WO2003033737A1 - Gene detection method using human mitochondrial dna - Google Patents

Gene detection method using human mitochondrial dna Download PDF

Info

Publication number
WO2003033737A1
WO2003033737A1 PCT/JP2002/010640 JP0210640W WO03033737A1 WO 2003033737 A1 WO2003033737 A1 WO 2003033737A1 JP 0210640 W JP0210640 W JP 0210640W WO 03033737 A1 WO03033737 A1 WO 03033737A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
group
acid substitutions
dna
mitochondrial dna
Prior art date
Application number
PCT/JP2002/010640
Other languages
French (fr)
Japanese (ja)
Inventor
Masashi Tanaka
Original Assignee
Gifu International Institute Of Biotechnology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gifu International Institute Of Biotechnology filed Critical Gifu International Institute Of Biotechnology
Publication of WO2003033737A1 publication Critical patent/WO2003033737A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the present invention relates to a method for detecting human mitochondrial DNA genes.
  • Mitochondria are subcellular organelles found in eukaryotic cells that use the oxidative phosphorylation system within them to supply most of the energy needed for cell activity. In this mitochondria, it was revealed that there was a mitochondrial DNA independent of nuclear DNA (hereinafter abbreviated as “mt DNAj”).
  • mt DNAj mitochondrial DNA independent of nuclear DNA
  • the present inventor thought that there might be a correlation between mt DNA mutations and adult diseases, and as a result of intensive studies, found that there was a certain correlation between specific mutations and adult diseases.
  • the invention disclosed in Japanese Unexamined Patent Application Publication No. 11-11397 was made.
  • “Medium,” Confucius (55 1-47, 79 BC) argues that "Medium of Kimiko, anti-medium of dwarfs.”
  • Aristotle (384-32-22 BC) also discusses such a concept of mediumness in Nicomachus ethics.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a gene detection method for confirming amino acid substitution in mtDNA. Disclosure of the invention
  • the inventor of the present invention has stated that, among centenarians (those who have a life expectancy of 99.1 years or older at full age), mitochondrial mutations are low, that is, centuries have genetically moderate. In order to test this hypothesis and to test this hypothesis, 64 people from 100 years old, 96 patients with Parkinson's disease, and 6 young adults (from 20 to 30 years old) 9 The following facts were clarified by determining the nucleotide sequence of the cytochrome b (cytochrome b) gene in mt DNA for each group of 6 people, comparing and examining the position and frequency of amino acid substitutions between each group. Basically, the present invention has been completed.
  • two amino acids sandwiching a number mean one amino acid substitution.
  • the first letter indicates the amino acid before substitution
  • the second letter indicates the amino acid after substitution.
  • the numbers indicate the positions at which the amino acid substitutions were made in the amino acid sequence of cytochrome b.
  • I306V means that the mutation is obtained by replacing isoleucine at position 306 with valine.
  • N260D was found at a frequency of 6.25% (4/64) in the 100-year-old group, whereas it was 1 in both the young adult group (1/96) and the Parkinson's disease group (1/96). . Found at a frequency of 04%.
  • the frequency of G251S replacement in other disease control groups was intermediate between that in the Parkinson's disease group (6.9%) and that in the centenarian group (0.0%).
  • the first invention for achieving the above object is a method for detecting a gene using human mitochondrial DNA, wherein the base sequence of the human mitochondrial DNA is encoded by its base sequence. It is characterized by detecting that a protein has been substituted with a base accompanied by amino acid substitution.
  • the “base sequence” often determines the base sequence of mt DNA as it is, but becomes ⁇ type by determining the base sequence of complementary DNA or mRNA. It is also possible to determine the base sequence of mt DNA. It is also known to those skilled in the art that the genetic code of mt DNA includes non-universal codes (for example, UGA, a common stop codon, encodes tryptophan, and AUA (often encodes isoloisin). Note that) encodes Mechiyun.)
  • base substitution means that a specific base is substituted as compared with the so-called “revised Cambridge standard sequence”.
  • base substitution does not necessarily involve amino acid substitution.
  • triplets three consecutive base sequences
  • stop codon the triplet after substitution will be This is because it may encode the same amino acid as before.
  • amino acids are represented by one-letter codes in principle.
  • the base sequence encodes cytochrome b (SEQ ID NO: 1), wherein the amino acid substitution is T2A, T2I, H16R, A39T, T47K, T61A, I78T, L82F.
  • the base sequence encodes cytochrome b (SEQ ID NO: 1), wherein the amino acid substitution is T2A, T2I, T47K, T61A, L82F, Y109H, T158A, D159N. , D171N, A190T, A193T, F245L, P247A, G251S, L296M, I300T, I338V, S344N, A354T, I372V, and A380T.
  • the amino acid substitutions described here exclude all 9 amino acid substitutions found in the 100-year-old group.
  • the nucleotide sequence encodes cytochrome b (SEQ ID NO: 1), wherein the amino acid substitution is T2I, T47K, T61A, ⁇ , D171N, A190T, F245L, P247A. , I300T, S344N, and A354T.
  • the amino acid substitutions described here are amino acid substitutions specifically found only in the Parkinson's disease patient group.
  • the base sequence encodes cytochrome b (SEQ ID NO: 1), and the amino acid substitution is at least one of A193T, G251S, and I372V. It is characterized by being.
  • the amino acid substitutions described here are characteristic of the amino acid substitutions commonly found in the young adult group and the Parkinson's disease patient group.
  • FIG. 1 is a genetic map of mtDNA.
  • FIG. 2 is a conceptual diagram showing a sequence method of mtDNA.
  • FIG. 3 is a diagram showing a molecular phylogenetic network of amino acid substitutions of cytochrome b in centenarians, young adults, and patients with Parkinson's disease.
  • the lightly shaded circles in the figure indicate the number of individuals having a standard amino acid sequence or a common amino acid substitution. Open circles indicate amino acid substitutions found in centenarians, and filled circles indicate amino acid substitutions detected in Parkinson's disease patients or young adults.
  • FIG. 4 is a diagram showing a molecular phylogenetic network of amino acid substitutions of cytochrome b in centenarians, young adults, and patients with Parkinson's disease. Compared to FIG. 3, those having the same amino acid substitution in the three groups are shown as parameters (thin circles). Others are the same as in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the determination of the base system IJ of NA is performed, for example, by Masashi Tanaka, Mika Hayakawa, and Takayuki Ozawa, Automated Sequencing of Mitochondrial DNA, Methods in Enzymology,
  • GCCCGTCTAAACATTTTCAG is used to amplify about 300 bp of DNA.
  • This first PCR product contains the cytochrome b gene.
  • FL 2 FL 1 4 5 5 9 (SEQ ID NO: 5: GTAAAACGACGGCCAGTCGACCACACCGCTAACAATC), FL 1 4 8 3 7 (SEQ ID NO: 6: GTAAAACGACGGCCAGTTGAAACTTCGGCTCACTCCT), FL 1 5 1 2 6 (SEQ ID NO: 7: GTAAAACGACGGCCAGTCCTTCATAGGCTATGTCCTC), FL 1 5 4 0 5 (SEQ ID NO: 8 GTAAAACGACGGCCAGTTCCACCCTTACTACACAATC), FL 1 5 6 9 6 (SEQ ID NO: 9 GTAAAACGACGGCCAGTTTCGCCCACTAAGCCAATCA), FL 1 5 0 8 GTAAAACGACGGCCAGTAGGACAAATCAGAGAAAAAG)) and H2 (H15162 (SEQ ID NO: 11: TACTGTGGCCCCTCAGAATG)), H15340 (SEQ ID NO: 12: ATCCCGTTTCGTGCAAGAAT
  • the obtained base sequence is compared and analyzed by, for example, a computer.
  • multiple base substitutions are found in the mtDNA sequences of centenarians, young adults, and patients with Parkinson's disease.
  • not all of these base substitutions are accompanied by amino acid substitutions.
  • only base substitutions involving amino acid substitutions will be extracted and summarized for each group of centenarians, young adults, and Parkinson's disease patients. Further, sites where amino acid substitution in each group occurs particularly remarkably are specified.
  • a known method such as the Southern plot method, FISH method, RIGS method, CGH method, LOH method, direct sequence method, PCR-SSCP Gene detection can be performed by using the MASA method, MASA method, ASO probe method, PCR method, OPA method, etc. (BIOCLinica 10 (9), 1995, 18-23).
  • Example 2 Confirmation of the nucleotide sequence of the gene encoding cytochrome b in mtDNA of centenarians, young adults and patients with Parkinson's disease
  • the nucleotide sequence of the gene encoding cytochrome b was confirmed in the mtDNA of centenarians (64), young adults (96), and patients with Parkinson's disease (96). For those who live in Tokyo, Aichi and Gifu, blood cells or mucosal cells are collected from the people who have given their consent, and the total DNA is extracted. The sequence was confirmed. The DNA sequence was performed as follows based on the method reported in the above-mentioned Methods in Enzymology, Volume 264, 407-421, 1996. Table 1 shows the combinations of the primers DNA used in the first and second PCR methods.
  • the composition of the reaction solution is as follows. 1 1 total DNA (lOng /, 1), 51 L1 (10 / ⁇ ), 51 H1 (10 / zM), 41 2.5 mM dNTPs, 0.25 x 1 5 units // ⁇ 1 Taq DNA polymerase, 5 / z 1 10x PCR buffer (100 mM Tris-HC1, pH 8.3, 500 mM KC1, 15 raM MgCl 2 ), add 29.75 / il purified water to make a total volume of 50 ⁇ . Mix in a 0.2-ml MicroAmp tube.
  • This reaction solution was subjected to a PCR method using GeneAmp PCR system Model 9600 manufactured by PerkinElmer Inc.
  • the reaction conditions were: denaturation at 94 ° C for 15 seconds, annealing at 60 ° C for 15 seconds, 72.
  • the cycle of elongation for 185 seconds at C was defined as one cycle, and 40 cycles were repeated.
  • the first PCR product was used as a template, and FL 2 and H 2 were used as primers.
  • the composition of the reaction solution is as follows. 1 ⁇ l of the first PCR product solution, 2 ⁇ l of FL2 (10 ⁇ ), 2 ⁇ l of ⁇ 2 (10 ⁇ ) ⁇ 1.6 1 of 2.5 mM dNTP, 0.1 ⁇ 1 of 5 units / ⁇ 1 rTaq DNA
  • the polymerase and 2 ⁇ l of 10 ⁇ PCR buffer were mixed with 11.3 / zl of purified water to make a total volume of 20/1 in a 0.2-ml MicroAtnp tube.
  • the reaction conditions of the PCR method were as follows: thermal denaturation (94 ° C-15 seconds), annealing ( 60 ° C-I 5 seconds), extension reaction (72 ° C-3 minutes), and 40 cycles. .
  • the final extension reaction was performed at 72 ° C for 10 minutes.
  • 1.5 / X 1 of 3 M sodium acetate (pH 7.4) and 30 / xl of ethanol was added to the reaction solution, the mixture was allowed to stand on ice for 10 minutes, and centrifuged at 13,000 xg for 10 minutes at 4 ° C.
  • the precipitate was washed with 451 70% ethanol and centrifuged at 13,000 xg for 5 minutes at 4 ° C. After the precipitate was dried for 10 minutes, it was dissolved in 10 / il of purified water.
  • the sequence reaction was performed as follows.
  • the primer and dNTP were removed by an ultrafiltration method using PCR Screen (for Millipore 96iell). 280 ⁇ l of sterile water was added to the second PCR product (20 ⁇ ) to make 300 ⁇ L, and the mixture was dispensed into MultiScreen_PCR Plate. PCR plate to multi-stareenba The sample was attached to a vacuum manifold, aspirated at 24 inches Hg for 10 minutes, and subjected to ultrafiltration. 100 L of sterile water was dispensed into a PCR plate, shaken vigorously with a mixer for 5 minutes, and then transferred to a new PCR tube.
  • a premix optical terminator (DNA Sequencing Kit, BigDye TM Terminator Cycle Sequencing Ready Reaction, ABI PRISM, PE Applied Biosystems, Japan) was used.
  • a second time of the PCR product 2 mu 1 after ultrafiltration 2 / zl of Pretnix ⁇ ⁇ , - 21M13 Forward Primer (0.8 pmol / ⁇ 1) 4 z 1, 5 X Sequence Buff er 2 1, sterile water 8 mu ⁇ was added to bring the total volume to 20 l.
  • After the first heat denaturation (96 ° C-10 minutes), one cycle of heat denaturation (96 ° C-10 seconds), annealing (50 ° C-5 seconds), and extension reaction (60 ° C-4 minutes) This was repeated 25 cycles.
  • TSR Template Suppression Reagent
  • Example 3 Analysis of amino acid substitution in each group of centenarians, young adults, and Parkinson's disease patients
  • the gene encoding cytochrome b in mt DNA was obtained by the method described in Example 2. After determining the nucleotide sequence of the offspring, the nucleotide substitution and amino acid substitution were analyzed. Tables 2 and 3 show the presence or absence of the confirmed base substitution and amino acid sequence substitution. The meaning of the table is as follows. For example, the substitution on the first line in Table 2 shows that the adenylate (A) at position 14750 of mitochondrial DNA is replaced with guanine (G), and that the base substitution is made with the threonine of the second amino acid of cytochrome b. It means that it is an amino acid substitution to be replaced with an araen (ie, “T 2 A” described above).
  • FIGS. 3 and 4 visually show the amino acid substitutions in each group.
  • Fig. 3 shows the amino acid substitutions confirmed in each of all groups
  • Fig. 4 shows the amino acid substitutions confirmed in all three groups in the population. ing. Therefore, it is convenient to refer to Fig. 4 to confirm the amino acid substitution characteristic of each group.
  • 58 Mann-Whitney's U test
  • N260D was found at a frequency of 6.25% (4/64) in the 100-year-old group, whereas it was found in both the young adult group (1/96) and the Parkinson's disease group (1/96). Found at a frequency of 04%.
  • Deviations from the standard amino acid sequence are associated with increased production of reactive oxygen species from mitochondria, which can lead to age-related diseases.
  • the amino acid residue Gly251 is highly conserved in mammalian species. Gly251 is located at the outer binding site (Qo site) of ubiquinone in cytochrome b protein, and is located near Glu271 residue, which plays an important role in binding to ubiquinone. When Gly251 is replaced by Ser, Ser may form a hydrogen bond with Glu271. If this restricts the movement of Glu271, it is assumed that the binding of ubiquinone to the Qo site will change.
  • genotype Mt5178A is found at high frequency in Japanese centenarians (Tanaka M, Gong JS, Zhang J, Yoneda M, Yagi K. Mitochondrial genotype assoc iated with longevity Lancet 1998; 351: 185-6.) 0
  • Ivanova et al. Ivanova R, Lepage V, Charron D, Schachter F. Mitochondrial genotype associated with French Caucasian centenarians. Gerontology 1998; 44: 349.

Abstract

It is intended to provide a gene detection method whereby an amino acid substitution advantageous or disadvantageous in the prolonged survive of humans is confirmed in mtDNA. A gene detection method with the use of human mitochondrial DNA characterized by, in a human mitochondrial DNA base sequence encoding cytochrome b, detecting substitution of a base with at least one amino acid substitution selected from among T2A, T2I, H16R, A39T, T47K, T61A, I78T, L82F, Y109H, T158A, D159N, I164V, D171N, A190T, A191T, A193T, F245L, P247A, G251S, N260D, L296M, I300T, I306V, I338V, V343M, S344N, A354T, I369V, I372V and A380T.

Description

0210640  0210640
明 細 書 Specification
ヒ トミ トコンドリア DNAを用いた遺伝子検出方法 技術分野  Gene detection method using human mitochondrial DNA
本発明は、 ヒ トミ トコンドリア DNAの遺伝子検出方法に関するものである。 背景技術  The present invention relates to a method for detecting human mitochondrial DNA genes. Background art
ミ トコンドリアは真核細胞内に存在する細胞内小器官であり、 その内部にある 酸化的リン酸化系を使って細胞の活動に必要なエネルギーの大部分を供給してい る。 このミ トコンドリア内には、核 DNAとは独立したミ トコンドリア DN A (以 下には、 「m t DNAj と省略することがある。) が存在することが明らかにされ ており、 1 98 1年にはヒ ト m t DNAの 1 6, 56 9塩基対の全塩基配列が決 定されている (Anderson, S. , Bankier, A. T. , Barrell, Β. G. , de Brui jn, Μ. Η. L. , Coulson, A. R. , Drouin, J. , Eperon, I. C. , Nierlich, D. P. , Ror, B. A. , Sanger, F. , Schreier, P. H. , Smith, A. H. H. , Staden, R. , & Young, I. G. : Sequence and organization of the human mitochondrial genome. Nature 290, 457 - 465, 1981 )。 このヒ ト m t DNA内には、 ミ トコンドリア独自の遺伝子が存在しており、 これ までにその対応関係が明らかにされてきている (図 1を参照)。  Mitochondria are subcellular organelles found in eukaryotic cells that use the oxidative phosphorylation system within them to supply most of the energy needed for cell activity. In this mitochondria, it was revealed that there was a mitochondrial DNA independent of nuclear DNA (hereinafter abbreviated as “mt DNAj”). Has determined the entire base sequence of 16 and 569 base pairs of human mt DNA (Anderson, S., Bankier, AT, Barrell, Β. G., de Brui jn, Μ. Η. L. , Coulson, AR, Drouin, J., Eperon, IC, Nierlich, DP, Ror, BA, Sanger, F., Schreier, PH, Smith, AHH, Staden, R., & Young, IG: Sequence and organization of the Nature mitochondrial genome.Nature 290, 457-465, 1981. In this human mtDNA, a gene unique to mitochondria exists, and its correspondence has been clarified so far (Fig. 1). See).
一方、 m t DNAの突然変異が特定の疾患と結びつくことが、 分子生物学的研 究の成果から明らかにされつつある (田中 雅嗣、 ミ トコンドリア電子伝達系酵素 欠損症の分子生物学、 生化学、 63(3), 169-187, 1991, Wataru Sato, Kiyoshi Hayasaka, Yutaka Sho ji, Tsutomu Takahashi, Goro Takada, Masahiro Saito, Osamu Fukuwa, and Eiko Wachi: A mitochondria丄 tRNA mutation at 3, 256 associated with mitochondrial myopathy, encephalopathy, lactic acidesis, and stroke-like episodes (MELAS) . BIOCHEMISTRY and MOLECULAR BIOLOGY INTERNATIONAL 33(6), 1055-1061, 1994)。 例えば、 本発明者は、 m t DNAの突 然変異と成人病との間に相関性があるのではないかと考えて、鋭意検討した結果、 特定の突然変異と成人病との間に一定の相関を確認し、 特開平 1 1一 1 1 3 5 9 7号に開示された発明をなしている。 ところで、 四書の一つである 「中庸」 において、 孔子 (5 5 1— 4 7 9 B C ) は、 「君子中庸、 小人反中庸」 と説いている。 また、 アリストテレス ( 3 8 4— 3 2 2 B C ) もニコマコス倫理学において、 このような中庸の概念を論じている。 —方、 m t D N Aによって規定されている蛋白質のアミノ酸配列に関する集団遺 伝学的解析から、 ある生物の種内において隔離されているアミノ酸置換の大部分 は弱有害変異であることが示唆されている (Weinreich D. M., & Rand D. M. Contrasting patterns of nonneutral evolution in proteins encoded in nuclear and mitochondrial genomes. Genetics 2000; 156 : 385-99. )。 On the other hand, it has been revealed from the results of molecular biological research that mutations in mt DNA are linked to specific diseases (Masatsugu Tanaka, molecular biology of mitochondrial electron transfer enzyme deficiency, biochemistry, 63 (3), 169-187, 1991, Wataru Sato, Kiyoshi Hayasaka, Yutaka Shoji, Tsutomu Takahashi, Goro Takada, Masahiro Saito, Osamu Fukuwa, and Eiko Wachi: A mitochondria 丄 tRNA mutation at 3, 256 associated with mitochondrial myopathy , encephalopathy, lactic acidesis, and stroke-like episodes (MELAS). BIOCHEMISTRY and MOLECULAR BIOLOGY INTERNATIONAL 33 (6), 1055-1061, 1994). For example, the present inventor thought that there might be a correlation between mt DNA mutations and adult diseases, and as a result of intensive studies, found that there was a certain correlation between specific mutations and adult diseases. The invention disclosed in Japanese Unexamined Patent Application Publication No. 11-11397 was made. By the way, in one of the four books, "Medium," Confucius (55 1-47, 79 BC) argues that "Medium of Kimiko, anti-medium of dwarfs." Aristotle (384-32-22 BC) also discusses such a concept of mediumness in Nicomachus ethics. On the other hand, population genetic analysis of the amino acid sequence of the protein defined by mt DNA suggests that most isolated amino acid substitutions within a species of an organism are weakly deleterious mutations. (Weinreich DM, & Rand DM Contrasting patterns of nonneutral evolution in proteins encoded in nuclear and mitochondrial genomes. Genetics 2000; 156: 385-99.).
しかしながら、 m t D N Aの変異の部位及ぴ頻度について、 具体的に詳細に解 析したデータは多くはない。  However, there is not much data specifically analyzed in detail about the site and frequency of mutation of mtDNA.
本発明は、 上記した事情に鑑みてなされたものであり、 その目的は、 m t D N Aにおいて、 ァミノ酸置換を確認する遺伝子検出方法を提供することにある。 発明の開示  The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a gene detection method for confirming amino acid substitution in mtDNA. Disclosure of the invention
以下の説明において、 特に定義が与えられない限り、 全ての技術的および科学 的な単語は、 本願発明が属している技術に精通する者によく理解されているのと 同じ意味を有している。  In the following description, unless defined otherwise, all technical and scientific words have the same meaning as is well understood by those skilled in the art to which this invention belongs. .
本発明者は、 「百寿者 (満年齢で 99. 1歳以上の寿命を得た者) においては、 ミ トコンドリアの弱有害変異が少ない、すなわち百寿者は遺伝的に中庸を得ている j のではないかとの仮説を立て、 この仮説を検証するために、 百寿者 6 4名、 パー キンソン病患者 9 6名、 及び若年成人 (満 2 0歳から満 3 0歳までの者) 9 6名 の各群について、 m t D N A中のチトクローム b (cytochrome b) 遺伝子の塩基 配列を決定し、 各群間のアミノ酸置換の位置及び頻度を比較 ·検討することによ り、 以下の事実を明らかにし、 基本的には本発明を完成するに至った。  The inventor of the present invention has stated that, among centenarians (those who have a life expectancy of 99.1 years or older at full age), mitochondrial mutations are low, that is, centuries have genetically moderate. In order to test this hypothesis and to test this hypothesis, 64 people from 100 years old, 96 patients with Parkinson's disease, and 6 young adults (from 20 to 30 years old) 9 The following facts were clarified by determining the nucleotide sequence of the cytochrome b (cytochrome b) gene in mt DNA for each group of 6 people, comparing and examining the position and frequency of amino acid substitutions between each group. Basically, the present invention has been completed.
( 1 ) 多くの個体 (百寿者群 4 9名、 若年成人 7 5名、 パーキンソン病患者 7 (1) A large number of individuals (49 people per 100 people, 75 young adults, 7 Parkinson's disease patients)
0名) については、 いわゆる 「改訂版ケンブリッジ標準配列」 (Andrews R. M. , Kubacka I. , Chinnery P. Fリ Lightowlers R. N. , Turnbull D. M. , Howell N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 1999; 23: 147. ) と比較して、 アミノ酸置換を有 していなかった。 0), so-called “Revised Cambridge Standard Sequence” (Andrews RM, Kubacka I., Chinnery P. F. Lightowlers RN, Turnbull DM, Howell N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet 1999; 23: 147.) I didn't.
( 2 ) しかしながら、百寿者群では、 9種の異なったアミノ酸置換(H16R, A39T, I78T, I 164V, A191T, N260D, I306V, V343M, 及び I369V) が確認された。  (2) However, nine different amino acid substitutions (H16R, A39T, I78T, I164V, A191T, N260D, I306V, V343M, and I369V) were confirmed in the centenarian group.
なお、 本明細書中においては、 二つの英文字が数字を挟んだ状態で、 一つのァ ミノ酸置換を意味している。 その場合に、 始めの英文字が置換前のアミノ酸を示 し、 後ろの英文字が置換後のアミノ酸を示している。 また、 数字は、 アミノ酸置 換が行われた位置をチトクローム bのアミノ酸配列中の位置で示したものである。 例えば、 I306V は、 3 0 6番目のイソロイシンがバリンに置換した変異であるこ とを意味している。  In this specification, two amino acids sandwiching a number mean one amino acid substitution. In that case, the first letter indicates the amino acid before substitution, and the second letter indicates the amino acid after substitution. The numbers indicate the positions at which the amino acid substitutions were made in the amino acid sequence of cytochrome b. For example, I306V means that the mutation is obtained by replacing isoleucine at position 306 with valine.
また、 パーキンソン病患者群では、 2 1種の異なったアミノ酸置換 2ん T2I, T47K, T61A, I78T, T158A, I 164V, D171N, A190T, A193T, F245L, P247A, G251S, N260D, I300T, I306V, I338V, S344N, A354T, I369V, I372V) が確認された。 ま た、 若年成人群では、 1 5種の異なったアミノ酸置換 (T2A, I78T, L82F, Y109H, D159N, I 164V, A193T, G251S, N260D, L296M, I306V, I338V, I369V, I372V, A380T) が確認された。 In the Parkinson's disease patient group, 21 different amino acid substitutions 2 T2I, T47K, T61A, I78T, T158A, I164V, D171N, A190T, A193T, F245L, P247A, G251S, N260D, I300T, I306V, I338V , S344N, A354T, I369V, I372V). In the young adult group, 15 different amino acid substitutions (T2A, I78T, L82F, Y109H, D159N, I164V, A193T, G251S, N260D, L296M, I306V, I338V, I369V, I372V, A380T) were confirmed. Was done.
このうち、 5個のアミノ酸置換 (I78T, I164V, N260D, I306V, I369V) は、 全 ての群について、 共通に確認された。  Of these, five amino acid substitutions (I78T, I164V, N260D, I306V, I369V) were commonly identified in all groups.
( 3 ) 百寿者群においては検出されず、 かつ若年成人群とパーキンソン病患者 群において共通 に観察 さ れたァ ミ ノ 酸置換は T2A+I338V お よ び A193T+G251S+I372Vであった (なお、 複数のアミノ酸置換が、 " + " によって連結 されている場合には、 それらのアミノ酸置換が一人のヒトに集中していることを 意味している。)パーキンソン病患者群においてのみ見いだされたアミノ酸置換は T2I, T47K, T61A, T158A, D171N, A190T, F245L, P247A, I300T, S344N, および A354Tであった。  (3) Amino acid substitutions not detected in the 100-year-old group and commonly observed in the young adult group and the Parkinson's disease group were T2A + I338V and A193T + G251S + I372V ( When multiple amino acid substitutions are linked by "+", it means that those amino acid substitutions are concentrated in one human.) Only found in the Parkinson's disease patient group Amino acid substitutions were T2I, T47K, T61A, T158A, D171N, A190T, F245L, P247A, I300T, S344N, and A354T.
( 4 ) N260Dは百寿者群において 6. 25%の頻度(4/64)で見いだされたのに対し、 若年成人群 (1/96) とパーキンソン病患者群 (1/96) においてともに 1. 04%の頻 度で見いだされた。 また、百寿者群における N260Dの頻度 (4/64)は他の 2群にお ける頻度 (2/192) より有意に高かった (ォッズ比 =6. 33, p=0. 036, Fisher の直 接法)。 (5) これに対して、 パーキンソン病患者群における G251S置換の頻度 (6/96) は百寿者群における頻度 (0/64) より有意に高かった (p=0.044, Fisher の直接 法)。 他の疾患対照群における G251S置換の頻度 (心疾患患者 19/593, 3.2%) は パーキンソン病患者群における頻度 (6.9%) と百寿者群における頻度 (0.0%) の 中間であった。 (4) N260D was found at a frequency of 6.25% (4/64) in the 100-year-old group, whereas it was 1 in both the young adult group (1/96) and the Parkinson's disease group (1/96). . Found at a frequency of 04%. The frequency of N260D (4/64) in the centenarian group was significantly higher than that of the other two groups (2/192) (odds ratio = 6.33, p = 0.036, Fisher's Direct method). (5) In contrast, the frequency of G251S replacement in the Parkinson's disease group (6/96) was significantly higher than that in the centenarian group (0/64) (p = 0.044, Fisher's direct method). The frequency of G251S replacement in other disease control groups (heart disease patients 19/593, 3.2%) was intermediate between that in the Parkinson's disease group (6.9%) and that in the centenarian group (0.0%).
これらの結果から、 上記の課題を達成するための第 1の発明は、 ヒ トミ トコン ドリア DNAを用いた遺伝子検出方法であって、 ヒ トミ トコンドリア DNAの塩 基配列が、 その塩基配列がコードするタンパク質について、 アミノ酸置換を伴う 塩基に置換されていることを検出することを特徴とする。  From these results, the first invention for achieving the above object is a method for detecting a gene using human mitochondrial DNA, wherein the base sequence of the human mitochondrial DNA is encoded by its base sequence. It is characterized by detecting that a protein has been substituted with a base accompanied by amino acid substitution.
本発明において、 「塩基配列」 とは、多くの場合に m t DNAの塩基配列をその まま決定するが、 相補的な DN A或いは、 mRN Aの塩基配列を決定することに より、 錄型となる m t DNAの塩基配列を決定することも可能である。 また、 当 業者にとって公知な事実として、 m t DNAの遺伝暗号には、 非普遍暗号 (例え ば、 一般的な終止コドンである UGAがトリプトファンを、 AUA (多くの場合 にはィソロイシンをコードしている)がメチォユンをコードしているなど。) が含 まれていることに注意すべきである。  In the present invention, the “base sequence” often determines the base sequence of mt DNA as it is, but becomes 錄 type by determining the base sequence of complementary DNA or mRNA. It is also possible to determine the base sequence of mt DNA. It is also known to those skilled in the art that the genetic code of mt DNA includes non-universal codes (for example, UGA, a common stop codon, encodes tryptophan, and AUA (often encodes isoloisin). Note that) encodes Mechiyun.)
本発明において、 「塩基置換」 とは、 いわゆる 「改訂版ケンブリッジ標準配列」 に比べて、 特定の塩基が置換されていることを意味している。 但し、 塩基置換に ついては、 必ずしもアミノ酸置換を伴うものではないことに注意すべきである。 遺伝暗号では、 複数種類のトリプレット (三つの連続する塩基配列) がー種類の アミノ酸 (或いは、 停止コドン) をコードしていることから、 塩基置換が起こつ たとしても、 置換後のトリプレットが、 前と同じアミノ酸をコードしていること があり得るからである。 また、 本明細書中においては、 原則として、 アミノ酸は 一文字表記を用いる。  In the present invention, “base substitution” means that a specific base is substituted as compared with the so-called “revised Cambridge standard sequence”. However, it should be noted that base substitution does not necessarily involve amino acid substitution. In the genetic code, multiple types of triplets (three consecutive base sequences) encode one type of amino acid (or stop codon), so even if a base substitution occurs, the triplet after substitution will be This is because it may encode the same amino acid as before. In addition, in this specification, amino acids are represented by one-letter codes in principle.
第 2の発明は、 第 1の発明において、 前記塩基配列がチトクローム bをコード するもの(配列番号 1)であって、前記アミノ酸置換が T2A, T2I, H16R, A39T, T47K, T61A, I78T, L82F, Y109H, T158A, D159N, I164V, D171N, A190T, A191T, A193T, F245L, P247A, G251S, N260D, L296M, I300T, I306V, I338V, V343M, S344N, A354T, I369V, I372V, および A380T のうちの少なくともいずれか一つであることを特徴 とする。 なお、 ここに記述されたアミノ酸置換は、 本発明者が、 上記三種類の群 において確認したァミノ酸置換の全てである。 According to a second aspect, in the first aspect, the base sequence encodes cytochrome b (SEQ ID NO: 1), wherein the amino acid substitution is T2A, T2I, H16R, A39T, T47K, T61A, I78T, L82F. , Y109H, T158A, D159N, I164V, D171N, A190T, A191T, A193T, F245L, P247A, G251S, N260D, L296M, I300T, I306V, I338V, V343M, S344N, A354T, I369V, I372V, and A380T Is unique And The amino acid substitutions described here are all the amino acid substitutions confirmed by the present inventors in the above three groups.
第 3の発明は、 第 1の発明において、 前記塩基配列がチトクローム bをコード するもの(配列番号 1 )であって、前記アミノ酸置換が T2A, T2I, T47K, T61A, L82F, Y109H, T158A, D159N, D171N, A190T, A193T, F245L, P247A, G251S, L296M, I300T, I338V, S344N, A354T, I372V, および A380Tのうちの少なく ともいずれか一つで あることを特徴とする。 ここに記述されたアミノ酸置換は、 全てのアミノ酸置換 のうち、 百寿者群に見られた 9種類のアミノ酸置換を除いたものである。  In a third aspect, in the first aspect, the base sequence encodes cytochrome b (SEQ ID NO: 1), wherein the amino acid substitution is T2A, T2I, T47K, T61A, L82F, Y109H, T158A, D159N. , D171N, A190T, A193T, F245L, P247A, G251S, L296M, I300T, I338V, S344N, A354T, I372V, and A380T. The amino acid substitutions described here exclude all 9 amino acid substitutions found in the 100-year-old group.
第 4の発明は、 第 1の発明において、 前記塩基配列がチトクローム bをコード するもの (配列番号 1 ) であって、 前記アミノ酸置換が T2I, T47K, T61A, ΤΙδδΑ, D171N, A190T, F245L, P247A, I300T, S344N, および A354Tのうちの少なくとも いずれか一つであることを特徴とする。 ここに記述されたアミノ酸置換は、 パー キンソン病患者群にのみ特異的に見られたアミノ酸置換である。  In a fourth aspect, in the first aspect, the nucleotide sequence encodes cytochrome b (SEQ ID NO: 1), wherein the amino acid substitution is T2I, T47K, T61A, ΤΙδδΑ, D171N, A190T, F245L, P247A. , I300T, S344N, and A354T. The amino acid substitutions described here are amino acid substitutions specifically found only in the Parkinson's disease patient group.
第 5の発明は、 第 1の発明において、 前記塩基配列がチトクローム bをコード するもの(配列番号 1 )であって、前記ァミノ酸置換が A193T,G251S,および I372V のうちの少なくともいずれか一つであることを特徴とする。 ここに記述されたァ ミノ酸置換は、 若年成人群とパーキンソン病患者群とに共通して見られたァミノ 酸置換のうち特徴的なものである。  According to a fifth aspect, in the first aspect, the base sequence encodes cytochrome b (SEQ ID NO: 1), and the amino acid substitution is at least one of A193T, G251S, and I372V. It is characterized by being. The amino acid substitutions described here are characteristic of the amino acid substitutions commonly found in the young adult group and the Parkinson's disease patient group.
本発明によれば、 m t D N A中のチトクローム b遺伝子の特定部位のアミノ酸 配列を置換する塩基置換が起こっているか否かを検出することができる。 図面の簡単な説明  According to the present invention, it is possible to detect whether or not a base substitution for substituting an amino acid sequence at a specific site of a cytochrome b gene in mtDNA has occurred. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 m t D N Aの遺伝子地図である。  FIG. 1 is a genetic map of mtDNA.
第 2図は、 m t D N Aのシークェンス方法を示す概念図である。  FIG. 2 is a conceptual diagram showing a sequence method of mtDNA.
第 3図は、 百寿者、 若年成人、 およびパーキンソン病患者におけるチトクロー ム bのアミノ酸置換の分子系統ネットワークを示す図である。 図中の薄く塗りつ ぶした円は、 標準ァミノ酸配列あるいは共通するァミノ酸置換を有する個体数を 示す。 白抜きの円は、 百寿者で見いだされたアミノ酸置換を、 塗りつぶした円は パーキンソン病患者あるいは若年成人で検出されたアミノ酸置換を示す。 円の面 積は個体の数 (かっこ内に表示) に比例しており、 棒の長さは Grantham の値に 比例している。 FIG. 3 is a diagram showing a molecular phylogenetic network of amino acid substitutions of cytochrome b in centenarians, young adults, and patients with Parkinson's disease. The lightly shaded circles in the figure indicate the number of individuals having a standard amino acid sequence or a common amino acid substitution. Open circles indicate amino acid substitutions found in centenarians, and filled circles indicate amino acid substitutions detected in Parkinson's disease patients or young adults. Circle face The product is proportional to the number of individuals (in parentheses), and the length of the bar is proportional to the value of Grantham.
第 4図は、 百寿者、 若年成人、 およびパーキンソン病患者におけるチトクロー ム bのアミノ酸置換の分子系統ネットワークを示す図である。 図 3に比べて、 三 群で同じアミノ酸置換を有しているものは、 母数 (薄く塗りつぶした円) として 示した。 その他は、 図 3と同様である。 発明を実施するための最良の形態  FIG. 4 is a diagram showing a molecular phylogenetic network of amino acid substitutions of cytochrome b in centenarians, young adults, and patients with Parkinson's disease. Compared to FIG. 3, those having the same amino acid substitution in the three groups are shown as parameters (thin circles). Others are the same as in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
次に、 本発明の一実施形態について、 図面を参照しつつ詳細に説明するが、 本 発明の技術的範囲は、 下記の実施形態によって限定されるものではなく、 その要 旨を変更することなく、 様々に改変して実施することができる。 また、 本発明の 技術的範囲は、 均等の範囲にまで及ぶものである。  Next, an embodiment of the present invention will be described in detail with reference to the drawings. However, the technical scope of the present invention is not limited by the following embodiment, and the gist thereof is not changed. However, various modifications can be made. The technical scope of the present invention extends to an equivalent range.
ポリメラーゼ連鎖反応法 (以下には、 「P C R法」 と記載する。) による m t D M t D by polymerase chain reaction (hereinafter referred to as “PCR method”)
N Aの塩基配歹 IJの決定は、例えば、 Masashi Tanaka, Mika Hayakawa, and Takayuki Ozawa, Automated Sequencing of Mitochondrial DNA, Methods in Enzymology,The determination of the base system IJ of NA is performed, for example, by Masashi Tanaka, Mika Hayakawa, and Takayuki Ozawa, Automated Sequencing of Mitochondrial DNA, Methods in Enzymology,
Volume 264, 407 - 421, 1996に示されている方法に従って行うことができる。 この 方法は、 図 2に示したように二度の P C R法を行った後に、 二度目の P C R産物 を直接に P C R法によりシークェンスするものである。 Volume 264, 407-421, 1996. In this method, as shown in FIG. 2, after performing the PCR method twice, the second PCR product is directly sequenced by the PCR method.
一度目の P C R法では、 m t D N Aをテンプレートとして L 1 3 9 0 1 (配列 番号 3 : TCTCCAACATACTCGGATTC ) 及 び H 6 0 9 ( 配列番 号 4 : In the first PCR method, L 1391 (SEQ ID NO: 3) and H 609 (SEQ ID NO: 4) using mtDNA as a template were used as templates.
GCCCGTCTAAACATTTTCAG) の二種類のプライマーを用い、 約 3 0 0 0 b pの D N A を増幅させる。 この一度目の P C R産物には、 チトクローム bの遺伝子が包含さ れている。 GCCCGTCTAAACATTTTCAG) is used to amplify about 300 bp of DNA. This first PCR product contains the cytochrome b gene.
次に、 一度目の P C R産物をテンプレートとして F L 2 ( F L 1 4 5 5 9 (配 列番号 5 : GTAAAACGACGGCCAGTCGACCACACCGCTAACAATC)、 F L 1 4 8 3 7 (配列番 号 6: GTAAAACGACGGCCAGTTGAAACTTCGGCTCACTCCT)、 F L 1 5 1 2 6 (配列番号 7 : GTAAAACGACGGCCAGTCCTTCATAGGCTATGTCCTC ) , F L 1 5 4 0 5 (配列番号 8 GTAAAACGACGGCCAGTTCCACCCTTACTACACAATC )、 F L 1 5 6 9 6 (配列番号 9 GTAAAACGACGGCCAGTTTCGCCCACTAAGCCAATCA)、 F L 1 5 9 4 8 (配列番号 1 0 GTAAAACGACGGCCAGTAGGACAAATCAGAGAAAAAG)) 及び H 2 (H 1 5 162 (配列番号 1 1 : TACTGTGGCCCCTCAGAATG ) 、 H 1 5 3 4 0 (配列番号 1 2 : ATCCCGTTTCGTGCAAGAAT)、 H 1 5 75 5 (配列番号 1 3 : ACTGGTTGTCCTCCGATTCA)、 H 1 60 1 6 (配列番号 1 4 : CCCATGAAAGAACAGAGAAT)、 H 8 1 (配列番号 1 5 : CAGCGTCTCGCAATGCTATC) ) の二種類のプライマーを用い、二度目の P C R法を行い 約 500 b p〜約 1 000 b pの DNAを増幅させる。 最後に、 二度目の P C R 産物をテンプレートとして塩基配列を決定するための PC R法を行う。 なお、 P CR法を行うときのプライマーの組合せ、 及びプライマー DNAの塩基配列につ いては、 後述する実施例中にて示した。 Next, using the first PCR product as a template, FL 2 (FL 1 4 5 5 9 (SEQ ID NO: 5: GTAAAACGACGGCCAGTCGACCACACCGCTAACAATC), FL 1 4 8 3 7 (SEQ ID NO: 6: GTAAAACGACGGCCAGTTGAAACTTCGGCTCACTCCT), FL 1 5 1 2 6 (SEQ ID NO: 7: GTAAAACGACGGCCAGTCCTTCATAGGCTATGTCCTC), FL 1 5 4 0 5 (SEQ ID NO: 8 GTAAAACGACGGCCAGTTCCACCCTTACTACACAATC), FL 1 5 6 9 6 (SEQ ID NO: 9 GTAAAACGACGGCCAGTTTCGCCCACTAAGCCAATCA), FL 1 5 0 8 GTAAAACGACGGCCAGTAGGACAAATCAGAGAAAAAG)) and H2 (H15162 (SEQ ID NO: 11: TACTGTGGCCCCTCAGAATG)), H15340 (SEQ ID NO: 12: ATCCCGTTTCGTGCAAGAAT), H155575 (SEQ ID NO: 13: ACTGGTTGTCCTCCGCAT) A second PCR method was performed using two primers, 1 60 16 (SEQ ID NO: 14: CCCATGAAAGAACAGAGAAT) and H81 (SEQ ID NO: 15: CAGCGTCTCGCAATGCTATC), and a DNA of about 500 bp to about 1 000 bp was obtained. Is amplified. Finally, the PCR method is used to determine the nucleotide sequence using the second PCR product as a template. The combination of the primers and the base sequence of the primer DNA when performing the PCR method are shown in Examples described later.
得られた塩基配列は、例えばコンピュータにより比較解析する。多くの場合に、 百寿者、 若年成人、 およびパーキンソン病患者の m t DNAの塩基配列には、 複 数の塩基置換が確認される。 しかしながら、 それらの塩基置換の全てが、 ァミノ 酸置換を伴っているとは限らない。 このため、 特にアミノ酸置換を伴う塩基置換 のみを抽出し、 百寿者、 若年成人、 およびパーキンソン病患者の各群毎にまとめ る。更に、各群におけるアミノ酸置換が特に顕著に発生している部位を特定する。 なお、 特定のアミノ酸置換を発生する塩基置換部位が判明した後には、 既知の 方法、例えばサザンプロット法、 F I SH法、 R I GS法、 CGH法、 LOH法、 直接シークェンス法、 P CR—S SCP法、 MASA法、 AS Oプローブ法、 P CR法、 O P A法等を使用することにより、 遺伝子検出を行うことができる (BIOCLinica 10(9), 1995, 18— 23)。 実施例  The obtained base sequence is compared and analyzed by, for example, a computer. In many cases, multiple base substitutions are found in the mtDNA sequences of centenarians, young adults, and patients with Parkinson's disease. However, not all of these base substitutions are accompanied by amino acid substitutions. For this reason, in particular, only base substitutions involving amino acid substitutions will be extracted and summarized for each group of centenarians, young adults, and Parkinson's disease patients. Further, sites where amino acid substitution in each group occurs particularly remarkably are specified. After the base substitution site that causes a specific amino acid substitution has been identified, a known method such as the Southern plot method, FISH method, RIGS method, CGH method, LOH method, direct sequence method, PCR-SSCP Gene detection can be performed by using the MASA method, MASA method, ASO probe method, PCR method, OPA method, etc. (BIOCLinica 10 (9), 1995, 18-23). Example
次に、 本発明を実施例によって説明するが、 本発明はこれら実施例により限定 されるものではない。  Next, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
実施例 1 :全 DNAサンプルの抽出  Example 1: Extraction of total DNA sample
全 DN Aは宝酒造株式会社の 「Ge nとるくん」 を使用した。 その方法につい て簡単に記載すると、 次のようである。 1.5 ml のマイクロチューブに、 500 zl のキット中 G e 11丁 1^£溶液 1 と 100 /xlの血液を加え、 直ちに数秒間攪拌した。 室温で 10分間以上静置後、 室温にて 12, OOOx g以上で 5分間遠心した。 上清を取 り除き、沈殿に 1mlのキット中 G e n T L E溶液 IIを加えた。マイクロチューブ を転倒混和した後、室温にて 12, OOOx g以上で 2分間遠心し、上清を取り除いた。 沈殿に 500 // I のキット中 G e n T L E溶液 IIIを加え、 10秒間攪拌した。 室温 にて 12, OOOx g以上で 5分間遠心し、 上清を新たなマイクロチューブに移した。 上清に 500 /z lのイソプロパノールを加え、転倒混和した後、 4°C、 12, OOOx gで 5分間遠心した後、 上清を取り除き、 70%エタノールで沈殿を洗浄した後、 真空乾 燥機で乾燥させた。 全 D N Aを 50 μ 1の TE緩衝液 (10 mM Tris - HC1 ρΗ 8. 0, 1 mM EDTA) に溶解した。 All DNAs used Takara Shuzo's “Ge n Toru-kun”. A brief description of the method is as follows. To a 1.5 ml microtube, 11 1 Ge 1 solution in a 500 zl kit and 100 / xl of blood were added and immediately stirred for several seconds. After standing at room temperature for 10 minutes or more, centrifugation was performed at room temperature at 12, OOOx g or more for 5 minutes. Take the supernatant And 1 ml of Gen TLE solution II in the kit was added to the precipitate. After inverting and mixing the microtube, the mixture was centrifuged at room temperature over 12, OOOx g for 2 minutes, and the supernatant was removed. To the precipitate, 500 // I Gen TLE solution III in the kit was added and stirred for 10 seconds. The mixture was centrifuged at room temperature at 12, OOOxg or more for 5 minutes, and the supernatant was transferred to a new microtube. Add 500 / zl of isopropanol to the supernatant, mix by inversion, centrifuge at 4 ° C, 12, OOOxg for 5 minutes, remove the supernatant, wash the precipitate with 70% ethanol, and dry in a vacuum dryer. And dried. Total DNA was dissolved in 50 μl of TE buffer (10 mM Tris-HC1 ρΗ 8.0, 1 mM EDTA).
実施例 2 :百寿者、 若年成人及びパーキンソン病患者の m t D N Aにおけるチ トクローム bをコードする遺伝子の塩基配列の確認  Example 2: Confirmation of the nucleotide sequence of the gene encoding cytochrome b in mtDNA of centenarians, young adults and patients with Parkinson's disease
百寿者 (6 4名)、 若年成人 (9 6名) 及びパーキンソン病患者 (9 6名) の m t D N A中、 チトクローム bをコードする遺伝子の塩基配列を確認した。 百寿者 については、 東京 ·愛知 ·岐阜に在住する百寿者を訪問し、 同意の得られた百寿 者から血液細胞あるいは頰粘膜細胞を採取し、 全 DNAを抽出したのち、 該当する 塩基配列を確認 した。 D N Aシー ク ェ ンスは、 前出の Methods in Enzymology, Volume 264, 407-421, 1996に報告されている方法に基づき、 次のよ うにして行った。 また、 一度目および二度目の P C R法に使用したプライマー D N Aの組合せは、 表 1に示した。  The nucleotide sequence of the gene encoding cytochrome b was confirmed in the mtDNA of centenarians (64), young adults (96), and patients with Parkinson's disease (96). For those who live in Tokyo, Aichi and Gifu, blood cells or mucosal cells are collected from the people who have given their consent, and the total DNA is extracted. The sequence was confirmed. The DNA sequence was performed as follows based on the method reported in the above-mentioned Methods in Enzymology, Volume 264, 407-421, 1996. Table 1 shows the combinations of the primers DNA used in the first and second PCR methods.
—度目の P C R 二度目の P C R 読み取り可能領域 —Second PCR Second PCR readable area
L 1 H 1 鎖長 F L 2 H 2 鎖長 開始 終了  L 1 H 1 chain length FL 2 H 2 chain length start end
L13901 H609 3297 FL14559 H15162 641 14580 14979  L13901 H609 3297 FL14559 H15162 641 14580 14979
FL14837 H15340 541 14858 15257  FL14837 H15340 541 14858 15257
FL15126 H15745 667 15147 15546  FL15126 H15745 667 15147 15546
FL15405 H16016 649 15426 15825  FL15405 H16016 649 15426 15825
FL15696 H81 992 15717 161 16  FL15696 H81 992 15717 161 16
FL15948 H81 740 15969 16368 一度目の P C R法は全 D N Aをテンプレートとし、 L 1及び H Iをプライマー として使用した。 反応溶液の組成は次の通りである。 1 1の全 DNA (lOng/, 1)、 5 1の L 1 (10/ Μ)、 5 1 の H 1 (10/z M)、 4 1の 2.5 mM dNTP、 0.25 x 1 の 5 units/ /ζ 1 Taq DNAポリメラーゼ、5/z 1の 10x PCR緩衝液(100 mM Tris - HC1, pH 8.3, 500 mM KC1, 15 raM MgCl2) に 29.75/i l の精製水を加えて全量を 50 μ ΐ として 0.2-ml MicroAmpチューブ中で混和した。 この反応溶液をパーキンエルマ 一社製の GeneAmp PCR system Model 9600により P CR法を行った。 反応条件は、 94°Cで 15秒間の変性、 60°Cで 15秒間のァニーリング、 72。Cで 185秒間の伸長反 応を 1サイクルとして、 4 0サイクル繰り返した。 反応溶液に 5μ 1の 3M酢酸ナ トリウム(ΡΗ 7.4)と 100 Ai lのエタノールを添加後、 氷上に 10分間静置し、 4°Cに て 13, 000xgで 10分間遠心した。 沈殿を 150 μ 1 の 70°/。エタノールで洗浄後、 4°C にて 13,000xgで 5分間遠心した。 沈殿を 10分間乾燥した後、 50//1 の精製水又 は TE (10 mM Tris-HCl, pH 8.0, 1 raM EDTA) に溶解した。 FL15948 H81 740 15969 16368 In the first PCR, total DNA was used as a template, and L1 and HI were used as primers. Used as The composition of the reaction solution is as follows. 1 1 total DNA (lOng /, 1), 51 L1 (10 / Μ), 51 H1 (10 / zM), 41 2.5 mM dNTPs, 0.25 x 1 5 units // ζ 1 Taq DNA polymerase, 5 / z 1 10x PCR buffer (100 mM Tris-HC1, pH 8.3, 500 mM KC1, 15 raM MgCl 2 ), add 29.75 / il purified water to make a total volume of 50 μΐ. Mix in a 0.2-ml MicroAmp tube. This reaction solution was subjected to a PCR method using GeneAmp PCR system Model 9600 manufactured by PerkinElmer Inc. The reaction conditions were: denaturation at 94 ° C for 15 seconds, annealing at 60 ° C for 15 seconds, 72. The cycle of elongation for 185 seconds at C was defined as one cycle, and 40 cycles were repeated. After adding 5 μl of 3M sodium acetate ( Ρ 7.4) and 100 AiL of ethanol to the reaction solution, the mixture was allowed to stand on ice for 10 minutes, and centrifuged at 13,000 × g at 4 ° C. for 10 minutes. Precipitate 150 µl of 70 ° /. After washing with ethanol, the mixture was centrifuged at 13,000 xg for 5 minutes at 4 ° C. After the precipitate was dried for 10 minutes, it was dissolved in 50 // 1 purified water or TE (10 mM Tris-HCl, pH 8.0, 1 raM EDTA).
二度目の P C R法は上記した一度目の P CR産物をテンプレートとし、 F L 2 及び H 2をプライマーとして使用した。 反応溶液の組成は次の通りである。 1 μ 1 の一度目の P C R産物溶液、 2μ 1 の F L 2 (10 μ Μ)、 2μ 1 の Η2 (10 μ Μ)ヽ 1.6 1の 2.5 mM dNTP, 0.1 μ 1の 5 units/ μ 1 rTaq DNAポリメラーゼ、 2μ 1 の 10x PCR 緩衝液に 11.3/z l の精製水を加えて全量を 20/ 1 として 0.2 - ml MicroAtnpチューブ中で混和した。 P CR法の反応条件は、熱変性(94°C_ 15秒)、 アニーリング (60°C— I5秒)、 伸長反応 (72°C— 3分) を 1サイクルとし、 40 サ イタル行った。 最後の伸長反応は 72°C— 10分とした。 反応溶液に 1.5/X 1の 3 M 酢酸ナトリウム(pH 7.4)と 30/x lのエタノールを添加後、 氷上に 10分間静置し、 4°Cにて 13,000xgで 10分間遠心した。 沈殿を 45 1 の 70%エタノールで洗浄後、 4°Cにて 13,000xgで 5分間遠心した。 沈殿を 10分間乾燥した後、 10/i lの精製水 に溶解した。 In the second PCR, the first PCR product was used as a template, and FL 2 and H 2 were used as primers. The composition of the reaction solution is as follows. 1 μl of the first PCR product solution, 2 μl of FL2 (10 μΜ), 2 μl of Η2 (10 μΜ) ヽ 1.6 1 of 2.5 mM dNTP, 0.1 μ1 of 5 units / μ1 rTaq DNA The polymerase and 2 μl of 10 × PCR buffer were mixed with 11.3 / zl of purified water to make a total volume of 20/1 in a 0.2-ml MicroAtnp tube. The reaction conditions of the PCR method were as follows: thermal denaturation (94 ° C-15 seconds), annealing ( 60 ° C-I 5 seconds), extension reaction (72 ° C-3 minutes), and 40 cycles. . The final extension reaction was performed at 72 ° C for 10 minutes. After adding 1.5 / X 1 of 3 M sodium acetate (pH 7.4) and 30 / xl of ethanol to the reaction solution, the mixture was allowed to stand on ice for 10 minutes, and centrifuged at 13,000 xg for 10 minutes at 4 ° C. The precipitate was washed with 451 70% ethanol and centrifuged at 13,000 xg for 5 minutes at 4 ° C. After the precipitate was dried for 10 minutes, it was dissolved in 10 / il of purified water.
シークェンス反応は、 次のようにして行った。  The sequence reaction was performed as follows.
( 1 ) テンプレートの精製  (1) Purification of template
PCR Screen (Millipore社 96iell用)を用いて限外濾過法によりプライマーと dNTPの除去をした。 二度目の P CR産物 (20 μ ΐ) に滅菌水 280 μ 1 を加え、 300 μ Lとし、 MultiScreen_PCR Plateに分注した。 PCR Plateをマルチスタリーンバ キュームマニホールド に装着し、 24 inches Hgで 10分間吸引し、 限外濾過を行 つた。 100 Lの滅菌水を PCR Plateに分注し、ミキサ一で激しく 5分間振った後、 新しい PCRチューブに移した。 The primer and dNTP were removed by an ultrafiltration method using PCR Screen (for Millipore 96iell). 280 μl of sterile water was added to the second PCR product (20 μΐ) to make 300 μL, and the mixture was dispensed into MultiScreen_PCR Plate. PCR plate to multi-stareenba The sample was attached to a vacuum manifold, aspirated at 24 inches Hg for 10 minutes, and subjected to ultrafiltration. 100 L of sterile water was dispensed into a PCR plate, shaken vigorously with a mixer for 5 minutes, and then transferred to a new PCR tube.
( 2) シークェンス反応  (2) Sequence reaction
プレミックス资光 Terminator (DNA Sequencing Kit, BigDye™ Terminator Cycle Sequencing Ready Reaction, ABI PRISM, PE Applied Biosystems, Japan)を用レヽ た。 限外濾過後の二度目の P C R産物 2μ 1 に、 2/z l の Pretnix μ ΐ, - 21M13 Forward Primer (0.8 pmol/ μ 1) 4 z 1, 5 X Sequence Buff er 2 1,滅菌水 8 μ ΐ を加え、 全量を 20 l とした。 最初の熱変性 (96°C— 10分) の後、 熱変性 (96°C 一 10秒)、 アニーリング (50°C— 5秒)、 伸長反応 (60°C— 4分) を 1サイクルと し、 これを 25サイクル繰り返した。 A premix optical terminator (DNA Sequencing Kit, BigDye ™ Terminator Cycle Sequencing Ready Reaction, ABI PRISM, PE Applied Biosystems, Japan) was used. A second time of the PCR product 2 mu 1 after ultrafiltration, 2 / zl of Pretnix μ ΐ, - 21M13 Forward Primer (0.8 pmol / μ 1) 4 z 1, 5 X Sequence Buff er 2 1, sterile water 8 mu ΐ was added to bring the total volume to 20 l. After the first heat denaturation (96 ° C-10 minutes), one cycle of heat denaturation (96 ° C-10 seconds), annealing (50 ° C-5 seconds), and extension reaction (60 ° C-4 minutes) This was repeated 25 cycles.
( 3 ) DyeTerminatorの除去  (3) DyeTerminator removal
ゲルろ過(96iell用)乾燥した Sephadex G50 Superfineを、 45 Lカラムロー ダーを用いて、 マルチスクリーン HVプレートの wellに充填した。 Sephadexを膨 潤化するため wellに 300 /zL の滅菌水を加え、 室温で 3時間放置した。 96 - well プレートの上にマルチスクリーン HVプレートを置き, 740Xgで 6分間遠心した。 Sequence反応液を wellの中央に静かに加えた。マ/レチスクリーン HVプレートを 8連の GeneAmp Strip Tubes (8- tubes/strip)を並べた上に重ね, 740 X で 6分 間遠心した。 8連の GeneAmp Strip Tubesを遠心式真空乾燥機にかけ 50分間乾燥 させた。 乾燥後のサンプルは、 アルミホイールなどで遮光し冷凍保存した。 Gel filtration (for 96iell) dried Sephadex G50 Superfine was packed into the well of a multi-screen HV plate using a 45 L column loader. To swell the Sephadex, sterile water at 300 / zL was added to the wells and left at room temperature for 3 hours. The multi-screen HV plate was placed on the 96 -well plate and centrifuged at 740 Xg for 6 minutes. The Sequence reaction solution was gently added to the center of the well. The Ma / ReciScreen HV plate was placed on top of eight GeneAmp Strip Tubes (8-tubes / strip) and centrifuged at 740X for 6 minutes. Eight GeneAmp Strip Tubes were dried in a centrifugal vacuum drier for 50 minutes. The dried sample was stored frozen, protected from light by an aluminum wheel or the like.
(4) DNA Sequencing  (4) DNA Sequencing
20 1の Template Suppression Reagent (TSR) を Sequence反応産物力 S入った 8連の GeneAmp Strip Tubesに加え、 10分間室温で放置した。 Vortexミキサーを 十分に施し、 スピンダウンした。 95°Cで 2分間加熱した後、 サンプルを直ちに氷 で急冷した (10 分間)。 8 連の GeneArap tube 中のサンプルを ABI PRISM™ 310 Genetic Analyzerにかけ、 塩基配列を決定した。  Twenty one Template Suppression Reagent (TSR) was added to eight GeneAmp Strip Tubes containing Sequence Reaction Product S and left at room temperature for 10 minutes. Vortex mixer was applied well and spun down. After heating at 95 ° C for 2 minutes, the sample was immediately quenched on ice (10 minutes). Samples in eight GeneArap tubes were run on ABI PRISM ™ 310 Genetic Analyzer to determine the nucleotide sequence.
実施例 3 :百寿者、 若年成人、 およびパーキンソン病患者の各群におけるアミ ノ酸置換の解析  Example 3: Analysis of amino acid substitution in each group of centenarians, young adults, and Parkinson's disease patients
実施例 2に記載の方法により、 m t DNA中チトクローム bをコードする遺伝 子の塩基配列を決定した後、 その塩基置換おょぴアミノ酸置換の解析を行った。 表 2、 および表 3には、 確認された塩基置換および、 アミノ酸配列の置換の有無 を示した。 なお、 表の意味は次の通りである。 例えば、 表 2中一行目の置換は、 ミ トコンドリア D N Aの 14 750番目のアデェン (A) がグァニン (G ) に置換さ れており、 その塩基置換は、 チトクローム bの 2番目のアミノ酸のスレオニンを ァラエンに置き換えるアミノ酸置換となる (すなわち、 前述の 「T 2 A」) ことを 意味している。 The gene encoding cytochrome b in mt DNA was obtained by the method described in Example 2. After determining the nucleotide sequence of the offspring, the nucleotide substitution and amino acid substitution were analyzed. Tables 2 and 3 show the presence or absence of the confirmed base substitution and amino acid sequence substitution. The meaning of the table is as follows. For example, the substitution on the first line in Table 2 shows that the adenylate (A) at position 14750 of mitochondrial DNA is replaced with guanine (G), and that the base substitution is made with the threonine of the second amino acid of cytochrome b. It means that it is an amino acid substitution to be replaced with an araen (ie, “T 2 A” described above).
表 2  Table 2
i 14,7 e50 t A j TS Cytb 2 Thr Ala nsyn con  i 14,7 e50 t A j TS Cytb 2 Thr Ala nsyn con
14,751 C T TS Cytb 2 Thr lie nsyn con  14,751 C T TS Cytb 2 Thr lie nsyn con
—一  —One
14,793 A G TS Cytb 16 His Arg nsyn var  14,793 A G TS Cytb 16 His Arg nsyn var
14 86】 G A TS Cytb 39 Ala Thr nsyn var  14 86) G A TS Cytb 39 Ala Thr nsyn var
】4 886 C A TV Cytb 47 Thr Lys nsyn con  】 4 886 C A TV Cytb 47 Thr Lys nsyn con
14,927 A G TS Cytb 61 Thr A,la nsyn con  14,927 A G TS Cytb 61 Thr A, lansyn con
14,979 T C TS Cytb 78 lie Thr nsyn var  14,979 T C TS Cytb 78 lie Thr nsyn var
14,990 c T 1 S Cytb oつ し eu rne nsyn var  14,990 c T 1 S Cytb o eu rne nsyn var
1 し Cytb nn Tyr HIS nsyn var  1 Cytb nn Tyr HIS nsyn var
A C Q A C Q
VJ し O nr Ala. nsyn con VJ then Onr Ala.nsyn con
1 ゥっ Δ 150 A en Asn n mcvyfl var  1 Δ Δ 150 A en Asn n mcvyfl var
15,236 A G TS Cytb 164 lie Val nsyn con  15,236 A G TS Cytb 164 lie Val nsyn con
15,257 G A TS Cytb 171 Asp Asn nsyn con  15,257 G A TS Cytb 171 Asp Asn nsyn con
15,314 G A TS Cytb 190 Ala Thr nsyn var  15,314 G A TS Cytb 190 Ala Thr nsyn var
15,323 G A TS Cytb 193 Ala Thr nsyn var  15,323 G A TS Cytb 193 Ala Thr nsyn var
15,479 T C TS Cytb 245 Phe Leu nsyn con  15,479 T C TS Cytb 245 Phe Leu nsyn con
15,485 C G TV Cytb 247 Pro Ala nsyn con  15,485 C G TV Cytb 247 Pro Ala nsyn con
15,497 G A TS Cytb 251 Gly Ser ' nsyn con  15,497 G A TS Cytb 251 Gly Ser 'nsyn con
15,524 A G TS Cytb 260 Asn Asp nsyn con  15,524 A G TS Cytb 260 Asn Asp nsyn con
15,632 C A TV Cytb 296 Leu Met nsyn var  15,632 C A TV Cytb 296 Leu Met nsyn var
15,645 T C TS Cytb 300 lie Thr nsyn var  15,645 T C TS Cytb 300 lie Thr nsyn var
15,662 A G TS Cytb 306 lie Val nsyn var  15,662 A G TS Cytb 306 lie Val nsyn var
15,758 A G TS Cytb 338 lie Val nsyn con  15,758 A G TS Cytb 338 lie Val nsyn con
15,773 G A TS Cytb 343 Val Met nsyn con  15,773 G A TS Cytb 343 Val Met nsyn con
15,777 G A TS 344 Ser Asn nsyn var  15,777 G A TS 344 Ser Asn nsyn var
15,806 G A TS Cytb 354 Ala Thr nsyn con  15,806 G A TS Cytb 354 Ala Thr nsyn con
15,851 A G TS Cytb 369 He Val nsyn var  15,851 A G TS Cytb 369 He Val nsyn var
15,860 A G TS Cytb 372 He Val nsyn var  15,860 A G TS Cytb 372 He Val nsyn var
15,884 G A TS Cytb 380 Ala Thr nsyn var
Figure imgf000014_0001
15,884 GA TS Cytb 380 Ala Thr nsyn var
Figure imgf000014_0001
ε ε
Zl Zl
0l790l/Z0df/X3d また、 図 3および図 4には、 各群において、 どのうようなアミノ酸置換を有し ているかを視覚的に示した。 このうち、 図 3は、 全ての群のそれぞれにおいて確 認されたアミノ酸置換を示しているのに対し、 図 4では、 三群に共通して確認さ れたアミノ酸置換を母数に含めて示している。 このため、 各群に特徴的なアミノ 酸置換を確認するには、 図 4を参照するのが便利である。 0l790l / Z0df / X3d FIGS. 3 and 4 visually show the amino acid substitutions in each group. Of these, Fig. 3 shows the amino acid substitutions confirmed in each of all groups, while Fig. 4 shows the amino acid substitutions confirmed in all three groups in the population. ing. Therefore, it is convenient to refer to Fig. 4 to confirm the amino acid substitution characteristic of each group.
このうち、 図 3 (A) に示したように、 百寿者群では 9種の異なったアミノ酸 置換が見いだされたのに対し、若年成人群 (図 3 ( B ) ) およびパーキンソン病患 者群 (図 3 ( C ) ) では、 それぞれ 15種および 21種のアミノ酸置換が見いだされ た。 大多数の個体 (百寿者群 49名/ 64名中、若年成人群 75名 /96名中、 パーキ ンソン病患者群 70名 Z96名中) は、 いわゆる 「改訂版ケンブリッジ標準配列」 と比較して、 アミノ酸置換を有していなかった。  As shown in Fig. 3 (A), nine different amino acid substitutions were found in the centenarian group, whereas the young adult group (Fig. 3 (B)) and the Parkinson's disease group In Figure 3 (C), 15 and 21 amino acid substitutions were found, respectively. The majority of the individuals (49/64 in the 100-year-old group, 75/96 in the young adult group, 70 in the Parkinson's disease group and Z96) compared with the so-called “revised Cambridge Standard Sequence”. And had no amino acid substitutions.
また、 5個のアミノ酸置換 (I78T, I164V, N260D, I306V, I369V) は 3群に共 通に見られた。 百寿者群では H16R, A39T, A191T, および V343Mが 1個体ずつに 見いだされた。 若年成人群では、 百寿者群で検出されなかった 7種のアミノ酸置 換が見いだされた。 T2A+I338V, Y109H, D159N, L296Mおよび A380T はそれぞれ 1 個体に、 A193T+G251S+L82Fは 1個体に、 A193T+G251S+I372Vは 2個体において見 いだされた。  In addition, five amino acid substitutions (I78T, I164V, N260D, I306V, I369V) were commonly observed in three groups. H16R, A39T, A191T, and V343M were found individually in the 100-year-old group. In the young adult group, seven amino acid substitutions were found that were not detected in the centenarian group. T2A + I338V, Y109H, D159N, L296M and A380T were found in one individual, A193T + G251S + L82F in one individual, and A193T + G251S + I372V in two individuals.
標準アミノ酸配列からの逸脱程度を定量化するために、 Granthamが報告した値 (Grantham R. Amino acid difference formula to help explain protein evolution. Science 1974 ; 185: 862-4. ) に従って、 標準アミノ酸と変化したアミノ酸の間の 物理化学的相違の合計を個体ごとに計算した。 ただし、 3 群において共通に見ら れたアミノ酸置換はこの計算から除外した。 百寿者群における標準アミノ酸配列 からの逸脱度 (Grantham値: 58, 58, 29, 21が各 1個体、 60個体については 0) は、 若年成人群における逸脱度 43, 143, 136, 87, 83, 58, 23, 15 が各 1個 体、 88 個体については 0 ) よりも統計的に有意に小さかった (Pく 0. 0001, Wald-Wolfowitzのラン検定)。 In order to quantify the degree of deviation from the standard amino acid sequence, the standard amino acid was changed according to the value reported by Grantham (Grantham R. Amino acid difference formula to help explain protein evolution. Science 1974; 185: 862-4.). The sum of physicochemical differences between amino acids was calculated for each individual. However, amino acid substitutions commonly found in the three groups were excluded from this calculation. The deviation from the standard amino acid sequence in the 100-year-old group (Grantham values: 58, 58, 29, and 21 was 1 for each individual and 60 for 60 individuals) was the deviation 43 , 143, 136, and 87 for the young adult group. , 83, 58, 23, and 15 were statistically significantly less than 0 for one individual and 88 individuals (P <0.0001, Wald-Wolfowitz run test).
百寿者群においては検出されず、 かつ若年成人群とパーキンソン病患者群にお いて共通に観察されたァミノ酸置換は T2A+I338Vおよび A193T+G251S+I372Vであ つた。パーキンソン病患者群においてのみ見いだされたアミノ酸置換は T2I, Τ47Κ, T61A, T158A, D171N, A190T, F245L, P247A, I300T, S344N, および A354T であ つた。 パーキンソン病患者群における標準アミノ酸配列からの逸脱度 (Grantham 値: 143が 5個体、 114, 89, 89, 87, 78が各 1個体、 58が 5個体、 46, 29, 27, 27, 23, 22が各 1個体、 75個体については 0) は、 百寿者群における逸脱度より も統計的に有意に大きく(pく 0. 0001, Wald- Wolfowitzのラン検定おょぴ p=0. 0058, Mann-Whitney の U 検定)、 また若年成人群における逸脱度よりも大きかった (p<0. 0001, Wald-Wolfowitzのラン検定および p=0. 0097, Mann-Whitneyの U検 定)。 Not detected in centenarians group, and Amino acid substitutions observed in common have you young adults group and a Parkinson's disease patient group T2A + I338V and A193T + G 2 51S + I372V der ivy. Amino acid substitutions found only in the Parkinson's disease group were T2I, {47}, T61A, T158A, D171N, A190T, F245L, P247A, I300T, S344N, and A354T. Degree of deviation from the standard amino acid sequence in the Parkinson's disease patient group (Grantham value: 143 for 5 individuals, 114, 89, 89, 87, 78 for 1 individual, 58 for 5 individuals, 46, 29, 27, 27, 23, 22 is 1 for each individual and 0 for 75 individuals) is statistically significantly larger than the deviance in the centenarian group (p <0.0001, Wald-Wowowitz run test p = 0.000). 58 , Mann-Whitney's U test), and was greater than the deviance in the young adult group (p <0.0001, Wald-Wolfowitz's run test and p = 0.0097, Mann-Whitney's U test).
次に、それぞれの群において 5%以上の頻度で見いだされたァミノ酸置換につい て統計的に解析した。 N260Dは百寿者群において 6. 25%の頻度(4/64) で見いださ れたのに対し、 若年成人群 (1/96) とパーキンソン病患者群 (1/96) においてと もに 1. 04% の頻度で見いだされた。 百寿者群における N260Dの頻度 (4/64)は他 の 2群における頻度 (2/192) より有意に高かった (ォッズ比 =6. 33, p=0. 036, Fisherの直接法)。 これらの観察結果は N260D置換を有することが長寿につなが ることを示唆しているが、 その機能的影響についてはさらに検討を要する。 Next, the amino acid substitution found in each group at a frequency of 5% or more was statistically analyzed. N260D was found at a frequency of 6.25% (4/64) in the 100-year-old group, whereas it was found in both the young adult group (1/96) and the Parkinson's disease group (1/96). Found at a frequency of 04%. N260D frequency in centenarians group (4/64) was significantly higher than the frequency (2/192) in the other two groups (Ozzu ratio = 6. 3 3, p = 0. 036, direct method of Fisher) . These observations suggest that having the N260D substitution can lead to longevity, but its functional effects require further investigation.
これに対して、 パーキンソン病患者群における G251S置換の頻度 (6/%) は百 寿者群における頻度 (0/64) より有意に高かった (p=0. 044, Fisher の直接法)。 他の疾患対照群における G251S置換の頻度 (心疾患患者 19/593, 3. 2%) はパーキ ンソン病患者群における頻度 (6. 9%) と百寿者群における頻度 (0. 0%) の中間で あった。  In contrast, the frequency of G251S replacement in the Parkinson's disease group (6 /%) was significantly higher than the frequency in the perpetual group (0/64) (p = 0.044, Fisher's direct method). The frequency of G251S replacement in other disease control groups (heart disease patients 19/593, 3.2%) was the frequency in the Parkinson's disease group (6.9%) and the frequency in the centenarian group (0.0%). Was in between.
G251S 置換のような標準アミノ酸配列からの逸脱は、 ミ トコンドリアからの活 性酸素種の産生上昇を伴い、それが加齢に関連する疾患をもたらす可能性がある。 アミノ酸残基 Gly251は哺乳類の種において高度に保存されている。 Gly251はチ トクローム b蛋白質におけるュビキノンの外側結合部位 (Qo site) に位置してお り、 ュビキノンとの結合に重要な働きをしている Glu271 残基の近傍にある。 Gly251 が Serによって置換されると、 Serは Glu271 と水素結合を形成する可能 性がある。 これによつて Glu271 の動きが制限されると、 ュビキノンの Qo site への結合が変化すると想定される。 これらの知見は G251S置換は長期生存に不利 であることを示唆している。 本発明者は、 既に遺伝子型 Mt5178Aが日本の百寿者において高い頻度で見いだ されることを報告した ( Tanaka M, Gong JS, Zhang J, Yoneda M, Yagi K. Mitochondrial genotype assoc iated with longevity. Lancet 1998; 351: 185-6. ) 0 一方、 Ivanovaら (Ivanova R, Lepage V, Charron D, Schachter F. Mitochondrial genotype associated with French Caucasian centenarians. Gerontology 1998; 44: 349. ) は遺伝子型 Mt9055Aがフランスの百寿者に高い頻度で見いだされたと 報告している。 標準アミノ酸配列からの逸脱が少ないことは、 遺伝子型を異にす るアジアとヨーロッパの百寿者に共通する現象である可能性がある。結論として、 少なくともチトクローム bのアミノ酸配列に関して中庸を得ることは、 長寿に関 して重要な遺伝的要因であると言える。 Deviations from the standard amino acid sequence, such as the G251S substitution, are associated with increased production of reactive oxygen species from mitochondria, which can lead to age-related diseases. The amino acid residue Gly251 is highly conserved in mammalian species. Gly251 is located at the outer binding site (Qo site) of ubiquinone in cytochrome b protein, and is located near Glu271 residue, which plays an important role in binding to ubiquinone. When Gly251 is replaced by Ser, Ser may form a hydrogen bond with Glu271. If this restricts the movement of Glu271, it is assumed that the binding of ubiquinone to the Qo site will change. These findings suggest that G251S substitution is disadvantageous for long-term survival. The present inventors have already reported that genotype Mt5178A is found at high frequency in Japanese centenarians (Tanaka M, Gong JS, Zhang J, Yoneda M, Yagi K. Mitochondrial genotype assoc iated with longevity Lancet 1998; 351: 185-6.) 0 On the other hand, Ivanova et al. (Ivanova R, Lepage V, Charron D, Schachter F. Mitochondrial genotype associated with French Caucasian centenarians. Gerontology 1998; 44: 349.) has the genotype Mt9055A. It reports that it was found frequently in the centenarians in France. Low deviations from the standard amino acid sequence may be a common phenomenon among Asian and European centenarians who differ in genotype. In conclusion, gaining at least a moderate level of cytochrome b amino acid sequence is an important genetic factor for longevity.
本明細書中の研究から推論できることは、少なく とも次の 2点である。第一に、 多様なアミノ酸置換が若年成人群において見いだされたことは、 これらの置換が 成熟期までの個体の生存、 およびそのゲノムの次世代への伝達にほとんど影響を 及ぼさないことを意味している。 第 2に、 特定のアミノ酸置換が百寿者において 存在せず、 パーキンソン病患者において存在することは、 これらのアミノ酸置換 が長期生存に対して不利であり、 成人発症性疾患に罹り易くさせる効果を有する ことを示している。  At least the following two points can be inferred from the research in this specification. First, the variety of amino acid substitutions found in the young adult population means that these substitutions have little effect on the survival of the individual until maturity and the transmission of its genome to the next generation. ing. Second, the fact that certain amino acid substitutions are absent in centenarians and present in Parkinson's patients has the effect that these amino acid substitutions are disadvantageous for long-term survival and predispose to adult-onset disease. It has to have.

Claims

請 求 の 範 囲 The scope of the claims
1 . ヒ トミ トコンドリア D N Aの塩基配列が、 その塩基配列がコードするタン パク質について、 アミノ酸置換を伴う塩基に置換されていることを検出すること を特徴とするヒ トミ トコンドリア D N Aを用いた遺伝子検出方法。  1. Gene detection using human mitochondrial DNA, characterized by detecting that the base sequence of human mitochondrial DNA has been replaced by a base with amino acid substitution in the protein encoded by the base sequence. Method.
2 . 前記塩基配列がチトクローム bをコードするもの(配列番号 1 )であって、 前記アミノ酸置換が T2A, T2I, H16R, A39T, T47K, T61A, I78T, L82F, Y109H, T158A, D159N, I 164V, D171N, A190T, A191T, A193T, F245L, P247A, G251S, N260D, L296M, I300T, I306V, I338V, V343M, S344N, A354T, I369V, I372V, および A380T の うちの少なくともいずれか一つであることを特徴とする請求項 1に記載のヒ トミ トコンドリア D N Aを用いた遺伝子検出方法。 2. The nucleotide sequence encodes cytochrome b (SEQ ID NO: 1), wherein the amino acid substitution is T2A, T2I, H16R, A39T, T47K, T61A, I78T, L82F, Y109H, T158A, D159N, I164V, D171N, A190T, A191T, A193T, F245L, P247A, G251S, N260D, L296M, I300T, I306V, I338V, V343M, S344N, A354T, I369V, I372V, and A380T A method for detecting a gene using the human mitochondrial DNA according to claim 1.
3 . 前記塩基配列がチトクローム bをコードするもの(配列番号 1 )であって、 前記アミノ酸置換が T2A, T2I, T47K, T61A, L82F, Y109H, T158A, D159N, D171N, A190T, A193T, F245L, P247A, G251S, L296M, I300T, I338V, S344N, A354T, I372V, および A380Tのうちの少なく ともいずれか一つであることを特徴とする請求項 1 に記載のヒ トミ トコンドリア D N Aを用いた遺伝子検出方法。  3. The nucleotide sequence encodes cytochrome b (SEQ ID NO: 1), wherein the amino acid substitution is T2A, T2I, T47K, T61A, L82F, Y109H, T158A, D159N, D171N, A190T, A193T, F245L, P247A. 2. The method for detecting a gene using human mitochondrial DNA according to claim 1, wherein the gene is at least one of G, S251, L296M, I300T, I338V, S344N, A354T, I372V, and A380T.
4 . 前記塩基配列がチトクローム bをコードするもの(配列番号 1 )であって、 前記ァミノ酸置換が T2I, T47K, T61A, T158A, D171N, A190T, F245L, P247A, I300T, S344N, および A354T のうちの少なくともいずれか一つであることを特徴とする 請求項 1に記載のヒ トミ トコンドリア D N Aを用いた遺伝子検出方法。  4. The base sequence encodes cytochrome b (SEQ ID NO: 1), and the amino acid substitution is selected from T2I, T47K, T61A, T158A, D171N, A190T, F245L, P247A, I300T, S344N, and A354T. 2. The method for detecting a gene using human mitochondrial DNA according to claim 1, wherein the method is at least one of the following.
5 . 前記塩基配列がチトクローム bをコードするもの(配列番号 1 )であって、 前記ァミノ酸置換が A193T, G251S,および I372Vのうちの少なく ともいずれか一つ であることを特徴とする請求項 1に記載のヒ トミ トコンドリア D N Aを用いた遺 伝子検出方法。 5. The base sequence encodes cytochrome b (SEQ ID NO: 1), and the amino acid substitution is at least one of A193T, G251S, and I372V. 2. The method for detecting a gene using the human mitochondrial DNA according to 1.
PCT/JP2002/010640 2001-10-17 2002-10-15 Gene detection method using human mitochondrial dna WO2003033737A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001318805A JP2003116576A (en) 2001-10-17 2001-10-17 Gene detecting method using human mitochondorial dna
JP2001-318805 2001-10-17

Publications (1)

Publication Number Publication Date
WO2003033737A1 true WO2003033737A1 (en) 2003-04-24

Family

ID=19136440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010640 WO2003033737A1 (en) 2001-10-17 2002-10-15 Gene detection method using human mitochondrial dna

Country Status (2)

Country Link
JP (1) JP2003116576A (en)
WO (1) WO2003033737A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026973A1 (en) * 1994-03-30 1995-10-12 Mitokor Diagnosis, therapy and cellular and animal models for diseases associated with mitochondrial defects
WO2000011219A1 (en) * 1998-08-20 2000-03-02 The Johns Hopkins University School Of Medicine Subtle mitochondrial mutations as tumor markers
JP2000175689A (en) * 1998-12-17 2000-06-27 Otsuka Pharmaceut Co Ltd Detection of abnormality in human mitochondria dna
WO2001068923A2 (en) * 2000-03-15 2001-09-20 The Johns Hopkins University Mitochondrial dosimeter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026973A1 (en) * 1994-03-30 1995-10-12 Mitokor Diagnosis, therapy and cellular and animal models for diseases associated with mitochondrial defects
WO2000011219A1 (en) * 1998-08-20 2000-03-02 The Johns Hopkins University School Of Medicine Subtle mitochondrial mutations as tumor markers
JP2000175689A (en) * 1998-12-17 2000-06-27 Otsuka Pharmaceut Co Ltd Detection of abnormality in human mitochondria dna
WO2001068923A2 (en) * 2000-03-15 2001-09-20 The Johns Hopkins University Mitochondrial dosimeter

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANDREU A.L. ET AL.: "Missense mutation in the mtDNA cytochrome B gene in a patient with myopathy", J. CLIN. BIOCHEM. NUTR., vol. 28, 2000, pages 191 - 199, XP002962353 *
BROWN MICHAEL D. ET AL.: "Mitochondrial DNA complex I and III mutations associated with Leber's hereditary optic neuropathy", GENETICS, vol. 130, no. 1, 1992, pages 163 - 173, XP002962352 *
MASASHI TANAKA ET AL.: "Common, rare and individual variations of mitochondrial DNA associated with disease or longevity", J. CLIN. BIOCHEM. NUTR., vol. 28, 2000, pages 191 - 199, XP002962351 *

Also Published As

Publication number Publication date
JP2003116576A (en) 2003-04-22

Similar Documents

Publication Publication Date Title
Ozawa et al. Distinct clustering of point mutations in mitochondrial DNA among patients with mitochondrial encephalomyopathies and with Parkinson's disease
Heiss et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions
DK3260555T3 (en) Hitherto UNKNOWN PROTOCOL FOR PREPARING SEQUENCE LIBRARIES
US5185244A (en) Genetic test for hereditary neuromuscular disease
JP2007525980A (en) Thrombomodulin (THBD) haplotype to predict patient outcome
KR101141543B1 (en) Polynucleotides derived from ALDH4A1, PINK1, DDOST, KIF17, LMX1A, SRGAP2, ASB3, PSME4, ANXA4, GMCL1, and MAP2 genes comprising single nucleotide polymorphisms, microarrays and diagnostic kits comprising the same, and analytic methods using the same
Ricaut et al. Genetic analysis of a Scytho-Siberian skeleton and its implications for ancient Central Asian migrations
KR20090111268A (en) Taqman mgb probe for detecting maternal inherited mitochondrial genetic deafness c1494t mutation and its usage
JP2008529524A (en) Method for diagnosing type 2 diabetes using multilocus marker, polynucleotide containing marker related to type 2 diabetes, microarray containing the same, and kit for diagnosing type 2 diabetes
WO2003033737A1 (en) Gene detection method using human mitochondrial dna
CN108004313B (en) Early-onset coronary heart disease pathogenic gene, reagent, preparation or kit for in vitro detection of early-onset coronary heart disease pathogenic gene and application of early-onset coronary heart disease pathogenic gene
Ouryouji et al. Analysis of mutations in the amelogenin and the enamelin genes in severe caries in Japanese pediatric patients
CN102051366B (en) Chicken fat candidate gene lpin1 and functional mutation detection method
CN115216536A (en) Novel NIPBL mutant gene and diagnostic reagent thereof
ES2391076T3 (en) A kit to judge the risk of drug-induced granulocytopenia
Prusak et al. Non-random base composition in codons of mitochondrial cytochrome b gene in vertebrates.
Filosa et al. A novel single-base mutation in the glucose 6-phosphate dehydrogenase gene is associated with chronic non-spherocytic haemolytic anaemia
CA2394033A1 (en) Ibd-related polymorphisms
KR101911074B1 (en) Single Nucleotide Polymorphisms Determining Trypanosomiasis-resistance of N&#39;Dama breeds and Use Thereof
US7638308B2 (en) Diagnosis method and kits for inherited neuropathies caused by duplication or deletion of chromosome 17p11.2-p12 region
Cox et al. Sequence of hla‐a* 6808
WO2023248997A1 (en) Single nucleotide polymorphism haplotype analysis method in human sting1 gene
WO2002066639A1 (en) Brain aneurysm-sensitive gene
JP2006129807A (en) Long chain polymerase chain reaction (pcr) method for amplifying high gc content repeated sequence and method for diagnosing facioscapulohumeral muscular dystrophy therewith
KR102108455B1 (en) Genetic Marker for Diagnosis of Nosema disease and Diagnostic Method of Nosema disease

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS KE KG KP KR KZ LK LR LS LT LU LV MA MD MG MK MW MX MZ NO NZ OM PH PL PT RO SD SE SG SI SK SL TJ TM TN TR TT UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase