JP2003116576A - Gene detecting method using human mitochondorial dna - Google Patents

Gene detecting method using human mitochondorial dna

Info

Publication number
JP2003116576A
JP2003116576A JP2001318805A JP2001318805A JP2003116576A JP 2003116576 A JP2003116576 A JP 2003116576A JP 2001318805 A JP2001318805 A JP 2001318805A JP 2001318805 A JP2001318805 A JP 2001318805A JP 2003116576 A JP2003116576 A JP 2003116576A
Authority
JP
Japan
Prior art keywords
amino acid
dna
leu
acid substitutions
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001318805A
Other languages
Japanese (ja)
Inventor
Masatsugu Tanaka
雅嗣 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gifu International Institute of Biotechnology
Original Assignee
Gifu International Institute of Biotechnology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gifu International Institute of Biotechnology filed Critical Gifu International Institute of Biotechnology
Priority to JP2001318805A priority Critical patent/JP2003116576A/en
Priority to PCT/JP2002/010640 priority patent/WO2003033737A1/en
Publication of JP2003116576A publication Critical patent/JP2003116576A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gene detecting method recognizing amino acid substitution which is advantageous or disadvantageous in regard to long term survival of human, in mitochondorial DNA. SOLUTION: This detecting method for gene using human mitochondorial DNA, detects at least one substitution of a base accompanying an amino acid substitution in the followings; T2A, T2I, H16R, A39T, T47K, T61A, I78T, L82F, Y109H, T158A, D159N, I164V, D171N, A190T, A191T, A193T, F245L, P247A, G251S, N260D, L296M, I300T, I306V, I338V, V343M, S344N, A354T, I369V, I372V, and A380T encoding human cytochrome b in the base sequence of the human mitochondorial DNA.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ヒトミトコンドリ
アDNAの遺伝子検出方法に関するものである。
TECHNICAL FIELD The present invention relates to a gene detection method for human mitochondrial DNA.

【0002】[0002]

【従来の技術】ミトコンドリアは真核細胞内に存在する
細胞内小器官であり、その内部にある酸化的リン酸化系
を使って細胞の活動に必要なエネルギーの大部分を供給
している。このミトコンドリア内には、核DNAとは独
立したミトコンドリアDNA(以下には、「mtDN
A」と省略することがある。)が存在することが明らか
にされており、1981年にはヒトmtDNAの16,
569塩基対の全塩基配列が決定されている(Anderso
n,S., Bankier,A.T., Barrell,B.G., de Bruijn,M.H.
L., Coulson,A.R., Drouin,J., Eperon,I.C., Nierlic
h,D.P., Ror,B.A., Sanger,F., Schreier,P.H., Smith,
A.H.H., Staden,R., & Young,I.G.: Sequence and orga
nization of the human mitochondrial genome. Nature
290, 457-465, 1981 )。このヒトmtDNA内には、
ミトコンドリア独自の遺伝子が存在しており、これまで
にその対応関係が明らかにされてきている(図1を参
照)。
2. Description of the Related Art Mitochondria are intracellular organelles present in eukaryotic cells, and most of the energy required for cell activity is supplied by the oxidative phosphorylation system inside them. In this mitochondria, mitochondrial DNA independent of nuclear DNA (hereinafter referred to as "mtDN
It may be abbreviated as "A". ) Has been revealed, and in 1981, human mtDNA 16,
The entire base sequence of 569 base pairs has been determined (Anderso
n, S., Bankier, AT, Barrell, BG, de Bruijn, MH
L., Coulson, AR, Drouin, J., Eperon, IC, Nierlic
h, DP, Ror, BA, Sanger, F., Schreier, PH, Smith,
AHH, Staden, R., & Young, IG: Sequence and orga
nization of the human mitochondrial genome. Nature
290, 457-465, 1981). Within this human mtDNA,
Genes unique to mitochondria exist and their correspondence has been clarified so far (see Fig. 1).

【0003】一方、mtDNAの突然変異が特定の疾患
と結びつくことが、分子生物学的研究の成果から明らか
にされつつある(田中 雅嗣、ミトコンドリア電子伝達
系酵素欠損症の分子生物学、生化学、63(3), 169-187,
1991, Wataru Sato, KiyoshiHayasaka, Yutaka Shoji,
Tsutomu Takahashi, Goro Takada, Masahiro Saito,Osa
mu Fukuwa, and Eiko Wachi: A mitochondrial tRNA mu
tation at 3,256 associated with mitochondrial myop
athy, encephalopathy, lactic acidesis, and stroke-
like episodes (MELAS). BIOCHEMISTRY and MOLECULAR
BIOLOGY INTERNATIONAL 33(6), 1055-1061, 1994)。例
えば、本発明者は、mtDNAの突然変異と成人病との
間に相関性があるのではないかと考えて、鋭意検討した
結果、特定の突然変異と成人病との間に一定の相関を確
認し、特開平11−113597号に開示された発明を
なしている。
On the other hand, it is becoming clear from the results of molecular biological studies that mutations in mtDNA are associated with specific diseases (Masahiro Tanaka, Molecular biology of enzyme deficiency in mitochondrial electron transport system, biochemistry, 63 (3), 169-187,
1991, Wataru Sato, KiyoshiHayasaka, Yutaka Shoji,
Tsutomu Takahashi, Goro Takada, Masahiro Saito, Osa
mu Fukuwa, and Eiko Wachi: A mitochondrial tRNA mu
tation at 3,256 associated with mitochondrial myop
athy, encephalopathy, lactic acidesis, and stroke-
like episodes (MELAS). BIOCHEMISTRY and MOLECULAR
BIOLOGY INTERNATIONAL 33 (6), 1055-1061, 1994). For example, the inventors of the present invention have thought that there is a correlation between mutations in mtDNA and adult diseases, and as a result of extensive studies, confirmed a certain correlation between specific mutations and adult diseases. However, the invention disclosed in JP-A-11-113597 is made.

【0004】[0004]

【発明が解決しようとする課題】ところで、四書の一つ
である「中庸」において、孔子(551−479BC)
は、「君子中庸、小人反中庸」と説いている。また、ア
リストテレス(384−322BC)もニコマコス倫理
学において、このような中庸の概念を論じている。一
方、mtDNAによって規定されている蛋白質のアミノ
酸配列に関する集団遺伝学的解析から、ある生物の種内
において隔離されているアミノ酸置換の大部分は弱有害
変異であることが示唆されている(Weinreich D.M., &
Rand D.M. Contrasting patterns of nonneutral evolu
tion in proteins encoded in nuclear and mitochondr
ial genomes. Genetics 2000; 156: 385-99.)。
By the way, Confucius (551-479BC) in "Medium" which is one of the four books
Explains, "Kimiko moderation, dwarf antimoderation." Aristotle (384-322BC) also discusses the concept of such a moderation in Nikomachus ethics. On the other hand, population genetic analysis of the amino acid sequence of the protein defined by mtDNA suggests that most of the isolated amino acid substitutions within the species of an organism are weak deleterious mutations (Weinreich DM , &
Rand DM Contrasting patterns of nonneutral evolu
tion in proteins encoded in nuclear and mitochondr
ial genomes. Genetics 2000; 156: 385-99.).

【0005】しかしながら、mtDNAの変異の部位及
び頻度について、具体的に詳細に解析したデータは多く
はない。本発明は、上記した事情に鑑みてなされたもの
であり、その目的は、mtDNAにおいて、アミノ酸置
換を確認する遺伝子検出方法を提供することにある。
[0005] However, there are not many data which specifically and specifically analyze the site and frequency of mutation of mtDNA. The present invention has been made in view of the above circumstances, and an object thereof is to provide a gene detection method for confirming amino acid substitution in mtDNA.

【0006】[0006]

【課題を解決するための手段、発明の作用、及び発明の
効果】以下の説明において、特に定義が与えられない限
り、全ての技術的および科学的な単語は、本願発明が属
している技術に精通する者によく理解されているのと同
じ意味を有している。本発明者は、「百寿者(満年齢で
99.1歳以上の寿命を得た者)においては、ミトコンドリ
アの弱有害変異が少ない、すなわち百寿者は遺伝的に中
庸を得ている」のではないかとの仮説を立て、この仮説
を検証するために、百寿者64名、パーキンソン病患者
96名、及び若年成人(満20歳から満30歳までの
者)96名の各群について、mtDNA中のチトクロー
ムb(cytochrome b)遺伝子の塩基配列を決定し、各群
間のアミノ酸置換の位置及び頻度を比較・検討すること
により、以下の事実を明らかにし、基本的には本発明を
完成するに至った。
Means for Solving the Problems, Actions of the Invention, and Effects of the Invention In the following description, all technical and scientific words are used to refer to the technology to which the present invention belongs, unless otherwise defined. It has the same meaning as is well understood by those familiar with it. The present inventor
In order to test this hypothesis, it is hypothesized that there are few weak mitochondrial mutations, that is, those who are 100 years old are genetically moderate. In addition, the nucleotide sequence of the cytochrome b gene in mtDNA was analyzed for each group of 64 people who lived 100 years, 96 patients with Parkinson's disease, and 96 young adults (people aged 20 to 30). The following facts were clarified by making determinations and comparing and examining the positions and frequencies of amino acid substitutions among the groups, and the present invention was basically completed.

【0007】(1)多くの個体(百寿者群49名、若年
成人75名、パーキンソン病患者70名)については、
いわゆる「改訂版ケンブリッジ標準配列」(Andrews R.
M.,Kubacka I., Chinnery P.F., Lightowlers R.N., Tu
rnbull D.M., Howell N. Reanalysis and revision of
the Cambridge reference sequence for human mitocho
ndrial DNA. Nat Genet 1999; 23: 147.)と比較して、
アミノ酸置換を有していなかった。 (2)しかしながら、百寿者群では、9種の異なったア
ミノ酸置換(H16R, A39T, I78T, I164V, A191T, N260D,
I306V, V343M, 及び I369V)が確認された。なお、本
明細書中においては、二つの英文字が数字を挟んだ状態
で、一つのアミノ酸置換を意味している。その場合に、
始めの英文字が置換前のアミノ酸を示し、後ろの英文字
が置換後のアミノ酸を示している。また、数字は、アミ
ノ酸置換が行われた位置をチトクロームbのアミノ酸配
列中の位置で示したものである。例えば、I306Vは、3
06番目のイソロイシンがバリンに置換した変異である
ことを意味している。また、パーキンソン病患者群で
は、21種の異なったアミノ酸置換(T2A, T2I, T47K,
T61A, I78T, T158A, I164V, D171N, A190T, A193T, F24
5L, P247A, G251S, N260D, I300T, I306V, I338V, S34
4N, A354T, I369V, I372V)が確認された。また、若年
成人群では、15種の異なったアミノ酸置換(T2A, I78
T, L82F,Y109H, D159N, I164V, A193T, G251S, N260D,
L296M, I306V, I338V, I369V, I372V, A380T)が確認さ
れた。このうち、5個のアミノ酸置換(I78T, I164V, N
260D, I306V, I369V)は、全ての群について、共通に確
認された。
(1) For many individuals (group of 100 people of 100 years of life, 75 young adults, 70 patients with Parkinson's disease),
The so-called "Revised Cambridge Standard Array" (Andrews R.
M., Kubacka I., Chinnery PF, Lightowlers RN, Tu
rnbull DM, Howell N. Reanalysis and revision of
the Cambridge reference sequence for human mitocho
ndrial DNA. Nat Genet 1999; 23: 147.),
It had no amino acid substitutions. (2) However, in the centenarian group, 9 different amino acid substitutions (H16R, A39T, I78T, I164V, A191T, N260D,
I306V, V343M, and I369V) were confirmed. In the present specification, a single amino acid substitution is meant with two letters between numbers. In that case,
The first letter shows the amino acid before substitution, and the latter letter shows the amino acid after substitution. Also, the numbers indicate the positions where amino acid substitutions have been made by the positions in the amino acid sequence of cytochrome b. For example, I306V is 3
It means that the 06th isoleucine is a mutation in which valine is substituted. In the Parkinson's disease patient group, 21 different amino acid substitutions (T2A, T2I, T47K,
T61A, I78T, T158A, I164V, D171N, A190T, A193T, F24
5L, P247A, G251S, N260D, I300T, I306V, I338V, S34
4N, A354T, I369V, I372V) was confirmed. In the young adult group, 15 different amino acid substitutions (T2A, I78
T, L82F, Y109H, D159N, I164V, A193T, G251S, N260D,
L296M, I306V, I338V, I369V, I372V, A380T) were confirmed. Of these, 5 amino acid substitutions (I78T, I164V, N
260D, I306V, I369V) was commonly confirmed in all groups.

【0008】(3)百寿者群においては検出されず、か
つ若年成人群とパーキンソン病患者群において共通に観
察されたアミノ酸置換はT2A+I338Vおよび A193T+G251S+
I372Vであった(なお、複数のアミノ酸置換が、“+”
によって連結されている場合には、それらのアミノ酸置
換が一人のヒトに集中していることを意味している。)
パーキンソン病患者群においてのみ見いだされたアミノ
酸置換はT2I, T47K, T61A, T158A, D171N, A190T, F245
L, P247A, I300T, S344N, および A354Tであった。 (4)N260Dは百寿者群において6.25%の頻度(4/64)で
見いだされたのに対し、若年成人群(1/96)とパーキン
ソン病患者群(1/96)においてともに1.04% の頻度で見
いだされた。また、百寿者群におけるN260Dの頻度 (4/6
4)は他の2群における頻度(2/192)より有意に高かっ
た(オッズ比=6.33, p=0.036, Fisherの直接法)。
(3) T2A + I338V and A193T + G251S + were amino acid substitutions that were not detected in the 100-year-old group and were commonly observed in the young adult group and the Parkinson's disease patient group.
It was I372V (note that multiple amino acid substitutions were "+")
When linked by, it means that those amino acid substitutions are concentrated in one human. )
Amino acid substitutions found only in patients with Parkinson's disease were T2I, T47K, T61A, T158A, D171N, A190T, F245
L, P247A, I300T, S344N, and A354T. (4) N260D was found at a frequency of 6.25% (4/64) in the 100-year-old group, while 1.04% in both the young adult group (1/96) and the Parkinson's disease group (1/96). Found in frequency. In addition, the frequency of N260D in the group of 100 people (4/6
4) was significantly higher than the frequency (2/192) in the other two groups (odds ratio = 6.33, p = 0.036, Fisher's direct method).

【0009】(5)これに対して、パーキンソン病患者
群におけるG251S置換の頻度(6/96)は百寿者群におけ
る頻度(0/64)より有意に高かった(p=0.044, Fisher
の直接法)。他の疾患対照群におけるG251S置換の頻度
(心疾患患者19/593, 3.2%)はパーキンソン病患者群に
おける頻度(6.9%)と百寿者群における頻度(0.0%)の
中間であった。これらの結果から、上記の課題を達成す
るための第1の発明は、ヒトミトコンドリアDNAを用
いた遺伝子検出方法であって、ヒトミトコンドリアDN
Aの塩基配列が、その塩基配列がコードするタンパク質
について、アミノ酸置換を伴う塩基に置換されているこ
とを検出することを特徴とする。
(5) In contrast, the frequency of G251S substitution in the Parkinson's disease patient group (6/96) was significantly higher than that in the 100-year-old group (0/64) (p = 0.044, Fisher
Direct method). The frequency of G251S replacement in other disease control groups (19/593, 3.2% in patients with heart disease) was intermediate between the frequency in patients with Parkinson's disease (6.9%) and that in centenarians (0.0%). From these results, the first invention for achieving the above object is a gene detection method using human mitochondrial DNA, which comprises human mitochondrial DN.
It is characterized in that the base sequence of A is detected to be replaced with a base accompanied by amino acid substitution in the protein encoded by the base sequence.

【0010】本発明において、「塩基配列」とは、多く
の場合にmtDNAの塩基配列をそのまま決定するが、
相補的なDNA或いは、mRNAの塩基配列を決定する
ことにより、鋳型となるmtDNAの塩基配列を決定す
ることも可能である。また、当業者にとって公知な事実
として、mtDNAの遺伝暗号には、非普遍暗号(例え
ば、一般的な終止コドンであるUGAがトリプトファン
を、AUA(多くの場合にはイソロイシンをコードして
いる)がメチオニンをコードしているなど。)が含まれ
ていることに注意すべきである。本発明において、「塩
基置換」とは、いわゆる「改訂版ケンブリッジ標準配
列」に比べて、特定の塩基が置換されていることを意味
している。但し、塩基置換については、必ずしもアミノ
酸置換を伴うものではないことに注意すべきである。遺
伝暗号では、複数種類のトリプレット(三つの連続する
塩基配列)が一種類のアミノ酸(或いは、停止コドン)
をコードしていることから、塩基置換が起こったとして
も、置換後のトリプレットが、前と同じアミノ酸をコー
ドしていることがあり得るからである。また、本明細書
中においては、原則として、アミノ酸は一文字表記を用
いる。
In the present invention, the term "base sequence" often determines the base sequence of mtDNA as it is,
It is also possible to determine the base sequence of mtDNA as a template by determining the base sequence of complementary DNA or mRNA. It is also known to those skilled in the art that the genetic code of mtDNA includes a non-universal code (for example, UGA, which is a common stop codon, encodes tryptophan, AUA (in many cases, isoleucine). Note that it contains methionine, etc.). In the present invention, “base substitution” means that a specific base is substituted as compared with the so-called “revised Cambridge standard sequence”. However, it should be noted that base substitution does not necessarily involve amino acid substitution. In the genetic code, multiple types of triplets (three consecutive base sequences) form one type of amino acid (or stop codon).
This is because the triplet after substitution may encode the same amino acid as before even if base substitution occurs. In addition, in the present specification, in principle, the one-letter code is used for amino acids.

【0011】第2の発明は、第1の発明において、前記
塩基配列がチトクロームbをコードするもの(配列番号
1)であって、前記アミノ酸置換がT2A, T2I, H16R, A3
9T,T47K, T61A, I78T, L82F, Y109H, T158A, D159N, I1
64V, D171N, A190T, A191T,A193T, F245L, P247A, G251
S, N260D, L296M, I300T, I306V, I338V, V343M,S344
N, A354T, I369V, I372V, およびA380T のうちの少なく
ともいずれか一つであることを特徴とする。なお、ここ
に記述されたアミノ酸置換は、本発明者が、上記三種類
の群において確認したアミノ酸置換の全てである。第3
の発明は、第1の発明において、前記塩基配列がチトク
ロームbをコードするもの(配列番号1)であって、前
記アミノ酸置換がT2A, T2I, T47K, T61A,L82F, Y109H,
T158A, D159N, D171N, A190T, A193T, F245L, P247A, G
251S, L296M, I300T, I338V, S344N, A354T, I372V,
およびA380Tのうちの少なくともいずれか一つであるこ
とを特徴とする。ここに記述されたアミノ酸置換は、全
てのアミノ酸置換のうち、百寿者群に見られた9種類の
アミノ酸置換を除いたものである。
A second invention is the same as the first invention, wherein said base sequence encodes cytochrome b (SEQ ID NO: 1) and said amino acid substitution is T2A, T2I, H16R, A3.
9T, T47K, T61A, I78T, L82F, Y109H, T158A, D159N, I1
64V, D171N, A190T, A191T, A193T, F245L, P247A, G251
S, N260D, L296M, I300T, I306V, I338V, V343M, S344
It is characterized by being at least one of N, A354T, I369V, I372V, and A380T. The amino acid substitutions described here are all the amino acid substitutions confirmed by the present inventor in the above three groups. Third
In the first invention, in the first invention, the nucleotide sequence encodes cytochrome b (SEQ ID NO: 1), and the amino acid substitution is T2A, T2I, T47K, T61A, L82F, Y109H,
T158A, D159N, D171N, A190T, A193T, F245L, P247A, G
251S, L296M, I300T, I338V, S344N, A354T, I372V,
And at least one of A380T. The amino acid substitutions described here exclude all nine amino acid substitutions, except for the nine types of amino acid substitutions found in the 100-year-old group.

【0012】第4の発明は、第1の発明において、前記
塩基配列がチトクロームbをコードするもの(配列番号
1)であって、前記アミノ酸置換がT2I, T47K, T61A, T
158A, D171N, A190T, F245L, P247A, I300T, S344N, お
よび A354Tのうちの少なくともいずれか一つであること
を特徴とする。ここに記述されたアミノ酸置換は、パー
キンソン病患者群にのみ特異的に見られたアミノ酸置換
である。第5の発明は、第1の発明において、前記塩基
配列がチトクロームbをコードするもの(配列番号1)
であって、前記アミノ酸置換がA193T,G251S,およびI372
Vのうちの少なくともいずれか一つであることを特徴と
する。ここに記述されたアミノ酸置換は、若年成人群と
パーキンソン病患者群とに共通して見られたアミノ酸置
換のうち特徴的なものである。本発明によれば、mtD
NA中のチトクロームb遺伝子の特定部位のアミノ酸配
列を置換する塩基置換が起こっているか否かを検出する
ことができる。
A fourth invention is the same as the first invention, wherein the base sequence encodes cytochrome b (SEQ ID NO: 1), and the amino acid substitution is T2I, T47K, T61A, T.
It is characterized by being at least one of 158A, D171N, A190T, F245L, P247A, I300T, S344N, and A354T. The amino acid substitution described here is an amino acid substitution specifically found only in the Parkinson's disease patient group. A fifth invention is the same as the first invention, wherein said base sequence encodes cytochrome b (SEQ ID NO: 1).
Wherein the amino acid substitution is A193T, G251S, and I372
It is characterized in that it is at least one of V. The amino acid substitutions described here are characteristic among the amino acid substitutions commonly found in the young adult group and the Parkinson's disease patient group. According to the invention, mtD
It is possible to detect whether or not there is a base substitution for substituting the amino acid sequence at the specific site of the cytochrome b gene in NA.

【0013】[0013]

【発明の実施の形態】次に、本発明の一実施形態につい
て、図面を参照しつつ詳細に説明するが、本発明の技術
的範囲は、下記の実施形態によって限定されるものでは
なく、その要旨を変更することなく、様々に改変して実
施することができる。また、本発明の技術的範囲は、均
等の範囲にまで及ぶものである。ポリメラーゼ連鎖反応
法(以下には、「PCR法」と記載する。)によるmt
DNAの塩基配列の決定は、例えば、Masashi Tanaka,
Mika Hayakawa, and Takayuki Ozawa, Automated Seque
ncing of Mitochondrial DNA, Methods in Enzymology,
Volume 264, 407-421,1996 に示されている方法に従っ
て行うことができる。この方法は、図2に示したように
二度のPCR法を行った後に、二度目のPCR産物を直
接にPCR法によりシークエンスするものである。
BEST MODE FOR CARRYING OUT THE INVENTION Next, one embodiment of the present invention will be described in detail with reference to the drawings, but the technical scope of the present invention is not limited to the following embodiments, and The present invention can be implemented with various modifications without changing the gist. Moreover, the technical scope of the present invention extends to an equivalent range. Mt by polymerase chain reaction method (hereinafter referred to as "PCR method")
The determination of the nucleotide sequence of DNA is carried out, for example, by Masashi Tanaka,
Mika Hayakawa, and Takayuki Ozawa, Automated Seque
ncing of Mitochondrial DNA, Methods in Enzymology,
This can be done according to the method shown in Volume 264, 407-421, 1996. In this method, after performing the PCR method twice as shown in FIG. 2, the second PCR product is directly sequenced by the PCR method.

【0014】一度目のPCR法では、mtDNAをテン
プレートとしてL13901(配列番号3:TCTCCAACAT
ACTCGGATTC)及びH609(配列番号4:GCCCGTCTAAAC
ATTTTCAG)の二種類のプライマーを用い、約3000b
pのDNAを増幅させる。この一度目のPCR産物に
は、チトクロームbの遺伝子が包含されている。次に、
一度目のPCR産物をテンプレートとしてFL2(FL
14559(配列番号5:GTAAAACGACGGCCAGTCGACCACAC
CGCTAACAATC)、FL14837(配列番号6:GTAAAAC
GACGGCCAGTTGAAACTTCGGCTCACTCCT)、FL15126
(配列番号7:GTAAAACGACGGCCAGTCCTTCATAGGCTATGTCCT
C)、FL15405(配列番号8:GTAAAACGACGGCCAGT
TCCACCCTTACTACACAATC)、FL15696(配列番号
9:GTAAAACGACGGCCAGTTTCGCCCACTAAGCCAATCA)、FL
15948(配列番号10:GTAAAACGACGGCCAGTAGGACAA
ATCAGAGAAAAAG))及びH2(H15162(配列番号
11:TACTGTGGCCCCTCAGAATG)、H15340(配列番
号12:ATCCCGTTTCGTGCAAGAAT)、H15755(配列
番号13:ACTGGTTGTCCTCCGATTCA)、H16016(配
列番号14:CCCATGAAAGAACAGAGAAT)、H81(配列番
号15:CAGCGTCTCGCAATGCTATC))の二種類のプライマ
ーを用い、二度目のPCR法を行い約500bp〜約1
000bpのDNAを増幅させる。最後に、二度目のP
CR産物をテンプレートとして塩基配列を決定するため
のPCR法を行う。なお、PCR法を行うときのプライ
マーの組合せ、及びプライマーDNAの塩基配列につい
ては、後述する実施例中にて示した。
In the first PCR method, mtDNA was used as a template for L13901 (SEQ ID NO: 3: TCTCCAACAT).
ACTCGGATTC) and H609 (SEQ ID NO: 4: GCCCGTCTAAAC)
About 3000b using two kinds of primers (ATTTTCAG)
Amplify the p DNA. The first-time PCR product contains the gene for cytochrome b. next,
FL2 (FL
14559 (SEQ ID NO: 5: GTAAAACGACGGCCAGTCGACCACAC
CGCTAACAATC), FL14837 (SEQ ID NO: 6 GTAAAAC
GACGGCCAGTTGAAACTTCGGCTCACTCCT), FL15126
(SEQ ID NO: 7: GTAAAACGACGGCCAGTCCTTCATAGGCTATGTCCT
C), FL15405 (SEQ ID NO: 8: GTAAAACGACGGCCAGT
TCCACCCTTACTACACAATC), FL15696 (SEQ ID NO: 9: GTAAAACGACGGCCAGTTTCGCCCACTAAGCCAATCA), FL
15948 (SEQ ID NO: 10: GTAAAACGACGGCCAGTAGGACAA
ATCAGAGAAAAAG)) and H2 (H15162 (SEQ ID NO: 11: TACTGTGGCCCCTCAGAATG), H15340 (SEQ ID NO: 12: ATCCCGTTTCGTGCAAGAAT), H15755 (SEQ ID NO: 13: ACTGGTTGTCCTCCGATTCA), H16016 (SEQ ID NO: 14: CCCATGAAAGAACAGAGAAT), H81 (SEQ ID NO: 14). ) About 500 bp to about 1 by performing a second PCR method using the two kinds of primers
Amplify 000 bp of DNA. Finally, the second P
The PCR method for determining the nucleotide sequence is performed using the CR product as a template. The combination of primers and the base sequence of the primer DNA when performing the PCR method are shown in Examples described later.

【0015】得られた塩基配列は、例えばコンピュータ
により比較解析する。多くの場合に、百寿者、若年成
人、およびパーキンソン病患者のmtDNAの塩基配列
には、複数の塩基置換が確認される。しかしながら、そ
れらの塩基置換の全てが、アミノ酸置換を伴っていると
は限らない。このため、特にアミノ酸置換を伴う塩基置
換のみを抽出し、百寿者、若年成人、およびパーキンソ
ン病患者の各群毎にまとめる。更に、各群におけるアミ
ノ酸置換が特に顕著に発生している部位を特定する。な
お、特定のアミノ酸置換を発生する塩基置換部位が判明
した後には、既知の方法、例えばサザンブロット法、F
ISH法、RIGS法、CGH法、LOH法、直接シー
クエンス法、PCR−SSCP法、MASA法、ASO
プローブ法、PCR法、OPA法等を使用することによ
り、遺伝子検出を行うことができる(BIOCLinica 10
(9),1995,18-23)。
The obtained nucleotide sequences are compared and analyzed by, for example, a computer. In many cases, multiple nucleotide substitutions are confirmed in the nucleotide sequences of mtDNA of centenarians, young adults, and Parkinson's disease patients. However, not all of those base substitutions are accompanied by amino acid substitutions. Therefore, in particular, only base substitutions accompanied by amino acid substitutions are extracted and summarized for each group of centenarians, young adults, and Parkinson disease patients. Furthermore, the site in which amino acid substitutions occur remarkably in each group is specified. In addition, after the base substitution site that causes a specific amino acid substitution is identified, known methods such as Southern blotting and F
ISH method, RIGS method, CGH method, LOH method, direct sequence method, PCR-SSCP method, MASA method, ASO
Gene detection can be performed by using a probe method, a PCR method, an OPA method, or the like (BIOCLinica 10
(9), 1995, 18-23).

【0016】[0016]

【実施例】次に、本発明を実施例によって説明するが、
本発明はこれら実施例により限定されるものではない。 実施例1:全DNAサンプルの抽出 全DNAは宝酒造株式会社の「Genとるくん」を使用
した。その方法について簡単に記載すると、次のようで
ある。1.5 mlのマイクロチューブに、500μlのキット中
GenTLE溶液Iと100μlの血液を加え、直ちに数秒
間攪拌した。室温で10分間以上静置後、室温にて12,000
xg以上で5分間遠心した。上清を取り除き、沈殿に1ml
のキット中GenTLE溶液IIを加えた。マイクロチュ
ーブを転倒混和した後、室温にて12,000xg以上で2分間
遠心し、上清を取り除いた。沈殿に500μlのキット中G
enTLE溶液IIIを加え、10秒間攪拌した。室温にて1
2,000xg以上で5分間遠心し、上清を新たなマイクロチ
ューブに移した。上清に500μlのイソプロパノールを加
え、転倒混和した後、4℃、12,000xgで5分間遠心した
後、上清を取り除き、70%エタノールで沈殿を洗浄した
後、真空乾燥機で乾燥させた。全DNAを50μlのTE緩
衝液(10 mM Tris-HCl pH 8.0, 1 mMEDTA)に溶解し
た。
The present invention will be described below with reference to examples.
The present invention is not limited to these examples. Example 1: Extraction of total DNA sample As the total DNA, "Gen Torukun" from Takara Shuzo Co., Ltd. was used. A brief description of the method is as follows. To a 1.5 ml microtube, 500 μl of GenTLE solution I in the kit and 100 μl of blood were added and immediately stirred for a few seconds. After standing at room temperature for 10 minutes or more, 12,000 at room temperature
Centrifuge at xg or more for 5 minutes. Remove the supernatant and deposit 1 ml
GenTLE solution II in the kit of. The microtube was mixed by inversion and then centrifuged at 12,000 xg or more for 2 minutes at room temperature to remove the supernatant. 500 μl G in the kit for precipitation
enTLE solution III was added and stirred for 10 seconds. 1 at room temperature
After centrifugation at 2,000 xg or more for 5 minutes, the supernatant was transferred to a new microtube. After adding 500 μl of isopropanol to the supernatant and mixing by inversion, the mixture was centrifuged at 4 ° C. and 12,000 × g for 5 minutes, the supernatant was removed, the precipitate was washed with 70% ethanol, and dried in a vacuum dryer. Total DNA was dissolved in 50 μl of TE buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA).

【0017】実施例2:百寿者、若年成人及びパーキン
ソン病患者のmtDNAにおけるチトクロームbをコー
ドする遺伝子の塩基配列の確認 百寿者(64名)、若年成人(96名)及びパーキンソ
ン病患者(96名)のmtDNA中、チトクロームbを
コードする遺伝子の塩基配列を確認した。百寿者につい
ては、東京・愛知・岐阜に在住する百寿者を訪問し、同
意の得られた百寿者から血液細胞あるいは頬粘膜細胞を
採取し、全DNAを抽出したのち、該当する塩基配列を確
認した。DNAシークエンスは、前出の Methods in En
zymology,Volume 264, 407-421, 1996 に報告されてい
る方法に基づき、次のようにして行った。また、一度目
および二度目のPCR法に使用したプライマーDNAの
組合せは、表1に示した。
Example 2: Confirmation of nucleotide sequence of gene encoding cytochrome b in mtDNA of centenarians, young adults and Parkinson's disease patients Centenarians (64 persons), young adults (96 persons) and Parkinson's disease patients ( The nucleotide sequence of the gene encoding cytochrome b was confirmed in mtDNA (96 persons). For centenarians, we visited centenarians residing in Tokyo, Aichi, and Gifu, collected blood cells or buccal mucosa cells from the centenarians who obtained consent, extracted the total DNA, and then extracted the corresponding bases. The sequence was confirmed. DNA sequences are described in Methods in En
Based on the method reported in zymology, Volume 264, 407-421, 1996, it carried out as follows. Table 1 shows combinations of primer DNAs used in the first and second PCR methods.

【0018】[0018]

【表1】 [Table 1]

【0019】一度目のPCR法は全DNAをテンプレー
トとし、L1及びH1をプライマーとして使用した。反
応溶液の組成は次の通りである。1μlの全DNA(10 n
g/μl)、5μlのL1(10μM)、5μlのH1(10μ
M)、4μlの2.5 mM dNTP、0.25μlの5 units/μl Taq
DNAポリメラーゼ、5μlの10x PCR緩衝液(100 mM Tr
is-HCl, pH 8.3, 500 mM KCl, 15 mM MgCl2)に29.75μ
lの精製水を加えて全量を50μlとして 0.2-ml MicroAmp
チューブ中で混和した。この反応溶液をパーキンエル
マー社製のGeneAmp PCR system Model 9600 によりPC
R法を行った。反応条件は、94℃で15秒間の変性、60℃
で15秒間のアニーリング、72℃で185秒間の伸長反応を
1サイクルとして、40サイクル繰り返した。反応溶液
に5μlの3 M酢酸ナトリウム(pH 7.4)と100μlのエタノ
ールを添加後、氷上に10分間静置し、4℃にて13,000xg
で10分間遠心した。沈殿を150μlの70%エタノールで洗
浄後、4℃にて13,000xgで5分間遠心した。沈殿を10分間
乾燥した後、50μlの精製水又はTE(10 mM Tris-HCl,
pH 8.0, 1 mM EDTA)に溶解した。
In the first PCR method, all DNA was used as a template, and L1 and H1 were used as primers. The composition of the reaction solution is as follows. 1 μl of total DNA (10 n
g / μl), 5 μl L1 (10 μM), 5 μl H1 (10 μM
M), 4 μl of 2.5 mM dNTPs, 0.25 μl of 5 units / μl Taq
DNA polymerase, 5 μl of 10x PCR buffer (100 mM Tr
29.75μ in is-HCl, pH 8.3, 500 mM KCl, 15 mM MgCl 2 )
0.2 μl MicroAmp with 50 μl of purified water
Mix in tube. PC of this reaction solution by GeneAmp PCR system Model 9600 manufactured by Perkin Elmer
The R method was performed. Reaction conditions are denaturation at 94 ℃ for 15 seconds, 60 ℃
40 cycles were repeated, with annealing for 15 seconds and extension reaction at 72 ° C. for 185 seconds as one cycle. After adding 5 μl of 3 M sodium acetate (pH 7.4) and 100 μl of ethanol to the reaction solution, leave it on ice for 10 minutes and then at 1 ℃ x 13,000 xg.
It was centrifuged at 10 minutes. The precipitate was washed with 150 μl of 70% ethanol and then centrifuged at 13,000 xg for 5 minutes at 4 ° C. After drying the precipitate for 10 minutes, 50 μl of purified water or TE (10 mM Tris-HCl,
pH 8.0, 1 mM EDTA).

【0020】二度目のPCR法は上記した一度目のPC
R産物をテンプレートとし、FL2及び H2をプライ
マーとして使用した。反応溶液の組成は次の通りであ
る。1μlの一度目のPCR産物溶液、2μlのFL2(10
μM)、2μlのH2(10 μM)、1.6μlの2.5 mM dNT
P、0.1μlの5 units/μl rTaq DNAポリメラーゼ、2
μlの10x PCR緩衝液に11.3μlの精製水を加えて全量を2
0μlとして 0.2-ml MicroAmp チューブ中で混和した。
PCR法の反応条件は、熱変性(94℃−15秒)、アニーリ
ング(60℃−15秒)、伸長反応(72℃−3分)を1サイ
クルとし、40 サイクル行った。最後の伸長反応は72℃
−10分とした。反応溶液に1.5μlの3 M酢酸ナトリウム
(pH 7.4)と30μlのエタノールを添加後、氷上に10分間
静置し、4℃にて13,000xgで10分間遠心した。沈殿を45
μlの70%エタノールで洗浄後、4℃にて13,000xgで5分間
遠心した。沈殿を10分間乾燥した後、10μlの精製水に
溶解した。
The second PCR method is the above-mentioned first PC
The R product was used as a template and FL2 and H2 were used as primers. The composition of the reaction solution is as follows. 1 μl of the first PCR product solution, 2 μl of FL2 (10
μM), 2 μl H2 (10 μM), 1.6 μl 2.5 mM dNT
P, 0.1 μl of 5 units / μl rTaq DNA polymerase, 2
Add 11.3 μl purified water to μl 10x PCR buffer to bring the total volume to 2
Mix in 0.2-ml MicroAmp tubes as 0 μl.
The reaction conditions of the PCR method were 40 cycles of heat denaturation (94 ° C.-15 seconds), annealing (60 ° C.-15 seconds) and extension reaction (72 ° C.-3 minutes) as one cycle. 72 ° C for the final extension reaction
It was set to -10 minutes. 1.5 μl of 3 M sodium acetate in the reaction solution
After adding (pH 7.4) and 30 μl of ethanol, the mixture was allowed to stand on ice for 10 minutes and centrifuged at 13,000 × g for 10 minutes at 4 ° C. Precipitation 45
After washing with μl of 70% ethanol, centrifugation was performed at 13,000 xg for 5 minutes at 4 ° C. The precipitate was dried for 10 minutes and then dissolved in 10 μl of purified water.

【0021】シークエンス反応は、次のようにして行っ
た。 (1)テンプレートの精製 PCR Screen (Millipore社96-well用)を用いて限外濾過
法によりプライマーとdNTPの除去をした。二度目のPC
R産物(20μl)に滅菌水280μlを加え、300μLとし、M
ultiScreen-PCR Plateに分注した。PCR Plateをマルチ
スクリーンバキュームマニホールド に装着し、24 inch
es Hgで10分間吸引し、限外濾過を行った。100μLの滅
菌水をPCR Plateに分注し、ミキサーで激しく5分間振っ
た後、新しいPCRチューブに移した。 (2)シークエンス反応 プレミックス蛍光Terminator (DNA Sequencing Kit, Bi
gDyeTM Terminator Cycle Sequencing Ready Reaction,
ABI PRISM, PE Applied Biosystems, Japan)を用い
た。限外濾過後の二度目のPCR産物 2μlに、2μlのP
remix 4μl, -21M13 Forward Primer (0.8 pmol/μl)
4μl, 5×Sequence Buffer 2μl,滅菌水8μlを加え、
全量を20 μlとした。最初の熱変性(96℃−10分)の
後、熱変性(96℃−10秒)、アニーリング(50℃−5
秒)、伸長反応(60℃−4分)を1サイクルとし、これ
を 25サイクル繰り返した。 (3)DyeTerminatorの除去 ゲルろ過(96-well用)乾燥したSephadex G50 Superfine
を、45μLカラムローダーを用いて、マルチスクリーンH
Vプレートのwellに充填した。Sephadexを膨潤化するた
めwellに300μLの滅菌水を加え、室温で3時間放置し
た。96-wellプレートの上にマルチスクリーンHVプレー
トを置き,740×gで6分間遠心した。Sequence反応液をw
ellの中央に静かに加えた。マルチスクリーンHVプレー
トを8連のGeneAmp Strip Tubes (8-tubes/strip)を並べ
た上に重ね,740×gで6分間遠心した。8連のGeneAmp St
rip Tubesを遠心式真空乾燥機にかけ50分間乾燥させ
た。乾燥後のサンプルは、アルミホイールなどで遮光し
冷凍保存した。 (4)DNA Sequencing 20μlの Template Suppression Reagent (TSR) をSeque
nce反応産物が入った8連のGeneAmp Strip Tubesに加
え、10分間室温で放置した。Vortexミキサーを十分に施
し、スピンダウンした。95℃で2分間加熱した後、サン
プルを直ちに氷で急冷した(10分間)。 8連のGeneAmp
tube中のサンプルをABI PRISMTM 310 Genetic Analyzer
にかけ、塩基配列を決定した。
The sequence reaction was carried out as follows. (1) Purification of template Primers and dNTPs were removed by an ultrafiltration method using PCR Screen (for Millipore 96-well). Second PC
Add 280 μl of sterilized water to the R product (20 μl) to make 300 μL, and add M
Dispensed in ultiScreen-PCR Plate. Attach the PCR Plate to the multi-screen vacuum manifold and set it to 24 inch.
Ultrafiltration was performed by suctioning with es Hg for 10 minutes. 100 μL of sterilized water was dispensed to the PCR plate, shaken vigorously for 5 minutes with a mixer, and then transferred to a new PCR tube. (2) Sequencing reaction premix fluorescence Terminator (DNA Sequencing Kit, Bi
gDye TM Terminator Cycle Sequencing Ready Reaction,
ABI PRISM, PE Applied Biosystems, Japan) was used. 2 μl of the second PCR product after ultrafiltration was mixed with 2 μl of P
remix 4 μl, -21M13 Forward Primer (0.8 pmol / μl)
Add 4 μl, 5 × Sequence Buffer 2 μl, sterile water 8 μl,
The total volume was 20 μl. After the first heat denaturation (96 ℃ -10 minutes), heat denaturation (96 ℃ -10 seconds), annealing (50 ℃ -5 minutes)
Second) and extension reaction (60 ° C.-4 minutes) as one cycle, and this was repeated 25 cycles. (3) Removal of Dye Terminator Gel filtration (for 96-well) Dry Sephadex G50 Superfine
Using a 45 μL column loader.
The well of the V plate was filled. To swell Sephadex, 300 μL of sterilized water was added to the well and left at room temperature for 3 hours. A multiscreen HV plate was placed on the 96-well plate and centrifuged at 740 xg for 6 minutes. Sequence reaction solution w
I added it to the center of ell quietly. A multiscreen HV plate was placed on top of 8 GeneAmp Strip Tubes (8-tubes / strip) lined up and centrifuged at 740 xg for 6 minutes. 8 GeneAmp St
The rip tubes were placed in a centrifugal vacuum dryer and dried for 50 minutes. The dried sample was protected from light with an aluminum wheel or the like and stored frozen. (4) DNA Sequencing 20 μl of Template Suppression Reagent (TSR) is used for Seque
The reaction mixture was added to 8 GeneAmp Strip Tubes containing the reaction product and left at room temperature for 10 minutes. Thoroughly applied a Vortex mixer and spun down. After heating at 95 ° C for 2 minutes, the sample was immediately quenched with ice (10 minutes). 8 GeneAmp
ABI PRISM TM 310 Genetic Analyzer for samples in tube
Then, the base sequence was determined.

【0022】実施例3:百寿者、若年成人、およびパー
キンソン病患者の各群におけるアミノ酸置換の解析 実施例2に記載の方法により、mtDNA中チトクロー
ムbをコードする遺伝子の塩基配列を決定した後、その
塩基置換およびアミノ酸置換の解析を行った。表2、お
よび表3には、確認された塩基置換および、アミノ酸配
列の置換の有無を示した。なお、表の意味は次の通りで
ある。例えば、表2中一行目の置換は、ミトコンドリア
DNAの14,750番目のアデニン(A)がグアニン(G)
に置換されており、その塩基置換は、チトクロームbの
2番目のアミノ酸のスレオニンをアラニンに置き換える
アミノ酸置換となる(すなわち、前述の「T2A」)こ
とを意味している。
Example 3: Analysis of amino acid substitution in each group of centenarians, young adults and patients with Parkinson's disease After determining the nucleotide sequence of the gene encoding cytochrome b in mtDNA by the method described in Example 2. , Its base substitution and amino acid substitution were analyzed. Tables 2 and 3 show the presence or absence of confirmed base substitutions and amino acid sequence substitutions. The meaning of the table is as follows. For example, in the substitution on the first line in Table 2, the 14750th adenine (A) of mitochondrial DNA is guanine (G).
And the base substitution means that the second amino acid of cytochrome b, threonine, is replaced with alanine (that is, the above-mentioned “T2A”).

【0023】[0023]

【表2】 [Table 2]

【表3】 [Table 3]

【0024】また、図3および図4には、各群におい
て、どのうようなアミノ酸置換を有しているかを視覚的
に示した。このうち、図3は、全ての群のそれぞれにお
いて確認されたアミノ酸置換を示しているのに対し、図
4では、三群に共通して確認されたアミノ酸置換を母数
に含めて示している。このため、各群に特徴的なアミノ
酸置換を確認するには、図4を参照するのが便利であ
る。このうち、図3(A)に示したように、百寿者群で
は9種の異なったアミノ酸置換が見いだされたのに対
し、若年成人群(図3(B))およびパーキンソン病患
者群(図3(C))では、それぞれ15種および21種のア
ミノ酸置換が見いだされた。大多数の個体(百寿者群49
名/64名中、若年成人群75名/96名中、パーキンソン病
患者群70名/96名中)は、いわゆる「改訂版ケンブリッ
ジ標準配列」と比較して、アミノ酸置換を有していなか
った。
Further, FIGS. 3 and 4 visually show what kind of amino acid substitution is carried out in each group. Of these, FIG. 3 shows the amino acid substitutions confirmed in each of all groups, whereas FIG. 4 shows the amino acid substitutions commonly confirmed in the three groups in the population. . Therefore, it is convenient to refer to FIG. 4 to confirm the amino acid substitution characteristic of each group. Of these, as shown in FIG. 3 (A), nine different amino acid substitutions were found in the 100-year-old group, whereas the young adult group (FIG. 3 (B)) and the Parkinson's disease patient group ( In FIG. 3 (C), 15 and 21 types of amino acid substitutions were found, respectively. The majority of individuals (group 100
Of 64/75, 75/96 of young adult group, 70/96 of Parkinson's disease group) did not have amino acid substitutions compared to the so-called “revised Cambridge standard sequence” .

【0025】また、5個のアミノ酸置換(I78T, I164V,
N260D, I306V, I369V)は3群に共通に見られた。百寿
者群ではH16R, A39T, A191T, およびV343Mが1個体ずつ
に見いだされた。若年成人群では、百寿者群で検出され
なかった7種のアミノ酸置換が見いだされた。T2A+I338
V, Y109H, D159N, L296MおよびA380T はそれぞれ1個体
に、A193T+G251S+L82Fは1個体に、A193T+G251S+I372V
は2個体において見いだされた。標準アミノ酸配列から
の逸脱程度を定量化するために、Granthamが報告した値
(Grantham R. Amino acid difference formula to hel
p explain protein evolution. Science 1974; 185: 86
2-4.)に従って、標準アミノ酸と変化したアミノ酸の間
の物理化学的相違の合計を個体ごとに計算した。ただ
し、3群において共通に見られたアミノ酸置換はこの計
算から除外した。百寿者群における標準アミノ酸配列か
らの逸脱度(Grantham値:58, 58, 29, 21が各1個体、
60個体については0)は、若年成人群における逸脱度(1
43, 143, 136, 87, 83, 58, 23, 15が各1個体、88個体
については0)よりも統計的に有意に小さかった (p<0.
0001,Wald-Wolfowitzのラン検定)。
Further, 5 amino acid substitutions (I78T, I164V,
N260D, I306V, I369V) were commonly found in the 3 groups. In the 100-year-old group, H16R, A39T, A191T, and V343M were found individually. In the young adult group, seven amino acid substitutions that were not detected in the centenarian group were found. T2A + I338
V, Y109H, D159N, L296M and A380T in 1 individual, A193T + G251S + L82F in 1 individual, A193T + G251S + I372V
Was found in 2 individuals. In order to quantify the deviation from the standard amino acid sequence, the value reported by Grantham (Grantham R. Amino acid difference formula to hel
p explain protein evolution. Science 1974; 185: 86
According to 2-4.), The total physicochemical difference between the standard amino acid and the changed amino acid was calculated for each individual. However, amino acid substitutions commonly found in the 3 groups were excluded from this calculation. Degree of deviation from the standard amino acid sequence in the 100-year-old group (Grantham value: 58, 58, 29, 21 is 1 individual each,
0 for 60 individuals is the deviance (1
43, 143, 136, 87, 83, 58, 23, 15 were statistically significantly smaller than 0 for 1 and 88 individuals (p <0.
0001, Wald-Wolfowitz run test).

【0026】百寿者群においては検出されず、かつ若年
成人群とパーキンソン病患者群において共通に観察され
たアミノ酸置換はT2A+I338Vおよび A193T+G251S+I372V
であった。パーキンソン病患者群においてのみ見いださ
れたアミノ酸置換はT2I, T47K, T61A, T158A, D171N, A
190T, F245L, P247A, I300T, S344N, および A354Tであ
った。パーキンソン病患者群における標準アミノ酸配列
からの逸脱度(Grantham値:143が5個体、114, 89, 8
9, 87, 78が各1個体、58が5個体、46, 29, 27, 27, 2
3, 22が各1個体、75個体については0)は、百寿者群に
おける逸脱度よりも統計的に有意に大きく(p<0.0001,
Wald-Wolfowitzのラン検定およびp=0.0058, Mann-Whitn
eyのU検定)、また若年成人群における逸脱度よりも大
きかった(p<0.0001, Wald-Wolfowitzのラン検定および
p=0.0097, Mann-WhitneyのU検定)。
Amino acid substitutions that were not detected in the 100-year-old group and were commonly observed in the young adult group and the Parkinson's disease patient group were T2A + I338V and A193T + G251S + I372V.
Met. Amino acid substitutions found only in Parkinson's disease patients were T2I, T47K, T61A, T158A, D171N, A
They were 190T, F245L, P247A, I300T, S344N, and A354T. Degree of deviation from standard amino acid sequence in Parkinson's disease patient group (Grantham value: 143 is 5 individuals, 114, 89, 8
9, 87, 78 1 each, 58 58, 46, 29, 27, 27, 2
3, 22 was 1 for each and 0 for 75) was statistically significantly higher than the deviance in the 100-year-old group (p <0.0001,
Wald-Wolfowitz run test and p = 0.0058, Mann-Whitn
ey's U test), and was greater than the deviance in the young adult group (p <0.0001, Wald-Wolfowitz's run test and
p = 0.0097, Mann-Whitney U test).

【0027】次に、それぞれの群において5%以上の頻度
で見いだされたアミノ酸置換について統計的に解析し
た。N260Dは百寿者群において6.25%の頻度(4/64)で見
いだされたのに対し、若年成人群(1/96)とパーキンソ
ン病患者群(1/96)においてともに1.04% の頻度で見い
だされた。百寿者群におけるN260Dの頻度 (4/64)は他の
2群における頻度(2/192)より有意に高かった(オッ
ズ比=6.33, p=0.036, Fisherの直接法)。これらの観察
結果はN260D置換を有することが長寿につながることを
示唆しているが、その機能的影響についてはさらに検討
を要する。これに対して、パーキンソン病患者群におけ
るG251S置換の頻度(6/96)は百寿者群における頻度(0
/64)より有意に高かった(p=0.044, Fisherの直接
法)。他の疾患対照群におけるG251S置換の頻度(心疾
患患者19/593, 3.2%)はパーキンソン病患者群における
頻度(6.9%)と百寿者群における頻度(0.0%)の中間で
あった。
Next, the amino acid substitutions found at a frequency of 5% or more in each group were statistically analyzed. N260D was found at a frequency of 6.25% (4/64) in the centenarian group, whereas it was found at a frequency of 1.04% in both young adults (1/96) and Parkinson's disease group (1/96). It was The frequency of N260D (4/64) in the 100-year-old group was significantly higher than that in the other 2 groups (2/192) (odds ratio = 6.33, p = 0.036, Fisher's direct method). These observations suggest that having the N260D substitution leads to longevity, but its functional impact needs further investigation. In contrast, the frequency of G251S substitution in the Parkinson's disease patient group (6/96) was higher than that in the 100-year-old group (0
/ 64) (p = 0.044, Fisher's direct method). The frequency of G251S replacement in other disease control groups (19/593, 3.2% in patients with heart disease) was intermediate between the frequency in patients with Parkinson's disease (6.9%) and that in centenarians (0.0%).

【0028】G251S置換のような標準アミノ酸配列から
の逸脱は、ミトコンドリアからの活性酸素種の産生上昇
を伴い、それが加齢に関連する疾患をもたらす可能性が
ある。アミノ酸残基Gly251は哺乳類の種において高度に
保存されている。Gly251はチトクロームb蛋白質におけ
るユビキノンの外側結合部位(Qo site)に位置してお
り、ユビキノンとの結合に重要な働きをしているGlu271
残基の近傍にある。Gly251 がSerによって置換される
と、SerはGlu271と水素結合を形成する可能性がある。
これによってGlu271の動きが制限されると、ユビキノン
のQo siteへの結合が変化すると想定される。これらの
知見はG251S 置換は長期生存に不利であることを示唆し
ている。
Deviations from the canonical amino acid sequence, such as the G251S substitution, are associated with increased production of reactive oxygen species from mitochondria, which can lead to age-related diseases. The amino acid residue Gly251 is highly conserved in mammalian species. Gly251 is located at the outer binding site (Qo site) of ubiquinone in cytochrome b protein, and plays an important role in binding to ubiquinone.
Near the residue. When Gly251 is replaced by Ser, Ser may form a hydrogen bond with Glu271.
It is assumed that this limits the movement of Glu271 and changes the binding of ubiquinone to the Qo site. These findings suggest that G251S substitution is disadvantageous for long-term survival.

【0029】本発明者は、既に遺伝子型Mt5178Aが日本
の百寿者において高い頻度で見いだされることを報告し
た(Tanaka M, Gong JS, Zhang J, Yoneda M, Yagi K.
Mitochondrial genotype associated with longevity.
Lancet 1998; 351: 185-6.)。一方、Ivanovaら(Ivano
va R, Lepage V, Charron D, Schachter F. Mitochondr
ial genotype associated with French Caucasian cent
enarians. Gerontology 1998; 44: 349.)は遺伝子型 M
t9055A がフランスの百寿者に高い頻度で見いだされた
と報告している。標準アミノ酸配列からの逸脱が少ない
ことは、遺伝子型を異にするアジアとヨーロッパの百寿
者に共通する現象である可能性がある。結論として、少
なくともチトクロームbのアミノ酸配列に関して中庸を
得ることは、長寿に関して重要な遺伝的要因であると言
える。
The present inventor has already reported that the genotype Mt5178A is found at a high frequency in the Japanese centenarians (Tanaka M, Gong JS, Zhang J, Yoneda M, Yagi K.
Mitochondrial genotype associated with longevity.
Lancet 1998; 351: 185-6.). Meanwhile, Ivanova et al. (Ivano
va R, Lepage V, Charron D, Schachter F. Mitochondr
ial genotype associated with French Caucasian cent
enarians. Gerontology 1998; 44: 349.) is genotype M
Reported that t9055A was found at high frequency by French centenarians. The small deviation from the standard amino acid sequence may be a phenomenon common to centenarians in Asia and Europe with different genotypes. In conclusion, gaining modestness at least for the amino acid sequence of cytochrome b can be said to be an important genetic factor for longevity.

【0030】本明細書中の研究から推論できることは、
少なくとも次の2点である。第一に、多様なアミノ酸置
換が若年成人群において見いだされたことは、これらの
置換が成熟期までの個体の生存、およびそのゲノムの次
世代への伝達にほとんど影響を及ぼさないことを意味し
ている。第2に、特定のアミノ酸置換が百寿者において
存在せず、パーキンソン病患者において存在すること
は、これらのアミノ酸置換が長期生存に対して不利であ
り、成人発症性疾患に罹り易くさせる効果を有すること
を示している。
What can be inferred from the work herein is that
At least the following two points. First, the diverse amino acid substitutions found in the young adult population imply that these substitutions have little effect on individual survival to maturity and transmission of the genome to the next generation. ing. Second, the absence of certain amino acid substitutions in centenarians and in Parkinson's disease patients has the effect that these amino acid substitutions are detrimental to long-term survival and predispose to adult-onset disease. Indicates that it has.

【0031】 SEQUENCE LISTING <110> Masashi, TANAKA <120> Gene Diagnosis Method using Human Mitochondrial DNA <130> human_mtDNA_cytB <140> P-01024TAN <141> 2001-10-17 <160> 15 <170> PatentIn Ver. 2.1 <210> 1 <211> 1134 <212> DNA <213> Homo sapiens <400> 1 atgaccccaa tacgcaaaac taacccccta ataaaattaa ttaaccactc attcatcgac 60 ctccccaccc catccaacat ctccgcatga tgaaacttcg gctcactcct tggcgcctgc 120 ctgatcctcc aaatcaccac aggactattc ctagccatgc actactcacc agacgcctca 180 accgcctttt catcaatcgc ccacatcact cgagacgtaa attatggctg aatcatccgc 240 taccttcacg ccaatggcgc ctcaatattc tttatctgcc tcttcctaca catcgggcga 300 ggcctatatt acggatcatt tctctactca gaaacctgaa acatcggcat tatcctcctg 360 cttgcaacta tagcaacagc cttcataggc tatgtcctcc cgtgaggcca aatatcattc 420 tgaggggcca cagtaattac aaacttacta tccgccatcc catacattgg gacagaccta 480 gttcaatgaa tctgaggagg ctactcagta gacagtccca ccctcacacg attctttacc 540 tttcacttca tcttgccctt cattattgca gccctagcag cactccacct cctattcttg 600 cacgaaacgg gatcaaacaa ccccctagga atcacctccc attccgataa aatcaccttc 660 cacccttact acacaatcaa agacgccctc ggcttacttc tcttccttct ctccttaatg 720 acattaacac tattctcacc agacctccta ggcgacccag acaattatac cctagccaac 780 cccttaaaca cccctcccca catcaagccc gaatgatatt tcctattcgc ctacacaatt 840 ctccgatccg tccctaacaa actaggaggc gtccttgccc tattactatc catcctcatc 900 ctagcaataa tccccatcct ccatatatcc aaacaacaaa gcataatatt tcgcccacta 960 agccaatcac tttattgact cctagccgca gacctcctca ttctaacctg aatcggagga 1020 caaccagtaa gctacccttt taccatcatt ggacaagtag catccgtact atacttcaca 1080 acaatcctaa tcctaatacc aactatctcc ctaattgaaa acaaaatact caaa 1134 <210> 2 <211> 378 <212> PRT <213> HOMO SAPIENS <400> 2 Met Thr Pro Met Arg Lys Thr Asn Pro Leu Met Lys Leu Ile Asn His 1 5 10 15 Ser Phe Ile Asp Leu Pro Thr Pro Ser Asn Ile Ser Ala Trp Trp Asn 20 25 30 Phe Gly Ser Leu Leu Gly Ala Cys Leu Ile Leu Gln Ile Thr Thr Gly 35 40 45 Leu Phe Leu Ala Met His Tyr Ser Pro Asp Ala Ser Thr Ala Phe Ser 50 55 60 Ser Ile Ala His Ile Thr Arg Asp Val Asn Tyr Gly Trp Ile Ile Arg 65 70 75 80 Tyr Leu His Ala Asn Gly Ala Ser Met Phe Phe Ile Cys Leu Phe Leu 85 90 95 His Ile Gly Arg Gly Leu Tyr Tyr Gly Ser Phe Leu Tyr Ser Glu Thr 100 105 110 Trp Asn Ile Gly Ile Ile Leu Leu Leu Ala Thr Met Ala Thr Ala Phe 115 120 125 Met Gly Tyr Val Leu Pro Trp Gly Gln Met Ser Phe Trp Gly Ala Thr 130 135 140 Val Ile Thr Asn Leu Leu Ser Ala Ile Pro Tyr Ile Gly Thr Asp Leu 145 150 155 160 Val Gln Trp Ile Trp Gly Gly Tyr Ser Val Asp Ser Pro Thr Leu Thr 165 170 175 Arg Phe Phe Thr Phe His Phe Ile Leu Pro Phe Ile Ile Ala Ala Leu 180 185 190 Ala Ala Leu His Leu Leu Phe Leu His Glu Thr Gly Ser Asn Asn Pro 195 200 205 Leu Gly Ile Thr Ser His Ser Asp Lys Ile Thr Phe His Pro Tyr Tyr 210 215 220 Thr Ile Lys Asp Ala Leu Gly Leu Leu Leu Phe Leu Leu Ser Leu Met 225 230 235 240 Thr Leu Thr Leu Phe Ser Pro Asp Leu Leu Gly Asp Pro Asp Asn Tyr 245 250 255 Thr Leu Ala Asn Pro Leu Asn Thr Pro Pro His Ile Lys Pro Glu Trp 260 265 270 Tyr Phe Leu Phe Ala Tyr Thr Ile Leu Arg Ser Val Pro Asn Lys Leu 275 280 285 Gly Gly Val Leu Ala Leu Leu Leu Ser Ile Leu Ile Leu Ala Met Ile 290 295 300 Pro Ile Leu His Met Ser Lys Gln Gln Ser Met Met Phe Arg Pro Leu 305 310 315 320 Ser Gln Ser Leu Tyr Trp Leu Leu Ala Ala Asp Leu Leu Ile Leu Thr 325 330 335 Trp Ile Gly Gly Gln Pro Val Ser Tyr Pro Phe Thr Ile Ile Gly Gln 340 345 350 Val Ala Ser Val Leu Tyr Phe Thr Thr Ile Leu Ile Leu Met Pro Thr 355 360 365 Ile Ser Leu Ile Glu Asn Lys Met Leu Lys 370 375 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:L13901 <400> 3 tctccaacat actcggattc 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:H609 <400> 4 gcccgtctaa acattttcag 20 <210> 5 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:FL14559 <400> 5 gtaaaacgac ggccagtcga ccacaccgct aacaatc 37 <210> 6 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:FL14837 <400> 6 gtaaaacgac ggccagttga aacttcggct cactcct 37 <210> 7 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:FL15126 <400> 7 gtaaaacgac ggccagtcct tcataggcta tgtcctc 37 <210> 8 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:FL15405 <400> 8 gtaaaacgac ggccagttcc acccttacta cacaatc 37 <210> 9 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:FL15696 <400> 9 gtaaaacgac ggccagtttc gcccactaag ccaatca 37 <210> 10 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:FL15948 <400> 10 gtaaaacgac ggccagtagg acaaatcaga gaaaaag 37 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:H15162 <400> 11 tactgtggcc cctcagaatg 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:H15340 <400> 12 atcccgtttc gtgcaagaat 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:H15755 <400> 13 actggttgtc ctccgattca 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:H16016 <400> 14 cccatgaaag aacagagaat 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:H81 <400> 15 cagcgtctcg caatgctatc 20[0031]                                SEQUENCE LISTING        <110> Masashi, TANAKA <120> Gene Diagnosis Method using Human Mitochondrial DNA <130> human_mtDNA_cytB <140> P-01024TAN <141> 2001-10-17 <160> 15 <170> PatentIn Ver. 2.1 <210> 1 <211> 1134 <212> DNA <213> Homo sapiens <400> 1 atgaccccaa tacgcaaaac taacccccta ataaaattaa ttaaccactc attcatcgac 60 ctccccaccc catccaacat ctccgcatga tgaaacttcg gctcactcct tggcgcctgc 120 ctgatcctcc aaatcaccac aggactattc ctagccatgc actactcacc agacgcctca 180 accgcctttt catcaatcgc ccacatcact cgagacgtaa attatggctg aatcatccgc 240 taccttcacg ccaatggcgc ctcaatattc tttatctgcc tcttcctaca catcgggcga 300 ggcctatatt acggatcatt tctctactca gaaacctgaa acatcggcat tatcctcctg 360 cttgcaacta tagcaacagc cttcataggc tatgtcctcc cgtgaggcca aatatcattc 420 tgaggggcca cagtaattac aaacttacta tccgccatcc catacattgg gacagaccta 480 gttcaatgaa tctgaggagg ctactcagta gacagtccca ccctcacacg attctttacc 540 tttcacttca tcttgccctt cattattgca gccctagcag cactccacct cctattcttg 600 cacgaaacgg gatcaaacaa ccccctagga atcacctccc attccgataa aatcaccttc 660 cacccttact acacaatcaa agacgccctc ggcttacttc tcttccttct ctccttaatg 720 acattaacac tattctcacc agacctccta ggcgacccag acaattatac cctagccaac 780 cccttaaaca cccctcccca catcaagccc gaatgatatt tcctattcgc ctacacaatt 840 ctccgatccg tccctaacaa actaggaggc gtccttgccc tattactatc catcctcatc 900 ctagcaataa tccccatcct ccatatatcc aaacaacaaa gcataatatt tcgcccacta 960 agccaatcac tttattgact cctagccgca gacctcctca ttctaacctg aatcggagga 1020 caaccagtaa gctacccttt taccatcatt ggacaagtag catccgtact atacttcaca 1080 acaatcctaa tcctaatacc aactatctcc ctaattgaaa acaaaatact caaa 1134    <210> 2 <211> 378 <212> PRT <213> HOMO SAPIENS <400> 2 Met Thr Pro Met Arg Lys Thr Asn Pro Leu Met Lys Leu Ile Asn His   1 5 10 15 Ser Phe Ile Asp Leu Pro Thr Pro Ser Asn Ile Ser Ala Trp Trp Asn              20 25 30 Phe Gly Ser Leu Leu Gly Ala Cys Leu Ile Leu Gln Ile Thr Thr Gly          35 40 45 Leu Phe Leu Ala Met His Tyr Ser Pro Asp Ala Ser Thr Ala Phe Ser      50 55 60 Ser Ile Ala His Ile Thr Arg Asp Val Asn Tyr Gly Trp Ile Ile Arg  65 70 75 80 Tyr Leu His Ala Asn Gly Ala Ser Met Phe Phe Ile Cys Leu Phe Leu                  85 90 95 His Ile Gly Arg Gly Leu Tyr Tyr Gly Ser Phe Leu Tyr Ser Glu Thr             100 105 110 Trp Asn Ile Gly Ile Ile Leu Leu Leu Ala Thr Met Ala Thr Ala Phe         115 120 125 Met Gly Tyr Val Leu Pro Trp Gly Gln Met Ser Phe Trp Gly Ala Thr     130 135 140 Val Ile Thr Asn Leu Leu Ser Ala Ile Pro Tyr Ile Gly Thr Asp Leu 145 150 155 160 Val Gln Trp Ile Trp Gly Gly Tyr Ser Val Asp Ser Pro Thr Leu Thr                 165 170 175 Arg Phe Phe Thr Phe His Phe Ile Leu Pro Phe Ile Ile Ala Ala Leu             180 185 190 Ala Ala Leu His Leu Leu Phe Leu His Glu Thr Gly Ser Asn Asn Pro         195 200 205 Leu Gly Ile Thr Ser His Ser Asp Lys Ile Thr Phe His Pro Tyr Tyr     210 215 220 Thr Ile Lys Asp Ala Leu Gly Leu Leu Leu Phe Leu Leu Ser Leu Met 225 230 235 240 Thr Leu Thr Leu Phe Ser Pro Asp Leu Leu Gly Asp Pro Asp Asn Tyr                 245 250 255 Thr Leu Ala Asn Pro Leu Asn Thr Pro Pro His Ile Lys Pro Glu Trp             260 265 270 Tyr Phe Leu Phe Ala Tyr Thr Ile Leu Arg Ser Val Pro Asn Lys Leu         275 280 285 Gly Gly Val Leu Ala Leu Leu Leu Ser Ile Leu Ile Leu Ala Met Ile     290 295 300 Pro Ile Leu His Met Ser Lys Gln Gln Ser Met Met Phe Arg Pro Leu 305 310 315 320 Ser Gln Ser Leu Tyr Trp Leu Leu Ala Ala Asp Leu Leu Ile Leu Thr                 325 330 335 Trp Ile Gly Gly Gln Pro Val Ser Tyr Pro Phe Thr Ile Ile Gly Gln             340 345 350 Val Ala Ser Val Leu Tyr Phe Thr Thr Ile Leu Ile Leu Met Pro Thr         355 360 365 Ile Ser Leu Ile Glu Asn Lys Met Leu Lys     370 375    <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: L13901 <400> 3 tctccaacat actcggattc 20    <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: H609 <400> 4 gcccgtctaa acattttcag 20    <210> 5 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: FL14559 <400> 5 gtaaaacgac ggccagtcga ccacaccgct aacaatc 37    <210> 6 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: FL14837 <400> 6 gtaaaacgac ggccagttga aacttcggct cactcct 37    <210> 7 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: FL15126 <400> 7 gtaaaacgac ggccagtcct tcataggcta tgtcctc 37    <210> 8 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: FL15405 <400> 8 gtaaaacgac ggccagttcc acccttacta cacaatc 37    <210> 9 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: FL15696 <400> 9 gtaaaacgac ggccagtttc gcccactaag ccaatca 37    <210> 10 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: FL15948 <400> 10 gtaaaacgac ggccagtagg acaaatcaga gaaaaag 37    <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: H15162 <400> 11 tactgtggcc cctcagaatg 20    <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: H15340 <400> 12 atcccgtttc gtgcaagaat 20    <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: H15755 <400> 13 actggttgtc ctccgattca 20    <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: H16016 <400> 14 cccatgaaag aacagagaat 20    <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: H81 <400> 15 cagcgtctcg caatgctatc 20

【図面の簡単な説明】[Brief description of drawings]

【図1】 mtDNAの遺伝子地図Figure 1: Genetic map of mtDNA

【図2】 mtDNAのシークエンス方法を示す概念図FIG. 2 is a conceptual diagram showing a mtDNA sequencing method.

【図3】 百寿者、若年成人、およびパーキンソン病患
者におけるチトクロームbのアミノ酸置換の分子系統ネ
ットワークを示す図薄く塗りつぶした円は標準アミノ酸
配列あるいは共通するアミノ酸置換を有する個体数を示
す。白抜きの円は百寿者で見いだされたアミノ酸置換
を、塗りつぶした円はパーキンソン病患者あるいは若年
成人で検出されたアミノ酸置換を示す。円の面積は個体
の数(かっこ内に表示)に比例しており、棒の長さはGr
anthamの値に比例している。
FIG. 3 shows a molecular phylogenetic network of amino acid substitutions for cytochrome b in centenarians, young adults, and Parkinson's disease patients. Lightly filled circles indicate the number of individuals having a standard amino acid sequence or common amino acid substitutions. Open circles indicate amino acid substitutions found in centenarians, and filled circles indicate amino acid substitutions detected in Parkinson's disease patients or young adults. The area of the circle is proportional to the number of individuals (shown in brackets) and the length of the bar is Gr
It is proportional to the value of antham.

【図4】 百寿者、若年成人、およびパーキンソン病患
者におけるチトクロームbのアミノ酸置換の分子系統ネ
ットワークを示す図図3に比べて、三群で同じアミノ酸
置換を有しているものは、母数(薄く塗りつぶした円)
として示した。その他は、図3と同様である。
FIG. 4 shows a molecular phylogenetic network of amino acid substitutions of cytochrome b in centenarians, young adults, and patients with Parkinson's disease. Compared to FIG. 3, those having the same amino acid substitution in the three groups have (A thin circle)
Indicated as. Others are the same as in FIG.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4B024 AA01 AA11 BA80 CA03 CA20 HA11 4B063 QA13 QA17 QA19 QQ42 QQ43 QR08 QR32 QR35 QR40 QR42 QR62 QS16 QS25 QS28 QS36 QS39 QX10    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4B024 AA01 AA11 BA80 CA03 CA20                       HA11                 4B063 QA13 QA17 QA19 QQ42 QQ43                       QR08 QR32 QR35 QR40 QR42                       QR62 QS16 QS25 QS28 QS36                       QS39 QX10

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ヒトミトコンドリアDNAの塩基配列
が、その塩基配列がコードするタンパク質について、ア
ミノ酸置換を伴う塩基に置換されていることを検出する
ことを特徴とするヒトミトコンドリアDNAを用いた遺
伝子検出方法。
1. A method for detecting a gene using human mitochondrial DNA, which comprises detecting that the nucleotide sequence of human mitochondrial DNA is substituted with a nucleotide accompanied by amino acid substitution in a protein encoded by the nucleotide sequence. .
【請求項2】 前記塩基配列がチトクロームbをコード
するもの(配列番号1)であって、前記アミノ酸置換が
T2A, T2I, H16R, A39T, T47K, T61A, I78T,L82F, Y109
H, T158A, D159N, I164V, D171N, A190T, A191T, A193
T, F245L, P247A, G251S, N260D, L296M, I300T, I306
V, I338V, V343M, S344N, A354T, I369V, I372V, およ
びA380T のうちの少なくともいずれか一つであることを
特徴とする請求項1に記載のヒトミトコンドリアDNA
を用いた遺伝子検出方法。
2. The nucleotide sequence encoding cytochrome b (SEQ ID NO: 1), wherein the amino acid substitution is
T2A, T2I, H16R, A39T, T47K, T61A, I78T, L82F, Y109
H, T158A, D159N, I164V, D171N, A190T, A191T, A193
T, F245L, P247A, G251S, N260D, L296M, I300T, I306
The human mitochondrial DNA according to claim 1, which is at least one of V, I338V, V343M, S344N, A354T, I369V, I372V, and A380T.
A method for detecting a gene using.
【請求項3】 前記塩基配列がチトクロームbをコード
するもの(配列番号1)であって、前記アミノ酸置換が
T2A, T2I, T47K, T61A, L82F, Y109H, T158A, D159N, D
171N, A190T, A193T, F245L, P247A, G251S, L296M, I3
00T, I338V,S344N, A354T, I372V, およびA380Tのうち
の少なくともいずれか一つであることを特徴とする請求
項1に記載のヒトミトコンドリアDNAを用いた遺伝子
検出方法。
3. The nucleotide sequence encoding cytochrome b (SEQ ID NO: 1), wherein the amino acid substitution is
T2A, T2I, T47K, T61A, L82F, Y109H, T158A, D159N, D
171N, A190T, A193T, F245L, P247A, G251S, L296M, I3
The gene detection method using human mitochondrial DNA according to claim 1, which is at least one of 00T, I338V, S344N, A354T, I372V, and A380T.
【請求項4】 前記塩基配列がチトクロームbをコード
するもの(配列番号1)であって、前記アミノ酸置換が
T2I, T47K, T61A, T158A, D171N, A190T, F245L, P247
A, I300T, S344N, および A354Tのうちの少なくともい
ずれか一つであることを特徴とする請求項1に記載のヒ
トミトコンドリアDNAを用いた遺伝子検出方法。
4. The nucleotide sequence encoding cytochrome b (SEQ ID NO: 1), wherein the amino acid substitution is
T2I, T47K, T61A, T158A, D171N, A190T, F245L, P247
The method for detecting a gene using human mitochondrial DNA according to claim 1, which is at least one of A, I300T, S344N, and A354T.
【請求項5】 前記塩基配列がチトクロームbをコード
するもの(配列番号1)であって、前記アミノ酸置換が
A193T,G251S,およびI372Vのうちの少なくともいずれか
一つであることを特徴とする請求項1に記載のヒトミト
コンドリアDNAを用いた遺伝子検出方法。
5. The nucleotide sequence encoding cytochrome b (SEQ ID NO: 1), wherein the amino acid substitution is
The gene detection method using human mitochondrial DNA according to claim 1, which is at least one of A193T, G251S, and I372V.
JP2001318805A 2001-10-17 2001-10-17 Gene detecting method using human mitochondorial dna Pending JP2003116576A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001318805A JP2003116576A (en) 2001-10-17 2001-10-17 Gene detecting method using human mitochondorial dna
PCT/JP2002/010640 WO2003033737A1 (en) 2001-10-17 2002-10-15 Gene detection method using human mitochondrial dna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001318805A JP2003116576A (en) 2001-10-17 2001-10-17 Gene detecting method using human mitochondorial dna

Publications (1)

Publication Number Publication Date
JP2003116576A true JP2003116576A (en) 2003-04-22

Family

ID=19136440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001318805A Pending JP2003116576A (en) 2001-10-17 2001-10-17 Gene detecting method using human mitochondorial dna

Country Status (2)

Country Link
JP (1) JP2003116576A (en)
WO (1) WO2003033737A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ283660A (en) * 1994-03-30 1998-07-28 Mitokor Diagnosis and therapy for diseases associated with mitochondrial defects such as alzheimers
US6605433B1 (en) * 1998-08-20 2003-08-12 The Johns Hopkins University Mitochondrial dosimeter
US6344322B1 (en) * 1998-08-20 2002-02-05 The Johns Hopkins University Subtle mitochondrial mutations as tumor markers
JP2000175689A (en) * 1998-12-17 2000-06-27 Otsuka Pharmaceut Co Ltd Detection of abnormality in human mitochondria dna

Also Published As

Publication number Publication date
WO2003033737A1 (en) 2003-04-24

Similar Documents

Publication Publication Date Title
DK3260555T3 (en) Hitherto UNKNOWN PROTOCOL FOR PREPARING SEQUENCE LIBRARIES
KR101206029B1 (en) Multiple SNP for diagnosing colorectal cancer, microarray and kit comprising the same, and method for diagnosing colorectal cancer using the same
KR101141543B1 (en) Polynucleotides derived from ALDH4A1, PINK1, DDOST, KIF17, LMX1A, SRGAP2, ASB3, PSME4, ANXA4, GMCL1, and MAP2 genes comprising single nucleotide polymorphisms, microarrays and diagnostic kits comprising the same, and analytic methods using the same
CN110684765A (en) Screening method of dementia-related pathogenic gene capture probe, captured genome, product and application
CN106834434B (en) Nucleic acid, kit and method for detecting COX-1, COX-2 and GPIIIa gene polymorphism
WO2008032921A1 (en) Htsnps for determining a genotype of cytochrome p450 1a2, 2a6 and 2d6, pxr and udp-glucuronosyltransferase 1a gene and multiplex genotyping methods using thereof
Surridge et al. Single‐copy nuclear DNA sequences obtained from noninvasively collected primate feces
JP2008529524A (en) Method for diagnosing type 2 diabetes using multilocus marker, polynucleotide containing marker related to type 2 diabetes, microarray containing the same, and kit for diagnosing type 2 diabetes
US20020132234A1 (en) Nitric oxide synthase gene diagnostic polymorphisms
US7914996B2 (en) Polynucleotide associated with a colon cancer comprising single nucleotide polymorphism, microarray and diagnostic kit comprising the same and method for diagnosing a colon cancer using the polynucleotide
JP4926079B2 (en) Breast cancer-related polynucleotide containing single nucleotide polymorphism, microarray and diagnostic kit containing the same, and method for diagnosing breast cancer using the same
JP2003116576A (en) Gene detecting method using human mitochondorial dna
KR20160125155A (en) A new marker for diagnosis of macular degeneration and a diagnostic method using the smae
JP4657757B2 (en) Diagnosis and treatment of pulmonary hypertension using genes related to pulmonary hypertension
KR20110110758A (en) A polynucleotide associated with a colon cancer comprising single nucleotide polymorphism, microarray and diagnostic kit comprising the same and method for diagnosing a colon cancer using the polynucleotide
CA2394033A1 (en) Ibd-related polymorphisms
US20040191774A1 (en) Endothelin-1 promoter polymorphism
US7851151B2 (en) HNF-1α gene including novel single-nucleotide polymorphism, protein encoded by the HNF-1α gene, and polynucleotide, microarray, kit, and method for diagnosis of MODY3
CN112899364B (en) Primer probe composition for detecting LMNA gene mutation and application thereof
JP2007516719A (en) Polynucleotide involved in type 2 diabetes including single nucleotide polymorphism, microarray and diagnostic kit containing the same, and method for analyzing polynucleotide using the same
EP1352092B1 (en) Mutations in the ferroportin 1 gene associated with hereditary haemochromatosis
CN112941186B (en) Breast cancer susceptibility gene BRCA2-K2305N mutant and specific primer thereof
JP2006129807A (en) Long chain polymerase chain reaction (pcr) method for amplifying high gc content repeated sequence and method for diagnosing facioscapulohumeral muscular dystrophy therewith
CN118166085A (en) USH2A gene and primer related to hereditary hearing loss-retinal pigment degeneration syndrome
AU2002224781A1 (en) Mutations in the ferroportin 1 gene associated with hereditary haemochromatosis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041008

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090414