-20
EP1438606A1 (fr) 2004-07-21
FR2831671A1 (fr) 2003-05-02
FR2831671B1 (fr) 2004-05-28

Similar Documents

Publication Publication Date Title
CA2463078C (fr) Detecteur de rayonnement x a l'etat solide
EP1927140A1 (fr) Realisation d'un detecteur de rayonnement
EP2150979B1 (fr) Procede de realisation d'un detecteur de rayonnement
EP1314051A2 (fr) Detecteur de rayonnement a duree de vie accrue
EP1177581B1 (fr) Detecteur de rayonnement a l'etat solide a duree de vie accrue
EP2347283A1 (fr) Detecteur de rayonnement x a l'etat solide
FR2758630A1 (fr) Procede de scellement etanche d'un detecteur de rayonnement a l'etat solide et detecteur obtenu par ce procede
CA2510192C (fr) Detecteur de rayonnement x a l'etat solide
EP0319080B1 (fr) Tube intensificateur d'images à rayons X
EP3066688B1 (fr) Detecteur numerique possedant un generateur de lumiere permettant un effacement optique
FR2868546A1 (fr) Assemblage d'un detecteur de rayonnement
FR3096144A1 (fr) Procédé de réalisation d’un détecteur numérique à l’état solide d’un rayonnement incident
JP2012220400A (ja) シンチレータパネル、シンチレータパネルの製造方法および放射線検出器
FR2778021A1 (fr) Detecteur d'image utilisant un ecran scintillateur
FR2794565A1 (fr) Ecran de conversion de rayonnements x en photons lumineux de grande dimension et systeme de radiologie comportant cet ecran

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002790545

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2463078

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10492597

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003538770

Country of ref document: JP

Ref document number: 2002821286X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002790545

Country of ref document: EP