WO2003028968A1 - Facing machine for hard-fired ceramic tiles - Google Patents

Facing machine for hard-fired ceramic tiles Download PDF

Info

Publication number
WO2003028968A1
WO2003028968A1 PCT/IT2002/000586 IT0200586W WO03028968A1 WO 2003028968 A1 WO2003028968 A1 WO 2003028968A1 IT 0200586 W IT0200586 W IT 0200586W WO 03028968 A1 WO03028968 A1 WO 03028968A1
Authority
WO
WIPO (PCT)
Prior art keywords
rollers
disks
roller
cutting
tile
Prior art date
Application number
PCT/IT2002/000586
Other languages
French (fr)
Inventor
Luigi Pedrini
Original Assignee
Luigi Pedrini
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luigi Pedrini filed Critical Luigi Pedrini
Priority to EP02800220A priority Critical patent/EP1439940B1/en
Priority to BR0206053-1A priority patent/BR0206053A/en
Priority to DE60220080T priority patent/DE60220080T2/en
Publication of WO2003028968A1 publication Critical patent/WO2003028968A1/en
Priority to US10/818,932 priority patent/US6941939B2/en
Priority to HK05104406A priority patent/HK1071715A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/20Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by planing, e.g. channelling by means of planing tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D47/00Sawing machines or sawing devices working with circular saw blades, characterised only by constructional features of particular parts
    • B23D47/04Sawing machines or sawing devices working with circular saw blades, characterised only by constructional features of particular parts of devices for feeding, positioning, clamping, or rotating work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/008Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding ceramics, pottery, table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/0023Other grinding machines or devices grinding machines with a plurality of working posts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/06Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor involving conveyor belts, a sequence of travelling work-tables or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/003Multipurpose machines; Equipment therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/02Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing
    • B28D1/04Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing with circular or cylindrical saw-blades or saw-discs
    • B28D1/048Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by sawing with circular or cylindrical saw-blades or saw-discs with a plurality of saw blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Abstract

The facing machine for hard-fired ceramic tiles (1) comprises: a structure (23, 15) for supporting, and setting (17) the cutting depth of, at least one pair of rotary rollers at a grooving station (16), the axis of said rollers lying transverse to the infeed path (A) of said tiles as carried on a belt transport (24); said rollers comprising a plurality of disks (3) formed with diamond-tipped cutting teeth (4) and a facing station (25) comprising a plurality of vertical-axis grinding wheels with abrasive diamond-tipped tooling; said rollers (2, 7) are carried on a common supporting structure (12), being adjustable (17) in height to set the tool cutting depth in the tile; said structure (12) being pivotable about a parallel shaft (13) to the work surface in a transverse direction to the feed direction (A) of the surface, and being associated with a device (14) for adjusting and inhibiting the pivotal movement of the structure in order to accommodate varying cutting diameters of the rollers at said station.

Description

FACING MACHINE FOR HARD-FIRED CERAMIC TILES
The present invention relates to a facing machine for processing hard-fired ceramic tiles, in particular to an improved facing machine which makes facing such ceramic tiles a much easier operation to perform.
The state of the art provides a variety of machines for facing stone materials. Such machines make conventional use of diamond abrasive rollers in which the abrasive material extends in helical paths around a cylindrical surface of the roller to cut in the whole surface of a stone material being processed. While it is true that at any one time during the process the generatrix line of the cutter envelope is contacting the workpiece surface only with a section of its helix, still the cutting action will affect the whole workpiece area spanned by said generatrix line on account of the contact point moving in succession all along the helix as the roller is rotated. The net result is that the whole surface of the workpiece spanned by the generatrix line is pro- cessed at once. However, a facing machine equipped with such rollers is bound to apply a high pressure to the workpiece material, reflecting on increased power requirements and wear of the diamond abrasive. A limit is placed on the power used, and hence on the production output, by the frail nature of the workpiece mate- rial, since a belt type of transport cannot be provided that is totally immune to deformation and would not strain the material beyond its breaking point. This means that a controlled amount of power must be delivered to each abrasive roller.
Also known in the art is a calibrating machine for granite slabs having, located upstream of segmental grinding wheels, a pair of grooving rollers comprised of a set of disk cutters that are formed with radial teeth in order to face a slab surface and calibrate it to thickness by cutting grooves along the feed direction of the slab. The process is carried out on the back side of the slab, so that ridges can be left on this surface, if desired for later anchoring of the slab to a foundation in a more positive manner. Subsequently at a grinding station, the process is completed by a single diamond abrasive ring plate planarizing the slab, if necessary by smoothing away the ridges between grooves. However, the performance of this calibrating machine has not proved much of an improvement on helical abrasive roller calibrating machines, mainly because the large number of disks set side by side on said grooving rollers are difficult to adjust for a sufficient number of narrow grooves and ridges to be produced. By re- ducing the number of disks, the slab surface could be processed more accurately but the ridges formed on the slab surface would be wider, thereby lowering significantly the working rate of the diamond abrasive ring plates.
In addition, the above prior technique, when applied to the face side of hard-fired ceramic tiles rather than the back side of granite slabs, involves frequent tool adjustment if. depths are to be achieved between ridges with very close approximation, and prevents full use of the productive potential of modern vertical-axis rotary heads because differences in depth are liable to affect both the output and removing effectiveness of up-to-date rotary abrasive tooling for such heads.
Last, whereas in the instance of the above conventional calibrating machine with diamond abrasive ring plate grinders any machining inaccuracies would occur on the back side, away from view, for hard-fired ceramic tiles the machining process is directed to bring out a desired manufacturer's pattern or logo by removing a surface layer of perhaps a few tenths of a millimeter. This surface layer often leaves the kiln in a rippled state that is the outcome of previous tile molding steps as well as the baking step itself. Also, hard-fired ceramic tiles are smoothed to achieve a required degree of planarization for the subsequent polishing operation, so that their face side need be smoothed with the utmost accuracy.
The state of the art would be improved upon by a facing machine for hard-fired ceramic tiles, which could overcome the above deficiencies by affording enhanced output and decreased power consumption and/or rate of diamond abrasive wear.
From the above considerations, the need stands out to have the technical problem solved by a facing machine for hard-fired ceramic tiles that has high output capabilities at no harm for the workpieces, thereby avoiding downtime due -to errors or improper processing occurred ahead of the facing machine.
The invention does solve the technical problem by providing a facing machine for hard-fired ceramic tiles, which comprises a structure for supporting, and setting the cutting depth of, at least one pair of rotary rollers at a grooving station, the axis of said rollers lying transverse to the infeed path of said tiles as carried on a belt transport; said rollers comprising a plurality of disks formed with diamond-tipped cutting teeth and spaced apart abreast said tiles; and a facing station comprising a plurality of vertical-axis grinding wheels with abrasive diamond- tipped tooling; the facing machine being characterized in that said disks with diamond-tipped cutting teeth have identical working diameters in one set of roller-mounted disks, the cutting edges of said teeth having very closely the same circumferential length and being made of a suitable abrasive material for even wear of the cutting edges in one roller-mounted set of disks; that said rollers comprised of disks with diamond-tipped cutting teeth are carried on a common supporting structure, said structure being adjustable in height to set the tool cutting depth in the tile; at least two of said rollers lying next to each other in the direc- tion of tile advance, and being set and/or adjusted sideways to associate the grooves cut in the tile surface by the disks of a preceding one of the rollers with the grooves cut by the disks of the successive roller; the depths at which said grooves are cut being the same or very closely approaching a set depth; said structure being pivotable about a parallel shaft to the work sur- face in a transverse direction to the feed direction of the work surface, and being associated with a device for adjusting and inhibiting the pivotal movement of the structure in order to accommodate varying cutting diameters of the rollers at said station; and that said grinding wheels comprise rotary heads mounting diamond-tipped cutting tools, themselves for rotation on said heads. In a preferred embodiment, said disks with diamond- ipped cutting teeth have all the same cutting diameter in -the sets of disks mounted on the paired rollers. in another preferred embodiment, said device for adjusting and inhibiting the pivotal movement of the structure comprises a set- table tie rod for fine adjustment of said pivotal movement. The tie rod is pivoted with one end on said pivoting structure, and with the other end on the grooving station frame. in another preferred embodiment, said rollers with disks of equal cutting width are set transversely at pitch distances selected to produce ridges or lumps substantially of equal widths between resultant grooves, according to the numbers of disks and rollers being used and to the widths of the respective cutting edges.
In a further embodiment, the rollers with diamond-tipped cutting tooth disks are split into first and second pairs along the feed direction of the tiles, and a device for turning a tile being processed 90 degrees is provided between said pairs. In a further preferred embodiment, said vertical-axis rotary heads mount tools for rotation about a horizontal or sub-horizontal axis, or alternatively about a vertical or sub-vertical axis.
In a further embodiment, a third roller with diamond-tipped cutting tooth disks is provided additionally to said two rollers mounted on the pivoting structure, all said rollers being mounted on a height-adjustable stand, with said third roller being independently adjustable on said height-adjustable stand.
In a further embodiment, a separate .frame .from the grooving station, consisting of said toothed disk roller pair, carries an additional roller pair associated with a device for turning a tile being processed 90 degrees, thereby to convert a grooving station to a four-roller layout as shown in Figure 9.
In a further preferred embodimen , the toothed disk rollers are belt driven rotatively by electric motors mounted through mounting
5 brackets either on the pivoting structure that carries the roller pair, or on the adjustable stand for the single roller.
In yet another preferred embodiment, cylinder actuators for retracting said rollers when the tile advance movement is stopped are provided between the height adjusting device and the adjusta- iθ ble stand or the pivoting structure.
Some embodiments of the invention are shown, for exemplification only, in the accompanying seven drawings, in which: Figure 1 is a schematic perspective view of the toothed disk roller pair f5 of the grooving station in a facing machine according to the invention shown at work on a few tiles beneath; Tigure 2 is a vertical cross-section view in perspective of the grooving station and the supporting structure for said toothed disk rollers which is adjustable pivotally in the cross and height directions; Figure 3
20 is a perspective view of the facing machine according to the invention, with the grooving station sharing a frame with a facing station equipped with vertical-axis rotary heads; Figure 4 is a partial side elevation view of a ceramic tile at the next stage to the ridge and groove forming operation with the toothed disk roll- 5 ers; Figure 4A is a schematic side elevation view of a convex ceramic tile, and Figure 4B is a similar view of a concave tile; Figure 5 is a partial plan view of the ceramic tile in Figure 4 highlighting a pattern, logo or decoration provided in the sub- cortical layer; Figure 6 is a plan diagram of another roller lay- 0 out at the grooving station, with the toothed disks that are gathered to one side in each roller instead of being interleaved; Figure 7 is a plan diagram of another roller layout at the grooving station, with the toothed disks that are gathered to the middle of one roller and to either ends of the other roller, instead of be- 5 ing interleaved; Figure 8 is a plan diagram of another roller lay- out at the grooving station, with a first pair of toothed disks that are interleaved and followed by a roller whose toothed disks are gathered to its ends for working on dual-size tiles; Figure 9 is a plan diagram of a roller layout at the grooving station, which layout suits a machine intended to calibrate the ceramic tiles for thickness and having four toothed disk rollers arranged in pairs with a conventional device for turning the tiles 90 degrees placed -therebetween; and Figure 10 is a side elevation view of the structure for supporting and setting the grooving toothed disk rollers of the layout in Figure 8.
Figure 1 shows a ceramic tile 1 to be faced. A first roller 2, comprising disks 3 formed with diamond-tipped cutting teeth 4, is shown in the act of cutting a first set of grooves 6 in a tile 5. A second roller 7, following in the direction A of advance of the tiles being processed, comprises disks 3 with cutting teeth 4 that are staggered in the transverse direction and interleaved with the former disks in a cross direction to direction A, and is shown in the act of grooving the tile 8 with a second set of grooves 9 such that the width dimension of ridges 10 between adjacent grooves is reduced. Said rollers 2 and 7 are supported rotatively on bearings 11 for their respective shafts.
Shown in Figure 2 is the pivoting structure 12 on which said bearings 11 are mounted, and with them the rollers 2, 7 as well. This structure has a pivot shaft 13 arranged to accommodate variations in disk diameter between the first and second rollers, and ensure an even depth for the grooves, viz. achieve a desired degree of planarity.
The structure 12 has a settable tie rod 14 provided for fine adjustment of its pivotal movement. This tie rod is pivotally connected with one end on the pivoting structure 12, and with the other end somewhere on the frame 15 of the grooving station 16. The structure 12 is positioned vertically by the conventional de- vice 17 for adjustment of the vertical cutting position of disks 2, 7; the device 17 being also useful to set the vertical position of the pivot shaft 13 of the structure 12 following said planarity adjustment.
Figure 2 also shows drive motors 18 for rotating the rollers 2, 7 through .belt drives 19. Each motor .18 and respective drive 19 is connected to the pivoting structure 12 through mounting brackets 20 that are arranged to pivot with the structure 12 for tensing the drive belts evenly. Provided in the connection of the height adjustment device 17 to said pivoting structure are cylinder actuators 21 for fast withdrawal of the rollers 2, 7 during breaks in the workpiece advance movement. Also shown are conventional devices 22 for feeding a coolant onto the rollers 2 , 7.
Figure 3 shows rails 23 of the facing machine on which the belt transport 24 rests to advance ceramic tiles 1 to be processed. Downstream of the grooving station 16, the facing station 25 is shown to comprise, in this example, a set of three conventional rotary heads 26 along with respective drives 27 and working depth adjusters 2-8.
Figures 4, 4A and 4B show marks 29 on the underside of the ceramic tile for enhanced grip of the tile 1 on its foundation sur- face, and the depth dimension or reach D of the teeth 4 on the disks 3 for bringing out any tile patter r logo decoration or color 30, as shown in Figure 5, that has been kept half-hidden in the tile 1 during previous processing steps.
Figure 6 illustrates another embodiment of the grooving station 16. There are shown a tile 31 being cut with grooves 34 by a first roller 32 that has its toothed disks 3 gathered to one roller end 33. A second roller 35 with toothed disks 3 gathered to its end 36, opposite from the end 33 of the first roller 32, is shown cutting grooves 37 in a tile 38. Figure 7 shows another embodiment of the grooving station 16, wherein a roller 39, equipped with toothed disks 3 that are gathered at the middle 40 thereof, is to cut grooves 41 in a tile 42. A second roller 43 with toothed disks 3 gathered to either roller ends is to cut grooves 44 in side bands 45 of a tile 46 beneath.
Figure 8 illustrates another embodiment of the grooving s-tation 16. There is shown a middle band 47 of a wider tile 48 than the 0 rollers 2, 7 in a grooving station 49 for dual-size tiles 1 and 48. In addition, a third roller 51, having the toothed disks 3 gathered to either roller ends 52, is to cut grooves 53 in side bands 50 of the tile 48.
S Figure 9 shows still another grooving station 54, in this instance a multiple one, which comprises a first pair 55 of rollers 2, 7 with toothed disks 3 for cutting a first set of grooves 6, 9 in tiles 5, 8. Provided downstream of the first roller pair 55 is a conventional device 56 for turning the tile 57 90 degrees (N) . A 0 second pair 58 of rollers 2, 7 with toothed disks 3 is provided • after the tile turning device 56 to cut a second sets of grooves 58, 60 crosswise to the first in tiles 61, 62. The resultant lumps 63 at the crossings of the grooves 6, 9 of the first roller pair 55 with the grooves 59, 60 of the second roller pair 58 are also 5 shown.
Figure 10 shows a frame 59 bearing the rollers of the grooving station 49 in an adjustable manner through the height adjustment device 17, and a vertically movable stand 60 bearing, on the one 0 side, said pivoting structure 12 with said rollers 2 an 7, and on the other side, the single roller 51 which is made adjustable independently of said stand 60 by a similar height adjustment device 61,. the latter allowing the roller 51 to be lifted off completely.
5 The facing machine of the invention operates as follows. The workpiece is move forward by the belt transport along direction A. On co ing under the first roller 2, the diamond-tipped cutting teeth of the disks 3 will cut the surface of a tile 5 with a first set of equally spaced grooves 6 of varying vertical dimension, be- cause of the uneven tile surface, but all reaching to the same depth dimension D in the tile. On completion of the operation under the first roller 2, the tile 8 is taken to the second roller 7, which will cut it with a second set of grooves 9, interleaved with the grooves 6 of the first set, using its diamond-tipped cutting teeth 4, thereb to reduce the width of the ridge 10 left over crosswise to direction A.
On completion of the operation at the grooving station 16, the tiles 8 are advanced sequentially to a facing station where the vertical-axis grinding heads 26. will remove the ridges 10 left on the tiles 8. These heads may be any known types, such as cup wheels, cylindrical rollers, or skewed rollers. The cutting action is applied according, to the head type, the workpiece material ,. and the grit employed, so that the facing station 25 may require larg- er or smaller numbers of rotary heads to accommodate the above variables. The -diamond abrasive of the heads will be working under optimal conditions because it is held to the workpiece, rather than throughout its generatrix line, only at points of contact with said ridges 10 or lumps 63 left over from the grooving opera- tion at station 16. This makes for optimal usage of the working characteristics and continual self-dressing of the head abrasives, this being a condition that could not be met heretofore when working on a truly planar surface.
The facing operation is terminated upon attainment of a flat surface on the tile 8. This can be easily detected from a sharp increase in the power requirement of the last head 26 of the facing station 25, which will be processing the whole surface of the tile 8, not just the ridges 10 thereof. An error in setting the working depth D of the roller disks 3 at the grooving station would result in increased power requirements also at the vertical- axis rotary heads located ahead of the last, and consequently in an economically less advantageous process. Quite often, moreover, job time is extended as a function of the types of heads and abrasive being used. 5 At this point, the ceramic tile facing operation is over, and the tile will display any pattern, logo, grain or colors 30 sought by the. manufacturer..
The operation of the grooving station according to the embodi- 10 ments of Figures 6 and 7 is similar to that of station 16 above, except that the grooves 34, 41 cut by the forward roller 3,2 3.9 merely lie side-by-side with the grooves 37, 44 cut by the rearward roller 35, 43. In either cases, ridges 10 are left over that are to be processed at the following facing, station as previously 15 explained. Also, the applied cutting power is again spread between the working rollers, for lower tile stressing from the pressure exerted on it and improved cutting action by the diamond-tipped cutting edges of the teeth 4., since the disks 3 of any one roller will.be at work on only a portion of the tile surfaces 31, 38, 42, 20 46.
The operation of the embodiment of Figure 8, additionally to what has been mentioned above in relation to rollers 2 and 7 having interleaved disks 3, involves arrangements for cutting across
25 middle and side bands 47, 50 in order to process larger size tiles 48. Yet the grooving station 49 can effect a change of size very quickly, and is adapted to also cut grooves in smaller size tiles, such as a tile 1, using the rollers 2 and 7 only, these rollers being arranged to process the middle band 47, as wide as the tile
30 1, while the roller 51 is held inactive, it being designed and set for processing only the side bands 50 of larger size tiles 48. To change from one size to another, the roller 51, although held out of. the tile processing operation, is readily set for same working depth as the pair of toothed rollers 2, 7 by independently adjust-
35 ing it to dimension D through the device 61, with due regard for the different amounts of wear undergone by the teeth 3 of each roller.
The embodiment of the multiple grooving station 54, advanta- 5 geously for ceramic tiles, shown in Figure 9, is operated to cut grooves 6, 9 by the ridges 10 of the first roller pair 55. The tile is then rotated 90 degrees (N) by the turning device 56 to present the ridges 10 crosswise under the second roller pair 58. The grooves 59, 60 are cut by the second roller pair to form lumps 10 63 on the surface of the tile 62 being processed. These lumps will then be easy to remove at the following facing station. The same advantageous situation as described above in connection with the removal of the ridges 10 also applies to the lumps 63.
15 The advantages of this invention can be summarized as follows. The grooving station 16, 49, 54 of the facing machine allows a desired depth D to be reached quickly in the surface of a ceramic tile, after breaking through the hard-fired surface layer to produce the planarity required for later polishing. By focusing the 0 cutting power on the grooves only, a much harder diamond grit than that employed on helical abrasive pattern rollers can be used, with attendant improvements in durability and cutting power requirements for the same amount of material removed. The facing operation to be carried out at the following station with vertical- 5 axis rotary heads better suits the cutting characteristics of the diamond grit employed, because the latter is kept to work only on the ridges 10 or lumps 63, not across the whole tile surface. Last, the reduction in overall power requirements for the facing operation is a substantial one, since it may drop down to 50% or 0 less for the same amount of material removed.
The grooving station could comprise, as mentioned before, more than two rollers mounting a set of disks with diamond-tipped cutting teeth. However, this grooving station would be a compli- 5 cated and expensive construction, only partly compensated for by benefits of output and flexible operation. In other words, although benefits would accrue from an increased number of rollers, they would not in a directly proportional fashion to that number. At most two, three or four rollers is an optimum number, as above this, the cost of the construction would increase out of proportion to the benefits it can bring in.
An optimum working condition is for the rollers to cut all the same depth in the workpiece surface - tiles 1, 5, 8, 31, 38, 42, 46, 48, 61 and 62 - at the grooving stations 16, 49 and 54, such that the grooves 6, 9, 34, 37, 41, 44, 53, 59 and 60 will enter the facing station 25 with one and the same dimension D, and the job be more equally distributed among the facing heads. In the event of mismatched roller cutting depths due to adjustment er- rors, different roller diameters, or different depth settings directed to accommodate different types of heads, the tile processing can still be carried to completion, although not under the best possible conditions in respect of power consumption and/or wear of the diamond cutting material on the rotary heads of the facing station 25. Such an inferior efficiency level will reflect on increased loading of the last rotary head in the facing station, because put to work on ridges 10 or lumps 63 of greater width. Thus, the cutting depth dimension D admits of variations not in excess of a few tenths of a millimeter. Accordingly, only the single roller 51 with diamond-tipped cutting teeth 4 in the grooving station 49 can be supported independently in a practical way, in order to minimize variations in the cutting dimension D generated by the grooving station. Advantageously, said roller 51 is carried, rather than directly on the machine frame 59, on an adjustable stand 60 that also carries the roller pair 2, 7, themselves supported on the pivoting structure 12 and adjusted as explained hereinabove. Thus, the three-roller grooving station 49 can be adjusted the same way as the station 16 ahead, and jointly set to a tile 48 to be processed following ini- tial adjustment for the different rate of wear of the roller teeth 3.
The cutting width of the teeth 4 may differ between the disks 3 of one roller and the disks of another roller, or between disks 3 in the same roller, so that a larger amount of material can be removed from selected areas of a tile, e.g. more from the side bands or more from the middle band of its processed area, according to the removing capabilities of the rotary heads employed in the facing station 25. The resultant ridges 10 or lumps 60 will not be the same width in said different areas of the workpiece, and will accommodate such differences in the cutting characteristics of the vertical-axis rotary heads. A target condition would be, however, a succession of alternating grooves and ridges 10 or lumps 63, even if the grooves and the ridges or lumps may have different widths.
Furthermore, said rollers with diamond-tipped cutting tooth disks 3 may have different diameters and the number of their teeth also be different. As said before, they can be used in the same grooving station 16, 49 or 54 if adjusted for the same cutting depth.
Therefore, the cutting rate should be adjusted to suit the diameter and the type of grit employed, and may differ between rollers in one station. Last, for ease of maintenance, each roller should be equipped with toothed disks whose cutting edges have near-equal circumferential lengths and the same or well-matched abrasive materials, such that they will wear evenly and demand less frequent servicing.
In practicing the invention, the materials, dimensions, and constructional details may be others than, yet engineering equivalents of, those specified in the foregoing, without departing from the juridical scope of the present invention.
Thus, the grooving station 16, 49 or 54 could be built on a separate structure 15, 23, 59 from the just as necessary facing station 25 provided after it, for the purpose of updating existing calibrating and/or facing machines having abrasive rotary heads 26 and improve their output and operational flexibility, i.e. to adapt them for use as grooving and facing stations in a ceramic tile facing line according to the above specification.

Claims

1. A facing machine for hard-fired ceramic tiles (1), which machine comprises: a structure (23, 15) for supporting, and setting (17) the cutting depth of, at least one pair of rotary rollers at a grooving station (16), the axis of said rollers lying transverse to the infeed path (A) of said tiles as carried on a belt transport (24); said rollers comprising a plurality of disks (3) formed with diamond-tipped cutting teeth (4) and spaced apart abreast said tiles; and a facing station (25) comprising a plurality of vertical-axis grinding wheels with abrasive diamond-tipped tooling; characterized in that said disks (3) with diamond-tipped cutting teeth have identical working diameters in one set of roller-mounted disks (2, 7; 32, 35; 39, 43; 51), the cutting edges of said teeth (4) having very closely the same circumferential length and being made of a suitable abrasive material for even wear of the cutting edges in one roller-mounted set of disks; that said rollers (2, 7) comprised of disks with diamond-tipped cutting teeth are carried on a common supporting structure (12), said structure being adjustable (17) in height to set the tool cutting depth in the tile; at least two of said rollers (2, 7; 32, 35; 39, 43; 51) lying next to each other in the direction of tile advance, and being set and/or adjusted sideways to associate the grooves (6, 34, 41, 59) cut in the tile surface by the disks (3) of a pre- ceding one of the rollers (2, 32, 39) with the grooves (9, 37, 44, 53, 60) cut by the disks of the successive roller (7, 35, 43 and 52); the depth (D) at which said grooves (10) are cut being the same or very closely approaching a set depth; said structure (12) being pivotable about a parallel shaft (13) to the work surface in a transverse direction to the feed direction (A) of the work surface, and being associated with a device (14) for adjusting and inhibiting the pivotal movement of the structure in order to accommodate varying cutting diameters of the rollers at said station; and that said grinding wheels comprise rotary heads (26) mounting diamond-tipped cutting tools, themselves for rotation on said heads.
2. A facing machine according to the preceding claim, characterized in that said disks (3) with diamond-tipped cutting teeth have all the same cutting diameter in the sets of disks mounted on the paired rollers (16, 49, 55, 58).
3. A facing machine according to one or more of the preceding claims, characterized in that said device (14) for adjusting and inhibiting the pivotal movement of the structure (12) comprises a settable tie rod (14) for fine adjustment of said pivotal movement, the tie rod being pivoted with one end on said pivoting structure ( 12 ) and with the other end on the grooving station frame (15) .
4. A facing machine according to one or more of the preceding claims, characterized in that said rollers with disks (3) of equal cutting width are set transversely at pitch distances selected to produce ridges (10) or lumps (63) of equal or nearly equal widths between resultant grooves, according to the numbers of disks and rollers being used and to the widths of the respective cutting edges .-
5. A facing machine according to one or more of the preceding claims, characterized in that the rollers with diamond-tipped cutting tooth disks (3) are split into first and second pairs (55, 58) along the feed direction (A) of the tiles (5, 8, 61, 62), and that a device (56) for turning a tile being processed 90 degrees (N) is provided between said pairs.
6. A facing machine according to one or more of the preceding claims, characterized in that said vertical-axis rotary heads mount tools for rotation about a horizontal or sub-horizontal axis.
7. A facing machine according to one or more of Claims 1 to 5, characterized in that said vertical-axis rotary heads mount tools for rotation about a vertical or sub-vertical axis.
8. A facing machine according to one or more of Claims 1 to 4, characterized in that a third roller (51) with diamond-tipped cutting tooth disks (3) is provided additionally to said two rollers (2, 7) mounted on the pivoting structure (12), all said rollers being mounted on a height-adjustable stand (60), with said third roller being independently adjustable (61) on said height- adjustable stand (60).
9. A facing machine according to one or more of Claims 1 to 4, characterized in that a separate frame from the grooving station (16), consisting of said toothed disk roller pair (2, 7), carries an additional roller pair (2, 7) associated with a device (56) for turning a tile being processed 90 degrees (N) , thereby to convert a grooving station to a four-roller layout as shown in Figure 9.
10. A facing machine according to one or more of the preceding claims, characterized in that the toothed disk rollers are belt driven rotatively by electric motors (18) mounted through mounting brackets (20) either on the pivoting structure (12) that carries the roller pair (2, 7) or on the adjustable stand (60) for the single roller (51).
11. A facing machine according to one or more of the preceding claims, characterized in that cylinder actuators (21) for retracting said rollers when the tile advance movement (A) is stopped are provided between the height adjusting device (17) and the adjusta- ble stand (60) or the pivoting structure (12).
PCT/IT2002/000586 2001-10-03 2002-09-16 Facing machine for hard-fired ceramic tiles WO2003028968A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP02800220A EP1439940B1 (en) 2001-10-03 2002-09-16 Facing machine for hard-fired ceramic tiles
BR0206053-1A BR0206053A (en) 2001-10-03 2002-09-16 High Burn Ceramic Tiles Flooring Machine
DE60220080T DE60220080T2 (en) 2001-10-03 2002-09-16 PUNCHING MACHINE FOR HARD-BURNED CERAMIC TILES
US10/818,932 US6941939B2 (en) 2001-10-03 2004-04-05 Facing machine for hard-fired ceramic tiles
HK05104406A HK1071715A1 (en) 2001-10-03 2005-05-26 Facing machine for hard-fired ceramic tiles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITMO2001A000196 2001-10-03
IT2001MO000196A ITMO20010196A1 (en) 2001-10-03 2001-10-03 CALIBRATING MACHINE FOR THICKNESS OF SLAB MATERIALS, OPA-TILE STRIPS, SUCH AS PORCELAIN STONEWARE, GRANITE, HARD STONES OR MARBLE

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/818,932 Continuation-In-Part US6941939B2 (en) 2001-10-03 2004-04-05 Facing machine for hard-fired ceramic tiles

Publications (1)

Publication Number Publication Date
WO2003028968A1 true WO2003028968A1 (en) 2003-04-10

Family

ID=11450882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IT2002/000586 WO2003028968A1 (en) 2001-10-03 2002-09-16 Facing machine for hard-fired ceramic tiles

Country Status (11)

Country Link
US (1) US6941939B2 (en)
EP (1) EP1439940B1 (en)
CN (1) CN1289274C (en)
AT (1) ATE361821T1 (en)
BR (1) BR0206053A (en)
DE (1) DE60220080T2 (en)
ES (1) ES2283644T3 (en)
HK (1) HK1071715A1 (en)
IT (1) ITMO20010196A1 (en)
PT (1) PT1439940E (en)
WO (1) WO2003028968A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087470A1 (en) * 2004-03-16 2005-09-22 Luigi Pedrini Facing machine for large plates of natural stone, like granite and hard stones
CN101879693A (en) * 2010-06-24 2010-11-10 张岳恩 Loading and unloading station automatic circulation mechanism for diamond grinding and polishing machine
WO2013110555A1 (en) * 2012-01-27 2013-08-01 Technische Universität Kaiserslautern Method for polishing a flat surface of a workpiece made of a brittle material, and a device for carrying out the method
FR3012358A1 (en) * 2013-10-25 2015-05-01 Quadra 1 ASSEMBLY FOR MACHINING AT LEAST ONE BLOCK OF BONDED CONCRETE AND RECTIFICATION STATION COMPRISING SUCH AN ASSEMBLY
EP3544769A4 (en) * 2016-11-28 2020-07-29 Diamond Products, Limited Blade head, blade and method for eliminating spacers in multiple blade stacks
CN113275962A (en) * 2021-06-16 2021-08-20 江西和美陶瓷有限公司 Pretreatment device for ceramic tile water absorption rate detection sample and control method thereof

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7238091B2 (en) 2005-07-01 2007-07-03 Hoosier Sawyer, Llc Stone fabrication scheme
JP5021441B2 (en) * 2007-12-12 2012-09-05 株式会社タイガーマシン製作所 Concrete block scraping method and concrete block scraping device
CN104175198B (en) * 2013-05-23 2017-02-08 董昊南 Automatic cutting and grinding device for light heat-insulation brick
US9145650B2 (en) * 2013-10-10 2015-09-29 Alan Edward LeBlanc Scarifier
CN105773846A (en) * 2014-12-22 2016-07-20 佛山市宝航机械装备行业知识产权服务有限公司 Ceramic tile strike-off machine
CN105773812A (en) * 2014-12-22 2016-07-20 佛山市宝航机械装备行业知识产权服务有限公司 Single-head swing type striking-off machine
CN104608035A (en) * 2015-01-23 2015-05-13 袁子科 Grinding equipment
US9434010B1 (en) * 2015-02-25 2016-09-06 Gradex Company Llc Mill system
CN105798716A (en) * 2016-03-21 2016-07-27 陈瑞琼 Polishing method and polishing device
US10864656B2 (en) * 2017-01-20 2020-12-15 Cambria Company Llc Slab cutting apparatus and method
IT201700032989A1 (en) * 2017-03-24 2018-09-24 Pga Service S R L PROCEDURE FOR DECORATING TILES
IT201800003283A1 (en) * 2018-03-05 2019-09-05 Pilegar S A SELF-DRAINING PORCELAIN
CN108188488A (en) * 2018-03-09 2018-06-22 赵徐增 Plate face flowing water processing unit (plant)
US10280634B1 (en) * 2018-08-30 2019-05-07 Jorge P Remos Product leveling device for tile machines
CN113134646B (en) * 2021-03-04 2023-04-07 江门市浙顺空调配件有限公司 Copper pipe cutting equipment for copper processing
CN113561009B (en) * 2021-08-02 2022-06-10 绿凯智能科技(深圳)有限公司 Household electrical appliances intelligence switch processingequipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2521475A1 (en) * 1982-02-18 1983-08-19 Terzago Spa CONTINUOUSLY OPERATING GRANITE BAND CALIBRATION MACHINE
US5056272A (en) * 1990-07-16 1991-10-15 Battaglia Gino C Method and apparatus for reducing thickness of stone slabs
DE4217228C1 (en) * 1992-05-20 1993-11-04 Steinbearbeitungs Maschinenfab Sepg. machine for natural stone - has number of circular sawing tools arranged rotatably on bearer arms of a rotary support
DE29705698U1 (en) * 1997-03-29 1997-06-19 Blanke Bohne J Prof Dr Device for the production of large-scale thin stone slabs

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3550575A (en) * 1968-05-23 1970-12-29 Super Cut Method of and apparatus for surfacing refractory slabs or the like
CA2036447C (en) * 1991-02-15 1994-08-16 Michel Letendre Assembly for conventional bench saw
DE19754799A1 (en) * 1997-12-10 1999-06-17 Bhs Corr Masch & Anlagenbau Slitting and creasing machine for corrugated cardboard webs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2521475A1 (en) * 1982-02-18 1983-08-19 Terzago Spa CONTINUOUSLY OPERATING GRANITE BAND CALIBRATION MACHINE
US5056272A (en) * 1990-07-16 1991-10-15 Battaglia Gino C Method and apparatus for reducing thickness of stone slabs
DE4217228C1 (en) * 1992-05-20 1993-11-04 Steinbearbeitungs Maschinenfab Sepg. machine for natural stone - has number of circular sawing tools arranged rotatably on bearer arms of a rotary support
DE29705698U1 (en) * 1997-03-29 1997-06-19 Blanke Bohne J Prof Dr Device for the production of large-scale thin stone slabs

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087470A1 (en) * 2004-03-16 2005-09-22 Luigi Pedrini Facing machine for large plates of natural stone, like granite and hard stones
CN101879693A (en) * 2010-06-24 2010-11-10 张岳恩 Loading and unloading station automatic circulation mechanism for diamond grinding and polishing machine
WO2013110555A1 (en) * 2012-01-27 2013-08-01 Technische Universität Kaiserslautern Method for polishing a flat surface of a workpiece made of a brittle material, and a device for carrying out the method
FR3012358A1 (en) * 2013-10-25 2015-05-01 Quadra 1 ASSEMBLY FOR MACHINING AT LEAST ONE BLOCK OF BONDED CONCRETE AND RECTIFICATION STATION COMPRISING SUCH AN ASSEMBLY
EP3544769A4 (en) * 2016-11-28 2020-07-29 Diamond Products, Limited Blade head, blade and method for eliminating spacers in multiple blade stacks
CN113275962A (en) * 2021-06-16 2021-08-20 江西和美陶瓷有限公司 Pretreatment device for ceramic tile water absorption rate detection sample and control method thereof

Also Published As

Publication number Publication date
HK1071715A1 (en) 2005-07-29
CN1561281A (en) 2005-01-05
PT1439940E (en) 2007-07-27
DE60220080T2 (en) 2008-01-24
CN1289274C (en) 2006-12-13
DE60220080D1 (en) 2007-06-21
ATE361821T1 (en) 2007-06-15
EP1439940B1 (en) 2007-05-09
ES2283644T3 (en) 2007-11-01
BR0206053A (en) 2003-09-23
US6941939B2 (en) 2005-09-13
ITMO20010196A1 (en) 2003-04-03
EP1439940A1 (en) 2004-07-28
US20050066955A1 (en) 2005-03-31
ITMO20010196A0 (en) 2001-10-03

Similar Documents

Publication Publication Date Title
EP1439940B1 (en) Facing machine for hard-fired ceramic tiles
US5056272A (en) Method and apparatus for reducing thickness of stone slabs
EP1520659B1 (en) A stone or marble slab polishing machine comprising a template
EP1963065B1 (en) Machine for optimized cutting of slabs in stone or lithoid material
CN101104246B (en) Edge finishing machine
JP2000094303A (en) Grinding method and grinding device
JP3980896B2 (en) Processing method and apparatus for plate material
EP1761373B1 (en) Facing machine for large plates of natural stone, like granite and hard stones
WO1999033622A1 (en) Process, equipment and stone-processing line for the production of tiles of artificial or natural stone - especially marble _____
WO1995030515A1 (en) A machine for smoothing/polishing flat slabs, in particular of ceramic material, natural stone, or other equivalent materials
EP0937540A2 (en) Sanding-polishing machine for slabs, tiles and the like
KR100316617B1 (en) dressing method of scrubbing machine for PCB
CN111823424A (en) Brittle and hard material cutting method and device
JP5502385B2 (en) Double-head surface grinding method and apparatus
RU2150383C1 (en) Universal automated production line for manufacture of articles from natural or artificial stone
CN212266287U (en) Double-line cutting device for brittle and hard materials
KR200302552Y1 (en) Oscillating bed for polishing sloped or bent stones or ceramic tiles
CN212266294U (en) Brittle and hard material cutting device
JP2670828B2 (en) Strip rolling equipment
KR100892938B1 (en) Grinding device for curved surface of stone
JP4135863B2 (en) Cold shear blade automatic grinding equipment
JP3021484B2 (en) Gear finishing tools and finishing equipment
RU2191112C1 (en) Universal automatic flow line for making products of natural stone
CN111823420A (en) Double-line cutting method and device for brittle and hard materials
KR20210078923A (en) Stone curved precision processing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BA BR CA CN IN SI UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20028194381

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10818932

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002800220

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002800220

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002800220

Country of ref document: EP