WO2003033980A1 - Monolithic refractory applying method and monolithic refractory used therefor - Google Patents

Monolithic refractory applying method and monolithic refractory used therefor Download PDF

Info

Publication number
WO2003033980A1
WO2003033980A1 PCT/JP2002/010767 JP0210767W WO03033980A1 WO 2003033980 A1 WO2003033980 A1 WO 2003033980A1 JP 0210767 W JP0210767 W JP 0210767W WO 03033980 A1 WO03033980 A1 WO 03033980A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractory
mass
irregular
amorphous
hopper
Prior art date
Application number
PCT/JP2002/010767
Other languages
French (fr)
Japanese (ja)
Inventor
Sakae Nakai
Tetsunori Ikebe
Yoichi Furuta
Jun Kimonji
Norikazu Shirama
Kiyoshi Goto
Yukihiro Nakamura
Koji Kawano
Yasuhiro Yamada
Original Assignee
Krosakiharima Corporation
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosakiharima Corporation, Nippon Steel Corporation filed Critical Krosakiharima Corporation
Priority to KR10-2003-7009330A priority Critical patent/KR20040037277A/en
Priority to JP2003536671A priority patent/JP4418233B2/en
Priority to BRPI0212785A priority patent/BRPI0212785B1/en
Priority to KR1020037009267A priority patent/KR100773574B1/en
Publication of WO2003033980A1 publication Critical patent/WO2003033980A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/16Making or repairing linings increasing the durability of linings or breaking away linings
    • F27D1/1636Repairing linings by projecting or spraying refractory materials on the lining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/16Making or repairing linings increasing the durability of linings or breaking away linings

Definitions

  • the present invention relates to a method for applying an amorphous refractory to a molten metal container, a molten metal processing apparatus or a high temperature furnace, and an amorphous refractory used for the method.
  • This construction method is based on the fact that spraying a pre-kneaded irregular-shaped refractory produces less dust than the dry spray method that adds construction moisture inside the nozzle, saves construction work, There are effects such as obtaining a construction body.
  • this repelling construction involves rebound loss because the refractory is blown off with high-pressure compressed air. Although dust prevention is superior to dry spraying, it is not sufficient. In addition, since the construction is performed by blowing high-pressure compressed air, the construction body is hindered from being densified by air entrapment. There is also the disadvantage of being done.
  • refractory ultrafine powder to irregular shaped refractories in spraying.
  • These refractory ultrafine powders impart fluidity during application to irregular refractories. Fluidity makes the construction compact by the water reduction effect by reducing the amount of construction water added, and improves the hot strength required for the refractory construction body structure, corrosion resistance to molten metal, and the like. It also has an effect on the adhesion and adhesion required for spraying. .
  • Volatile silica or calcined alumina is known as the refractory ultrafine powder used here. Volatile silica or calcined alumina is easily available as an ultrafine powder, and exhibits an excellent water reducing effect. However, volatile silica or calcined alumina is chemically active and highly reactive with the quick setting agent, so that the refractory ultrafine powder is aggregated by the quick setting agent added during spraying, The viscosity of amorphous refractories increases rapidly at the nozzle where the quick-setting agent is added. This leads to pulsation and breathing phenomena at the time of discharge from the nozzle, resulting in a decrease in construction efficiency and a failure of the construction body.
  • Japanese Patent Publication No. 50-39403 proposes a method of performing centrifugal projection with a horizontally rotating impeller as a construction method of an amorphous refractory.
  • this method is inferior in both the adhesion and corrosion resistance of the construction body compared to the spraying construction described above, and has not been widely used. Disclosure of the invention
  • An object of the present invention is to provide a construction method which is more excellent than conventional spraying methods in terms of workability of an amorphous refractory, a life of a construction body, and the like, and an irregular refractory used therefor.
  • the present invention relates to a method for applying an amorphous refractory to a molten metal container, a molten metal processing apparatus, or a high-temperature furnace. It is sent out below the hopper while adding, and then centrifugally projected.
  • the supply of the irregular-shaped refractory to the discharge portion is performed by sending out the material below the hopper, so that the long and small inner diameter used in the conventional conventional spraying method is required. Since there is no pumping pipe, there is no problem with pipe resistance. As a result, amorphous refractories need only be given a small amount of fluidity, which can significantly reduce the amount of water required for construction. Furthermore, since compressed air is not required for centrifugal projection, the construction body can be further densified because there is no air entrapment.
  • the centrifugal projection in the present invention can be performed with a constant angular width in the circumferential direction. By projecting at a certain angle width, local construction becomes easy. Also, for example, if the inside diameter of the molten metal container to be installed is extremely large, the projection distance will be long, which will reduce the adhesion of irregular refractories, and it will not be easy to accurately project onto the work area. This problem can also be solved by moving the construction equipment closer to the vessel wall and projecting it at a certain angular width.
  • the quick setting agent is added as needed. If added, air may be used as a carrier for the quick setting agent.
  • the pressure and the flow rate of the air are slightly smaller than the high-pressure compressed air required for blowing the amorphous refractory from the blowing nozzle in the conventional blowing method. Therefore, there is no problem of air entrapment in the construction body.
  • the amorphous refractory to be applied contains a refractory ultrafine powder such as volatile silica or calcined alumina
  • the addition of a quick-setting agent significantly increases the viscosity of the amorphous refractory.
  • the present invention is applied by centrifugal projection, and the supply of irregular-shaped refractories to the discharge section is sent downward from the hopper, nozzle clogging or pipe resistance seen with the conventional spraying method may be caused. No pulsation or breathing phenomenon occurs during discharge, and excellent workability can be obtained.
  • the nozzle blockage or pipe resistance observed by the conventional spraying method may cause the problem.
  • the problem goes away.
  • an irregular refractory containing refractory fine particles together with refractory coarse particles or metal fibers is used, the problem is caused even under particularly remarkable increase in viscosity due to the reaction between the refractory fine particles and the quick setting agent. The effect of preventing cracks and imparting strength to the construction body by adding refractory coarse particles or metal fibers is exhibited.
  • the specific gravity of the powder itself is small, so in spraying, after being discharged from the spray nozzle, it is separated from other aggregates. It is easy and causes unevenness of construction. Refractory coarse particles and metal fibers are easily segregated in the refractory structure due to the difference in shape from other aggregates.
  • the present invention which is centrifugally projected Is not blown off by high-pressure compressed air as in spraying construction, so during the construction, separation and segregation of ultrafine powder, refractory coarse particles or metal fibers are prevented, and adhesion of irregular refractories is further improved. As a result, the structure of the obtained construction is homogenized, and the corrosion resistance and spoiling resistance are improved.
  • the refractory aggregate of the amorphous refractory used in the present invention is a sintered alumina, an electro-alumina, a bauxite, a clay shale, a mullite, a silica stone, a chamotte, an andalite, a pyrolite, a silicon carbide, a molten carbide.
  • M G_ ⁇ spinel chrome ore, and one or more selected from Shirimana I bets like - silica, magnesia, magnesite Xia Ichiriki Lucia, a 1 2 0 3.
  • any one or more selected from zirconia, carbon, clay, light-burned magnesia, pitch, meso-food pitch, infusible pitch, gaynitride, aluminum nitride, boron carbide, zirconium boride, chromium oxide, etc. can be combined.
  • the amorphous refractory used in the present invention uses refractory ultrafine powder as a part of the refractory aggregate.
  • the preferred particle size of the refractory ultrafine powder is an average of 10 im or less as measured by a particle size distribution analyzer using a laser diffraction method.
  • volatile silica and / or calcined alumina excellent in imparting adhesiveness, adhesion, strength and corrosion resistance of amorphous refractories are preferable.
  • Volatile silica is also referred to as silica flour, silica fume, or microsilica, and is a non-crystalline substance that is generated by oxidizing SiO2 gas in the air during the production of silicon, fever silicon, zirconia, etc.
  • Ultra fine silica powder Spherical particles having an average of about 0.2 to 0.5 / xm are used, and the actual use form is secondary particles in which the submicron particles are aggregated. The quality of that is, S I_ ⁇ 2 Purity 9 0 wt% or more, and a specific surface area preferably about 5 ⁇ 4 O m S / ⁇ g.
  • Calcined alumina is obtained by firing aluminum hydroxide obtained by the Plier method. It is a thing.
  • the sintering temperature is generally about 1000 to 1300, and the sintering temperature of the refractory raw material is a relatively low temperature.
  • the ⁇ - A 1 2 0 3 as a main component, A 1 2 0 3 purity is generally 9 9 mass% or more. It is preferable to use those obtained as ultrafine powder having an average particle diameter of 10 or less. This is different from sintered alumina that uses calcined alumina as a raw material and is fired at a high temperature of 160 or more.
  • the proportion of the refractory ultrafine powder in the refractory aggregate is preferably from 1 to 30% by mass, and more preferably from 3 to 25% by mass. If the amount is too small, the water reduction effect cannot be fully exhibited. If it is too large, cracking and corrosion resistance tend to be reduced due to sintering shrinkage due to oversintering.
  • Dispersants are also called peptizers for their function. Gives fluidity to amorphous refractories and has a water reducing effect.
  • the specific type of dispersant is not specified at all.
  • Inorganic salts such as polymetaphosphate, sodium citrate, sodium tartrate, sodium polyacrylate, sodium sulfonate, polycarboxylate, carboxyl group-containing polyester, i8-naphthalene sulfonates And naphthalenesulfonic acid.
  • a preferable addition amount is in the range of 0.05 to 1% by mass with respect to 100% by mass of the refractory aggregate.
  • binder for example, alumina cement, magnesia cement, sodium phosphate, sodium silicate and the like are used.
  • the addition ratio is preferably adjusted within the range of 1 to 15% by mass with respect to 100% by mass of the refractory aggregate, depending on the type of the binder. This binder is not necessarily required if sufficient coagulation can be obtained with the type and amount of quick-setting binder and refractory ultrafine powder.
  • the addition of coarse refractory particles or metal fibers to amorphous refractories is effective in preventing cracking, improving strength and corrosion resistance.
  • the maximum particle size of refractory aggregate in amorphous refractories is usually 3 to 8 mm, but coarse particles of refractory have a larger particle size than this refractory aggregate, for example, 10 to 50 mm.
  • the material of the coarse particles it is possible to use electrofused alumina, sintered alumina, electrofused vinyl, sintered spinel, silicon carbide, or refractory waste mainly composed of these.
  • the addition amount is 50% by mass or less, preferably 1 to 40% by mass, based on 100% by mass of the refractory aggregate. If it is too large, the adhesion will be reduced.
  • the material of the metal fiber added to the refractory is steel, iron, stainless steel, or the like. Among them, stainless steel excellent in heat resistance is preferred.
  • the diameter and the length are both good. For example, when the diameter is 0.1 to 2 mm, the length is preferably 5 to 50 mm.
  • the cross-sectional shape does not matter, such as a circle and a polygon.
  • the amount of addition is 10% by mass or less, more preferably 0.1 to 7% by mass, based on 100% by mass of the refractory aggregate. If it is too large, corrosion resistance is reduced.
  • Additives other than the above to the amorphous refractory of the present invention include, as necessary, organic fibers, ceramic fibers, thickeners, clay, CMC, bentonite, metal powder, lightweight materials, curing accelerators, and curing agents.
  • a retarder, aluminum lactate, aluminum glycolate lactate, aluminum glycolate, silica sol, alumina sol and the like can be used alone or in combination.
  • the irregular-shaped refractory used in the present invention is kneaded with a mixer or the like after addition of construction moisture in advance in construction.
  • the amount of water to be applied is 3 to 10% by mass of the dry refractory in this kneading process, and JISA 1101 (Japanese Industrial Standard: Slump test method for concrete) It is preferable that the slump value measured by a method according to the above is adjusted to a softness of, for example, 20 cm or less. If the working water content is less than this, the irregular shaped refractory after kneading will not be able to be smoothly fed down the hopper due to a decrease in fluidity and plasticity. If the amount of construction water is large, the strength and corrosion resistance of the irregular shaped refractory after construction will be insufficient.
  • slump value exceeds 20 cm, irregular shaped refractories will easily flow out of the hopper by themselves, making it difficult to adjust the delivery amount. In addition, there is a tendency for the adhesion and filling of amorphous refractories to decrease.
  • a more preferred slump value is 5 to 15 cm It is.
  • liquid or powder can be used as a quick setting agent.
  • the addition ratio should be 0.2 to 5% by mass in terms of solid content with respect to 100% by mass of the refractory aggregate of the amorphous refractory. preferable.
  • the liquid quick setting agent include aqueous solutions of sodium aluminate, potassium aluminate, sodium silicate, potassium gayate, sodium phosphate, and the like. These liquid quick-setting agents may be combined with a cationic or anionic flocculant, if necessary.
  • powdery quick-setting agents examples include sodium aluminate, potassium aluminate, sodium silicate, sodium phosphate, sodium carbonate, calcium chloride, calcium hydroxide, calcium oxide, calcium aluminate, and hydroxide.
  • quick setting agents may be added in a state of being mixed with the refractory fine powder.
  • refractory fine powder such as alumina may be mixed in a range of, for example, 50% by mass or less with respect to 100% by mass of the quick setting agent in terms of solid content.
  • FIG. 1 is an explanatory view of the construction method of the present invention.
  • FIG. 2 is an enlarged longitudinal sectional view of an example of a construction apparatus used in the present invention.
  • FIG. 3 is a sectional view taken along line AA of FIG.
  • FIG. 4 is an enlarged vertical sectional view of another construction apparatus used in the present invention.
  • FIG. 5 is a cross-sectional view of a part of the impeller of FIG. 4 taken along line BB.
  • FIG. 6 is an explanatory view of a conventional spraying method. BEST MODE FOR CARRYING OUT THE INVENTION
  • a construction apparatus 1 includes a hopper 3 for accommodating a premixed amorphous refractory 2, and an irregular refractory 2 in the hopper 3. Screw filler 4 to be cut out, quick-setting agent supply device 7 for adding quick-setting agent to irregular-shaped refractory 2, stirrer rod 1a for stirring quick-setting agent and irregular-shaped refractory, irregular shaped refractory It is equipped with a horizontally rotating impeller 6 that projects centrifugal force 2 horizontally.
  • the top plate of the hopper 3 is provided with an opening / closing plate 19 serving as an inlet for the irregular-shaped refractory 2.
  • the hopper 3 has a taper of a lower drawing, and a vibrating motor 8 is provided on the tapered portion. The vibrating motor 8 facilitates sending out the refractory in the hopper 3.
  • the axis of the screw feeder 14 is the same as that of the drop cylinder 5, and the upper end of the shaft is supported by a bearing provided on the top plate of the hopper 3. Driving by evening 9.
  • the screw feeder 14 also has a role of preventing the irregular-shaped refractory 2 from flowing down from the hopper 13 when construction is suspended.
  • the lower end of the hopper 3 has a drop cylinder 5, and the lower end of the drop cylinder 5 of the hopper 3 is equipped with an impeller 6.
  • the impeller 16 is rotated by a driving motor 21 mounted on a base 20 fixed to the drop cylinder 5.
  • a cylinder shaft 22 is provided on the outer periphery of the drop cylinder 5, and an impeller 16 is rotatably mounted via a bearing 23.
  • the impeller 16 has an upper plate 24, a lower plate 25 facing the upper plate 24, and, as shown in FIG. 3, radial blades 26 connecting between the upper plate 24 and the lower plate 25.
  • the rotating column 30 is fixed to the lower plate 25.
  • the refractory 2 is applied with centrifugal force by the blades 26 of the impeller 16 and is projected radially around the rotation axis 10.
  • the number of the blades 26 is preferably, for example, about 3 to 10 in the circumferential direction. Here is an example of eight holidays.
  • a driving rotary body for example, a pulley 27 is fixed to the output shaft of the driving motor 21, and is connected to the cylindrical shaft 22 by a V-belt 28.
  • the drive motor 21 is preferably of the inverter type and preferably of the type capable of reverse rotation. These impeller single-rotation drives are It is preferable to reinforce with 9, 43.
  • a plurality of flat or rod-shaped stirring rods 11a are provided at appropriate intervals above and below the rotating column 30 fixedly mounted on the impeller 16. As a result, the stirring rod 11a also rotates with the rotation of the impeller 16. These stirring rods 11a are preferably located in the drop cylinder 5 in order to make the stirring action of the quick-setting agent and the amorphous refractory more effective.
  • the rotating shaft 10 of the screw feeder 14 may be further extended downward, and a stirring rod 11 a rotated by the rotation of the rotating shaft 10 may be provided.
  • the stirring rod 11a is not necessarily required. Further, it is preferable that a stirring rod 11 b is provided on the rotating shaft 10 in the hopper to prevent the filling and solidification of the amorphous refractory in the hopper.
  • the screw feeder 4 is rotationally driven by a drive motor 9 mounted on the hopper 3.
  • the quick-setting agent supply device 7 is composed of a supply pipe 14 that covers the pores 12 formed in the drop cylinder 5 with a jacket 13 and communicates with the inside of the jacket.
  • the base end of the supply pipe 14 is connected to a pumping device for a quick-setting agent (not shown).
  • the quick-setting agent supply device 7 is not limited to the one shown in the drawing, and it is sufficient that the quick-setting agent supply device 7 has a function of adding a quick-setting agent to the irregular-shaped refractory at or near the drop cylinder 5.
  • the construction equipment 1 containing premixed irregular shaped refractories 2 in the hopper 3 is suspended in a molten metal container 17 by a crane via a suspension cable 16. I do.
  • the screw feeder 4 and the stirring rod 11a are rotationally driven, and at the same time, the quick-setting agent is supplied to the irregular-shaped refractory in the drop cylinder 5.
  • the amorphous refractory 2 is sent downward from the dropping cylinder 5 while the quick-setting agent is added, and is also sufficiently mixed by the stirring rod 11a.
  • the amorphous refractory 2 is introduced into the center of the high-speed rotating impeller 6, and is projected on the inner wall of the molten metal container by centrifugal projection by the operation of the blade 26.
  • the irregular fireproof Project object 2 By moving the construction equipment 1 up, down, left and right in the molten metal vessel, the irregular fireproof Project object 2.
  • the operation of the screw feeder, the addition of the quick setting agent, and the operation of the impeller are performed, for example, by operating the operation panel 15 from outside the molten metal container.
  • the vertical movement of the construction equipment 1 can be controlled easily and accurately by using the electric chain block 18 in the middle of the suspension cable 16 without the need to operate heavy equipment such as cranes. .
  • FIGS. 4 and 5 show another example of a construction apparatus for carrying out the method of the present invention, which is used for projecting an irregular-shaped refractory with a constant angular width in a circumferential direction.
  • the entire mechanism such as quick-setting agent supply and impeller one-rotation drive is the same as the apparatus shown in FIGS. Parts common to the parts and the like shown in FIGS. 1 to 3 are denoted by the same reference numerals.
  • an endless flat belt 39 is wound around the outer periphery of the blade 26 and the impeller 16.
  • the winding of the flat belt 39 around the impeller 6 is reversed at one end of the impeller 16, and an open portion where the flat belt 39 is not wound is provided on the impeller 6.
  • the flat belt is guided by a pulley 41, which is pivotally mounted on a horizontal support 40 above the impeller 6. Since the flat belt 39 is wound around the impeller 16, the driving force of the impeller 16 is transmitted, and the flat belt 39 rotates in synchronization with the impeller 16. Therefore, the rotation of the flat belt 39 is synchronized with the impeller.
  • variable refractory 2 sent out from the drop cylinder 5 is dispersed in all directions by the impeller blades 26 of the impeller 16, but when it reaches the outer periphery of the impeller 6, the dispersion is blocked by the flat belt 39. After that, we move on this flat belt 39.
  • the variable refractory 2 reaches a position where the flat belt 39 is not wound around the outer periphery of the impeller 16, it is released from the restraint from the flat belt 39 and is projected to the outside. This makes it possible to project in one direction with a certain angular width. In the figure, the projection is shown in the right direction.
  • An orientation guide 44 is provided at an open portion of the impeller 6 where the flat belt 39 is not wound. Orientation guide body 4 4 is fixed to horizontal support 40 at the top I do. The orientation guide body 44 can further narrow the projection angle of the irregular-shaped refractory 2.
  • Tables 1 to 3 show the working conditions of the examples of the present invention and the comparative examples, and the test results.
  • the object of construction is a refractory-lined molten metal container with a bottom diameter of 3.0 m, a top diameter of 3.5 m, and a height of 3.0 m. An attempt was made to form a construction body of about 8 O mm.
  • Examples 1 to 13 are constructions using the impeller type construction apparatus shown in FIGS. Irregular refractories which had been kneaded with water for construction in advance were put into a hopper, and centrifugally projected while adding a quick-setting agent.
  • Comparative Examples 1 to 4 and Comparative Example 6 the irregular-shaped refractories shown in the table were sprayed using a spraying device corresponding to FIG.
  • the amorphous refractories shown in the table after adding the working moisture and kneading, were sent to the nozzle by a pressure pump, and sprayed while adding a quick-setting agent together with high-pressure air in the nozzle.
  • the average particle diameters of the volatile silica and the calcined alumina were determined by a laser diffraction method.
  • the particle size of the other refractory aggregate are those obtained by the measurement was 3 according to the JI s old eye opening.
  • the slump value was measured for the kneaded material to which the working moisture was added according to JISA101.
  • Tables 1 and 2 show the construction of alumina-magnesia irregular refractories. The construction was carried out by spraying or spraying on the lining wall composed of alumina-magnesia irregular refractories.
  • Table 3 shows the construction of magnesia-carbon irregular refractories. The construction was performed by projecting or spraying the magnesia-carbo brick on the lining wall.
  • the adhesion rate to the vertical wall was determined.
  • Workability is The degree of workability caused by pipe resistance, which is mainly affected by fluidity, was measured. For example, pipes with high pipe resistance may cause pulsation and breathing or nozzle clogging at the time of discharge, resulting in poor workability. ...: Best, ⁇ : Good, ⁇ : Somewhat bad, X: Bad
  • the spalling resistance is determined by cutting a test piece from the construction body, repeating heating and air cooling, and visually evaluating the degree of cracking on a scale of 1 to 5 on a scale of 1 to 5. It shows that it has excellent properties.
  • the figures for the non-conformable refractory composition are% by mass.
  • the numerical value in parentheses is the outer mass%.
  • Corrosion resistance is an index with Comparative Example 1 being 100. The larger the value, the greater the erosion.
  • the figures for the non-conformable refractory composition are% by mass.
  • the numerical value in parentheses is the outer mass%.
  • Corrosion resistance is an index with Comparative Example 1 being 100. The larger the value, the greater the erosion.
  • the figures for the non-conformable refractory composition are% by mass.
  • the numerical value in parentheses is the outer mass%.
  • Corrosion resistance is an index with Comparative Example 5 being 100. The larger the value, the greater the erosion.
  • the present invention can provide excellent workability even with a small amount of working water.
  • the use of an amorphous refractory to which calcined alumina or volatile silica is added further enhances the adhesion, workability, denseness of the structure of the work body, and corrosion resistance.
  • the irregular shaped refractories shown in Examples 4 to 7 in which the refractory coarse particles or metal fibers are added, and the spalling resistance of the construction body is further improved by the characteristics of the refractory coarse particles or metal fibers. Improved.
  • Comparative Example 1 had relatively high adhesion, but was poor in workability and denseness, and ultimately inferior in corrosion resistance. .
  • Comparative Examples 3 and 6 used amorphous refractories that did not contain both volatile silica and calcined alumina, but added a large amount of water to ensure workability. As a result, the compactness of the construction body structure has been reduced, and the corrosion resistance has also been significantly reduced.
  • Comparative Example 2 and Comparative Example 4 in which refractory coarse particles were added, smooth discharge was not performed, and workability was particularly deteriorated. Although the application was performed by centrifugal projection, in Comparative Example 5 in which no quick-setting agent was added, the adhesion was significantly reduced.
  • Construction according to the present invention is performed in molten metal containers such as blast furnaces, blast furnace gutters, converters, ladles, tandems, degassing furnaces, mixed iron cars, mixed iron furnaces, soaking furnaces, heating furnaces, firing furnaces, incinerators, and melting furnaces. It can be applied to the lining of molten metal processing equipment and high-temperature furnaces or its repair. It can also be applied to hot wall surfaces such as hot repair of furnace walls.
  • the workability of the amorphous refractory is improved, and the obtained construction body is also improved. It will have excellent properties, and will greatly contribute to improving the operation rate of various industrial furnace equipment by reducing the number of construction steps and the amount of irregular refractories used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Ceramic Products (AREA)

Abstract

An applying method excellent in applicability of a monolithic refractory to a molten metal vessel, a molten metal processing apparatus, or a high-temperature furnace and in applied body life as compared to conventional spraying methods and a monolithic refractory are disclosed. Applying water is added in advance to a refractory ultrafine powder of volatile silica and/or calcined alumina stored in a hopper and the mixture is kneaded. A monolithic refractory is compounded with a dispersant and a refractory aggregate containing 1-30 mass% of the refractory ultrafine powder mixed with the applying water. The compounded monolithic refractory is fed to a portion below the hopper while adding a quick setting agent, and centrifugally projected. Since the monolithic refractory is fed to the portion below the hopper, the fluidity imparted to the monolithic refractory can be of a low degree. Therefore, the amount of water for application can be reduced, and a local application can be facilitated by projecting the monolithic refractory in a predetermined range of angle.

Description

明 細 書 不定形耐火物の施工方法およびそれに使用する不定形耐火物  Description The method of applying irregular-shaped refractories and the irregular-shaped refractories used for them
技術分野 Technical field
本発明は、 溶融金属容器、 溶融金属処理装置または髙温炉に対する不 定形耐火物の施工方法およびそれに使用する不定形耐火物に関する。 背景技術  The present invention relates to a method for applying an amorphous refractory to a molten metal container, a molten metal processing apparatus or a high temperature furnace, and an amorphous refractory used for the method. Background art
従来から、 溶融金属容器、 溶融金属処理装置、 高温炉等の内張りある いはその補修手段として、不定形耐火物を用いた吹付け施工が行われて いる。 その方法は図 6に示す説明図のとおり、 施工水分を添加して予め 混練した不定形耐火物を圧送ポンプ 3 4から圧送管 3 5を介してノズ ル 3 6に移送し、急結剤槽 3 7からの急結剤をエア一コンプレッサー 3 8の圧搾空気をもってノズル 3 6内に添加し、 吹付けるものである。 こ の施工方法は、 例えば特開平 1 0— 1 8 2 2 4 6号公報、 特開平 1 0— 9 5 6 7 8号公報等に示されている。  Conventionally, spraying using irregular-shaped refractories has been performed as a lining or repair means for molten metal containers, molten metal processing equipment, high-temperature furnaces, and the like. As shown in the illustration in Fig. 6, the method is as follows. The quick-setting agent from 37 is added to the nozzle 36 with the compressed air of the air-compressor 38 and sprayed. This construction method is disclosed in, for example, JP-A-10-182462, JP-A-10-95678.
この施工方法は、 予め混練した不定形耐火物を吹付けることで、 ノズ ル内で施工水分を添加する乾式吹付け方法に比べて発塵が少ないこと、 施工の省力化が図れること、 緻密な施工体が得られる等の効果がある。  This construction method is based on the fact that spraying a pre-kneaded irregular-shaped refractory produces less dust than the dry spray method that adds construction moisture inside the nozzle, saves construction work, There are effects such as obtaining a construction body.
しかし、 この吹付け施工は、 ホッパーからノズルまでの不定形耐火物 の移送が圧送管を介して行なわれるため、不定形耐火物は安定した圧送 性を得るために施工水分量が多くなる。 そして、 それに伴って不定形耐 火物の施工体組織は多孔質化し、強度および耐食性が低下する欠点があ る。  However, in this spraying construction, since the irregular refractory is transferred from the hopper to the nozzle via the pumping pipe, the amount of moisture applied to the irregular refractory increases in order to obtain stable pumpability. Accordingly, the structure of the construction body of the amorphous refractory becomes porous, and there is a disadvantage that strength and corrosion resistance are reduced.
また、 この吹付け施工は、 不定形耐火物を高圧の圧搾空気でもって吹 き飛ばすため、 リバウンドロスが多い。 発塵防止も乾式吹付け方法に比 ベて優れているとはいえ、 十分なものではない。 しかも、 高圧の圧搾空 気を吹き込んでの施工のため、施工体は空気の巻き込みで緻密化が阻害 されるという欠点もある。 In addition, this repelling construction involves rebound loss because the refractory is blown off with high-pressure compressed air. Although dust prevention is superior to dry spraying, it is not sufficient. In addition, since the construction is performed by blowing high-pressure compressed air, the construction body is hindered from being densified by air entrapment. There is also the disadvantage of being done.
この吹付け施工において、施工能率の向上を図るために不定形耐火物 の圧送速度を増すことが考えられる。 しかし、 圧送速度に比例して圧送 管内の配管抵抗性が大きくなる。この配管抵抗性に対抗するためには圧 送管の補強、 圧送ポンプの能力アップ、 あるいは圧送管の内径を大きく する等が必要となり、 いずれの場合も装置全体の大型化を招き、 好まし くない。  In this spraying construction, it is conceivable to increase the pumping speed of irregular refractories in order to improve construction efficiency. However, the pipe resistance in the pumping pipe increases in proportion to the pumping speed. In order to counter this pipe resistance, it is necessary to reinforce the pumping pipe, increase the capacity of the pumping pump, or increase the inner diameter of the pumping pipe. Absent.
また、 吹付け施工において、 不定形耐火物に耐火性超微粉を添加する ことが知られている。 これらの耐火性超微粉は不定形耐火物に対し、 施 ェ時の流動性を付与する。流動性は施工水添加量の低減による減水効果 で施工体を緻密化し、 耐火物施工体組織に必要な熱間強度、 溶融金属に 対する耐食性等を向上させる。 また、 吹付け施工に必要な付着性および 接着性に効果がある。 .  Also, it is known to add refractory ultrafine powder to irregular shaped refractories in spraying. These refractory ultrafine powders impart fluidity during application to irregular refractories. Fluidity makes the construction compact by the water reduction effect by reducing the amount of construction water added, and improves the hot strength required for the refractory construction body structure, corrosion resistance to molten metal, and the like. It also has an effect on the adhesion and adhesion required for spraying. .
ここで使用される耐火性超微粉として、揮発シリカあるいは仮焼アル ミナが知られている。 揮発シリカあるいは饭焼アルミナは、 超微粉とし て入手しやすく、 しかも減水効果に優れた効果を発揮する。 しかし、 揮 発シリカあるいは仮焼アルミナは化学的に活性であり、急結剤との反応 性に富むことから、吹付け施工時に添加される急結剤によつて耐火性超 微粉が凝集し、 不定形耐火物の粘性が、 急結剤が添加されるノズル部分 で急激に大きくなる。そして、 これがノズルからの吐出時の脈動や息継 ぎ現象を招き、 施工能率の低下おょぴ施工体不良の原因となっている。 この吹付け施工において、不定形耐火物に対して粒径が 1 0 mmを超 える耐火粗大粒子あるいは長さ 5〜 5 0 mm程度の金属ファイバ一を 添加することによって、施工体の熱間での強度付与と亀裂防止に効果が あることも知られている。 しかしながら、 急結剤の添加で不定形耐火物 の粘性が高くなり、添加された耐火粗大粒子同士、金属ファイバー同士、 あるいは耐火粗大粒子と金属ファイバ一とが互いに迫り合うプリージ ング現象が生じ、 ノズル閉塞が生じ易くなり、 施工性が著しくの低下す る欠点がある。 さらに、 流動性の改善のために耐火性微粉を含有した不 定形耐火物は、この耐火粗大粒子あるいは金属ファィバ一を組み合わせ た場合、 急結剤添加後の粘性の増大が特に著しく、 吹付け施工は実質的 に困難となる。 Volatile silica or calcined alumina is known as the refractory ultrafine powder used here. Volatile silica or calcined alumina is easily available as an ultrafine powder, and exhibits an excellent water reducing effect. However, volatile silica or calcined alumina is chemically active and highly reactive with the quick setting agent, so that the refractory ultrafine powder is aggregated by the quick setting agent added during spraying, The viscosity of amorphous refractories increases rapidly at the nozzle where the quick-setting agent is added. This leads to pulsation and breathing phenomena at the time of discharge from the nozzle, resulting in a decrease in construction efficiency and a failure of the construction body. In this spraying work, by adding refractory coarse particles having a particle size of more than 10 mm or metal fibers with a length of about 5 to 50 mm to irregular shaped refractories, It is also known to be effective in imparting strength and preventing cracking. However, the addition of the quick setting agent increases the viscosity of the amorphous refractory, causing a pleasing phenomenon in which the added refractory coarse particles, metal fibers, or the refractory coarse particles and the metal fiber approach each other. There is a drawback that blockage is likely to occur and the workability is significantly reduced. Furthermore, in order to improve fluidity, refractory powder containing When the refractory coarse particles or metal fiber are used in combination with fixed refractories, the increase in viscosity after the addition of the quick setting agent is particularly remarkable, making spraying work substantially difficult.
また、 不定形耐火物の施工法として、 水平回転のインペラ一をもって 遠心投射する方法が特公昭 5 0 - 3 9 4 0 3号公報に提案されている。 しかしながら、 この方法は、 施工体の付着性、 耐食性ともに前述の吹付 け施工に比べて大きく劣り、 普及に至っていない。 発明の開示  Japanese Patent Publication No. 50-39403 proposes a method of performing centrifugal projection with a horizontally rotating impeller as a construction method of an amorphous refractory. However, this method is inferior in both the adhesion and corrosion resistance of the construction body compared to the spraying construction described above, and has not been widely used. Disclosure of the invention
本発明の目的は、 不定形耐火物の施工性、 施工体寿命等において、 従 来の吹付け方法に比べてさらに優れた施工方法およびそれに使用する 不定形耐火物を提供することにある。  An object of the present invention is to provide a construction method which is more excellent than conventional spraying methods in terms of workability of an amorphous refractory, a life of a construction body, and the like, and an irregular refractory used therefor.
本発明は、 溶融金属容器、溶融金属処理装置または高温炉に対する不 定形耐火物の施工方法であって、予め施工水分を添加混練してホッパ一 に貯留した不定形耐火物を、急結剤を添加しつつホッパーの下方に送り 出し、 次いで、 遠心投射することを特徴とする。  The present invention relates to a method for applying an amorphous refractory to a molten metal container, a molten metal processing apparatus, or a high-temperature furnace. It is sent out below the hopper while adding, and then centrifugally projected.
本発明の施工方法において吐出部に対する不定形耐火物の供給は、ホ ッパ一の下方への送り出しで行われるので、従来の従来の吹付け方法で 使用される長尺で且つ内径が狭いの圧送管が存在しないため、配管抵抗 の問題がない。その結果、 不定形耐火物はわずかな流動性の付与で足り ることから、 施工のための水分の大幅な低減を図ることができる。 しか も、 遠心投射のため圧搾空気を必要とせず、 施工体は空気の巻き込みが ないことで一層の緻密化を図ることができる。  In the construction method of the present invention, the supply of the irregular-shaped refractory to the discharge portion is performed by sending out the material below the hopper, so that the long and small inner diameter used in the conventional conventional spraying method is required. Since there is no pumping pipe, there is no problem with pipe resistance. As a result, amorphous refractories need only be given a small amount of fluidity, which can significantly reduce the amount of water required for construction. Furthermore, since compressed air is not required for centrifugal projection, the construction body can be further densified because there is no air entrapment.
本発明における遠心投射は周方向に一定の角度幅をもって行うこと ができる。 一定の角度幅で投射することで局部的な施工が容易となる。 また、例えば施工対象の溶融金属容器の内径がきわめて大きい場合は投 射距離が長くなり、 不定形耐火物の付着性の低下をもたらし、 また、 被 施工部への正確な投射が容易でなくなるが、施工装置を容器壁面に近づ け、 一定の角度幅もって投射することでこの問題も解消する。 なお、 本発明において急結剤は必要に応じて添加する。 添加する場合 は、 急結剤のキャリア一に空気を利用してもよい。 しかし、 この場合の 空気は従来の吹付け方法において不定形耐火物を吹付けノズルから吹 飛ばすために必要な高圧の圧搾空気に比べ、 その圧力、 流量ともに僅か で足りる。 したがって、 施工体への空気の巻き込みの問題がない。 The centrifugal projection in the present invention can be performed with a constant angular width in the circumferential direction. By projecting at a certain angle width, local construction becomes easy. Also, for example, if the inside diameter of the molten metal container to be installed is extremely large, the projection distance will be long, which will reduce the adhesion of irregular refractories, and it will not be easy to accurately project onto the work area. This problem can also be solved by moving the construction equipment closer to the vessel wall and projecting it at a certain angular width. In the present invention, the quick setting agent is added as needed. If added, air may be used as a carrier for the quick setting agent. However, in this case, the pressure and the flow rate of the air are slightly smaller than the high-pressure compressed air required for blowing the amorphous refractory from the blowing nozzle in the conventional blowing method. Therefore, there is no problem of air entrapment in the construction body.
本発明においても、適用される不定形耐火物が揮発シリカあるいは仮 焼アルミナのような耐火性超微粉を含む場合には、急結剤の添加による 不定形耐火物の粘性の増大は特に著しい。 しかしながら、 本発明は遠心 投射による施工であり、不定形耐火物の吐出部への供給がホッパ一から 下方への送り出しのため、従来の吹付け方法で見られるノズル詰まりあ るいは配管抵抗を原因とする吐出時の脈動や息継ぎ現象が発生するこ とがなく、 優れた施工性が得られる。 その結果、 本発明に耐火性超微粉 として揮発シリ力あるいは仮焼アルミナを含有する不定形耐火物を使 用した場合は、揮発シリカあるいは仮焼アルミナのもつ減水効果による 施工体の強度および耐食性の向上と、 化学的活性による付着性、 接着性 の効果を充分に発揮させることができる。  Also in the present invention, when the amorphous refractory to be applied contains a refractory ultrafine powder such as volatile silica or calcined alumina, the addition of a quick-setting agent significantly increases the viscosity of the amorphous refractory. However, since the present invention is applied by centrifugal projection, and the supply of irregular-shaped refractories to the discharge section is sent downward from the hopper, nozzle clogging or pipe resistance seen with the conventional spraying method may be caused. No pulsation or breathing phenomenon occurs during discharge, and excellent workability can be obtained. As a result, when an amorphous refractory containing volatile silica or calcined alumina is used as the refractory ultrafine powder in the present invention, the strength and corrosion resistance of the construction body due to the water reducing effect of volatile silica or calcined alumina The effect of improvement and adhesion and adhesion by chemical activity can be fully exhibited.
また、 本発明においては、 ノズルおよび圧送管がないため、 耐火粗大 粒子あるいは金属ファイバーを添加した不定形耐火物を使用しても、従 来の吹付け方法で見られたノズル閉塞あるいは配管抵抗による問題が 解消される。 これによつて、 耐火粗大粒子あるいは金属ファイバーと共 に耐火性微粉を含む不定形耐火物を使用した場合でも、耐火性微粉と急 結剤との反応による特に著しい粘性の増大の下においても問題なく施 ェでき、耐火粗大粒子あるいは金属ファイバーを添加による施工体の亀 裂防止および強度付与の効果が発揮される。  Also, in the present invention, since there is no nozzle and no pressure feed pipe, even if an amorphous refractory to which refractory coarse particles or metal fibers are added is used, the nozzle blockage or pipe resistance observed by the conventional spraying method may cause the problem. The problem goes away. As a result, even when an irregular refractory containing refractory fine particles together with refractory coarse particles or metal fibers is used, the problem is caused even under particularly remarkable increase in viscosity due to the reaction between the refractory fine particles and the quick setting agent. The effect of preventing cracks and imparting strength to the construction body by adding refractory coarse particles or metal fibers is exhibited.
さらに、揮発シリカあるいは仮焼アルミナのような耐火性超微粉を含 む場合、 それ自体が比重が小さいこともあって、 吹付け施工では、 吹付 けノズルから吐出した後、 他骨材と分離し易く、 施工体の不均一化の原 因となる。耐火粗大粒子、金属ファイバ一は他骨材との形状の違いから、 耐火物組織中において偏析し易い。 これに対し、 遠心投射される本発明 は、 吹付け施工のように高圧の圧搾空気による吹き飛ばしでないため に、 施工に際して、 超微粉、 耐火粗大粒子あるいは金属ファイバーの分 離、 偏析が防止され、 不定形耐火物の付着性をより一層向上させ、 得ら れた施工体の組織は均一化し、耐食性および耐スポ一リング性が向上す る。 Furthermore, in the case of containing refractory ultrafine powder such as volatile silica or calcined alumina, the specific gravity of the powder itself is small, so in spraying, after being discharged from the spray nozzle, it is separated from other aggregates. It is easy and causes unevenness of construction. Refractory coarse particles and metal fibers are easily segregated in the refractory structure due to the difference in shape from other aggregates. In contrast, the present invention which is centrifugally projected Is not blown off by high-pressure compressed air as in spraying construction, so during the construction, separation and segregation of ultrafine powder, refractory coarse particles or metal fibers are prevented, and adhesion of irregular refractories is further improved. As a result, the structure of the obtained construction is homogenized, and the corrosion resistance and spoiling resistance are improved.
次に、本発明の施工法を実施するに際して好適に使用できる不定形耐 火物について述べる。  Next, an amorphous refractory which can be suitably used in carrying out the construction method of the present invention will be described.
本発明で使用する不定形耐火物の耐火骨材は、 焼結アルミナ、 電融ァ ルミナ、 ボーキサイ ト、 ばん土頁岩、 ムライ ト、 けい石、 シャモッ ト、 アンダルサイ ト、 ろう石、 炭化珪素、 溶融シリカ、 マグネシア、 マグネ シァ一力ルシア、 A 1 2 0 3— M g〇系スピネル、 クロム鉱、 シリマナ ィ ト等から選ばれる一種以上とする。 また、 これらにジルコニァ、炭素、 粘土、 軽焼マグネシア、 ピッチ、 メソフーズピッチ、 不融化ピッチ、 窒 化ゲイ素、 窒化アルミニウム、 炭化ホウ素、 ホウ化ジルコニウム、 酸化 クロム等から選ばれる一種以上を任意に組み合わせることができる。 本発明で使用する不定形耐火物は、その耐火骨材の一部に耐火性超微 粉を使用する。 耐火性超微粉の好ましい粒径は、 レーザー回折法による 粒度分布測定装置の測定で平均 1 0 i m以下である。 The refractory aggregate of the amorphous refractory used in the present invention is a sintered alumina, an electro-alumina, a bauxite, a clay shale, a mullite, a silica stone, a chamotte, an andalite, a pyrolite, a silicon carbide, a molten carbide. to M G_〇 spinel, chrome ore, and one or more selected from Shirimana I bets like - silica, magnesia, magnesite Xia Ichiriki Lucia, a 1 2 0 3. In addition, any one or more selected from zirconia, carbon, clay, light-burned magnesia, pitch, meso-food pitch, infusible pitch, gaynitride, aluminum nitride, boron carbide, zirconium boride, chromium oxide, etc. Can be combined. The amorphous refractory used in the present invention uses refractory ultrafine powder as a part of the refractory aggregate. The preferred particle size of the refractory ultrafine powder is an average of 10 im or less as measured by a particle size distribution analyzer using a laser diffraction method.
また、 耐火性超微粉としては、 不定形耐火物の付着性、 接着性、 強度 および耐食性の付与に優れた揮発シリカおよび/または仮焼アルミナ が好ましい。  Further, as the refractory ultrafine powder, volatile silica and / or calcined alumina excellent in imparting adhesiveness, adhesion, strength and corrosion resistance of amorphous refractories are preferable.
揮発シリカは、 シリカフラワー、 シリカヒューム、 マイクロシリカと も称されるもので、 シリコン、 フエ口シリコンまたはジルコニァ等の製 造時に発生する S i Oガスが空気中で酸化されて生成した非結晶質の シリカ超微粉である。 平均 0 . 2〜 0 . 5 /x m程度の球形粒子であり、 実際の使用形態はこのサブミクロン粒子が凝集した二次粒子である。そ の品質は、 S i〇2純度 9 0質量%以上、 比表面積は 5〜4 O m S /^ g 程度のものが好ましい。 Volatile silica is also referred to as silica flour, silica fume, or microsilica, and is a non-crystalline substance that is generated by oxidizing SiO2 gas in the air during the production of silicon, fever silicon, zirconia, etc. Ultra fine silica powder. Spherical particles having an average of about 0.2 to 0.5 / xm are used, and the actual use form is secondary particles in which the submicron particles are aggregated. The quality of that is, S I_〇 2 Purity 9 0 wt% or more, and a specific surface area preferably about 5~4 O m S / ^ g.
仮焼アルミナはパイヤー法で得られた水酸化アルミニウムを焼成し たものである。 その焼成温度は一般に 1 0 0 0〜 1 3 0 0 程度であ り、 耐火原料の焼成温度としては比較的低温での処理であることから、 蛏焼アルミナとも称される。 α— A 1 2 0 3を主成分とし、 A 1 2 0 3純 度は、 一般に 9 9質量%以上である。 平均粒子径 1 0 以下の超微粉 として得られたものを使用するのが好ましい。 仮焼アルミナを原料と し、 これを 1 6 0 0 以上の高温で焼成される焼結アルミナとは異な る。 Calcined alumina is obtained by firing aluminum hydroxide obtained by the Plier method. It is a thing. The sintering temperature is generally about 1000 to 1300, and the sintering temperature of the refractory raw material is a relatively low temperature. The α- A 1 2 0 3 as a main component, A 1 2 0 3 purity is generally 9 9 mass% or more. It is preferable to use those obtained as ultrafine powder having an average particle diameter of 10 or less. This is different from sintered alumina that uses calcined alumina as a raw material and is fired at a high temperature of 160 or more.
耐火骨材中に占める耐火性超微粉の割合は、 1〜 3 0質量%が好まし く、 さらに好ましくは、 3〜2 5質量%である。 少ないと減水効果が十 分に発揮できない。多過ぎると過焼結が原因した焼結収縮による亀裂発 生および耐食性低下の傾向が見られる。  The proportion of the refractory ultrafine powder in the refractory aggregate is preferably from 1 to 30% by mass, and more preferably from 3 to 25% by mass. If the amount is too small, the water reduction effect cannot be fully exhibited. If it is too large, cracking and corrosion resistance tend to be reduced due to sintering shrinkage due to oversintering.
分散剤はその機能から解こう剤とも称される。不定形耐火物に流動性 を付与し、 減水効果を持つ。 分散剤の具体的な種類は何ら特定されるも のではなく、 例えばトリポリ リン酸ソーダ、 へキサメ夕リン酸ソーダ、 ウルトラポリリン酸ソ一ダ、 酸性へキサメタリン酸ソーダ、 ホウ酸ソー ダ、 炭酸ソ一ダ、 ポリメタリン酸塩などの無機塩、 クェン酸ソーダ、 酒 石酸ソーダ、 ポリアクリル酸ソーダ、 スルホン酸ソ一ダ、 ポリカルボン 酸塩、 カルボキシル基含有ポリェ一テル、 i8—ナフタレンスルホン酸塩 類、 ナフタリンスルフォン酸等である。 好ましい添加量は、 耐火骨材 1 0 0質量%に対し 0 . 0 0 5〜 1質量%の範囲である。  Dispersants are also called peptizers for their function. Gives fluidity to amorphous refractories and has a water reducing effect. The specific type of dispersant is not specified at all. Inorganic salts such as polymetaphosphate, sodium citrate, sodium tartrate, sodium polyacrylate, sodium sulfonate, polycarboxylate, carboxyl group-containing polyester, i8-naphthalene sulfonates And naphthalenesulfonic acid. A preferable addition amount is in the range of 0.05 to 1% by mass with respect to 100% by mass of the refractory aggregate.
結合剤としては、 例えばアルミナセメント、 マグネシアセメント、 リ ン酸ソ一ダ、 ケィ酸ソ一ダ等が使用される。 その添加割合は耐火骨材 1 0 0質量%に対し、 結合剤の種類に応じて、 1〜 1 5質量%の範囲で調 整するのが好ましい。急結剤、 耐火性超微粉の種類や使用量等で十分な 凝集作用が得られる場合は、 この結合剤は必ずしも必要としない。  As the binder, for example, alumina cement, magnesia cement, sodium phosphate, sodium silicate and the like are used. The addition ratio is preferably adjusted within the range of 1 to 15% by mass with respect to 100% by mass of the refractory aggregate, depending on the type of the binder. This binder is not necessarily required if sufficient coagulation can be obtained with the type and amount of quick-setting binder and refractory ultrafine powder.
不定形耐火物への耐火粗大粒子あるいは金属ファイバーの添加は、キ レツ防止、 強度および耐食性の向上に効果的である。 不定形耐火物にお ける耐火骨材の最大粒径は通常 3〜 8 mmであるが、耐火粗大粒子はこ の耐火骨材よりさらに粒径が大きく、 例えば 1 0〜5 0 mmである。 耐 火粗大粒子の材質としては、 電融アルミナ、 焼結アルミナ、 電融スビネ ル、 焼結スピネル、 炭化珪素あるいはこれらを主材とした耐火物廃材を 使用することができる。添加量は、 耐火骨材 1 0 0質量%に対し、 5 0 質量%以下、 好ましくは 1〜4 0質量%である。 多いと付着性の低下を 招く。 The addition of coarse refractory particles or metal fibers to amorphous refractories is effective in preventing cracking, improving strength and corrosion resistance. The maximum particle size of refractory aggregate in amorphous refractories is usually 3 to 8 mm, but coarse particles of refractory have a larger particle size than this refractory aggregate, for example, 10 to 50 mm. Endurance As the material of the coarse particles, it is possible to use electrofused alumina, sintered alumina, electrofused vinyl, sintered spinel, silicon carbide, or refractory waste mainly composed of these. The addition amount is 50% by mass or less, preferably 1 to 40% by mass, based on 100% by mass of the refractory aggregate. If it is too large, the adhesion will be reduced.
また、 不定形耐火物に添加される金属ファイバーの材質は、 鋼、 鉄、 ステンレス鋼等である。 中でも耐熱性に優れたステンレス鋼が好まし レ^ 直径と長さは両者の兼ね合いから、 例えば直径が 0 . l〜 2 mmで は長さは 5〜 5 0 mmが好ましい。 断面形状は円、 多角形等その形状を 問わない。 また、 その添加量は、 耐火骨材 1 0 0質量%に対し 1 0質量 %以下とし、 さらに好ましくは 0 . 1〜 7質量%である。 多過ぎると耐 食性の低下を招く。  The material of the metal fiber added to the refractory is steel, iron, stainless steel, or the like. Among them, stainless steel excellent in heat resistance is preferred. The diameter and the length are both good. For example, when the diameter is 0.1 to 2 mm, the length is preferably 5 to 50 mm. The cross-sectional shape does not matter, such as a circle and a polygon. The amount of addition is 10% by mass or less, more preferably 0.1 to 7% by mass, based on 100% by mass of the refractory aggregate. If it is too large, corrosion resistance is reduced.
本発明の不定形耐火物への上記以外の添加剤としては、 必要に応じ て、 有機ファイバー、 セラミックファイバー、 増粘剤、 粘土、 C M C、 ベントナイ ト、 金属粉、 軽量材、 硬化促進剤、 硬化遅延剤、 乳酸アルミ 二ゥム、 グリコール酸乳酸アルミニウム、 グリコール酸アルミニウム、 シリカゾル、 アルミナゾル等を単独あるいは組み合わせて使用できる。 本発明で使用する不定形耐火物は、 施工に際し、 予め施工水分を添加 してミキサー等で混練する。 不定形耐火物はこの混練において、 施工水 分量を乾粉状態の不定形耐火物に対する外掛けで 3〜 1 0質量%とし、 且つ J I S A 1 1 0 1 (日本工業規格: コンクリー卜のスランプ試験 方法) に準じる方法で測定したスランプ値が、 例えば 2 0 c m以下とな る軟度に調整するのが好ましい。 混練後の不定形耐火物は、 施工水分量 がこれより少ないと流動性および可塑性の低下によってホッパーの下 方への送り出しが円滑に行われない。施工水分量が多いと施工後の不定 形耐火物の強度および耐食性が不十分となる。 スランプ値は、 2 0 c m を超えると不定形耐火物がホッパーから自己流出しやすくなり、送り出 し量の調整が容易でなくなる。 また、 不定形耐火物の付着性および充填 性にも低下傾向が見られる。 さらに好ましいスランプ値は 5〜 1 5 c m である。 Additives other than the above to the amorphous refractory of the present invention include, as necessary, organic fibers, ceramic fibers, thickeners, clay, CMC, bentonite, metal powder, lightweight materials, curing accelerators, and curing agents. A retarder, aluminum lactate, aluminum glycolate lactate, aluminum glycolate, silica sol, alumina sol and the like can be used alone or in combination. The irregular-shaped refractory used in the present invention is kneaded with a mixer or the like after addition of construction moisture in advance in construction. In the case of this type of refractory, the amount of water to be applied is 3 to 10% by mass of the dry refractory in this kneading process, and JISA 1101 (Japanese Industrial Standard: Slump test method for concrete) It is preferable that the slump value measured by a method according to the above is adjusted to a softness of, for example, 20 cm or less. If the working water content is less than this, the irregular shaped refractory after kneading will not be able to be smoothly fed down the hopper due to a decrease in fluidity and plasticity. If the amount of construction water is large, the strength and corrosion resistance of the irregular shaped refractory after construction will be insufficient. If the slump value exceeds 20 cm, irregular shaped refractories will easily flow out of the hopper by themselves, making it difficult to adjust the delivery amount. In addition, there is a tendency for the adhesion and filling of amorphous refractories to decrease. A more preferred slump value is 5 to 15 cm It is.
急結剤としては、 液状、 粉末のいずれものでも使用できる。 その添加 割合は、 不定形耐火物の付着性、 接着強度の面から, 不定形耐火物の耐 火骨材 1 0 0質量%に対し固形分換算で 0 . 2〜 5質量%であることが 好ましい。 液状急結剤としては、 例えばアルミン酸ソ一ダ、 アルミン酸 カリウム、 ケィ酸ソーダ、 ゲイ酸カリウム、 リン酸ソ一ダ等の水溶液で ある。 これらの液状急結剤は、 必要によりカチオン系あるいはァニオン 系等の凝集剤を組み合わせてもよい。 粉末状の急結剤としては、 例えば アルミン酸ソ一ダ、アルミン酸カリゥム、 ケィ酸ソーダ、 リン酸ソ一ダ、 炭酸ソーダ、 塩化カルシウム、 水酸化カルシウム、 酸化カルシウム、 ァ ルミン酸カルシウム、 水酸化マグネシウム、 ポルトランドセメント、 硫 酸ばん土等である。  As a quick setting agent, either liquid or powder can be used. From the viewpoint of adhesion and adhesion strength of the amorphous refractory, the addition ratio should be 0.2 to 5% by mass in terms of solid content with respect to 100% by mass of the refractory aggregate of the amorphous refractory. preferable. Examples of the liquid quick setting agent include aqueous solutions of sodium aluminate, potassium aluminate, sodium silicate, potassium gayate, sodium phosphate, and the like. These liquid quick-setting agents may be combined with a cationic or anionic flocculant, if necessary. Examples of powdery quick-setting agents include sodium aluminate, potassium aluminate, sodium silicate, sodium phosphate, sodium carbonate, calcium chloride, calcium hydroxide, calcium oxide, calcium aluminate, and hydroxide. Magnesium, Portland cement, sodium sulfate, etc.
これらの急結剤は耐火微粉と混合させた状態で添加してもよい。例え ば急結剤を固形分換算で 1 0 0質量%に対し、アルミナ等の耐火微粉を 例えば 5 0質量%以下の範囲で混合してもよい。 図面の簡単な説明  These quick setting agents may be added in a state of being mixed with the refractory fine powder. For example, refractory fine powder such as alumina may be mixed in a range of, for example, 50% by mass or less with respect to 100% by mass of the quick setting agent in terms of solid content. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の施工方法の説明図である。 FIG. 1 is an explanatory view of the construction method of the present invention.
図 2は本発明で使用する施工装置例の拡大縦断面図である。 FIG. 2 is an enlarged longitudinal sectional view of an example of a construction apparatus used in the present invention.
図 3は図 2の A— A線断面図である。 FIG. 3 is a sectional view taken along line AA of FIG.
図 4は本発明で使用する他の施工装置の拡大縦断面図である。 FIG. 4 is an enlarged vertical sectional view of another construction apparatus used in the present invention.
図 5は図 4のィンペラ一部の B— B線断面図である。 FIG. 5 is a cross-sectional view of a part of the impeller of FIG. 4 taken along line BB.
図 6は従来の吹付け施工方法の説明図である。 発明を実施するための最良の形態 FIG. 6 is an explanatory view of a conventional spraying method. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施に好適な例として、 溶鋼取鍋の補修を例に挙げて 説明する。  Hereinafter, repair of a molten steel ladle will be described as an example suitable for carrying out the present invention.
図 1と図 2において、 施工装置 1は、 予め混練された不定形耐火物 2 を収納するホッパー 3と、このホッパー 3内にあって不定形耐火物 2を 切り出すスクリュ一フイダ一 4と、不定形耐火物 2に急結剤を添加する 急結剤供給装置 7 と、 急結剤と不定形耐火物を攪拌する攪拌杆 1 1 a と、不定形耐火物 2を水平方向に遠心力投射する水平回転のィンぺラー 6を備えている。 ホッパー 3の天板には、 不定形耐火物 2の投入口とな る開閉板 1 9が設けられている。 ホッパ一 3は下絞りのテ一パーを有 し、 このテーパー部に振動モ一夕 8を備え、 この振動モー夕 8によって ホッパー 3内の不定形耐火物の送り出しを促進させる。 In FIGS. 1 and 2, a construction apparatus 1 includes a hopper 3 for accommodating a premixed amorphous refractory 2, and an irregular refractory 2 in the hopper 3. Screw filler 4 to be cut out, quick-setting agent supply device 7 for adding quick-setting agent to irregular-shaped refractory 2, stirrer rod 1a for stirring quick-setting agent and irregular-shaped refractory, irregular shaped refractory It is equipped with a horizontally rotating impeller 6 that projects centrifugal force 2 horizontally. The top plate of the hopper 3 is provided with an opening / closing plate 19 serving as an inlet for the irregular-shaped refractory 2. The hopper 3 has a taper of a lower drawing, and a vibrating motor 8 is provided on the tapered portion. The vibrating motor 8 facilitates sending out the refractory in the hopper 3.
スクリューフィーダ一 4はその軸線が落下筒 5と同 、状となってお り、 しかもその軸部の上端がホッパー 3の天板に設けた軸受に支持さ れ、 天板に設置した駆動モ一夕 9によって駆動する。 このスクリユーフ ィーダ一 4は、施工休止時に不定形耐火物 2がホッパ一 3から流落する のを阻止する役割を併せ持つ。  The axis of the screw feeder 14 is the same as that of the drop cylinder 5, and the upper end of the shaft is supported by a bearing provided on the top plate of the hopper 3. Driving by evening 9. The screw feeder 14 also has a role of preventing the irregular-shaped refractory 2 from flowing down from the hopper 13 when construction is suspended.
さらに、 下端には落下筒 5を有し、 ホッパー 3の落下筒 5の下端に、 インペラ一 6が装備されている。 インペラ一 6は、 落下筒 5に固着され た基台 2 0に載置された駆動モー夕一 2 1によって回転させる。落下筒 5の外周には筒軸 2 2が設けられ、軸受 2 3を介してインペラ一 6が回 転可能に取付けられている。  Further, the lower end of the hopper 3 has a drop cylinder 5, and the lower end of the drop cylinder 5 of the hopper 3 is equipped with an impeller 6. The impeller 16 is rotated by a driving motor 21 mounted on a base 20 fixed to the drop cylinder 5. A cylinder shaft 22 is provided on the outer periphery of the drop cylinder 5, and an impeller 16 is rotatably mounted via a bearing 23.
インペラ一 6は、 上板 2 4、 これと対向する下板 2 5、 さらに図 3の とおり これら上板 2 4と下板 2 5との間を結ぶ放射状の羽根 2 6を有 している。 回転支柱 3 0は、 下板 2 5に固着されている。 不定形耐火物 2はインペラ一 6の羽根 2 6によって遠心力が付加され、回転軸 1 0を 中心とする放射状に投射される。 羽根 2 6の数は、 周方向に例えば 3〜 1 0個程度が好ましい。 ここでは 8假設けた例である。  The impeller 16 has an upper plate 24, a lower plate 25 facing the upper plate 24, and, as shown in FIG. 3, radial blades 26 connecting between the upper plate 24 and the lower plate 25. The rotating column 30 is fixed to the lower plate 25. The refractory 2 is applied with centrifugal force by the blades 26 of the impeller 16 and is projected radially around the rotation axis 10. The number of the blades 26 is preferably, for example, about 3 to 10 in the circumferential direction. Here is an example of eight holidays.
ィンぺラー 6を回転させる駆動モータ一 2 1は、ここでは 1台設けて いるが、 左右の重量バランスを保っために左右に設けてよい。 駆動モー ター 2 1の出力軸には駆動回転体たとえばプーリ一 2 7が固定され、 V ベルト 2 8によって筒軸 2 2と連絡されている。  Although one drive motor 21 for rotating the impeller 6 is provided here, it may be provided on the left and right sides to maintain the right and left weight balance. A driving rotary body, for example, a pulley 27 is fixed to the output shaft of the driving motor 21, and is connected to the cylindrical shaft 22 by a V-belt 28.
駆動モーター 2 1は好ましくはィンバーター式で、かつ逆回転可能な ものが好ましい。 また、 これらのインペラ一回転駆動装置はフレーム 2 9 , 4 3で補強するのが好ましい。 The drive motor 21 is preferably of the inverter type and preferably of the type capable of reverse rotation. These impeller single-rotation drives are It is preferable to reinforce with 9, 43.
ィンペラ一 6に立設固着した回転支柱 3 0には平板状あるいは棒状 の撹拌杆 1 1 aが上下に適宜間隔をもって複数設けられている。これに より、 インペラ一 6の回転駆動にともなって攪拌杆 1 1 aも回転する。 これらの攪拌杆 1 1 aは、急結剤と不定形耐火物の攪拌作用をより効果 的なものにするため、 落下筒 5内に位置させるのが好ましい。 前記回転 支柱 3 0に代えて、スクリューフイダ一 4の回転軸 1 0をさらに下方に 延長し、この回転軸 1 0の回転駆動によって回転する攪拌杆 1 1 aを設 けてもよい。  A plurality of flat or rod-shaped stirring rods 11a are provided at appropriate intervals above and below the rotating column 30 fixedly mounted on the impeller 16. As a result, the stirring rod 11a also rotates with the rotation of the impeller 16. These stirring rods 11a are preferably located in the drop cylinder 5 in order to make the stirring action of the quick-setting agent and the amorphous refractory more effective. Instead of the rotating support 30, the rotating shaft 10 of the screw feeder 14 may be further extended downward, and a stirring rod 11 a rotated by the rotation of the rotating shaft 10 may be provided.
急結剤と不定形耐火物との攪拌がスクリュ一フイダ一 4で足りる場 合は、 この攪拌杆 1 1 aは必ずしも必要としない。 また、 さらにホッパ —内の回転軸 1 0に撹拌杆 1 1 b設け、ホッパー内での不定形耐火物の 充填固化を防止するのが好ましい。スクリューフィダ一 4は、 ホッパー 3上に載置した駆動モーター 9で回転駆動する。  When stirring between the quick-setting agent and the amorphous refractory is sufficient with the screw feeder 14, the stirring rod 11a is not necessarily required. Further, it is preferable that a stirring rod 11 b is provided on the rotating shaft 10 in the hopper to prevent the filling and solidification of the amorphous refractory in the hopper. The screw feeder 4 is rotationally driven by a drive motor 9 mounted on the hopper 3.
急結剤供給装置 7 は、 落下筒 5に形成した細孔 1 2を外套 1 3で覆 レ この外套内と連通した供給管 1 4からなる。 供給管 1 4の基端は、 図示されてはいないが急結剤のボンプ圧送装置に連結している。この急 結剤供給装置 7は、 図示のものに限らず、 落下筒 5あるいはその近傍で 不定形耐火物に対して急結剤を添加する機能があれば足りる。  The quick-setting agent supply device 7 is composed of a supply pipe 14 that covers the pores 12 formed in the drop cylinder 5 with a jacket 13 and communicates with the inside of the jacket. The base end of the supply pipe 14 is connected to a pumping device for a quick-setting agent (not shown). The quick-setting agent supply device 7 is not limited to the one shown in the drawing, and it is sufficient that the quick-setting agent supply device 7 has a function of adding a quick-setting agent to the irregular-shaped refractory at or near the drop cylinder 5.
不定形耐火物の投射施工に際しては、 先ず、 予め混練された不定形耐 火物 2をホッパー 3に収納した施工装置 1を溶融金属容器 1 7内に吊 りケーブル 1 6を介してクレーンによって懸架する。 次いで、 スクリュ —フイダー 4と攪拌杆 1 1 aを回転駆動させ、 同時に、 落下筒 5内の不 定形耐火物に急結剤を供給する。 これにより、 不定形耐火物 2は急結剤 が添加されつつ落下筒 5から下方に送り出されると同時に、 攪拌杆 11 aで十分に混合される。 次いで、 不定形耐火物 2は高速回転のインペラ ― 6の中心部に導入され、羽根 2 6の作動による遠心投射によって溶融 金属容器の内壁に投射される。施工装置 1を溶融金属容器内において上 下、左右に移動させることで内壁全体あるいは所要の位置に不定形耐火 物 2を投射する。 When projecting irregular shaped refractories, first, the construction equipment 1 containing premixed irregular shaped refractories 2 in the hopper 3 is suspended in a molten metal container 17 by a crane via a suspension cable 16. I do. Next, the screw feeder 4 and the stirring rod 11a are rotationally driven, and at the same time, the quick-setting agent is supplied to the irregular-shaped refractory in the drop cylinder 5. Thereby, the amorphous refractory 2 is sent downward from the dropping cylinder 5 while the quick-setting agent is added, and is also sufficiently mixed by the stirring rod 11a. Next, the amorphous refractory 2 is introduced into the center of the high-speed rotating impeller 6, and is projected on the inner wall of the molten metal container by centrifugal projection by the operation of the blade 26. By moving the construction equipment 1 up, down, left and right in the molten metal vessel, the irregular fireproof Project object 2.
これらのスクリユーフィダ一、急結剤の添加およびィンペラ一の操作 は、 例えば溶融金属容器の外部から操作盤 1 5の操作によって行われ る。施工装置 1の上下動は吊りケ一ブル 1 6の途中に電動チェーンプロ ック 1 8を介するとクレーン等の重機を作動させる必要がなく、 しかも 容易かつ正確に上下動コントロールを行うことができる。  The operation of the screw feeder, the addition of the quick setting agent, and the operation of the impeller are performed, for example, by operating the operation panel 15 from outside the molten metal container. The vertical movement of the construction equipment 1 can be controlled easily and accurately by using the electric chain block 18 in the middle of the suspension cable 16 without the need to operate heavy equipment such as cranes. .
図 4と図 5は、本発明の方法を実施するための施工装置の他の例を示 すもので、不定形耐火物を投射を周方向に一定の角度幅もって行うため のものである。急結剤供給、 ィンペラ一回転駆動等の全体の機構は前記 図 1〜3に示す装置と変わりないので詳細説明は省略する。 また、 部品 等が図 1〜 3において示されるものと共通する部分は、同一符合によつ て示している。  4 and 5 show another example of a construction apparatus for carrying out the method of the present invention, which is used for projecting an irregular-shaped refractory with a constant angular width in a circumferential direction. The entire mechanism such as quick-setting agent supply and impeller one-rotation drive is the same as the apparatus shown in FIGS. Parts common to the parts and the like shown in FIGS. 1 to 3 are denoted by the same reference numerals.
この例の場合、 羽根 2 6、 インペラ一 6の外周にェンドレス平ベルト 3 9が巻き付けられている。ィンぺラー 6への平ベルト 3 9の巻き付け はィンペラ一 6の一端で反転させ、ィンぺラー 6に平ベルト 3 9の巻き 付けのない開放部を設ける。 平ベルトはプーリ一 4 1 に案内され、 この プーリ一 4 1はィンぺラー 6上方の水平支持台 4 0に枢着する。平ベル ト 3 9はインペラ一 6に巻き付いていることで、インペラ一 6の駆動力 が伝達され、 インペラ一 6に同調して回転する。 したがって、 平ベルト 3 9の回転はインペラ一と同調する。  In this example, an endless flat belt 39 is wound around the outer periphery of the blade 26 and the impeller 16. The winding of the flat belt 39 around the impeller 6 is reversed at one end of the impeller 16, and an open portion where the flat belt 39 is not wound is provided on the impeller 6. The flat belt is guided by a pulley 41, which is pivotally mounted on a horizontal support 40 above the impeller 6. Since the flat belt 39 is wound around the impeller 16, the driving force of the impeller 16 is transmitted, and the flat belt 39 rotates in synchronization with the impeller 16. Therefore, the rotation of the flat belt 39 is synchronized with the impeller.
落下筒 5から送り出された不定耐火物 2は、インペラ一 6の羽根 2 6 で四方に分散するが、同施工装置ではィンぺラー 6の外周に到達すると 平ベルト 3 9で分散が阻まれた後、 この平ベルト 3 9に乗って移動す る。 そして、 不定耐火物 2はィンペラ一 6の外周において平ベルト 3 9 の巻き付きがない個所に到達すると、平ベルト 3 9からの拘束から開放 され、 外部へ投射される。 これにより、 一方向に一定の角度幅をもって の投射が可能となる。 同図では向かって右方向への投射を示している。 インペラ一 6のうち平ベルト 3 9の巻き付きがない開放部に、配向ガ ィ ド体 4 4が設ける。配向ガイ ド体 4 4は上方を水平支持台 4 0に固着 する。 この配向ガイ ド体 4 4により、 不定形耐火物 2の投射角度をさら に絞り込むことができる。 The variable refractory 2 sent out from the drop cylinder 5 is dispersed in all directions by the impeller blades 26 of the impeller 16, but when it reaches the outer periphery of the impeller 6, the dispersion is blocked by the flat belt 39. After that, we move on this flat belt 39. When the variable refractory 2 reaches a position where the flat belt 39 is not wound around the outer periphery of the impeller 16, it is released from the restraint from the flat belt 39 and is projected to the outside. This makes it possible to project in one direction with a certain angular width. In the figure, the projection is shown in the right direction. An orientation guide 44 is provided at an open portion of the impeller 6 where the flat belt 39 is not wound. Orientation guide body 4 4 is fixed to horizontal support 40 at the top I do. The orientation guide body 44 can further narrow the projection angle of the irregular-shaped refractory 2.
表 1〜 3は、 本発明実施例とその比較例の施工条件と、 その試験結果 を示したものである。 施工対象は、 耐火物で内張りされた底部直径 3 . 0 m、 上端直径 3 . 5 m、 高さ 3 . 0 mの溶融金属容器とし、 不定形耐 火物 5 0 0 k gを使用し、 厚さ約 8 O mmの施工体の形成を試みた。 実施例 1〜 1 3は、 上記図 1〜3に示すインペラ一型の施工装置を使 用しての施工である。予め施工水分を添加して混練後した不定形耐火物 をホッパーに投入し、 急結剤を添加しつつ遠心投射した。 施工条件は、 吐出速度: 6 m 3 Z時間、 ィンぺラーの直径: 5 0 O mm、 回転数:約 8 0 0 r p mとした。 比較例 5は不定形耐火物を、 急結剤を添加せずに 遠心投射にて施工した。他の条件は前記の実施例 1と同様にして施工し た。 Tables 1 to 3 show the working conditions of the examples of the present invention and the comparative examples, and the test results. The object of construction is a refractory-lined molten metal container with a bottom diameter of 3.0 m, a top diameter of 3.5 m, and a height of 3.0 m. An attempt was made to form a construction body of about 8 O mm. Examples 1 to 13 are constructions using the impeller type construction apparatus shown in FIGS. Irregular refractories which had been kneaded with water for construction in advance were put into a hopper, and centrifugally projected while adding a quick-setting agent. The working conditions were as follows: discharge speed: 6 m 3 Z hours, impeller diameter: 50 O mm, rotation speed: about 800 rpm. In Comparative Example 5, an amorphous refractory was constructed by centrifugal projection without adding a quick-setting agent. Other conditions were the same as in Example 1 described above.
比較例 1〜4および比較例 6は、表に示す不定形耐火物を図 6に相当 する吹付け装置を使用して吹付け施工したものである。表に示す不定形 耐火物を、 施工水分を添加、 混練後したものを圧送ポンプでノズルに送 り、 ノズル内で高圧空気と共に急結剤を添加しつつ吹付けた。 施工条件 は吐出速度: 2 m 3ノ時間とした。 In Comparative Examples 1 to 4 and Comparative Example 6, the irregular-shaped refractories shown in the table were sprayed using a spraying device corresponding to FIG. The amorphous refractories shown in the table, after adding the working moisture and kneading, were sent to the nozzle by a pressure pump, and sprayed while adding a quick-setting agent together with high-pressure air in the nozzle. Construction conditions discharge speed: it was 2 m 3 Roh time.
各例で使用した不定形耐火物の組成において、揮発シリカおよび仮焼 アルミナの平均粒径は、 レーザー回折法によって求めた。 他の耐火骨材 の粒径は、 J I sふるい目開きに準じ3た測定で求めたものである。 スラ ンプ値は、 施工水分を添加した混練物について、 J I S A l 1 0 1に 準じて測定した。 In the composition of the amorphous refractory used in each example, the average particle diameters of the volatile silica and the calcined alumina were determined by a laser diffraction method. The particle size of the other refractory aggregate are those obtained by the measurement was 3 according to the JI s old eye opening. The slump value was measured for the kneaded material to which the working moisture was added according to JISA101.
'表 1および表 2はアルミナ一マグネシア質不定形耐火物の施工であ り、 アルミナ—マグネシア質不定形耐火物よりなる内張り壁面に投射あ るいは吹付けにて施工した。表 ·3はマグネシア一カーボン質不定形耐火 物の施工であり、 マグネシア—カーボ質れんがの内張り壁面に投射ある いは吹付けにて施工した。  'Tables 1 and 2 show the construction of alumina-magnesia irregular refractories. The construction was carried out by spraying or spraying on the lining wall composed of alumina-magnesia irregular refractories. Table 3 shows the construction of magnesia-carbon irregular refractories. The construction was performed by projecting or spraying the magnesia-carbo brick on the lining wall.
不定形耐火物の付着性は、 垂直壁面への付着率を求めた。 施工性は、 主に流動性が影響する配管抵抗性によって生じる施工性の程度を測定 した。 例えば配管抵抗性が大きいものは吐出時に脈動 ·息継ぎ現象ある いはノズル詰まりを生じ、 施工性が低下する。 ◎…最良、 〇…良い、 △ …やや悪い、 X…悪い 4段階で評価した。 For the adhesion of irregular refractories, the adhesion rate to the vertical wall was determined. Workability is The degree of workability caused by pipe resistance, which is mainly affected by fluidity, was measured. For example, pipes with high pipe resistance may cause pulsation and breathing or nozzle clogging at the time of discharge, resulting in poor workability. …: Best, 〇: Good, △: Somewhat bad, X: Bad
施工体の緻密性の試験方法は、 施工体から試片を切り出し、 かさ比重 を測定した。 かさ比重が大きいほど緻密性が高い。  As a test method of the compactness of the construction body, a test piece was cut out from the construction body and the bulk specific gravity was measured. The higher the bulk specific gravity, the higher the denseness.
耐スポーリング性は、 施工体から試片を切り出し、 1 5 0 0 加熱と 空冷とを繰り返し、 亀裂発生の程度を目視によって、 1〜5の五段階で 評価し、 数値が大きいほど耐スポーリング性に優れていることを示す。 The spalling resistance is determined by cutting a test piece from the construction body, repeating heating and air cooling, and visually evaluating the degree of cracking on a scale of 1 to 5 on a scale of 1 to 5. It shows that it has excellent properties.
【表 1】 【table 1】
Figure imgf000016_0001
Figure imgf000016_0001
1. 不定形耐火物組成の数値は、 質量%。 そのうち ( ) 内の数値は外掛け質量%。 1. The figures for the non-conformable refractory composition are% by mass. The numerical value in parentheses is the outer mass%.
2. 耐食性は比較例 1を 100とした指数であって、 数値が大きいほど溶損大。 2. Corrosion resistance is an index with Comparative Example 1 being 100. The larger the value, the greater the erosion.
【表 2】 [Table 2]
Figure imgf000017_0001
Figure imgf000017_0001
1. 不定形耐火物組成の数値は、 質量%。 そのうち ( ) 内の数値は外掛け質量%。 1. The figures for the non-conformable refractory composition are% by mass. The numerical value in parentheses is the outer mass%.
2. 耐食性は比較例 1を 100とした指数であって、 数値が大きいほど溶損大。 2. Corrosion resistance is an index with Comparative Example 1 being 100. The larger the value, the greater the erosion.
〔表 3] [Table 3]
Figure imgf000018_0001
Figure imgf000018_0001
1. 不定形耐火物組成の数値は、 質量%。 そのうち ( ) 内の数値は外掛け質量%。 1. The figures for the non-conformable refractory composition are% by mass. The numerical value in parentheses is the outer mass%.
2. 耐食性は比較例 5を 100とした指数であって、 数値が大きいほど溶損大。 2. Corrosion resistance is an index with Comparative Example 5 being 100. The larger the value, the greater the erosion.
表 1と表 3に示す本発明の実施例の試験結果から、本発明によって少 ない施工水分量においても優れた施工性が得られることが判る。 とく に、仮焼アルミナあるいは揮発シリカを添加した不定形耐火物の使用に よって、 付着性、 施工性、 施工体組織の緻密性、 耐食性はさらに優れた ものとなる。 耐火粗大粒子あるいは金属ファイバーを添加した実施例 4〜 7に示す不定形耐火物においても施工性に問題がなく、耐火粗大粒 子あるいは金属ファイバーがもつ特性によって、施工体の耐スポーリン グ性がさらに向上した。 From the test results of the examples of the present invention shown in Tables 1 and 3, it can be seen that the present invention can provide excellent workability even with a small amount of working water. In particular, the use of an amorphous refractory to which calcined alumina or volatile silica is added further enhances the adhesion, workability, denseness of the structure of the work body, and corrosion resistance. There is no problem in the workability even with the irregular shaped refractories shown in Examples 4 to 7 in which the refractory coarse particles or metal fibers are added, and the spalling resistance of the construction body is further improved by the characteristics of the refractory coarse particles or metal fibers. Improved.
これに対し、 吹付け施工した比較例 1〜4と比較例 6のうち、 比較例 1 は付着率が比較的高いものの、 施工性、 緻密性に劣り、 結局は耐食性 に大きく劣るものであった。  On the other hand, of Comparative Examples 1 to 4 and Comparative Example 6 which were sprayed, Comparative Example 1 had relatively high adhesion, but was poor in workability and denseness, and ultimately inferior in corrosion resistance. .
比較例 3および比較例 6は、 揮発シリカ、 仮焼アルミナともに含まな い不定形耐火物を使用したものであるが、施工性確保のために添加水分 が多いものとなった。 その結果、 施工体組織の緻密性が低下し、 耐食性 も大巾に低下している。  Comparative Examples 3 and 6 used amorphous refractories that did not contain both volatile silica and calcined alumina, but added a large amount of water to ensure workability. As a result, the compactness of the construction body structure has been reduced, and the corrosion resistance has also been significantly reduced.
比較例 2および耐火粗大粒子を添加した比較例 4はスムーズな吐出 が行なわれず、 施工性の低下が特に著しい。 遠心投射による施工ではあ るが、 急結剤を添加しない比較例 5は付着性の低下が著しい。  In Comparative Example 2 and Comparative Example 4 in which refractory coarse particles were added, smooth discharge was not performed, and workability was particularly deteriorated. Although the application was performed by centrifugal projection, in Comparative Example 5 in which no quick-setting agent was added, the adhesion was significantly reduced.
なお、 比較例 2、 比較例 4、 比較例 5の施工方法は試験片の確保が容 易でないことから、 施工体組織の緻密性、 耐スポーリング性および耐食 性の試験は行わなかった。 産業上の利用可能性  In addition, since the test methods of Comparative Examples 2, 4 and 5 were not easy to secure the test pieces, the test for the denseness, spalling resistance and corrosion resistance of the processed structure was not performed. Industrial applicability
本発明による施工は、 高炉、 高炉樋、 転炉、 取鍋、 タンデイシュ、 脱 ガス処理炉、 混銑車、 混銑炉、 均熱炉、 加熱炉、 焼成炉、 焼却炉、 溶融 炉等の溶融金属容器、 溶融金属処理装置、 高温炉の内張りあるいはその 補修に適用できる。 また、 炉壁の熱間補修のように高温状態の壁面に対 しても行うことができる。  Construction according to the present invention is performed in molten metal containers such as blast furnaces, blast furnace gutters, converters, ladles, tandems, degassing furnaces, mixed iron cars, mixed iron furnaces, soaking furnaces, heating furnaces, firing furnaces, incinerators, and melting furnaces. It can be applied to the lining of molten metal processing equipment and high-temperature furnaces or its repair. It can also be applied to hot wall surfaces such as hot repair of furnace walls.
本発明によつて不定形耐火物の施工性が改善され、得られた施工体も 優れた特性を有することになり、 さらには、 施工工数および不定形耐火 物使用量の低減によって、各種の工業炉設備の稼動率向上に大きく貢献 する。 According to the present invention, the workability of the amorphous refractory is improved, and the obtained construction body is also improved. It will have excellent properties, and will greatly contribute to improving the operation rate of various industrial furnace equipment by reducing the number of construction steps and the amount of irregular refractories used.

Claims

請 求 の 範 囲 The scope of the claims
1 . 溶融金属容器、 溶融金属処理装置または高温炉に対する不定形耐 火物の施工方法であって、 1. A method for applying an amorphous refractory to a molten metal container, molten metal processing equipment or high-temperature furnace,
予め施工水分を添加混練してホッパーに貯留した不定形耐火物を、急 結剤を添加しつつホッパーの下方に送り出し、 次いで、 遠心投射する不 定形耐火物の施工方法。  A method for applying irregularly shaped refractories that have been added and kneaded in advance and stored in a hopper, sent out below the hopper while adding a quick-setting agent, and then centrifugally projected.
2 . 遠心投射を周方向に一定の角度幅をもって行う請求項 1記載の不 定形耐火物の施工方法。  2. The method of claim 1, wherein the centrifugal projection is performed at a constant angular width in the circumferential direction.
3 . 不定形耐火物が、 さらに、 揮発シリカおよびノまたは仮焼アルミ ナょり る耐火性超微粉を 1〜 3 0質量%含む耐火骨材と分散剤を配 合した不定形耐火物である請求項 1 または 2記載の不定形耐火物の施 ェ方法。  3. The amorphous refractory is an amorphous refractory obtained by combining a refractory aggregate containing 1 to 30% by mass of a refractory ultrafine powder such as volatile silica and calcined aluminum or calcined aluminum with a dispersant. 3. The method for applying an amorphous refractory according to claim 1 or 2.
4 . 不定形耐火物が、 耐火骨材 1 0 0質量%に対し、 さらに、 耐火粗 大粒子が 5 0質量%以下配合されている請求項 1〜 3のいずれかに記 載の不定形耐火物の施工方法。  4. The amorphous refractory according to any one of claims 1 to 3, wherein the amorphous refractory contains 100% by mass of refractory aggregate and 50% by mass or less of refractory coarse particles. Construction method of the object.
5 . 不定形耐火物が、 耐火骨材 1 0 0質量%に対し、 さらに、 金属フ アイパーが 1 0質量%以下配合されている請求項 1〜 4のいずれか 1 項に記載の不定形耐火物の施工方法。  5. The amorphous refractory according to any one of claims 1 to 4, wherein the amorphous refractory further comprises 100% by mass or less of a metal firer with respect to 100% by mass of the refractory aggregate. Construction method of the object.
6 . 予め施工水分を添加混練した不定形耐火物の施工水分量が、 乾粉 状態の不定形耐火物 1 0 0質量%に対する割合で 3〜 1 0質量%であ り、 スランプ値が J I S A 1 1 0 1の規格に基づく測定法において 2 0 c m以下である請求項 1〜5に記載の不定形耐火物の施工方法。 6. The working water content of the amorphous refractory to which the working moisture was previously added and kneaded was 3 to 10% by mass relative to 100% by mass of the dry refractory amorphous refractory, and the slump value was JISA11. The method for applying an irregular shaped refractory according to any one of claims 1 to 5, wherein the measuring method is 20 cm or less in a measuring method based on the standard of 01.
7 . 溶融金属容器、 溶融金属処理装置または高温炉に対する不定形耐 火物の施工において、予め施工水分を添加混練してホッパーに貯留した 不定形耐火物を、 急結剤を添加しつつホッパーの下方に送り出し、 次い で遠心投射する不定形耐火物の施工に使用する不定形耐火物であって、 揮発シリカおょぴ Zまたは仮焼アルミナよりなる耐火性超微粉を 1〜 3 0質量%含み、 耐火骨材と分散剤とを配合した不定形耐火物。 7. In the application of irregular shaped refractories to molten metal containers, molten metal processing equipment or high-temperature furnaces, the irregular shaped refractories stored in the hopper by adding and kneading the moisture in advance are added to the hopper while the quick-setting agent is added. An irregular refractory to be used for the construction of an irregular refractory that is sent downward and then centrifugally projected. 1 to 30% by mass of a refractory ultrafine powder made of volatile silica Z or calcined alumina An amorphous refractory containing refractory aggregate and dispersant.
8 . 耐火骨材 1 0 0質量%に対し、 耐火粗大粒子を 5 0質量%以下配 合した請求項 7記載の不定形耐火物。 8. The irregular-shaped refractory according to claim 7, wherein 50% by mass or less of refractory coarse particles are mixed with 100% by mass of refractory aggregate.
9 . 耐火骨材 1 0 0質量%に対し、 金属ファイバーを 1 0質量%以下 配合した請求項 7または 8記載の不定形耐火物。  9. The irregular-shaped refractory according to claim 7 or 8, wherein metal fiber is blended in an amount of 10% by mass or less with respect to 100% by mass of the refractory aggregate.
1 0 . 予め施工水分を添加混練した不定形耐火物が、 施工水分量を乾粉 状態の不定形耐火物 1 0 0質量%に対し 3〜 1 0質量%とし、 且つ、 ス ランプ値が J I S A 1 1 0 1の規格による測定法において 2 0 c m以 下である請求項 7〜 9のいずれかに記載の不定形耐火物。  100. The amorphous refractory to which the working moisture has been added and kneaded in advance has a working moisture content of 3 to 10% by mass with respect to 100% by mass of the dry powdered amorphous refractory, and a slump value of JISA 1 The amorphous refractory according to any one of claims 7 to 9, which has a size of 20 cm or less in a measuring method according to the standard of 101.
PCT/JP2002/010767 2001-10-17 2002-10-16 Monolithic refractory applying method and monolithic refractory used therefor WO2003033980A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR10-2003-7009330A KR20040037277A (en) 2001-10-17 2002-10-16 Monolithic refractory applying method and monolithic refractory used therefor
JP2003536671A JP4418233B2 (en) 2001-10-17 2002-10-16 Construction method of irregular refractories
BRPI0212785A BRPI0212785B1 (en) 2001-10-17 2002-10-16 method of applying a monolithic refractory material to a molten metal container
KR1020037009267A KR100773574B1 (en) 2001-10-17 2002-10-16 Monolithic refractory applying method and monolithic refractory used therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-319941 2001-10-17
JP2001319941 2001-10-17

Publications (1)

Publication Number Publication Date
WO2003033980A1 true WO2003033980A1 (en) 2003-04-24

Family

ID=19137404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010767 WO2003033980A1 (en) 2001-10-17 2002-10-16 Monolithic refractory applying method and monolithic refractory used therefor

Country Status (5)

Country Link
JP (1) JP4418233B2 (en)
KR (2) KR20040037277A (en)
CN (1) CN100529628C (en)
BR (1) BRPI0212785B1 (en)
WO (1) WO2003033980A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241236A (en) * 2007-02-27 2008-10-09 Nippon Steel Corp Continuous construction device for refractory
JP2009281697A (en) * 2008-05-26 2009-12-03 Nippon Steel Corp Continuous kneader of refractory
CN101942576A (en) * 2010-09-02 2011-01-12 中信锦州铁合金股份有限公司 Manufacturing method of brasque used for smelting metal chromium
JP2019503964A (en) * 2015-12-16 2019-02-14 カルデリス フランス Castable refractory composition containing zeolite microstructure and use thereof
JP2019131446A (en) * 2018-02-01 2019-08-08 日本製鉄株式会社 Durability evaluation method for alumina-magnesia castable refractory

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5767689B2 (en) * 2013-12-11 2015-08-19 黒崎播磨株式会社 Thermal spray equipment
CN104058759B (en) * 2014-06-26 2015-09-16 中材高新成都能源技术有限公司 A kind of novel silica refractory
JP6454653B2 (en) * 2016-02-12 2019-01-16 株式会社ヨータイ Portland cement-based quick set slurry and wet spraying method
KR101719306B1 (en) 2017-01-09 2017-03-27 주식회사 유한정밀 Screw feeding type monolithic refractory input building Apparatus
CN109520305B (en) * 2018-12-31 2024-04-12 广西玉柴机器股份有限公司 Construction equipment and operation method for kiln nozzle of industrial smelting furnace
CN111550810B (en) * 2020-04-24 2022-06-14 中国电建集团河南工程有限公司 Construction method for building lining of household garbage incinerator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4883006A (en) * 1972-02-10 1973-11-06
JPS51151605A (en) * 1975-06-23 1976-12-27 Sumitomo Heavy Ind Ltd Automatic refractory agent projecting apparatus within a vessel contai ning molten metal
JPS5365311A (en) * 1976-11-25 1978-06-10 Gijiyutsu Shigen Kaihatsu Kk Device for lining cylindrical structures or metallurgical apparatus
JPH11159970A (en) * 1997-11-25 1999-06-15 Harima Ceramic Co Ltd Method for spraying refractory
JPH11294965A (en) * 1998-04-13 1999-10-29 Harima Ceramic Co Ltd Refractory spraying execution method and spraying material used for it
JP2001255075A (en) * 2000-03-14 2001-09-21 Nippon Steel Corp Method for injecting inner lining refractory material for molten metal container

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07315942A (en) * 1994-05-18 1995-12-05 Nippon Steel Corp Lining monolithic refractory of molten metal vessel
JPH09142945A (en) * 1995-11-28 1997-06-03 Harima Ceramic Co Ltd Prepared unshaped refractories for lining vessel for molten iron and lining structure of vessel for molten iron formed by using the same
CN2366816Y (en) * 1999-01-06 2000-03-01 王世松 Vertical rotable jetting reparing machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4883006A (en) * 1972-02-10 1973-11-06
JPS51151605A (en) * 1975-06-23 1976-12-27 Sumitomo Heavy Ind Ltd Automatic refractory agent projecting apparatus within a vessel contai ning molten metal
JPS5365311A (en) * 1976-11-25 1978-06-10 Gijiyutsu Shigen Kaihatsu Kk Device for lining cylindrical structures or metallurgical apparatus
JPH11159970A (en) * 1997-11-25 1999-06-15 Harima Ceramic Co Ltd Method for spraying refractory
JPH11294965A (en) * 1998-04-13 1999-10-29 Harima Ceramic Co Ltd Refractory spraying execution method and spraying material used for it
JP2001255075A (en) * 2000-03-14 2001-09-21 Nippon Steel Corp Method for injecting inner lining refractory material for molten metal container

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241236A (en) * 2007-02-27 2008-10-09 Nippon Steel Corp Continuous construction device for refractory
JP2009281697A (en) * 2008-05-26 2009-12-03 Nippon Steel Corp Continuous kneader of refractory
CN101942576A (en) * 2010-09-02 2011-01-12 中信锦州铁合金股份有限公司 Manufacturing method of brasque used for smelting metal chromium
JP2019503964A (en) * 2015-12-16 2019-02-14 カルデリス フランス Castable refractory composition containing zeolite microstructure and use thereof
US11130711B2 (en) 2015-12-16 2021-09-28 Imertech Sas Castable refractory compositions comprising zeolithic microstructures and uses thereof
JP2022075664A (en) * 2015-12-16 2022-05-18 カルデリス フランス Castable refractory compositions comprising zeolite microstructure and uses thereof
JP7340930B2 (en) 2015-12-16 2023-09-08 カルデリス フランス Castable refractory compositions containing zeolite microstructures and their uses
JP2019131446A (en) * 2018-02-01 2019-08-08 日本製鉄株式会社 Durability evaluation method for alumina-magnesia castable refractory

Also Published As

Publication number Publication date
KR20040039191A (en) 2004-05-10
KR20040037277A (en) 2004-05-06
BR0212785A (en) 2007-01-09
BRPI0212785B1 (en) 2015-10-27
JP4418233B2 (en) 2010-02-17
CN1489683A (en) 2004-04-14
CN100529628C (en) 2009-08-19
KR100773574B1 (en) 2007-11-05
JPWO2003033980A1 (en) 2005-02-03

Similar Documents

Publication Publication Date Title
CN101544505A (en) Nano Al2O3 and MgO composite ceramic bonded spinel-magnesia fireproof casting material and preparation method thereof
JP4418233B2 (en) Construction method of irregular refractories
CN1077558C (en) Refractory compsn. for producing compact castable and wet spraying method
CN1199736C (en) Spray coating method of unshape refractory
JP2005154180A (en) Alumina cement composition and monolithic refractory
JP4141158B2 (en) SiC for amorphous refractories with excellent corrosion resistance, spalling resistance, and drying properties, and raw materials for amorphous refractories
JPH10118762A (en) Wet spray method of dense casting refractory composition
JP2604310B2 (en) Pouring refractories
JP2831976B2 (en) Wet spraying method
JP6454653B2 (en) Portland cement-based quick set slurry and wet spraying method
JP5283849B2 (en) Refractory continuous kneading method, refractory continuous construction method, refractory continuous kneading device, and refractory continuous construction device
EP0798279B1 (en) Wet-gunning method
JP2007099545A (en) Alumina cement composition and monolithic refractory using the same
JP3449673B2 (en) Spraying construction method
JP2000016874A (en) Accelerating agent for refractory and spraying method using the same
JP4204246B2 (en) Silicon carbide raw material and amorphous refractory raw material for amorphous refractories with excellent drying and corrosion resistance
WO2013100049A1 (en) Method for continuous construction of fire-resistant material, fire-resistant material, and continuous construction device
JP2004307293A (en) Monolithic refractory composition
JP4575852B2 (en) Construction method of irregular refractories
JPH1030885A (en) Spraying method of monolithic refractory and constructed body thereof
JP4456193B2 (en) Refractory spraying method
JP3981433B2 (en) Refractory spraying method
JP2002071278A (en) Wet spray execution method
JP2005154191A (en) Monolithic refractory for wet spraying, and method for applying the same
JPH11310470A (en) Indeterminate refractory for wet spraying

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN JP

WWE Wipo information: entry into national phase

Ref document number: 2003536671

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020037009267

Country of ref document: KR

Ref document number: 1020037009330

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 028041356

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020037009330

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020037009267

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0212785

Country of ref document: BR