WO2003035380A1 - Method for making extruded profiles having a specific surface state made of fiber-reinforced synthetic resins and machine therefor - Google Patents

Method for making extruded profiles having a specific surface state made of fiber-reinforced synthetic resins and machine therefor Download PDF

Info

Publication number
WO2003035380A1
WO2003035380A1 PCT/FR2002/003662 FR0203662W WO03035380A1 WO 2003035380 A1 WO2003035380 A1 WO 2003035380A1 FR 0203662 W FR0203662 W FR 0203662W WO 03035380 A1 WO03035380 A1 WO 03035380A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
resin
assembly
mandrel
mold
Prior art date
Application number
PCT/FR2002/003662
Other languages
French (fr)
Inventor
Alexandre Hamlyn
Yvan Hardy
Original Assignee
Coriolis Composites
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coriolis Composites filed Critical Coriolis Composites
Publication of WO2003035380A1 publication Critical patent/WO2003035380A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/38Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
    • B29C70/382Automated fiber placement [AFP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • B29C53/60Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels
    • B29C53/62Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels rotatable about the winding axis
    • B29C53/66Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels rotatable about the winding axis with axially movable winding feed member, e.g. lathe type winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/80Component parts, details or accessories; Auxiliary operations
    • B29C53/82Cores or mandrels
    • B29C53/821Mandrels especially adapted for winding and joining
    • B29C53/828Arrangements comprising a plurality of cores or mandrels, e.g. to increase production speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72141Fibres of continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7316Surface properties
    • B29C66/73161Roughness or rugosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0025Producing blades or the like, e.g. blades for turbines, propellers, or wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • B29L2031/085Wind turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3076Aircrafts
    • B29L2031/3085Wings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a method of manufacturing aerodynamic structures with a specific external surface condition in synthetic resins reinforced with fibers carried out on a machine for depositing in winding or in contact with fibers on such structures.
  • tackifying agent an agent or product making it possible to fix fibers at least temporarily between them and / or on a support.
  • a tackifying agent can be an adhesive or a resin.
  • folds is meant a layer or laminate of fibers, for example glass fibers.
  • sampling is meant the number of layers of fibers, the thickness of each layer and the orientation of the layers.
  • foaming resin is meant, for example, a resin which, under certain conditions, turns into foam to spread in free spaces or cavities of a mold.
  • foaming resin is expandable epoxy resin.
  • continuous fiber is meant a fiber which is not cut or cut during its deposition on a mandrel or a support.
  • staple fibers fibers cut at specific locations, to adapt to the shape and / or thickness constraints of the deposited layers.
  • Aerodynamic structures with a specific external surface condition in fiber-reinforced synthetic resins are traditionally manufactured, by contact molding of fabrics or wicks, in hollow molds in two half-shells, or on male molds in a single envelope .
  • the fibers are either already impregnated with resin and polymerized after deposition with compaction, or deposited dry, with optionally a tackifying agent, and impregnated either manually by contact, or by infusion, transfer or injection of resin, with tools of the counter type.
  • - hollow mold or flexible tarpaulin The molding techniques in hollow molds in two half-shells generally require manual removal of the fabrics, for the production of the various elements of the external envelope and for the internal reinforcements, such as the partitions and the sandwich structures.
  • the molding techniques in a single envelope on male molds are either manual or automated, in particular according to the technique of automated depositing of fibers by winding or in contact.
  • the parts produced are generally of reduced size and the fibers deposited are not continuous, due to the difficulty of handling and positioning the materials and large tools in a precise manner.
  • the parts produced do not have an optimal structure due to the discontinuity of the fibers and the size of the final product is limited.
  • Document EP 0 657 646 discloses, for example, a device and a method for manufacturing aerodynamic structures, using longitudinal and crossed windings of fibers associated with a synthetic resin. Hollow cores or rigid foam cores are introduced into the core of the windings. A priori such a process does not a priori make it possible to obtain satisfactory mechanical properties for producing aerodynamic structures of very large dimensions, in particular of 25 m and more. In addition, such a method does not make it possible to obtain laminates of large and decreasing thickness over the length of the structures.
  • the documents FR 2 773 513, EP 0 225 563 and EP 0 680 818 describe machines and systems for the automated deposition of fibers by winding or in contact for the production of various large composite structures, in particular aerodynamic profiles. These documents do not describe a solution for depositing continuous fibers on large mandrels or molds in movement and bending by a few centimeters.
  • the object of the invention is to provide a method of manufacturing aerodynamic structures which do not have the drawbacks of the state of the art and which make it possible to improve the mechanical characteristics of said structures.
  • Another object of the invention is to provide a method of manufacturing aerodynamic structures making it possible to obtain a specific surface condition and to increase the maximum dimensions of said structures, while reducing the manufacturing costs.
  • the aims assigned to the present invention are achieved by means of a process for manufacturing aerodynamic structures extending in a longitudinal direction and a transverse plane, using an assembly of at least two mandrels and consisting in: a) Carrying out a first deposit of fibers on each mandrel to coat each mandrel, b) Vacuum compacting the deposit of fibers and / or infusing said deposit with a polymerizable resin, c) Polymerizing the first deposit, d) Positioning and wedging the mandrels coated in a hollow mold so as to delimit free spaces in the mold, e) Inject resin into the mold so as to fill at least partially the free spaces, so as to make reinforcements in an envelope of the structure or in internal partitions of said structure, f) polymerizing the resin and the assembly thus formed, and demolding said assembly, g) carrying out a complementary deposit of fibers on the assembly e, obtained in step (f).
  • the method according to the invention consists, during step (e), of integrating into the free spaces, solid inserts in addition to the injection of resin.
  • the method according to the invention consists in step (e), using foaming resin whose expansion in the structure and within a template disposed in the mold , makes it possible to constitute reinforcements in said aerodynamic structure.
  • FIG. 1 is a schematic perspective view of an aerodynamic structure according to the invention.
  • Figure 2 is a schematic exploded perspective view of the various internal and attached components of the structure of Figure 1;
  • FIG. 3 is a schematic cross-sectional view along line in-iii of Figure 1 of an aerodynamic structure according to the invention
  • FIG. 3a is an enlarged detail of Figure 3;
  • - Figure 4 is a schematic cross-sectional view along line IV-IV of Figure 1, of an aerodynamic structure according to the invention
  • FIG. 5 is a schematic perspective view of the first step of winding and / or contacting fibers on a mandrel
  • - Figure 6 is a schematic perspective view of a vertical machine for the manufacture of large blades during a second step of depositing fibers on the aerodynamic structure
  • - Figure 7 is a schematic perspective view of a vertical machine for the manufacture of large blades during disassembly of the profile after the second step of removing fibers
  • FIG. 8 is a schematic cross-sectional view of the hollow mold in which is deposited a template for imposing dimensions and an internal surface state during an injection and expansion step of the foam core;
  • FIG. 9 is a schematic exploded perspective view of the mandrels and the attached elements positioned in the hollow mold with a template
  • - Figure 10 is a schematic cross-sectional view along the line x-x of Figure 9; mandrels and inserts in the hollow mold with a template after the expansion and polymerization phase of the resin;
  • - Figure 11 is a schematic perspective view of the withdrawal of three mandrels from the structure obtained after injection and polymerization of the resin;
  • - Figure 12 is a schematic perspective view of the elements added and glued to the structure
  • - Figure 13 is a schematic perspective view of a second step of depositing in winding and / or in contact with fibers on the structure
  • FIG. 14 is a schematic cross-sectional view along line x-x of Figure 9 of the structure in the hollow mold with the resin injected;
  • Figure 14a is an enlarged detail of Figure 14;
  • FIG. 15 is a schematic perspective view of the operation of removing the mandrel from the finished structure.
  • FIGS. 1 to 15 figures in which three orthogonal directions L, T and E are shown.
  • longitudinal corresponds to the axis of rotation of a fiber depositing machine and to the axial direction of the blade root (part to be fixed on the external element such as the rotor hub) at its free end.
  • a transverse direction, named T is orthogonal to the direction L and located in a horizontal plane passing through L.
  • a direction called in elevation, E is orthogonal to directions L and T.
  • FIG. 2 shows a schematic exploded perspective view of the various internal components 2, 3, 4, 5, 6, 7, for example provided for producing the blade 1.
  • the internal components thus comprise mandrels 2, 3, 4, 5 solid or hollow, an insert 6 and a free end
  • the blade 1 comprises a foot 8 intended to be mounted on a wind turbine rotor and an elongated part 9 in a sandwich structure.
  • Figure 3 is a schematic sectional view of the structure along the line iii-in of Figure 1, with a structure composed of an envelope 10 whose function is to create the desired aerodynamic force and internal partitions 11 which provide the strength and stiffness required.
  • Laminates 12 and 13 composed of pleats oriented approximately in the direction L and of a decreasing thickness of the foot
  • the laminates 12 and 13 are grouped together in zones distant from the neutral planes close to the planes represented by L, T and E, L, in order to increase the moments of inertia of the blade relative to the main stresses.
  • Laminates 14 and 15 shown for example in FIG. 3a and coating the mandrels 2, 3, 4 and 5 are composed for example of 80% of plies oriented at +/- 45 °, to 10% of plies at 90 ° and to 10% folds at 0 ° relative to the direction L.
  • the laminates 14 and 15 mainly take up the constraints of shear between the laminates 12 and 13, the local stresses due to the external pressure on the casing 10 and the torsional stresses.
  • the blade 1 also locally contains foam 16, obtained for example from a foaming resin, of variable thickness, providing inertia to the envelope 10 and to the partitions 11 in order to limit the thickness of the laminates 14 and 15. It is intended that, in this case with three partitions 11, the number of plies at +/- 45 ° and 90 ° of the laminate 14 must be identical at the level of the partitions 11 and at the level of the envelope 10 It is also expected that the number of plies at +/- 45 0 and 90 ° of the laminate 14 at the partitions 11 must be identical to the number of plies at +/- 45 0 and 90 ° of the laminate 15 at the level of l 'envelope 10. It is thus possible to have, at the partitions 11 and the laminates 14, symmetries as regards the numbers of folds.
  • foam 16 obtained for example from a foaming resin, of variable thickness
  • the number of plies at 0 ° of the laminates 14 and 15 is identical to the level of the envelope 10. It is also provided that the arrangement and the number of the plies of the laminates 14 and 15 are defined so as to obtain a symmetrical structure on either side of the foam 16 at the level of the partitions 11 and of the envelope 10.
  • Figure 4 is a schematic sectional view of the leg portion 8 of the blade 1 along the line IV-IV of Figure 1 with a structure composed of the casing 10 whose function is to transmit the binding stresses to a external element, such as the rotor of a wind turbine, from part 9 to foot 8 shown in FIG. 2.
  • the laminates 13 in greater quantity on foot 8 than on part 9, are regularly arranged around a profile cylindrical to distribute the main stresses at the attachment points of the blade 1, covering the plies of the laminates 14 deposited over the entire length of the blade 1.
  • the laminates are covered by the plies of the laminates 15 over the entire length of the blade 1.
  • the total thickness of these laminates 13, 14, 15, 17 is sufficient to ensure the stiffness of the envelope 10 on the foot 8 and does not require a foam core 16 like that provided on the part 9, the thickness becomes progressively zero from part 9 to part 8. It is established that the orientation, continuity and arrangement of the plies of the various laminates thus obtained best meet the constraints of shape, strength and stiffness of a wind turbine blade 1, while being achievable according to the method and with the machine described below.
  • the thickness of each fold as well as the number of internal partitions 11 (which may be zero) can easily be calculated and adapted according to the size of the aerodynamic structure, the materials used and the expected load assumptions.
  • FIG. 5 is a schematic perspective view which illustrates the first step of depositing by winding and / or in contact with fibers on the mandrel 3, with a machine 19 on which all the steps of the process described below can be carried out.
  • This machine 19 is made up of standard elements, such as robots 20 on which different systems can be mounted such as a head 21 for depositing by winding and / or in contact with fibers, a machining or projection head. These robots 20 of a variable number are mounted on linear axes 22 and the mandrel 3 is rotated by means of a positioner 23 and a tailstock 24.
  • the machine 19 can have a horizontal configuration as shown in FIG.
  • FIG. 6 shows a plate 24 with a lifting system and guide 25, using standard solutions of traditional freight elevators such as cables or jacks with a counterweight, which allows to embark more than two robots 20 to deposit by winding and / or simultaneously contacting more material.
  • This vertical configuration makes it possible to eliminate the problem of the deflection of the mandrel 3 and to reduce the risk of detachment of material or folds during the rotation of the mandrel.
  • an encoder measuring the speed and position of the positioner 23 with a vertical or horizontal axis, controls the plate 24 or the carriages 20a, having their own coding system and supporting the robots 20 independent of each other.
  • the assembly and disassembly of the mandrels and structures is carried out in the case of the vertical machine 19 using the positioner 23 which switches the profile at the foot, as shown in Figure 7.
  • the axis of rotation is provided for that the structure is in a favorable position, that is to say to limit its deflection during tilting, for example around the axis E.
  • the mounting and dismounting of the blade 1 is carried out in the traditional way.
  • internal molds for example four mandrels 2, 3, 4, 5 whose external dimensions correspond to the internal dimensions of the four components 2a, 3a, 4a and 5a of the blade 1, and a hollow mold 26, the internal face of which corresponds to the external dimensions of the blade 1 to be produced, were produced according to traditional techniques. They may consist entirely or in part of inflatable or flexible elements, in the case where the shape does not allow them to be removed after polymerization due to non-demouldable shapes, or in the case of bodies that are too weak over long lengths. In addition, they can in a certain embodiment, allow the compaction of the various folds which will cover them.
  • a first mandrel 3 corresponding for example to the internal shape of the element 3a is mounted on the machine 19 to optionally undergo a refining treatment on its external surface, such as the projection of a release agent and a tackifying agent by a spraying system mounted at the end of the robots 20, and possibly the installation of pins (not shown) at the ends of the mandrel 3.
  • a refining treatment on its external surface, such as the projection of a release agent and a tackifying agent by a spraying system mounted at the end of the robots 20, and possibly the installation of pins (not shown) at the ends of the mandrel 3.
  • the automatic depositing of fibers by winding and / or in contact is carried out so as to obtain the sampling defined during the design, using the heads 21 for depositing by winding or in contact with fibers, such as those that are found in the industry which make it possible to place and stick fibers, for example made up of prepreg wicks, continuous or discontinuous, which are mounted at the ends of the robots 20.
  • This removal by winding and / or in contact begins for example by the plies of laminates 14 at 45 ° and - 45 °, at 88 ° and - 88 °, and 0 ° relative to the direction L and continuous between the two ends of the mandrel 3, as shown in FIG.
  • the plies at 0 ° of the laminates 12 or 13, depending on the mandrel which is covered, are then deposited longitudinally in the direction L, progressively reducing the number of layers in the area of the foot 8 of blade 1 at its end. é free, that is to say by interrupting the deposit at intermediate zones between the two ends.
  • the other three mandrels 4, 5, 6 then undergo the same treatments and are all four polymerized according to known techniques, for example under vacuum at a temperature of 80 ° C.
  • a hollow mold 26 provided for the production phase of the foam core is prepared.
  • this mold 26 can be produced in two parts, the internal dimensions of which correspond to the final external dimensions of the blade 1, in which a template 27 is deposited in two parts, for example in composite with adequate thicknesses to adapt its dimensions and its state of internal surface at the stage of expansion of the foam core 16.
  • the volume of this template 27 in two parts corresponds to the fibers and to the resin which will be deposited in a second phase, with their specific thickness at each point.
  • the internal surface state of this template 27 has an adequate roughness, which may require the removal of a release agent before injection or removal. resin.
  • elements such as the end 7 forming part of the blade 1 can be reported as shown in Figure 9.
  • the end 7 can be made for example in the traditional way of fibers with an injection of resin.
  • This end 7 has on the outside a smooth surface with the final external dimensions of the blade 1 and on the inside a rough surface to ensure quality bonding on the laminates 12, 13, and 14 covering the mandrels 2, 3, 4 and 5.
  • Other reinforcements and / or fibers and / or inserts such as lightning conductor cables can be placed in the mold 26 and the template 27 so as to be impregnated or bonded with the foaming resin.
  • a handling and wedging system 31 makes it possible to position all the mandrels in the mold 26 and the template 27 in order to keep them at a given distance from the internal wall of said mold 26 and between the mandrels 2, 3, 4, 5 This distance is specific to each part of the envelope 10 and of the three partitions 11 of the blade 1, and corresponds to the variable thickness of the foam reinforcements 16 provided for in the design.
  • Figure 10 shows schematically and in cross section along line xx of Figure 9, the mandrels 2,3, 4 and 5 covered with their laminates 12, 13, and 14 in the mold 26 with its template 27 after the phase of expansion of the foaming resin 16 which has been previously sprayed and / or injected, possibly in sequential steps.
  • This foaming resin may for example be epoxy resin with a foaming agent which makes it possible to reduce the density of the polymerized foam.
  • the foam 16 thus obtained on the one hand ensures bonding between the four mandrels 2, 3, 4, 5, and on the other hand a structural reinforcement.
  • Figure 11 is a schematic perspective view of the removal operation (see removal directions R) of the three mandrels 2, 4 and 5 of the structure 32 obtained after the polymerization of the foaming resin, with the mold 26 preferably held closed to block said structure 32 during withdrawal.
  • the mandrel 3 is left in place to manipulate the structure obtained 32 and to keep the same position references during the next steps of the process.
  • the centers of gravity of the assembly constituted by the mandrel 3 and the structure 32 obtained, which is subsequently covered with the laminates 15 and 17, are the as close as possible to the axis of rotation of the positioner 23 of the machine 19, in order to limit unbalances during the next folds removal steps.
  • the structure 32 with its mandrel 3 is then removed from the template 27. Inserts can be added and glued, such as the element 6 shown in FIG. 12.
  • the structure 32 is then manipulated on one side thanks to the end of the mandrel 3, on the other side thanks to a shaper 33 which holds the assembly by the finished end 7 and which positions it in the axis of the positioner 23 of the machine 19 during the next steps of the process, as can be seen in FIG. 13.
  • a new step for depositing folds can also be carried out.
  • the structure 32 may possibly undergo on the machine 19 a refining treatment of its external surface, such as the projection of a tackifying agent by a spraying system mounted at the end of the robots 20 and / or deburring of the jointing surfaces of the foaming resin by means of a machining system mounted at the end of the robots 20.
  • a refining treatment of its external surface such as the projection of a tackifying agent by a spraying system mounted at the end of the robots 20 and / or deburring of the jointing surfaces of the foaming resin by means of a machining system mounted at the end of the robots 20.
  • the number of layers is gradually reduced from the foot 8 of the blade 1 at its other end, by cutting the fibers in intermediate zones between the two ends.
  • the plies of the fibers of the laminates 15 and 17, for example pre-impregnated with a tackifying agent for their retention on the structure 32, can then be impregnated with an injection of resin. In this case, provision is made during the removal of fibers to leave adequate spaces between each group or wick of fibers in certain parts and / or layers, in order to facilitate the transfer of resin during injection.
  • FIGS. 14 and 14a are schematic cross-sectional views along line xx of FIG. 9 of the final structure 35 obtained once the resin has been injected and polymerized, which corresponds to the shape of the blade 1 finished, with the mold 26 and the mandrel 3 remained in place.
  • This final structure 35 is then removed from the mold 26 to be mounted on the machine 19, with the shaper 33 and the mandrel 3 which make it possible to keep the position references.
  • the final structure 35 can then undergo a finishing treatment such as deburring of joint planes, cutouts for the assembly of inserts for fixing the profile to an external element and painting, thanks to the mounting on the robots 20 of the '' adequate equipment, such as a spray gun or milling and drilling spindle.
  • the final structure 35 is then removed from the machine 19 and the mandrel 3 is removed according to the arrow R, as shown in FIG. 15.
  • This final structure 35 corresponds to the blade 1, ready to receive inserts such as fixing flanges to then be mounted on a wind turbine rotor.
  • the method according to the invention comprises the steps providing for: - positioning with the machine on a mandrel 2, 3, 4, 5 longitudinal corresponding to the internal shape of the structure or on several mandrels corresponding to the longitudinal internal cavities of the structure in the case where it has longitudinal internal partitions 11, pins and / or non-slip products, allowing an increase in the adhesion between the mandrel (s) 5 and the fibers which will come cover it; - deposit on the mandrel (s) by winding and / or in contact with the machine dry fibers or impregnated with resin or tackifying agent in directions and thicknesses defined during the design of the aerodynamic structure 32,
  • the fiber depositing machine is an automated center for machining, spraying, winding and cutting.
  • the risk of non-compliance is limited, on the one hand thanks to the automation which guarantees the reproducibility of the manufactured product, on the other hand thanks to the carrying out of the various operations via the same robots and assembly bench, improving the geometric precision ée the final structure.
  • the soul of the sandwich structure produced thanks to an expansion of foaming resin allows, compared to the traditional bonding of plates, to reduce production times, to guarantee a perfect bonding with the external and internal skins, and to have a thickness optimal and scalable at each point of the structure optimizing the amount of material and the weight.
  • the finished product has high mechanical qualities on the one hand thanks to the automatic deposition which makes it possible to deposit the fibers in optimal orientations, on the other hand thanks to the continuous fibers to the maximum, without in particular having a cut between the upper and lower face of the blade.
  • the positioning of the inserts is much more precise thanks to automated machining.
  • the maximum dimensions of the achievable structures are increased thanks to the vertical design of the fiber depositing machine, allowing the realization of the largest wind turbine blades.
  • the realization of the machine implementing the method according to the invention from standard elements provides high reliability and a reduced cost of the assembly compared to existing machines.
  • the production rates are increased thanks to the plurality of fiber depositing heads which multiply the quantity of material deposited per hour, and the material losses are almost zero.
  • the external surface finish can be smooth or rough as required.
  • the process which is the subject of the invention is particularly suitable for the mass production of wind turbine blades and of various aerodynamic structures such as wings and masts.

Abstract

The invention concerns a method for making aerodynamic structures using an assembly of mandrels and consisting in: a) a first deposition of fibers on each mandrel to coat each mandrel; b) vacuum compaction of said fiber deposition and/or infusion of said deposition with a polymerizable resin; c) polymerizing the first deposition; d) setting and locking the mandrels in a hollow mould so as to defined free spaces in the mould; e) injecting resin in the mould so as to fill at least partly the free spaces, to produce reinforcements in an envelope of the structure or in internal partitions of said structure; f) polymerizing the resin and the assembly formed, and stripping said assembly; g) carrying out a second fiber deposition; h) setting the assembly in a hollow mould and performing step b); i) polymerizing the assembly and stripping the resulting final structure; j) carrying out a finishing treatment of the structure obtained at step i).

Description

Procédé de fabrication de profils présentant un état de surface spécifique en résines synthétiques renforcées par des fibres et machine pour mettre en œuvre le procédéMethod for manufacturing profiles with a specific surface finish in synthetic resins reinforced with fibers and machine for carrying out the method
L'invention concerne un procédé de fabrication de structures aérodynamiques avec un état de surface extérieur spécifique en résines synthétiques renforcées par des fibres réalisé sur machine de dépose en enroulement ou au contact de fibres sur de telles structures.The invention relates to a method of manufacturing aerodynamic structures with a specific external surface condition in synthetic resins reinforced with fibers carried out on a machine for depositing in winding or in contact with fibers on such structures.
La suite du texte mentionnera des termes ou expressions dont la définition est donnée ci-après :The rest of the text will mention terms or expressions the definition of which is given below:
Ainsi, par "agent tackifiant' on entend un agent ou produit permettant de fixer au moins provisoirement des fibres entre elles et/ou sur un support. Un tel agent tackifiant peut être une colle ou une résine.Thus, by "tackifying agent" is meant an agent or product making it possible to fix fibers at least temporarily between them and / or on a support. Such a tackifying agent can be an adhesive or a resin.
Par "plis" on entend une couche ou un laminé de fibres, par exemple de fibres de verre.By "folds" is meant a layer or laminate of fibers, for example glass fibers.
Par "échantillonnage" on entend le nombre de couches de fibres, l'épaisseur de chaque couche et l'orientation des couches.By "sampling" is meant the number of layers of fibers, the thickness of each layer and the orientation of the layers.
Par "résine moussante" on entend, par exemple, une résine qui sous certaines conditions, se transforme en mousse pour se répandre dans des espaces libres ou cavités d'un moule. Un exemple de résine moussante est de la résine époxy expansible.By "foaming resin" is meant, for example, a resin which, under certain conditions, turns into foam to spread in free spaces or cavities of a mold. An example of foaming resin is expandable epoxy resin.
Par "fibre continue", on entend une fibre qui n'est pas sectionnée ou coupée au cours de son dépôt sur un mandrin ou un support.By "continuous fiber" is meant a fiber which is not cut or cut during its deposition on a mandrel or a support.
Par "fibres discontinues" on entend des fibres sectionnées à des endroits précis, pour s'adapter aux contraintes de formes et/ou d'épaisseur des couches déposées.By "staple fibers" is meant fibers cut at specific locations, to adapt to the shape and / or thickness constraints of the deposited layers.
Les structures aérodynamiques avec un état de surface extérieur spécifique en résines synthétiques renforcées par des fibres sont fabriquées traditionnellement, par moulage par contact de tissus ou de mèches, dans des moules creux en deux demi-coquilles, ou sur des moules mâles en une seule enveloppe. Les fibres sont soit déjà imprégnées de résine et polymérisèes après la dépose avec un compactage, soit déposées sèches, avec éventuellement un agent tackifiant, et imprégnées soit manuellement par contact, soit par infusion, transfert ou injection de résine, avec des outillages du type contre-moule creux ou bâche souple. Les techniques de moulage dans des moules creux en deux demi- coquilles nécessitent généralement une dépose manuelle des tissus, pour la réalisation des différents éléments de l'enveloppe extérieure et pour les renforts internes, tels que les cloisons et les structures sandwich. Traditionnellement, ces éléments sont par la suite ébavurés, collés et stratifiés à nouveau ensemble, mastiqués et polis de façon entièrement manuelle. Les principaux inconvénients de cette technique résident d'une part dans la nécessité d'une main d'oeuvre importante et qualifiée, d'autre part dans la fragilité du produit final due aux collages des différents éléments constituant le profil final. De plus, les chutes de matières premières sont importantes du fait des nombreuses découpes.Aerodynamic structures with a specific external surface condition in fiber-reinforced synthetic resins are traditionally manufactured, by contact molding of fabrics or wicks, in hollow molds in two half-shells, or on male molds in a single envelope . The fibers are either already impregnated with resin and polymerized after deposition with compaction, or deposited dry, with optionally a tackifying agent, and impregnated either manually by contact, or by infusion, transfer or injection of resin, with tools of the counter type. - hollow mold or flexible tarpaulin. The molding techniques in hollow molds in two half-shells generally require manual removal of the fabrics, for the production of the various elements of the external envelope and for the internal reinforcements, such as the partitions and the sandwich structures. Traditionally, these elements are then deburred, glued and laminated again together, putty and polished entirely manually. The main drawbacks of this technique lie on the one hand in the need for a large and skilled workforce, on the other hand in the fragility of the final product due to the bonding of the different elements constituting the final profile. In addition, the scraps of raw materials are significant due to the many cuts.
Les techniques de moulage en une seule enveloppe sur des moules mâles sont soit manuelles, soit automatisées, notamment suivant la technique de dépose automatisée de fibres par enroulement ou au contact. Dans le cas d'une mise en œuvre manuelle, les pièces réalisées sont généralement de taille réduite et les fibres déposées ne sont pas continues, en raison de la difficulté de manipuler et positionner les matériaux et les outillages de grande dimension de façon précise. Ainsi les pièces réalisées n'ont pas une structure optimale du fait de la discontinuité des fibres et la taille du produit final est limitée.The molding techniques in a single envelope on male molds are either manual or automated, in particular according to the technique of automated depositing of fibers by winding or in contact. In the case of manual implementation, the parts produced are generally of reduced size and the fibers deposited are not continuous, due to the difficulty of handling and positioning the materials and large tools in a precise manner. Thus the parts produced do not have an optimal structure due to the discontinuity of the fibers and the size of the final product is limited.
Des techniques de dépose automatisée de fibres par enroulement ou au contact ont plusieurs fois été proposées pour fabriquer la structure interne et/ou l'enveloppe extérieure de structures aérodynamiques. Ces techniques automatisent la phase de dépose de fibres et de résine, mais ne permettent pas de réaliser des structures de type sandwich sans phase de dépose manuelle. De plus, l'âme de ces structures sandwich se présente sous forme de plaques d'épaisseur constante qui ne permettent pas d'obtenir une structure optimale avec des épaisseurs variables et spécifiques en chaque point de l'enveloppe ou des cloisons. Un autre inconvénient de ces techniques automatisées réside dans leur application pour la fabrication de structures de grande longueur. En effet, du fait de la difficulté de manipuler ou de mettre en mouvement des mandrins sans déformations importantes, la configuration des dispositifs actuels de dépose automatisée de fibres par enroulement ou au contact ne permet pas de déposer de façon précise des fibres continues sur un moule interne ou mandrin en mouvement qui peut fléchir de quelques centimètres pour des longueurs de plus de 25 m.Automated fiber deposition techniques by winding or in contact have been proposed several times to manufacture the internal structure and / or the external envelope of aerodynamic structures. These techniques automate the fiber and resin deposition phase, but do not allow sandwich type structures to be produced without the manual deposition phase. In addition, the core of these sandwich structures is in the form of plates of constant thickness which do not allow an optimal structure to be obtained with variable and specific thicknesses at each point of the envelope or partitions. Another drawback of these automated techniques lies in their application for the manufacture of very long structures. Indeed, due to the difficulty of handling or setting in motion the mandrels without significant deformations, the configuration of current devices for automated depositing of fibers by winding or in contact does not allow precise fibers to be deposited on a mold. internal or mandrel in movement which can bend a few centimeters for lengths of more than 25 m.
On connaît par exemple, par le document EP 0 657 646, un dispositif et un procédé de fabrication de structures aérodynamiques, utilisant des enroulements longitudinaux et croisés de fibres associées à une résine synthétique. Des noyaux creux ou en mousse rigide sont introduits au coeur des enroulements. Un tel procédé ne permet pas a priori d'obtenir des propriétés mécaniques satisfaisantes pour réaliser des structures aérodynamiques de très grandes dimensions, notamment de 25m et plus. En outre, un tel procédé ne permet pas d'obtenir des stratifiés d'épaisseur importante et décroissante sur la longueur des structures.Document EP 0 657 646 discloses, for example, a device and a method for manufacturing aerodynamic structures, using longitudinal and crossed windings of fibers associated with a synthetic resin. Hollow cores or rigid foam cores are introduced into the core of the windings. A priori such a process does not a priori make it possible to obtain satisfactory mechanical properties for producing aerodynamic structures of very large dimensions, in particular of 25 m and more. In addition, such a method does not make it possible to obtain laminates of large and decreasing thickness over the length of the structures.
Les documents FR 2 773 513, EP 0 225 563 et EP 0 680 818 décrivent des machines et systèmes de dépose automatisée de fibres par enroulement ou au contact pour la réalisation de diverses structures composites de grande dimension, notamment des profils aérodynamiques. Ces documents ne décrivent pas de solution pour déposer des fibres continues sur des mandrins ou des moules de grandes dimensions en mouvement et fléchissant de quelques centimètres.The documents FR 2 773 513, EP 0 225 563 and EP 0 680 818 describe machines and systems for the automated deposition of fibers by winding or in contact for the production of various large composite structures, in particular aerodynamic profiles. These documents do not describe a solution for depositing continuous fibers on large mandrels or molds in movement and bending by a few centimeters.
Les documents WO 99/22932 et US 4 699 683 décrivent des machines et systèmes de dépose pour la réalisation de diverses structures composites de grande dimension, notamment des structures aérodynamiques, mais les fibres ne sont pas continues car l'enveloppe est réalisée suivant deux demi-coquilles qui sont ensuite assemblées par collage, ce qui fragilise le produit final. Un inconvénient des machines et dispositifs existants de dépose automatisée de fibres par enroulement ou au contact est la faible capacité de dépose de matériaux par unité de temps, par rapport à la quantité totale de matière à déposer pour la réalisation de profils aérodynamiques de grande dimension. Par exemple, la fabrication d'une pale d'éolienne de 40 m de long et d'une masse de 10 tonnes nécessiterait un temps d'enroulement et de dépose de 100 heures avec une machine déposant 00 kg à l'heure.Documents WO 99/22932 and US 4 699 683 describe depositing machines and systems for producing various large composite structures, in particular aerodynamic structures, but the fibers are not continuous because the envelope is made in two half -shells which are then assembled by gluing, which weakens the final product. A disadvantage of existing machines and devices for automated fiber deposition by winding or in contact is the low capacity for depositing materials per unit of time, compared to the total amount of material to be deposited for the production of large aerodynamic profiles. For example, the manufacture of a 40 m long wind turbine blade with a mass of 10 tonnes would require a winding and laying time of 100 hours with a machine depositing 00 kg per hour.
Un autre inconvénient des machines et dispositifs actuels de dépose automatique de fibres est leur prix élevé car elles sont généralement composées d'éléments spécifiques, tels que des chariots, des axes et des liaisons mécaniques, réalisés sur mesure et donc à prix élevé, vu les faibles séries produites. Ainsi, les temps de fabrication importants ne seraient pas rentables en raison du coût horaire d'une telle machine qu'il ne serait pas possible d'amortir avec une cadence de production aussi faible.Another disadvantage of current machines and devices for automatic fiber deposition is their high price because they are generally composed of specific elements, such as carriages, axes and mechanical connections, made to measure and therefore at high price, given the low series produced. Thus, the significant manufacturing times would not be profitable because of the hourly cost of such a machine that it would not be possible to amortize with such a low production rate.
De plus, ces conceptions de type machine spéciale, garantissent des niveaux de fiabilité inférieurs aux machines réalisées à partir d'éléments standards fiabilises dans de nombreuses applications. Enfin, leur fonction spécifique pour la dépose de fibres, ne permet pas d'effectuer d'autres taches automatisées tel que du traitement de surface ou de l'usinage.In addition, these special machine-type designs guarantee lower levels of reliability than machines produced from reliable standard elements in many applications. Finally, their specific function for depositing fibers does not allow other automated tasks to be carried out, such as surface treatment or machining.
Le but de l'invention est de fournir un procédé de fabrication de structures aérodynamiques ne présentant pas les inconvénients de l'état de la technique et permettant d'améliorer les caractéristiques mécaniques desdites structures.The object of the invention is to provide a method of manufacturing aerodynamic structures which do not have the drawbacks of the state of the art and which make it possible to improve the mechanical characteristics of said structures.
Un autre but de l'invention est de fournir un procédé de fabrication de structures aérodynamiques permettant d'obtenir un état de surface spécifique et d'augmenter les dimensions maximales desdites structures, tout en diminuant les coûts de fabrication.Another object of the invention is to provide a method of manufacturing aerodynamic structures making it possible to obtain a specific surface condition and to increase the maximum dimensions of said structures, while reducing the manufacturing costs.
Les buts assignés à la présente invention sont atteints à l'aide d'un procédé de fabrication de structures aérodynamiques s'étendant selon une direction longitudinale et un plan transversal, utilisant un assemblage d'au moins deux mandrins et consistant à : a) Effectuer un premier dépôt de fibres sur chaque mandrin pour enrober chaque mandrin, b) Compacter sous vide le dépôt de fibres et/ou infuser ledit dépôt d'une résine polymérisable, c) Polymériser le premier dépôt, d) Mettre en place et caler les mandrins enrobés dans un moule creux de manière à délimiter des espaces libres dans le moule, e) Injecter de la résine dans le moule de façon à remplir au moins en partie les espaces libres, de manière à réaliser des renforts dans une enveloppe de la structure ou dans des cloisons internes de ladite structure, f) Polymériser la résine et l'ensemble ainsi constitué, et démouler ledit ensemble, g) Effectuer un dépôt complémentaire de fibres sur l'ensemble, obtenu à l'étape (f). h) Disposer l'ensemble dans un moule creux et soit procéder de nouveau à l'étape (b), soit injecter de la résine dans le moule creux, i) Polymériser l'ensemble et démouler la structure finale obtenue, j) Et effectuer un traitement de finition de la structure obtenue à l'étape (i). Selon un mode de mise en oeuvre, le procédé conforme à l'invention consiste lors de l'étape (e), à intégrer dans les espaces libres, des inserts solides en complément de l'injection de résine. Selon un autre mode de mise en oeuvre, le procédé conforme à l'invention consiste lors de l'étape (e), à utiliser de la résine moussante dont l'expansion dans la structure et au sein d'un gabarit disposé dans le moule, permet de constituer des renforts dans ladite structure aérodynamique.The aims assigned to the present invention are achieved by means of a process for manufacturing aerodynamic structures extending in a longitudinal direction and a transverse plane, using an assembly of at least two mandrels and consisting in: a) Carrying out a first deposit of fibers on each mandrel to coat each mandrel, b) Vacuum compacting the deposit of fibers and / or infusing said deposit with a polymerizable resin, c) Polymerizing the first deposit, d) Positioning and wedging the mandrels coated in a hollow mold so as to delimit free spaces in the mold, e) Inject resin into the mold so as to fill at least partially the free spaces, so as to make reinforcements in an envelope of the structure or in internal partitions of said structure, f) polymerizing the resin and the assembly thus formed, and demolding said assembly, g) carrying out a complementary deposit of fibers on the assembly e, obtained in step (f). h) Place the assembly in a hollow mold and either proceed again to step (b), or inject resin into the hollow mold, i) Polymerize the assembly and unmold the final structure obtained, j) And carry out a finishing treatment of the structure obtained in step (i). According to one embodiment, the method according to the invention consists, during step (e), of integrating into the free spaces, solid inserts in addition to the injection of resin. According to another embodiment, the method according to the invention consists in step (e), using foaming resin whose expansion in the structure and within a template disposed in the mold , makes it possible to constitute reinforcements in said aerodynamic structure.
D'autres caractéristiques et avantages ressortiront également de la description détaillée ci-après, en référence aux dessins annexés, donnés à titre d'exemples dans lesquels :Other characteristics and advantages will also emerge from the detailed description below, with reference to the appended drawings, given by way of examples in which:
- la figure 1 est une vue schématique en perspective d'une structure aérodynamique selon l'invention ;- Figure 1 is a schematic perspective view of an aerodynamic structure according to the invention;
- la figure 2 est une vue schématique éclatée en perspective des différents composants internes et rapportés de la structure de la figure 1 ;- Figure 2 is a schematic exploded perspective view of the various internal and attached components of the structure of Figure 1;
- la figure 3 est une vue schématique en coupe transversale selon la ligne in-iii de la figure 1 d'une structure aérodynamique selon l'invention ;- Figure 3 is a schematic cross-sectional view along line in-iii of Figure 1 of an aerodynamic structure according to the invention;
- la figure 3a est un détail agrandi de la figure 3 ; - la figure 4 est une vue schématique en coupe transversale selon la ligne IV-IV de la figure 1 , d'une structure aérodynamique selon l'invention- Figure 3a is an enlarged detail of Figure 3; - Figure 4 is a schematic cross-sectional view along line IV-IV of Figure 1, of an aerodynamic structure according to the invention
- la figure 4a est un détail agrandi de la figure 4 ;- Figure 4a is an enlarged detail of Figure 4;
- la figure 5 est une vue schématique en perspective de la première étape de dépose en enroulement et/ou au contact de fibres sur un mandrin ;- Figure 5 is a schematic perspective view of the first step of winding and / or contacting fibers on a mandrel;
- la figure 6 est une vue schématique en perspective d'une machine verticale pour la fabrication de pales de grandes dimensions durant une deuxième étape de dépose de fibres sur la structure aérodynamique ; - la figure 7 est une vue schématique en perspective d'une machine verticale pour la fabrication de pales de grandes dimensions durant le démontage du profil après la deuxième étape de dépose de fibres ;- Figure 6 is a schematic perspective view of a vertical machine for the manufacture of large blades during a second step of depositing fibers on the aerodynamic structure; - Figure 7 is a schematic perspective view of a vertical machine for the manufacture of large blades during disassembly of the profile after the second step of removing fibers;
- la figure 8 est une vue schématique en coupe transversale du moule creux dans lequel est déposé un gabarit pour imposer des dimensions et un état de surface interne lors d'une étape d'injection et d'expansion de l'âme en mousse ;- Figure 8 is a schematic cross-sectional view of the hollow mold in which is deposited a template for imposing dimensions and an internal surface state during an injection and expansion step of the foam core;
- la figure 9 est une vue schématique éclatée en perspective des mandrins et des éléments rapportés positionnés dans le moule creux avec un gabarit ;- Figure 9 is a schematic exploded perspective view of the mandrels and the attached elements positioned in the hollow mold with a template;
- la figure 10 est une vue schématique en coupe transversale selon la ligne x-x de la figure 9; des mandrins et des éléments rapportés dans le moule creux avec un gabarit après la phase d'expansion et de polymérisation de la résine ; - la figure 11 est une vue schématique en perspective du retrait de trois mandrins de la structure obtenue après l'injection et la polymérisation de la résine;- Figure 10 is a schematic cross-sectional view along the line x-x of Figure 9; mandrels and inserts in the hollow mold with a template after the expansion and polymerization phase of the resin; - Figure 11 is a schematic perspective view of the withdrawal of three mandrels from the structure obtained after injection and polymerization of the resin;
- la figure 12 est une vue schématique en perspective des éléments rapportés et collés sur la structure ; - la figure 13 est une vue schématique en perspective d'une deuxième étape de dépose en enroulement et/ou au contact de fibres sur la structure ;- Figure 12 is a schematic perspective view of the elements added and glued to the structure; - Figure 13 is a schematic perspective view of a second step of depositing in winding and / or in contact with fibers on the structure;
- la figure 14 est une vue schématique en coupe transversale selon la ligne x-x de la figure 9 de la structure dans le moule creux avec la résine injectée ;- Figure 14 is a schematic cross-sectional view along line x-x of Figure 9 of the structure in the hollow mold with the resin injected;
- la figure 14a est un détail agrandi de la figure 14 ;- Figure 14a is an enlarged detail of Figure 14;
- la figure 15 est une vue schématique en perspective de l'opération de retrait du mandrin de la structure finie.- Figure 15 is a schematic perspective view of the operation of removing the mandrel from the finished structure.
A titre d'exemple on a décrit ci-dessous et illustré schématiquement sur les figures 1 à 15, une forme de réalisation de l'objet de l'invention, figures sur lesquelles sont représentées trois directions orthogonales L, T et E. La direction longitudinale, nommée L, correspond à l'axe de rotation d'une machine de dépose de fibres et à la direction axiale du pied de la pale (partie à fixer sur l'élément extérieur tel que moyeu du rotor) à son extrémité libre. Une direction transversale, nommée T, est orthogonale à la direction L et située dans un plan horizontal passant par L. Une direction dite en élévation, E est orthogonale aux directions L et T.By way of example, an embodiment of the object of the invention has been described below and illustrated diagrammatically in FIGS. 1 to 15, figures in which three orthogonal directions L, T and E are shown. longitudinal, called L, corresponds to the axis of rotation of a fiber depositing machine and to the axial direction of the blade root (part to be fixed on the external element such as the rotor hub) at its free end. A transverse direction, named T, is orthogonal to the direction L and located in a horizontal plane passing through L. A direction called in elevation, E is orthogonal to directions L and T.
L'exposé qui suit permet de comprendre comment est fabriquée une structure aérodynamique selon l'invention, telle qu'une pale d'éolienne 1 représentée sur la vue schématique en perspective de la figure 1, et quelles sont les nouvelles performances apportées.The following description makes it possible to understand how an aerodynamic structure according to the invention is manufactured, such as a wind turbine blade 1 shown in the schematic perspective view of FIG. 1, and what are the new performances brought about.
Avant toute fabrication, une étude, effectuée à la conception, a permis de connaître la forme du profil à fabriquer et les différentes contraintes qui lui seront soumises. Une partie de cette étude définit l'épaisseur et le nombre de laminés, l'orientation des fibres dans les différentes parties du profil ainsi que la direction, les dimensions et les emplacements des cloisons et des structures sandwich éventuelles.Before any manufacturing, a study, carried out at design, allowed to know the shape of the profile to be manufactured and the different constraints which will be submitted to it. Part of this study defines the thickness and number of laminates, the orientation of the fibers in the different parts of the profile as well as the direction, dimensions and locations of partitions and possible sandwich structures.
La figure 2 montre une vue schématique éclatée en perspective des différents composants internes 2, 3, 4, 5, 6, 7, par exemple prévus pour la réalisation de la pale 1. Les composants internes comprennent ainsi des mandrins 2, 3, 4, 5 pleins ou creux, une pièce rapportée 6 et une extrémité libreFIG. 2 shows a schematic exploded perspective view of the various internal components 2, 3, 4, 5, 6, 7, for example provided for producing the blade 1. The internal components thus comprise mandrels 2, 3, 4, 5 solid or hollow, an insert 6 and a free end
7.7.
La pale 1 comprend un pied 8 destiné à être monté sur un rotor d'éolienne et une partie allongée 9 en structure sandwich. La figure 3 est une vue schématique en coupe de la structure selon la ligne iii-in de la figure 1 , avec une structure composée d'une enveloppe 10 dont la fonction est de créer la force aérodynamique désirée et des cloisons internes 11 qui apportent la résistance et la rigidité nécessaires.The blade 1 comprises a foot 8 intended to be mounted on a wind turbine rotor and an elongated part 9 in a sandwich structure. Figure 3 is a schematic sectional view of the structure along the line iii-in of Figure 1, with a structure composed of an envelope 10 whose function is to create the desired aerodynamic force and internal partitions 11 which provide the strength and stiffness required.
Des stratifiés 12 et 13 composés de plis orientés approximativement dans la direction L et d'une épaisseur décroissante du piedLaminates 12 and 13 composed of pleats oriented approximately in the direction L and of a decreasing thickness of the foot
8 de la pale 1 à son extrémité libre, travaillent en traction et compression et reprennent les contraintes en flexion principalement dues à la pression aérodynamique et de façon moindre dues au propre poids de la pale.8 of the blade 1 at its free end, work in traction and compression and take up the bending stresses mainly due to the aerodynamic pressure and less due to the own weight of the blade.
On voit sur la figure 3 que les stratifiés 12 et 13 sont regroupés dans des zones éloignées des plans neutres proches des plans représentés par L,T et E,L, pour augmenter les moments d'inertie de la pale par rapport aux contraintes principales.It can be seen in FIG. 3 that the laminates 12 and 13 are grouped together in zones distant from the neutral planes close to the planes represented by L, T and E, L, in order to increase the moments of inertia of the blade relative to the main stresses.
Des stratifiés 14 et 15 représentés par exemple à la figure 3a et enrobant les mandrins 2, 3, 4 et 5 sont composés par exemple à 80% de plis orientés à +/- 45°, à 10% de plis à 90° et à 10% de plis à 0° par rapport à la direction L. Les stratifiés 14 et 15 reprennent principalement les contraintes de cisaillement entre les stratifiés 12 et 13, les contraintes locales dues à la pression extérieure sur l'enveloppe 10 et les contraintes de torsion.Laminates 14 and 15 shown for example in FIG. 3a and coating the mandrels 2, 3, 4 and 5 are composed for example of 80% of plies oriented at +/- 45 °, to 10% of plies at 90 ° and to 10% folds at 0 ° relative to the direction L. The laminates 14 and 15 mainly take up the constraints of shear between the laminates 12 and 13, the local stresses due to the external pressure on the casing 10 and the torsional stresses.
La pale 1 contient par ailleurs localement de la mousse 16, obtenue par exemple à partir d'une résine moussante, d'une épaisseur variable, apportant de l'inertie à l'enveloppe 10 et aux cloisons 11 afin de limiter l'épaisseur des stratifiés 14 et 15. Il est prévu que, dans ce cas avec trois cloisons 11, le nombre de plis à +/-450 et 90° du stratifié 14 doit être identique au niveau des cloisons 11 et au niveau de l'enveloppe 10. Il est aussi prévu que le nombre de plis à +/-450 et 90° du stratifié 14 au niveau des cloisons 11 doit être identique au nombre de plis à +/-450 et 90° du stratifié 15 au niveau de l'enveloppe 10. On peut ainsi avoir, au niveau des cloisons 11 et des stratifiés 14, des symétries pour ce qui concerne les nombres de plis.The blade 1 also locally contains foam 16, obtained for example from a foaming resin, of variable thickness, providing inertia to the envelope 10 and to the partitions 11 in order to limit the thickness of the laminates 14 and 15. It is intended that, in this case with three partitions 11, the number of plies at +/- 45 ° and 90 ° of the laminate 14 must be identical at the level of the partitions 11 and at the level of the envelope 10 It is also expected that the number of plies at +/- 45 0 and 90 ° of the laminate 14 at the partitions 11 must be identical to the number of plies at +/- 45 0 and 90 ° of the laminate 15 at the level of l 'envelope 10. It is thus possible to have, at the partitions 11 and the laminates 14, symmetries as regards the numbers of folds.
Il est aussi prévu que le nombre de plis à 0° des stratifiés 14 et 15 est identique au niveau de l'enveloppe 10. Il est aussi prévu que l'agencement et le nombre des plis des stratifiés 14 et 15 sont définis de façon à obtenir une structure symétrique de part et d'autre de la mousse 16 au niveau des cloisons 11 et de l'enveloppe 10.It is also intended that the number of plies at 0 ° of the laminates 14 and 15 is identical to the level of the envelope 10. It is also provided that the arrangement and the number of the plies of the laminates 14 and 15 are defined so as to obtain a symmetrical structure on either side of the foam 16 at the level of the partitions 11 and of the envelope 10.
La figure 4 est une vue schématique en coupe de la partie de pied 8 de la pale 1 suivant la ligne IV-IV de la figure 1 avec une structure composée de l'enveloppe 10 dont la fonction est de transmettre les contraintes de liaison à un élément extérieur, tel que le rotor d'une éolienne, de la partie 9 au pied 8 montrés à la figure 2. Les stratifiés 13 en quantité plus importante sur le pied 8 que sur la partie 9, sont régulièrement disposés autour d'un profil cylindrique pour répartir les contraintes principales aux points de fixation de la pale 1 , recouvrant les plis des stratifiés 14 déposés sur toute la longueur de la pale 1. Les stratifiés sont recouverts par les plis des stratifiés 15 sur toute la longueur de la pale 1. Les fortes contraintes de torsion, flexion et cisaillement et flambement sont aussi reprises par un stratifié supplémentaire 17 sur le pied 8 (composé de plis approximativement équilibrés à +/-450, 90° et 0° par rapport à L) d'une épaisseur décroissante du pied 8 à la partie 9.Figure 4 is a schematic sectional view of the leg portion 8 of the blade 1 along the line IV-IV of Figure 1 with a structure composed of the casing 10 whose function is to transmit the binding stresses to a external element, such as the rotor of a wind turbine, from part 9 to foot 8 shown in FIG. 2. The laminates 13 in greater quantity on foot 8 than on part 9, are regularly arranged around a profile cylindrical to distribute the main stresses at the attachment points of the blade 1, covering the plies of the laminates 14 deposited over the entire length of the blade 1. The laminates are covered by the plies of the laminates 15 over the entire length of the blade 1. The strong torsional, bending and shearing and buckling stresses are also taken up by an additional laminate 17 on the foot 8 (composed of plies approximately balanced at +/- 45 0 , 90 ° and 0 ° relative to L) of a thick decreasing ssor from foot 8 to part 9.
L'épaisseur totale de ces stratifiés 13, 14, 15, 17 est suffisante pour assurer la raideur de l'enveloppe 10 sur le pied 8 et ne nécessite pas d'âme en mousse 16 comme celle prévue sur la partie 9, dont l'épaisseur devient progressivement nulle de la partie 9 à la partie 8. II est établi que l'orientation, la continuité et l'agencement des plis des différents stratifiés ainsi obtenus répondent au mieux aux contraintes de forme, de résistance et de raideur d'une pale 1 d'éolienne, tout en étant réalisables suivant le procédé et avec la machine décrits ci-après. L'épaisseur de chaque pli ainsi que le nombre de cloisons 11 internes (pouvant être nul) pourront aisément être calculés et adaptés en fonction de la dimension de la structure aérodynamique, des matériaux utilisés et des hypothèses de charges prévues.The total thickness of these laminates 13, 14, 15, 17 is sufficient to ensure the stiffness of the envelope 10 on the foot 8 and does not require a foam core 16 like that provided on the part 9, the thickness becomes progressively zero from part 9 to part 8. It is established that the orientation, continuity and arrangement of the plies of the various laminates thus obtained best meet the constraints of shape, strength and stiffness of a wind turbine blade 1, while being achievable according to the method and with the machine described below. The thickness of each fold as well as the number of internal partitions 11 (which may be zero) can easily be calculated and adapted according to the size of the aerodynamic structure, the materials used and the expected load assumptions.
La figure 5 est une vue schématique en perspective qui illustre la première étape de dépose par enroulement et/ou au contact de fibres sur le mandrin 3, avec une machine 19 sur laquelle peuvent être réalisées toutes les étapes du procédé décrit ci-après. Cette machine 19 est constituée d'éléments standards, tels que des robots 20 sur lesquels peuvent être montés différents systèmes tels qu'une tête 21 de dépose par enroulement et/ou au contact de fibres, une tête d'usinage ou de projection. Ces robots 20 d'un nombre variable, sont montés sur des axes linéaires 22 et le mandrin 3 est mis en rotation grâce à un positionneur 23 et à une contre-pointe 24. En fonction de la taille de la structure à réaliser, et aussi de la quantité de matière à déposer ou usiner, la machine 19 peut avoir une configuration horizontale comme le montre la figure 5, ou une configuration verticale, comme le montre schématiquement la figure 6. Cette figure montre un plateau 24 avec un système de levage et de guidage 25, utilisant les solutions standards des monte-charges traditionnels tels que câbles ou vérins avec un contrepoids, qui permet d'embarquer plus de deux robots 20 pour déposer par enroulement et/ou au contact simultanément plus de matière. Cette configuration verticale permet de supprimer le problème de la flèche du mandrin 3 et de réduire le risque de décollement de matière ou de plis lors de la rotation du mandrin. Dans les deux configurations, un codeur mesurant la vitesse et la position du positionneur 23 à axe vertical ou horizontal, commande le plateau 24 ou des chariots 20a, possédant eux mêmes leur système de codage et supportant les robots 20 indépendants les uns des autres. Le montage et le démontage des mandrins et structures est réalisé dans le cas de la machine 19 verticale à l'aide du positionneur 23 qui bascule le profil au niveau du pied, comme le montre la figure 7. L'axe de rotation est prévu pour que la structure soit dans une position favorable, c'est-à-dire pour limiter sa flèche durant le basculement, par exemple autour de l'axe E. Dans le cas d'une machine 19 horizontale, le montage et démontage de la pale 1 est réalisé de façon traditionnelle. Les dimensions internes et externes de la pale 1 étant connues, des moules internes, par exemple quatre mandrins 2, 3, 4, 5 dont les dimensions extérieures correspondent aux dimensions internes des quatre composants 2a, 3a, 4a et 5a de la pale 1 , et un moule creux 26 dont la face interne correspond aux dimensions externes de la pale 1 à réaliser, ont été fabriqués suivant les techniques traditionnelles. Ils pourront être constitués entièrement ou en partie d'éléments gonflables ou souples, dans le cas ou la forme ne permet pas de les retirer après polymérisation en raison de formes non démoulables, ou dans le cas de dépouilles trop faibles sur des grandes longueurs. De plus, il peuvent dans un certain mode de réalisation, permettre le compactage des différents plis qui les recouvriront.FIG. 5 is a schematic perspective view which illustrates the first step of depositing by winding and / or in contact with fibers on the mandrel 3, with a machine 19 on which all the steps of the process described below can be carried out. This machine 19 is made up of standard elements, such as robots 20 on which different systems can be mounted such as a head 21 for depositing by winding and / or in contact with fibers, a machining or projection head. These robots 20 of a variable number are mounted on linear axes 22 and the mandrel 3 is rotated by means of a positioner 23 and a tailstock 24. Depending on the size of the structure to be produced, and also of the quantity of material to be deposited or machined, the machine 19 can have a horizontal configuration as shown in FIG. 5, or a vertical configuration, as shown schematically in FIG. 6. This figure shows a plate 24 with a lifting system and guide 25, using standard solutions of traditional freight elevators such as cables or jacks with a counterweight, which allows to embark more than two robots 20 to deposit by winding and / or simultaneously contacting more material. This vertical configuration makes it possible to eliminate the problem of the deflection of the mandrel 3 and to reduce the risk of detachment of material or folds during the rotation of the mandrel. In both configurations, an encoder measuring the speed and position of the positioner 23 with a vertical or horizontal axis, controls the plate 24 or the carriages 20a, having their own coding system and supporting the robots 20 independent of each other. The assembly and disassembly of the mandrels and structures is carried out in the case of the vertical machine 19 using the positioner 23 which switches the profile at the foot, as shown in Figure 7. The axis of rotation is provided for that the structure is in a favorable position, that is to say to limit its deflection during tilting, for example around the axis E. In the case of a horizontal machine 19, the mounting and dismounting of the blade 1 is carried out in the traditional way. The internal and external dimensions of the blade 1 being known, internal molds, for example four mandrels 2, 3, 4, 5 whose external dimensions correspond to the internal dimensions of the four components 2a, 3a, 4a and 5a of the blade 1, and a hollow mold 26, the internal face of which corresponds to the external dimensions of the blade 1 to be produced, were produced according to traditional techniques. They may consist entirely or in part of inflatable or flexible elements, in the case where the shape does not allow them to be removed after polymerization due to non-demouldable shapes, or in the case of bodies that are too weak over long lengths. In addition, they can in a certain embodiment, allow the compaction of the various folds which will cover them.
Un premier mandrin 3 correspondant par exemple à la forme interne de l'élément 3a est monté sur la machine 19 pour subir éventuellement un traitement d'affinage de sa surface externe, tel que la projection d'un agent démoulant et d'un agent tackifiant par un système de pulvérisation monté en extrémité des robots 20, et éventuellement la mise en place de picots (non représentés) aux extrémités du mandrin 3.A first mandrel 3 corresponding for example to the internal shape of the element 3a is mounted on the machine 19 to optionally undergo a refining treatment on its external surface, such as the projection of a release agent and a tackifying agent by a spraying system mounted at the end of the robots 20, and possibly the installation of pins (not shown) at the ends of the mandrel 3.
Une fois cette préparation terminée, la dépose automatique de fibres par enroulement et/ou au contact est effectuée de façon à obtenir l'échantillonnage défini lors de la conception, grâce aux têtes 21 de dépose par enroulement ou au contact de fibres, telles que celles que l'on trouve dans l'industrie qui permettent de placer et coller des fibres, par exemple constituées de mèches pré-imprégnées, continues ou discontinues, qui sont montées aux extrémités des robots 20. Cette dépose par enroulement et/ou au contact débute par exemple par les plis des stratifiés 14 à 45° et - 45°, à 88° et - 88°, et 0° par rapport à la direction L et continus entre les deux extrémités du mandrin 3, tel que le montre la figure 5. Les plis à 0° des stratifiés 12 ou 13, en fonction du mandrin qui est recouvert, sont ensuite déposés longitudinalement suivant la direction L, en réduisant progressivement le nombre de couches de la zone du pied 8 de pale 1 à son extrémité libre, c'est-à-dire en interrompant la dépose à des zones intermédiaires entre les deux extrémités. Les trois autres mandrins 4, 5, 6 subissent ensuite les mêmes traitements et sont tous les quatre polymérisés suivant les techniques connues, par exemple sous vide à une température de 80°c. En parallèle, un moule creux 26 prévu pour la phase de réalisation de l'âme en mousse est préparé. Par exemple, tel que le représente la figure 8, ce moule 26 peut être réalisé en deux parties dont les dimensions internes correspondent aux dimensions externes finales de la pale 1 , dans lequel on dépose un gabarit 27 en deux parties, par exemple en composite avec des épaisseurs adéquates pour adapter ses dimensions et son état de surface interne à l'étape d'expansion de l'âme en mousse 16. Le volume de ce gabarit 27 en deux parties correspond aux fibres et à la résine qui seront déposées dans une deuxième phase, avec leur épaisseur spécifique en chaque point. Afin de garantir un bon accrochage du collage qui sera réalisé avec les stratifiés 15 et 17, l'état de surface interne de ce gabarit 27 possède une rugosité adéquate, qui peut nécessiter la dépose d'un agent démoulant avant l'injection ou la dépose de résine.Once this preparation is complete, the automatic depositing of fibers by winding and / or in contact is carried out so as to obtain the sampling defined during the design, using the heads 21 for depositing by winding or in contact with fibers, such as those that are found in the industry which make it possible to place and stick fibers, for example made up of prepreg wicks, continuous or discontinuous, which are mounted at the ends of the robots 20. This removal by winding and / or in contact begins for example by the plies of laminates 14 at 45 ° and - 45 °, at 88 ° and - 88 °, and 0 ° relative to the direction L and continuous between the two ends of the mandrel 3, as shown in FIG. 5 The plies at 0 ° of the laminates 12 or 13, depending on the mandrel which is covered, are then deposited longitudinally in the direction L, progressively reducing the number of layers in the area of the foot 8 of blade 1 at its end. é free, that is to say by interrupting the deposit at intermediate zones between the two ends. The other three mandrels 4, 5, 6 then undergo the same treatments and are all four polymerized according to known techniques, for example under vacuum at a temperature of 80 ° C. In parallel, a hollow mold 26 provided for the production phase of the foam core is prepared. For example, as shown in Figure 8, this mold 26 can be produced in two parts, the internal dimensions of which correspond to the final external dimensions of the blade 1, in which a template 27 is deposited in two parts, for example in composite with adequate thicknesses to adapt its dimensions and its state of internal surface at the stage of expansion of the foam core 16. The volume of this template 27 in two parts corresponds to the fibers and to the resin which will be deposited in a second phase, with their specific thickness at each point. In order to guarantee good adhesion of the bonding which will be carried out with the laminates 15 and 17, the internal surface state of this template 27 has an adequate roughness, which may require the removal of a release agent before injection or removal. resin.
Durant le positionnement des quatre mandrins 2, 3, 4, et 5 recouverts de leur stratifiés 12, 13, et 14 dans le moule 26 et le gabarit 27, des éléments, tel que l'extrémité 7 faisant partie de la pale 1 , peuvent être rapportés comme le montre la figure 9. L'extrémité 7 peut être réalisée par exemple de façon traditionnelle en fibres avec une injection de résine. Cette extrémité 7 possède à l'extérieur une surface lisse aux dimensions externes définitives de la pale 1 et à l'intérieur une surface rugueuse pour assurer un collage de qualité sur les stratifiés 12, 13, et 14 recouvrant les mandrins 2, 3, 4 et 5. D'autres renforts et/ou des fibres et/ou des inserts tels que des câbles de paratonnerre peuvent être disposés dans le moule 26 et le gabarit 27 afin d'être imprégnés ou collés par la résine moussante. Un système de manutention et de calage 31 permet de positionner l'ensemble des mandrins dans le moule 26 et le gabarit 27 afin de les maintenir à une distance donnée de la paroi interne dudit moule 26 et entre les mandrins 2, 3, 4, 5. Cette distance est spécifique à chaque partie de l'enveloppe 10 et des trois cloisons 11 de la pale 1, et correspond à l'épaisseur variable des renforts de mousse 16 prévus à la conception.During the positioning of the four mandrels 2, 3, 4, and 5 covered with their laminates 12, 13, and 14 in the mold 26 and the template 27, elements, such as the end 7 forming part of the blade 1, can be reported as shown in Figure 9. The end 7 can be made for example in the traditional way of fibers with an injection of resin. This end 7 has on the outside a smooth surface with the final external dimensions of the blade 1 and on the inside a rough surface to ensure quality bonding on the laminates 12, 13, and 14 covering the mandrels 2, 3, 4 and 5. Other reinforcements and / or fibers and / or inserts such as lightning conductor cables can be placed in the mold 26 and the template 27 so as to be impregnated or bonded with the foaming resin. A handling and wedging system 31 makes it possible to position all the mandrels in the mold 26 and the template 27 in order to keep them at a given distance from the internal wall of said mold 26 and between the mandrels 2, 3, 4, 5 This distance is specific to each part of the envelope 10 and of the three partitions 11 of the blade 1, and corresponds to the variable thickness of the foam reinforcements 16 provided for in the design.
La figure 10 montre schématiquement et en coupe transversale selon la ligne x-x de la figure 9, les mandrins 2,3, 4 et 5 recouverts de leur stratifiés 12, 13, et 14 dans le moule 26 avec son gabarit 27 après la phase d'expansion de la résine moussante 16 qui a été précédemment projetée et/ou injectée, éventuellement par étapes séquentielles. Cette résine moussante peut être par exemple de la résine époxy avec un agent moussant qui permet de réduire la densité de la mousse polymérisée. La mousse 16 ainsi obtenue assure d'une part un collage entre les quatre mandrins 2, 3, 4, 5, et d'autre part un renfort structurel.Figure 10 shows schematically and in cross section along line xx of Figure 9, the mandrels 2,3, 4 and 5 covered with their laminates 12, 13, and 14 in the mold 26 with its template 27 after the phase of expansion of the foaming resin 16 which has been previously sprayed and / or injected, possibly in sequential steps. This foaming resin may for example be epoxy resin with a foaming agent which makes it possible to reduce the density of the polymerized foam. The foam 16 thus obtained on the one hand ensures bonding between the four mandrels 2, 3, 4, 5, and on the other hand a structural reinforcement.
La figure 11 est une vue schématique en perspective de l'opération de retrait (voir directions de retrait R) des trois mandrins 2, 4 et 5 de la structure 32 obtenue après la polymérisation de la résine moussante, avec le moule 26 maintenu de préférence fermé pour bloquer ladite structure 32 durant le retrait. Le mandrin 3 est laissé en place pour manipuler la structure obtenue 32 et conserver les mêmes références de position durant les prochaines étapes du procédé. A la conception de la pale 1 et du mandrin 3, il a été calculé que les centres de gravité de l'ensemble constitué par le mandrin 3 et la structure 32 obtenue, laquelle est recouverte par la suite des stratifiés 15 et 17, sont les plus proches possibles de l'axe de rotation du positionneur 23 de la machine 19, afin de limiter les balourds durant les prochaines étapes de dépose de plis. La structure 32 avec son mandrin 3 est ensuite démoulée du gabarit 27. Des inserts peuvent être rapportés et collés, tel que l'élément 6 représenté sur la figure 12. La structure 32 est ensuite manipulée d'un côté grâce à l'extrémité du mandrin 3, de l'autre coté grâce à un conformateur 33 qui maintient l'ensemble par l'extrémité 7 finie et qui le positionne dans l'axe du positionneur 23 de la machine 19 durant les prochaines étapes du procédé, comme on le voit sur la figure 13. Une nouvelle étape de dépose de plis peut aussi être effectuée.Figure 11 is a schematic perspective view of the removal operation (see removal directions R) of the three mandrels 2, 4 and 5 of the structure 32 obtained after the polymerization of the foaming resin, with the mold 26 preferably held closed to block said structure 32 during withdrawal. The mandrel 3 is left in place to manipulate the structure obtained 32 and to keep the same position references during the next steps of the process. When designing the blade 1 and the mandrel 3, it was calculated that the centers of gravity of the assembly constituted by the mandrel 3 and the structure 32 obtained, which is subsequently covered with the laminates 15 and 17, are the as close as possible to the axis of rotation of the positioner 23 of the machine 19, in order to limit unbalances during the next folds removal steps. The structure 32 with its mandrel 3 is then removed from the template 27. Inserts can be added and glued, such as the element 6 shown in FIG. 12. The structure 32 is then manipulated on one side thanks to the end of the mandrel 3, on the other side thanks to a shaper 33 which holds the assembly by the finished end 7 and which positions it in the axis of the positioner 23 of the machine 19 during the next steps of the process, as can be seen in FIG. 13. A new step for depositing folds can also be carried out.
Avant cette dépose, la structure 32 peut subir éventuellement sur la machine 19 un traitement d'affinage de sa surface externe, tel que la projection d'un agent tackifiant par un système de pulvérisation monté en extrémité des robots 20 et/ou un ébavurage des plans de joint de la résine moussante grâce à un système d'usinage monté en extrémité des robots 20. Une fois cette préparation terminée, la dépose automatique de fibres est effectuée de façon à obtenir l'échantillonnage défini lors de la conception, grâce à des têtes 21 de dépose par enroulement et/ou au contact de fibres montées aux extrémités des robots 20, comme le montre la figure 13. Cette étape débute par exemple par la dépose des plis des stratifiés 15 et 17. Le nombre de couches est réduit progressivement du pied 8 de la pale 1 à son autre extrémité, en coupant les fibres dans des zones intermédiaires entre les deux extrémités. Les plis des fibres des stratifiés 15 et 17, par exemple préimprégnés d'un agent tackifiant pour leur maintien sur la structure 32, peuvent être ensuite imprégnés par une injection de résine. Dans ce cas, il est prévu durant la dépose de fibres, de laisser des espaces adéquats entre chaque groupe ou mèche de fibres dans certaines parties et/ou couches, afin de faciliter le transfert de résine durant l'injection. Ces espaces pourront être obtenus au moyen d'un réglage sur les têtes 21 de dépose par enroulement et/ou au contact de l'espacement des poulies ou des peignes de guidage des mèches de fibres, ou au moyen de mèches plus étroites n'étant pas jointives en sortie des têtes 21. Aussi, des matériaux de drainage tel que des feutres sous forme de bandes peuvent être appliqués entre les couches. En parallèle, le moule creux 26, dont les dimensions internes correspondent aux dimensions externes finales de la pale 1 , a été préparé avec le retrait du gabarit 27 et éventuellement la dépose d'un agent démoulant et d'un film thermoplastique ou thermodurcissable destiné à protéger et colorer la surface externe de la pale 1. La structure 32 recouverte des stratifiés 15 et 17 est ensuite déposée dans le moule 26 , afin de réaliser un transfert de résine, par exemple au moyen d'une injection assistée du vide. Des inserts, tel qu'un bord de fuite 34 peuvent être rapportés. Les figures 14 et 14a sont des vues schématiques en coupe transversale selon la ligne x-x de la figure 9 de la structure finale 35 obtenue une fois la résine injectée et polymérisée, qui correspond à la forme de la pale 1 terminée, avec le moule 26 et le mandrin 3 restés en place.Before this removal, the structure 32 may possibly undergo on the machine 19 a refining treatment of its external surface, such as the projection of a tackifying agent by a spraying system mounted at the end of the robots 20 and / or deburring of the jointing surfaces of the foaming resin by means of a machining system mounted at the end of the robots 20. Once this preparation is complete, the automatic depositing of fibers is carried out so as to obtain the sampling defined during the design, using depositing heads 21 by winding and / or in contact with fibers mounted at the ends of the robots 20, as shown in FIG. 13. This step begins for example by depositing the plies of the laminates 15 and 17. The number of layers is gradually reduced from the foot 8 of the blade 1 at its other end, by cutting the fibers in intermediate zones between the two ends. The plies of the fibers of the laminates 15 and 17, for example pre-impregnated with a tackifying agent for their retention on the structure 32, can then be impregnated with an injection of resin. In this case, provision is made during the removal of fibers to leave adequate spaces between each group or wick of fibers in certain parts and / or layers, in order to facilitate the transfer of resin during injection. These spaces may be obtained by means of an adjustment on the depositing heads 21 by winding and / or in contact with the spacing of the pulleys or of the combs for guiding the wicks of fibers, or by means of narrower wicks not being not contiguous at the outlet of the heads 21. Also, drainage materials such as felts in the form of strips can be applied between the layers. In parallel, the hollow mold 26, the internal dimensions of which correspond to the final external dimensions of the blade 1, was prepared with the removal of the template 27 and possibly the deposition of a release agent and a thermoplastic or thermosetting film intended for protect and color the external surface of the blade 1. The structure 32 covered with the laminates 15 and 17 is then deposited in the mold 26, in order to carry out a transfer of resin, for example by means of assisted injection of the vacuum. Inserts, such as a trailing edge 34 can be added. FIGS. 14 and 14a are schematic cross-sectional views along line xx of FIG. 9 of the final structure 35 obtained once the resin has been injected and polymerized, which corresponds to the shape of the blade 1 finished, with the mold 26 and the mandrel 3 remained in place.
Cette structure finale 35 est ensuite démoulée du moule 26 pour être montée sur la machine 19, avec le conformateur 33 et le mandrin 3 qui permettent de conserver les références de position. La structure finale 35 peut alors subir un traitement de finition tel que des ébavurages de plans de joint, des découpes pour l'assemblage d'inserts de fixation du profil à un élément externe et une peinture, grâce au montage sur les robots 20 de l'équipement adéquat, tel que pistolet de projection ou broche de fraisage et de perçage.This final structure 35 is then removed from the mold 26 to be mounted on the machine 19, with the shaper 33 and the mandrel 3 which make it possible to keep the position references. The final structure 35 can then undergo a finishing treatment such as deburring of joint planes, cutouts for the assembly of inserts for fixing the profile to an external element and painting, thanks to the mounting on the robots 20 of the '' adequate equipment, such as a spray gun or milling and drilling spindle.
. La structure finale 35 est ensuite démontée de la machine 19 et le mandrin 3 est retiré selon la flèche R, comme le montre la figure 15. Cette structure finale 35 correspond à la pale 1, prête à recevoir des inserts tels que des brides de fixation pour être ensuite montée sur un rotor d'éolienne.. The final structure 35 is then removed from the machine 19 and the mandrel 3 is removed according to the arrow R, as shown in FIG. 15. This final structure 35 corresponds to the blade 1, ready to receive inserts such as fixing flanges to then be mounted on a wind turbine rotor.
Selon un exemple de mise en oeuvre, le procédé conforme à l'invention comprend les étapes prévoyant de : - mettre en place avec la machine sur un mandrin 2, 3, 4, 5 longitudinal correspondant à la forme interne de la structure ou sur plusieurs mandrins correspondant aux cavités internes longitudinales de la structure dans le cas ou il possède des cloisons 11 internes longitudinales, des picots et/ou des produits anti-dérapants, permettant une augmentation de l'adhérence entre le ou les mandrins 5 et les fibres qui viendront le recouvrir ; - déposer sur le ou les mandrins par enroulement et/ou au contact avec la machine des fibres sèches ou imprégnées de résine ou d'agent tackifiant suivant des directions et des épaisseurs définies lors de la conception de la structure aérodynamique 32,According to an exemplary implementation, the method according to the invention comprises the steps providing for: - positioning with the machine on a mandrel 2, 3, 4, 5 longitudinal corresponding to the internal shape of the structure or on several mandrels corresponding to the longitudinal internal cavities of the structure in the case where it has longitudinal internal partitions 11, pins and / or non-slip products, allowing an increase in the adhesion between the mandrel (s) 5 and the fibers which will come cover it; - deposit on the mandrel (s) by winding and / or in contact with the machine dry fibers or impregnated with resin or tackifying agent in directions and thicknesses defined during the design of the aerodynamic structure 32,
- mettre sous pression les matériaux déposés sur le ou les mandrins 2, 3, 4, 5 avec un compactage sous vide à l'aide d'une bâche et/ou effectuer une infusion de résine sous bâche et polymériser la résine,- pressurize the materials deposited on the mandrel (s) 2, 3, 4, 5 with vacuum compaction using a tarpaulin and / or carry out an infusion of resin under tarpaulin and polymerize the resin,
- mettre en place ce ou ces mandrins 2, 3, 4, 5 recouverts des matériaux dans du moule creux 26 et les caler afin de les maintenir à une distance donnée de la paroi interne du moule creux 26 et entre eux s'ils sont plusieurs, injecter de la résine moussante ou non moussante dans tout l'espace libre qui correspond à l'épaisseur des renforts de mousse 16 prévus en chaque partie de l'enveloppe 10 et des éventuelles cloisons internes 11 de la structure finale,- Put in place this or these mandrels 2, 3, 4, 5 covered with the materials in the hollow mold 26 and wedge them in order to maintain them at a given distance from the internal wall of the hollow mold 26 and between them if they are several injecting foaming or non-foaming resin into the entire free space which corresponds to the thickness of the foam reinforcements 16 provided in each part of the envelope 10 and of any internal partitions 11 of the final structure,
- après polymérisation de la mousse, laisser un mandrin 3 plein ou creux de façon à maintenir le centre de gravité de la pièce obtenue, et recouverte par la suite d'une autre couche de fibres, le plus près de l'axe de rotation du positionneur de la machine, retirer les éventuels autres mandrins 2, 4, 5 et démouler du moule creux 26 l'ensemble ainsi obtenu,- after polymerization of the foam, leave a full or hollow mandrel 3 so as to maintain the center of gravity of the part obtained, and subsequently covered with another layer of fibers, closest to the axis of rotation of the positioner of the machine, remove any other mandrels 2, 4, 5 and remove from the hollow mold 26 the assembly thus obtained,
- monter cet ensemble sur la machine et déposer sur cet ensemble par enroulement et/ou au contact avec la machine des fibres sèches ou imprégnées de résine ou de tackifiant suivant des directions et des épaisseurs définies lors de la conception de la structure aérodynamique 32,mounting this assembly on the machine and depositing on this assembly by winding and / or in contact with the machine dry fibers or impregnated with resin or tackifier in directions and thicknesses defined during the design of the aerodynamic structure 32,
- mettre sous pression les matériaux disposés dans le moule creux 26 externe dont la face interne correspond à la forme externe du profil afin d'obtenir un état de surface externe identique à celui de la surface interne du moule creux 26 et un taux de résine déterminé, par une injection de résine et/ou une expansion de résine telle que résine moussante, et/ou par une augmentation du volume du ou des mandrins, ou mettre sous pression les matériaux par un compactage sous vide à l'aide d'une bâche et/ou une infusion de résine à l'aide d'une bâche, - après polymérisation, démouler le profil obtenu du moule creux 26 ou de la bâche et le monter sur la machine pour faire subir un traitement d'affinage et/ou de finition tel qu'ébavurage, peinture et découpes, par exemple pour le passage ou l'assemblage d'inserts pour fixer la structure à un élément externe, et/ou pour l'évacuation du mandrin 3.- pressurizing the materials placed in the external hollow mold 26 whose internal face corresponds to the external shape of the profile in order to obtain an external surface state identical to that of the internal surface of the hollow mold 26 and a determined resin content , by resin injection and / or resin expansion such as foaming resin, and / or by an increase in the volume of the mandrel (s), or pressurizing the materials by vacuum compaction using a tarpaulin and / or an infusion of resin using a tarpaulin, - After polymerization, unmold the profile obtained from the hollow mold 26 or from the tarpaulin and mount it on the machine to undergo a refining and / or finishing treatment such as deburring, painting and cutting, for example for the passage or the assembly of inserts to fix the structure to an external element, and / or for the evacuation of the mandrel 3.
Le procédé de fabrication et les structures aérodynamiques obtenues par un tel procédé présentent des avantages importants :The manufacturing process and the aerodynamic structures obtained by such a process have significant advantages:
La production est entièrement automatisée, grâce à l'emploi de logiciels de conception, de calculs par éléments finis, de simulation de dépose de fibres et de programmation de commande numérique. La machine de dépose de fibres est un centre automatisé d'usinage, de pulvérisation, de bobinage et de découpage. Ainsi, le risque de non conformité est limité, d'une part grâce à l'automatisation qui garantit la reproductibilité du produit fabriqué, d'autre part grâce à la réalisation des différentes opérations par l'intermédiaire des mêmes robots et banc de montage, améliorant la précision géométrique ée la structure finale.Production is fully automated, thanks to the use of design software, finite element calculations, fiber deposition simulation and numerical control programming. The fiber depositing machine is an automated center for machining, spraying, winding and cutting. Thus, the risk of non-compliance is limited, on the one hand thanks to the automation which guarantees the reproducibility of the manufactured product, on the other hand thanks to the carrying out of the various operations via the same robots and assembly bench, improving the geometric precision ée the final structure.
L'âme de la structure sandwich réalisée grâce à une expansion de résine moussante permet, par rapport au collage traditionnel de plaques, de réduire les temps de production, de garantir un collage parfait avec les peaux externes et internes, et d'avoir une épaisseur optimale et évolutive en chaque point de la structure optimisant la quantité de matière et le poids.The soul of the sandwich structure produced thanks to an expansion of foaming resin allows, compared to the traditional bonding of plates, to reduce production times, to guarantee a perfect bonding with the external and internal skins, and to have a thickness optimal and scalable at each point of the structure optimizing the amount of material and the weight.
Le produit fini possède des qualités mécaniques élevées d'une part grâce à la dépose automatique qui permet de déposer les fibres dans des orientations optimales, d'autre part grâce aux fibres continues au maximum, sans notamment avoir de coupure entre la face supérieure et inférieure de la pale.The finished product has high mechanical qualities on the one hand thanks to the automatic deposition which makes it possible to deposit the fibers in optimal orientations, on the other hand thanks to the continuous fibers to the maximum, without in particular having a cut between the upper and lower face of the blade.
Le positionnement des inserts est beaucoup plus précis grâce à un usinage automatisé.The positioning of the inserts is much more precise thanks to automated machining.
Les structures courantes, telles que les stratifiés d'épaisseur importante décroissant sur la longueur des structures ainsi que les âmes en mousse d'épaisseur variable sur une certaine longueur du profil, sont réalisables grâce aux différentes étapes de dépose de fibres et aux différentes techniques d'imprégnation et d'injection de résine.Common structures, such as laminates of significant thickness decreasing over the length of the structures as well as foam cores of variable thickness over a certain length of the profile, are possible thanks to the different stages of fiber deposition and the different techniques of resin impregnation and injection.
Les dimensions maximales des structures réalisables sont augmentées grâce à la conception verticale de la machine de dépose de fibres, permettant la réalisation des plus grandes pales d'éoliennes. La réalisation de la machine mettant en oeuvre le procédé conforme à l'invention à partir d'éléments standards apporte une grande fiabilité et un coût de l'ensemble réduit par rapport aux machines existantes.The maximum dimensions of the achievable structures are increased thanks to the vertical design of the fiber depositing machine, allowing the realization of the largest wind turbine blades. The realization of the machine implementing the method according to the invention from standard elements provides high reliability and a reduced cost of the assembly compared to existing machines.
Les cadences de productions sont augmentées grâce à la pluralité de têtes de dépose de fibres qui multiplient la quantité de matériau déposée à l'heure, et les pertes de matière sont quasiment nulles.The production rates are increased thanks to the plurality of fiber depositing heads which multiply the quantity of material deposited per hour, and the material losses are almost zero.
En outre, l'état de surface extérieur peut être lisse ou rugueux en fonction des besoins.In addition, the external surface finish can be smooth or rough as required.
Enfin, le procédé, objet de l'invention, est particulièrement adapté à la fabrication en série de pales d'eoliennes et de structures aérodynamiques diverses tels qu'ailes et mâts. Finally, the process which is the subject of the invention is particularly suitable for the mass production of wind turbine blades and of various aerodynamic structures such as wings and masts.

Claims

REVENDICATIONS
1. Procédé de fabrication de structures aérodynamiques (32, 35) s'étendant selon une direction longitudinale (L) et une direction transversale (T) et une direction en élévation (E), utilisant un assemblage de mandrins (2, 3, 4, 5) et consistant à : a) Effectuer un premier dépôt de fibres sur chaque mandrin (2, 3, 4, 5) pour enrober chaque mandrin (2, 3, 4, 5), b) Compacter sous vide le dépôt de fibres et/ou infuser ledit dépôt d'une résine polymérisable, c) Polymériser le premier dépôt, d) Mettre en place et caler les mandrins (2, 3, 4, 5) enrobés, dans un moule creux (26) de manière à délimiter des espaces libres dans le moule, e) Injecter de la résine dans le moule de façon à remplir au moins en partie les espaces libres, de manière à réaliser des renforts dans une enveloppe (10) de la structure (32) ou dans des cloisons internes (11) de ladite structure (32), f) Polymériser la résine et l'ensemble ainsi constitué, et démouler ledit ensemble, g) Effectuer un dépôt complémentaire de fibres sur l'ensemble obtenu à l'étape (f), h) Disposer l'ensemble dans un moule creux (26) et procéder soit de nouveau à l'étape (b), soit injecter de la résine dans le moule creux (26), i) Polymériser l'ensemble et démouler la structure finale (35) obtenue, j) Et effectuer un traitement de finition de la structure (35) obtenue à l'étape (i). 1. Method for manufacturing aerodynamic structures (32, 35) extending in a longitudinal direction (L) and a transverse direction (T) and an elevation direction (E), using an assembly of mandrels (2, 3, 4 , 5) and consisting in: a) Performing a first deposit of fibers on each mandrel (2, 3, 4, 5) to coat each mandrel (2, 3, 4, 5), b) Vacuum compacting the deposit of fibers and / or infuse said deposit with a polymerizable resin, c) polymerize the first deposit, d) place and wedge the mandrels (2, 3, 4, 5) coated, in a hollow mold (26) so as to delimit free spaces in the mold, e) Inject resin into the mold so as to fill at least partially the free spaces, so as to make reinforcements in an envelope (10) of the structure (32) or in partitions internal (11) of said structure (32), f) polymerizing the resin and the assembly thus formed, and demolding said assembly, g) Effect use an additional deposit of fibers on the assembly obtained in step (f), h) Place the assembly in a hollow mold (26) and proceed either again to step (b), or inject resin in the hollow mold (26), i) polymerize the assembly and unmold the final structure (35) obtained, j) and carry out a finishing treatment of the structure (35) obtained in step (i).
2. Procédé selon la revendication 1 , caractérisé en ce qu'il consiste, lors des étapes (a) et (g), à effectuer les dépôts de fibres au contact et/ou par enroulement.2. Method according to claim 1, characterized in that it consists, during steps (a) and (g), in making the fiber deposits in contact and / or by winding.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'il consiste, lors des étapes (a) et (g), à déposer des fibres sèches ou imprégnées d'une résine ou d'un agent tackifiant. 3. Method according to claim 1 or 2, characterized in that it consists, during steps (a) and (g), of depositing dry fibers or fibers impregnated with a resin or a tackifying agent.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il consiste à utiliser des mandrins (2, 3, 4, 5) pleins ou creux, dont au moins un est retiré de l'ensemble consécutivement à l'étape (f) et dont le dernier mandrin (3), ou partie de mandrin, servant de support lors des étapes (g), (h), (i) et (j) est retiré de la structure aérodynamique (35) après l'étape (j).4. Method according to any one of claims 1 to 3, characterized in that it consists in using mandrels (2, 3, 4, 5) full or hollow, at least one of which is removed from the assembly consecutively to step (f) and whose last mandrel (3), or part of mandrel, serving as support during steps (g), (h), (i) and (j) is removed from the aerodynamic structure (35) after step (j).
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il consiste à utiliser un moule (26) unique pour effectuer les étapes de moulage sous (d) et (h) et à disposer un gabarit (27) dans ledit moule pour l'étape (d) de manière à définir la forme de l'ensemble après injection de résine lors de l'étape (e).5. Method according to any one of claims 1 to 4, characterized in that it consists in using a single mold (26) to perform the molding steps under (d) and (h) and in having a template (27 ) in said mold for step (d) so as to define the shape of the assembly after injection of resin during step (e).
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il consiste lors de l'étape (e) à intégrer, dans les espaces libres, des inserts solides en complément de l'injection de résine. 6. Method according to any one of claims 1 to 5, characterized in that it consists during step (e) of integrating, in the free spaces, solid inserts in addition to the resin injection.
7. Procédé selon la revendication 5 ou 6, caractérisé en ce qu'il consiste, lors de l'étape (e), à utiliser de la résine moussante, dont l'expansion dans la structure (32) et au sein du gabarit (27) permet de constituer des renforts dans la structure aérodynamique (32).7. Method according to claim 5 or 6, characterized in that it consists, during step (e), of using foaming resin, the expansion of which in the structure (32) and within the template ( 27) makes it possible to constitute reinforcements in the aerodynamic structure (32).
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il consiste à réaliser lors du premier dépôt de fibres des plis orientés sensiblement dans la direction longitudinale (L) de la structure aérodynamique (32), en complément des plis destinés à enrober les mandrins.8. Method according to any one of claims 1 to 7, characterized in that it consists in producing during the first deposition of fibers plies oriented substantially in the longitudinal direction (L) of the aerodynamic structure (32), in addition folds intended to coat the mandrels.
9. Procédé selon la revendication 7, caractérisé en ce qu'il consiste à injecter la résine moussante entre les stratifiés (12, 13, 14, 15) de plis présentant un échantillonnage identique de manière à obtenir une symétrie de l'enveloppe (10) et les cloisons internes (11) par rapport au nombre de plis.9. Method according to claim 7, characterized in that it consists in injecting the foaming resin between the laminates (12, 13, 14, 15) of plies having an identical sampling so as to obtain a symmetry of the envelope (10 ) and the internal partitions (11) relative to the number of folds.
10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il consiste à déposer, lors du premier dépôt, lors de l'étape (a), au moins des plis de fibres continues et des plis de fibres discontinues. 10. Method according to any one of claims 1 to 9, characterized in that it consists in depositing, during the first deposition, during step (a), at least plies of continuous fibers and plies of fibers. discontinuous.
11. Structure aérodynamique, caractérisée en ce qu'elle est réalisée par le procédé selon l'une quelconque des revendications 1 à 10.11. Aerodynamic structure, characterized in that it is produced by the method according to any one of claims 1 to 10.
12. Pale pour éolienne, caractérisée en ce qu'elle est réalisée par le procédé selon l'une quelconque des revendications 1 à 10. 12. Blade for a wind turbine, characterized in that it is produced by the method according to any one of claims 1 to 10.
PCT/FR2002/003662 2001-10-26 2002-10-24 Method for making extruded profiles having a specific surface state made of fiber-reinforced synthetic resins and machine therefor WO2003035380A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0113917A FR2831479B1 (en) 2001-10-26 2001-10-26 METHOD FOR MANUFACTURING PROFILES HAVING A SPECIFIC SURFACE CONDITION IN FIBER REINFORCED SYNTHETIC RESINS AND MACHINE FOR CARRYING OUT THE METHOD
FR01/13917 2001-10-26

Publications (1)

Publication Number Publication Date
WO2003035380A1 true WO2003035380A1 (en) 2003-05-01

Family

ID=8868796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/003662 WO2003035380A1 (en) 2001-10-26 2002-10-24 Method for making extruded profiles having a specific surface state made of fiber-reinforced synthetic resins and machine therefor

Country Status (2)

Country Link
FR (1) FR2831479B1 (en)
WO (1) WO2003035380A1 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005018917A2 (en) 2003-08-22 2005-03-03 The Boeing Company Multiple head automated composite laminating machine for the fabrication of large barrel section components
EP1755997A2 (en) * 2004-04-21 2007-02-28 Ingersoll Machine Tools, Inc. Automated fiber placement using multiple placement heads, replaceable creels, and replaceable placement heads
CN100385113C (en) * 2005-01-21 2008-04-30 同济大学 Large pneumatic equipment blades made of composite material and production thereof
US7422647B2 (en) * 2003-08-22 2008-09-09 The Boeing Company Unidirectional, multi-head fiber placement
US7503368B2 (en) * 2004-11-24 2009-03-17 The Boeing Company Composite sections for aircraft fuselages and other structures, and methods and systems for manufacturing such sections
US20100006205A1 (en) * 2008-07-08 2010-01-14 The Boeing Company Method and apparatus for producing composite structures
WO2010040359A1 (en) * 2008-10-08 2010-04-15 Vestas Wind Systems A/S A method of manufacturing a polymer composite member by use of two or more resins
US7735536B2 (en) * 2004-04-30 2010-06-15 Toyota Jidosha Kabushiki Kaisha Filament winding apparatus
WO2010100481A2 (en) 2009-03-05 2010-09-10 Airbus Operations Limited Method of manufacturing composite parts
US7819160B2 (en) 2007-02-28 2010-10-26 Coriolis Composites Device for using fibers with flexible fiber-routing tubes
US7926537B2 (en) 2007-03-06 2011-04-19 Coriolis Composites Applicator head for fibers with particular systems for cutting fibers
US8052819B2 (en) 2009-04-02 2011-11-08 Coriolis Composites Method and machine for applying a band of fibers on convex surfaces and/or with edges
US8057618B2 (en) 2007-02-21 2011-11-15 Coriolis Composites Method and apparatus for making structures of composite material, in particular airplane fuselage sections
WO2011092474A3 (en) * 2010-01-29 2012-01-05 Blade Dynamics Limited A blade for a turbine operating in water
EP2404742A1 (en) * 2010-07-09 2012-01-11 Siemens Aktiengesellschaft Method to manufacture a component of a composite structure
WO2012028531A1 (en) * 2010-08-30 2012-03-08 Mag Ias Gmbh Manufacturing system for producing fiber composite material components
US8191596B2 (en) 2009-07-17 2012-06-05 Coriolis Composites Fiber application machine comprising a flexible compacting roller with a thermal regulation system
WO2013084275A1 (en) * 2011-12-09 2013-06-13 Mitsubishi Heavy Industries, Ltd. Method of manufacturing a wind turbine blade and a wind turbine blade
US8557074B2 (en) 2008-02-27 2013-10-15 The Boeing Company Reduced complexity automatic fiber placement apparatus and method
US20130312900A1 (en) * 2012-05-23 2013-11-28 Nordex Energy Gmbh Method for making a wind turbine rotor blade half shell or wind turbine rotor blade and production mold therefor
WO2014163661A1 (en) 2013-04-02 2014-10-09 Rodman William L Cellular core composite airfoils
US8869403B2 (en) 2004-09-23 2014-10-28 The Boeing Company Splice joints for composite aircraft fuselages and other structures
EP2454472B1 (en) * 2009-07-13 2016-03-09 Senvion GmbH Rotor blade of a wind power installation and method of fabricating a rotor blade of a wind power installation
EP3015249A1 (en) * 2014-10-31 2016-05-04 Airbus Defence and Space GmbH Support device
CN106232314A (en) * 2014-02-19 2016-12-14 三菱丽阳株式会社 Fibre reinforced composites products formed and manufacture method thereof
US9651029B2 (en) 2012-08-23 2017-05-16 Blade Dynamics Limited Wind turbine tower
EP2534374A4 (en) * 2010-02-12 2017-12-27 Thomas Holding Århus A/s Foam members and a spar are assembled then coated and finished to form a blade for a wind turbine
US9863258B2 (en) 2012-09-26 2018-01-09 Blade Dynamics Limited Method of forming a structural connection between a spar cap and a fairing for a wind turbine blade
US9970412B2 (en) 2012-09-26 2018-05-15 Blade Dynamics Limited Wind turbine blade
WO2019141758A1 (en) * 2018-01-17 2019-07-25 Wobben Properties Gmbh Method for producing components of a wind turbine, in particular a rotor blade of a wind turbine
US10369594B2 (en) 2015-04-01 2019-08-06 Coriolis Group Fiber application head with a specific application roll
US10821682B2 (en) 2015-10-28 2020-11-03 Coriolis Group Fiber application machine comprising specific cutting systems
US10894341B2 (en) 2016-03-07 2021-01-19 Coriolis Group Method for producing preforms with application of a binder to dry fiber, and corresponding machine
US11491741B2 (en) 2016-09-27 2022-11-08 Coriolis Group Process for producing composite material parts by impregnating a specific preform
EP4249222A1 (en) * 2022-03-23 2023-09-27 Siemens Gamesa Renewable Energy A/S Material layup apparatus and method for producing wind turbine blades using fiber plies
US11958244B2 (en) 2021-12-02 2024-04-16 The Boeing Company Multi-head automated fiber placement system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2050498A7 (en) * 1969-07-04 1971-04-02 Hawker Siddeley Aviat Tubular articles of fibre reinforced material - for air frames
FR2254428A1 (en) * 1973-12-13 1975-07-11 Fiber Science Inc Rotor or aircraft wing structure - has wound wire tubular longitudinal components encloseesed in cladding surface
WO1995020104A1 (en) * 1994-01-20 1995-07-27 Torres Martinez, Manuel Fabrication of aerodynamic profiles
EP0773099A1 (en) * 1993-09-27 1997-05-14 Rockwell International Corporation Composite structural truss element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2050498A7 (en) * 1969-07-04 1971-04-02 Hawker Siddeley Aviat Tubular articles of fibre reinforced material - for air frames
FR2254428A1 (en) * 1973-12-13 1975-07-11 Fiber Science Inc Rotor or aircraft wing structure - has wound wire tubular longitudinal components encloseesed in cladding surface
EP0773099A1 (en) * 1993-09-27 1997-05-14 Rockwell International Corporation Composite structural truss element
WO1995020104A1 (en) * 1994-01-20 1995-07-27 Torres Martinez, Manuel Fabrication of aerodynamic profiles

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005018917A3 (en) * 2003-08-22 2005-04-28 Boeing Co Multiple head automated composite laminating machine for the fabrication of large barrel section components
JP2007503329A (en) * 2003-08-22 2007-02-22 ザ・ボーイング・カンパニー Multi-head automated composite laminating machine for the production of large barrel components
US7282107B2 (en) 2003-08-22 2007-10-16 The Boeing Company Multiple head automated composite laminating machine for the fabrication of large barrel section components
WO2005018917A2 (en) 2003-08-22 2005-03-03 The Boeing Company Multiple head automated composite laminating machine for the fabrication of large barrel section components
US7422647B2 (en) * 2003-08-22 2008-09-09 The Boeing Company Unidirectional, multi-head fiber placement
EP2261010A1 (en) * 2003-08-22 2010-12-15 The Boeing Company Multiple head automated composite laminating machine for the fabrication of large barrel section components
JP2009166503A (en) * 2003-08-22 2009-07-30 Boeing Co:The Multiple head automated composite laminating machine for fabrication of large barrel section component
EP1755997A4 (en) * 2004-04-21 2010-05-12 Ingersoll Machine Tools Inc Automated fiber placement using multiple placement heads, replaceable creels, and replaceable placement heads
EP1755997A2 (en) * 2004-04-21 2007-02-28 Ingersoll Machine Tools, Inc. Automated fiber placement using multiple placement heads, replaceable creels, and replaceable placement heads
US7735536B2 (en) * 2004-04-30 2010-06-15 Toyota Jidosha Kabushiki Kaisha Filament winding apparatus
US8869403B2 (en) 2004-09-23 2014-10-28 The Boeing Company Splice joints for composite aircraft fuselages and other structures
US8882040B2 (en) 2004-09-23 2014-11-11 The Boeing Company Splice joints for composite aircraft fuselages and other structures
US10689086B2 (en) 2004-09-23 2020-06-23 The Boeing Company Splice joints for composite aircraft fuselages and other structures
US9738371B2 (en) 2004-09-23 2017-08-22 The Boeing Company Splice joints for composite aircraft fuselages and other structures
US8418740B2 (en) 2004-11-24 2013-04-16 The Boeing Company Composite sections for aircraft fuselages and other structures, and methods and systems for manufacturing such sections
US8303758B2 (en) 2004-11-24 2012-11-06 The Boeing Company Methods for manufacturing composite sections for aircraft fuselages and other structures
US7503368B2 (en) * 2004-11-24 2009-03-17 The Boeing Company Composite sections for aircraft fuselages and other structures, and methods and systems for manufacturing such sections
CN100385113C (en) * 2005-01-21 2008-04-30 同济大学 Large pneumatic equipment blades made of composite material and production thereof
US8057618B2 (en) 2007-02-21 2011-11-15 Coriolis Composites Method and apparatus for making structures of composite material, in particular airplane fuselage sections
US7819160B2 (en) 2007-02-28 2010-10-26 Coriolis Composites Device for using fibers with flexible fiber-routing tubes
US7926537B2 (en) 2007-03-06 2011-04-19 Coriolis Composites Applicator head for fibers with particular systems for cutting fibers
US8557074B2 (en) 2008-02-27 2013-10-15 The Boeing Company Reduced complexity automatic fiber placement apparatus and method
US9884472B2 (en) 2008-02-27 2018-02-06 The Boeing Company Reduced complexity automatic fiber placement apparatus and method
US8986482B2 (en) * 2008-07-08 2015-03-24 The Boeing Company Method and apparatus for producing composite structures
US20100006205A1 (en) * 2008-07-08 2010-01-14 The Boeing Company Method and apparatus for producing composite structures
WO2010040359A1 (en) * 2008-10-08 2010-04-15 Vestas Wind Systems A/S A method of manufacturing a polymer composite member by use of two or more resins
WO2010100481A3 (en) * 2009-03-05 2010-12-23 Airbus Operations Limited Method and apparatus for manufacturing composite parts
US8419886B2 (en) 2009-03-05 2013-04-16 Airbus Operations Limited Method of manufacturing composite parts
WO2010100481A2 (en) 2009-03-05 2010-09-10 Airbus Operations Limited Method of manufacturing composite parts
US8052819B2 (en) 2009-04-02 2011-11-08 Coriolis Composites Method and machine for applying a band of fibers on convex surfaces and/or with edges
EP2454472B1 (en) * 2009-07-13 2016-03-09 Senvion GmbH Rotor blade of a wind power installation and method of fabricating a rotor blade of a wind power installation
US8191596B2 (en) 2009-07-17 2012-06-05 Coriolis Composites Fiber application machine comprising a flexible compacting roller with a thermal regulation system
JP2013518213A (en) * 2010-01-29 2013-05-20 ブレード ダイナミクス リミテッド Turbine blades operating in water
US9033664B2 (en) 2010-01-29 2015-05-19 Blade Dynamics, Ltd. Blade for a turbine operating in water
WO2011092474A3 (en) * 2010-01-29 2012-01-05 Blade Dynamics Limited A blade for a turbine operating in water
EP2534374A4 (en) * 2010-02-12 2017-12-27 Thomas Holding Århus A/s Foam members and a spar are assembled then coated and finished to form a blade for a wind turbine
EP2404742A1 (en) * 2010-07-09 2012-01-11 Siemens Aktiengesellschaft Method to manufacture a component of a composite structure
RU2610777C2 (en) * 2010-08-30 2017-02-15 Брётье-Аутомэйшн Гмбх Fibrous composite material components production system
WO2012028531A1 (en) * 2010-08-30 2012-03-08 Mag Ias Gmbh Manufacturing system for producing fiber composite material components
US9375907B2 (en) 2010-08-30 2016-06-28 Deutsches Zentrum fur Luft—und Raumfahrt e.V. Production system for producing fibre composite material components
WO2013084390A1 (en) * 2011-12-09 2013-06-13 Mitsubishi Heavy Industries, Ltd. Method of manufacturing a wind turbine blade and a wind turbine blade
EP2788176B1 (en) * 2011-12-09 2017-08-02 Mitsubishi Heavy Industries, Ltd. Method of manufacturing a wind turbine blade and a wind turbine blade
WO2013084275A1 (en) * 2011-12-09 2013-06-13 Mitsubishi Heavy Industries, Ltd. Method of manufacturing a wind turbine blade and a wind turbine blade
CN103249543A (en) * 2011-12-09 2013-08-14 三菱重工业株式会社 Method of manufacturing a wind turbine blade and a wind turbine blade
JP2014501865A (en) * 2011-12-09 2014-01-23 三菱重工業株式会社 Windmill blade manufacturing method and windmill blade
US9108376B2 (en) * 2012-05-23 2015-08-18 Nordex Energy Gmbh Method for making a wind turbine rotor blade half shell or wind turbine rotor blade and production mold therefor
US20130312900A1 (en) * 2012-05-23 2013-11-28 Nordex Energy Gmbh Method for making a wind turbine rotor blade half shell or wind turbine rotor blade and production mold therefor
US9651029B2 (en) 2012-08-23 2017-05-16 Blade Dynamics Limited Wind turbine tower
US9863258B2 (en) 2012-09-26 2018-01-09 Blade Dynamics Limited Method of forming a structural connection between a spar cap and a fairing for a wind turbine blade
US9970412B2 (en) 2012-09-26 2018-05-15 Blade Dynamics Limited Wind turbine blade
WO2014163661A1 (en) 2013-04-02 2014-10-09 Rodman William L Cellular core composite airfoils
EP2981407A4 (en) * 2013-04-02 2016-05-25 Aerosud Technology Solutions Ptd Ltd Cellular core composite airfoils
CN106232314A (en) * 2014-02-19 2016-12-14 三菱丽阳株式会社 Fibre reinforced composites products formed and manufacture method thereof
EP3015249A1 (en) * 2014-10-31 2016-05-04 Airbus Defence and Space GmbH Support device
US10369594B2 (en) 2015-04-01 2019-08-06 Coriolis Group Fiber application head with a specific application roll
US10821682B2 (en) 2015-10-28 2020-11-03 Coriolis Group Fiber application machine comprising specific cutting systems
US10894341B2 (en) 2016-03-07 2021-01-19 Coriolis Group Method for producing preforms with application of a binder to dry fiber, and corresponding machine
US11491741B2 (en) 2016-09-27 2022-11-08 Coriolis Group Process for producing composite material parts by impregnating a specific preform
WO2019141758A1 (en) * 2018-01-17 2019-07-25 Wobben Properties Gmbh Method for producing components of a wind turbine, in particular a rotor blade of a wind turbine
CN111615450A (en) * 2018-01-17 2020-09-01 乌本产权有限公司 Method for producing a component of a wind energy installation, in particular a rotor blade of a wind energy installation
US11958244B2 (en) 2021-12-02 2024-04-16 The Boeing Company Multi-head automated fiber placement system and method
EP4249222A1 (en) * 2022-03-23 2023-09-27 Siemens Gamesa Renewable Energy A/S Material layup apparatus and method for producing wind turbine blades using fiber plies
WO2023180080A1 (en) * 2022-03-23 2023-09-28 Siemens Gamesa Renewable Energy A/S Material layup apparatus and method for producing wind turbine blades using fiber plies

Also Published As

Publication number Publication date
FR2831479B1 (en) 2004-01-02
FR2831479A1 (en) 2003-05-02

Similar Documents

Publication Publication Date Title
WO2003035380A1 (en) Method for making extruded profiles having a specific surface state made of fiber-reinforced synthetic resins and machine therefor
EP1056587B1 (en) Technique for making floating objects in synthetic resins reinforced with continuous fibres and made on winding machinery
EP0256916B1 (en) Composite blade with a double spar and torsional box and with a honeycomb sandwich layered coating, and production process
EP0626250B1 (en) Method for manufacturing a connecting rod from monolithic composite material by placing preimpregnated fibres on an extractable mandrel and connecting rod obtained by such a method
EP2588758B1 (en) Blade having an integrated composite spar
EP2004390B1 (en) Method of producing stiffened panels made of a composite
CA2803974C (en) Method for producing a central wing box
EP2407319B1 (en) Rim or rim portion made of a composite material
FR2490951A1 (en) PROCESS AND APPARATUS FOR MANUFACTURING AN ARTIFICIAL MEMBER ELEMENT AND ELEMENT OBTAINED
WO2008071657A1 (en) Method for a complex part of a composite material with long fibers and heat-curable matrix
WO2006027476A1 (en) Method for producing an elongated hollow piece made of a composite material such as a windmill blade comprising a braided shell, a windmill blade and braiding machine
EP2969495B1 (en) Process and device for producing a fibre-reinforced thermoplastic profile, comprising a step of tensioning the fibres during the impregnation thereof
FR3025248A1 (en) DRAWING VANE OF COMPOSITE MATERIAL FOR GAS TURBINE ENGINE AND METHOD FOR MANUFACTURING THE SAME
FR3024389A1 (en) PROCESS FOR MANUFACTURING A REINFORCED PIECE COMPRISING A COMPOSITE MATERIAL
FR2491391A1 (en) PROCESS FOR PRODUCING FIBER REINFORCED ARTICLES
EP3434464B1 (en) A method of fabricating a rotor blade filler body, and a rotor blade filler body comprising at least one cellular assembly having closed cells
FR3020780A1 (en) PROCESS FOR MANUFACTURING A COMPOSITE MATERIAL PART FOR AIRCRAFT STRUCTURE BY PULTRUSION AND COCUISSON
FR3046563A1 (en) TOOTH-HOLDING AND TRANSPORT TOOLS FOR A FIBROUS PREFORM AND METHOD FOR MANUFACTURING A COMPOSITE MATERIAL PART
EP2974854B1 (en) A method of fabricating a spar for a blade, and a method of fabricating a blade
EP2974851B1 (en) A method of fabricating a spar for a blade, and a blade
EP3530444B1 (en) Method for manufacturing a central box for wing from profiles manufactured by high pressure and low-temperature forming and central box for wing obtained from the implementation of said method
FR3060441A1 (en) COMPONENT STRUCTURE AND METHOD FOR MANUFACTURING THE SAME
CA2880900A1 (en) Method for producing a mould intended for moulding a composite part
FR3061070A1 (en) METHOD FOR PRODUCING A RAIDI AUTO PANEL IN COMPOSITE MATERIALS AND PANEL OBTAINED BY SAID METHOD
FR3106577A1 (en) Manufacturing process of an aircraft wing central box made of composite material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP