WO2003023736A1 - Vorrichtung zur simulation eines stabförmigen chirurgischen instrumentes mit kraftrückkopplung - Google Patents

Vorrichtung zur simulation eines stabförmigen chirurgischen instrumentes mit kraftrückkopplung Download PDF

Info

Publication number
WO2003023736A1
WO2003023736A1 PCT/CH2002/000503 CH0200503W WO03023736A1 WO 2003023736 A1 WO2003023736 A1 WO 2003023736A1 CH 0200503 W CH0200503 W CH 0200503W WO 03023736 A1 WO03023736 A1 WO 03023736A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball bearings
grooves
cylindrical element
ball bearing
positive engagement
Prior art date
Application number
PCT/CH2002/000503
Other languages
English (en)
French (fr)
Other versions
WO2003023736A8 (de
Inventor
Stéphane Betrisey
Marc Vollenweider
Original Assignee
Xitact S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xitact S.A. filed Critical Xitact S.A.
Priority to DE20280425U priority Critical patent/DE20280425U1/de
Publication of WO2003023736A1 publication Critical patent/WO2003023736A1/de
Publication of WO2003023736A8 publication Critical patent/WO2003023736A8/de

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/285Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine for injections, endoscopy, bronchoscopy, sigmoidscopy, insertion of contraceptive devices or enemas

Definitions

  • the invention relates to a device for simulating a rod-shaped virtual surgical instrument, in particular for the simulation of an endoscopic instrument, with a stationary frame, with a handle of the instrument, with at least one drive block for force feedback and with a virtual trocar, the handle over the virtual trocar and is connected to the frame via the drive block.
  • drive blocks are used. These are controlled in a way to allow the transfer of simulated forces to the instrument.
  • the drive block grips a rod or a tube to which the said handle is attached at the proximal end.
  • a pair of drive blocks accesses and moves the rod in the longitudinal direction between them. This creates a certain amount of slip, which, according to the teaching described there, makes it necessary to use measuring and calibration devices to determine the actual position of the rod in relation to the drive blocks.
  • the invention has for its object to provide a drive that works without slippage. Moreover, it is object of the dung OF INVENTION ⁇ to design this unit so that the surgeon at the The handle does not feel any knocks or jerks that could result from the frictional or form-fitting connection between the rod and the drive block.
  • a cylindrical element which corresponds to the above-mentioned rod, has at least two grooves in which the drive blocks engage, a reliable assignment of position in the longitudinal and rotational directions to the drive block can be established.
  • Fig. 1 is a side view of a shaft with two times three grooves
  • Fig. 2 is a schematic cross section through the shaft with on this mounted ball bearings one of the drive blocks
  • 3b shows a ball bearing with a rounded surface, so that there is a line contact with the shaft
  • Shaft 1 shows a schematic side view of a shaft 1 to be moved of a virtual surgical instrument.
  • Shaft 1 is also to be understood as a rod or a hollow tube or generally a cylindrical element. Its rotationally symmetrical design with respect to the main axis of the element 1 is essential.
  • drive blocks 4 are provided at two different locations along the shaft 1, only one of which is shown schematically here.
  • Each drive block 4 completely encompasses the shaft 1 and includes three ball bearings which are arranged around the shaft 1 in accordance with FIG. 2.
  • the ball bearings 14, 24, 34 run in three grooves 15, 25 and 35, which run around the shaft in a screw shape.
  • Appropriate controls of the two drive blocks 4 can thus be used to perform a pure longitudinal movement in the direction of the double arrow 2 or a pure rotary movement in the direction of the double arrow 3 or a mixed movement. The surgeon to be impressed with a movement perceives this as a force feedback.
  • the shaft 1 shows a schematic cross-sectional view of the shaft 1, which is surrounded by three ball bearing housings 14, 24 and 34, which are shown here schematically as circles, and which engage in the grooves 15, 25 and 35, respectively.
  • the angles 16, 26 and 36 between two of the three ball bearings 14, 24, 34 are not equal to 120 °.
  • the angle 16 is 115 °
  • the angle 26 is 110 °
  • the angle 36 is 135 °.
  • This difference in the angles means that when the ball bearings roll in the grooves, there is never more than one ball bearing at a crossing point 8 of two grooves. This safely prevents beats and delays that a sensitive surgeon could detect on the simulator.
  • the ball bearings could also be arranged at a 120 degree angle to one another, but offset in the longitudinal direction (corresponding to the direction of arrow 2).
  • FIG 3a shows in a very schematic cross-sectional view that the housing 14 of the ball bearing is in point contact with the surface of the cylindrical element 1.
  • 3b shows in a very schematic cross-sectional view that with a suitable design of the ball bearing surface, the housing of the ball bearing 14 is in line contact with the surface, since the shaft surface is a cylinder surface and is therefore curved for the ball bearings, except in the direction of the double arrow 2.
  • 3c shows in a very schematic cross-sectional view that the housing of the ball bearing here has an edge 9 is in positive engagement in the groove 15.
  • FIG. 3d shows in a very schematic cross-sectional view that the housing of the ball bearing is in positive engagement with an extension 19 in the groove 15.
  • FIG. 3e finally shows in a very schematic cross-sectional view that the housing of the ball bearing is in positive engagement with a shoulder 19 in the groove 15, the rest of the ball bearing surface being rounded according to FIG. 3b and thus in line contact with the surface of the cylindrical one Element stands.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Medical Informatics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Algebra (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pulmonology (AREA)
  • Mathematical Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Surgical Instruments (AREA)

Abstract

Eine Vorrichtung zur Simulation eines stabförmigen virtuellen chirurgischen Instrumentes, insbesondere für die Simulation eines endoskopischen Instrumentes, hat ein ortsfestes Gestell, verfügt über einen Handgriff des Instrumentes, mindestens einen Antriebsblock für eine Kraftrückkopplung und einen virtuellen Trokar. Dabei ist der Handgriff über den virtuellen Trokar und über den Antriebsblock (4) mit dem Gestell verbunden. Der Hangriff ist mit einem zylindrischen Element (1) verbunden, das über mindestens zwei Nuten (15, 25, 35, 45, 55, 65) verfügt, in die die Antriebsblöcke (4) eingreifen, so dass eine feste Zuordnung von Position in longitudinaler und in Drehrichtung zum Antriebsblock (4) festlegbar ist.

Description

Vorrichtung zur Simulation eines s abförmigen chirurgischen Instrumentes mit Kraftruckkopplung
Die Erfindung betrifft eine Vorrichtung zur Simulation eines stabförmigen virtuellen chirurgischen Instrumentes, insbesondere für die Simulation eines endoskopischen Instrumentes, mit einem ortsfesten Gestell, mit einem Handgriff des Instrumentes, mit mindestens einem Antriebsblock für eine Kraftrückkopplung und mit einem virtuellen Trokar, wobei der Handgriff über den virtuellen Trokar und über den Antriebsblock mit dem Gestell verbunden ist.
Bei solchen Vorrichtungen zum Einsatz bei der Simulation von Operationen, insbesondere endoskopischen Eingriffen, werden Antriebsblöcke eingesetzt. Diese werden in einer Weise angesteuert, um eine Übertragung von simulierten Kräften auf das Instrument zu gestatten. Bei solchen stabförmigen Instrumenten greift der Antriebsblock auf einen Stab oder ein Rohr, an dem am proxi- malen Ende der besagte Handgriff befestigt ist. Ein Paar von Antriebsblöcken, wie sie in der CH 385/01 der Anmelderin beschrieben sind, greift auf den Stab zu und verschiebt diesen zwischen sich in longitudinaler Richtung. Dabei entsteht ein gewisser Schlupf, der es gemäss der dort beschriebenen Lehre notwendig macht, mit Mess- und Kalibriereinrichtungen die tatsächliche Lage des Stabes im Bezug auf die Antriebsblöcke festzulegen.
Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, einen Antrieb anzugeben, der ohne Auftreten eines Schlupfes arbeitet. Darüber hinaus ist es Ziel der Erfin¬ dung, diesen Antrieb so auszugestalten, dass der Operateur am Handgriff keine Schläge oder ein Ruckein verspürt, welches durch den Kraftschluss oder Formschluss zwischen Stab und Antriebs- block entstehen könnte.
Diese Aufgabe wird für eine Vorrichtung der eingangs genannten Art mit den Merkmalen des Anspruchs 1 gelöst.
Dadurch, dass ein zylindrisches Element, welches dem oben genannten Stab entspricht, über mindestens zwei Nuten verfügt, in die die Antriebsblöcke eingreifen, kann eine sichere Zuordnung von Position in longitudinaler und in Drehrichtung zum Antriebs- block festgelegt werden.
Mit der in den Unteransprüchen genannten Ausgestaltung und Anordnung der Nuten kann zudem erreicht werden, dass an den besagten Kreuzungsstellen der Nuten der Antrieb einen Vortrieb hat, der zu keinen Schlägen bei Überfahren dieser Kreuzungsstellen führt .
Aus der W099/38141 ist es bekannt, einen Antrieb mit drei Stellgliedern anzugeben, die in einem Winkel von 120 Grad zueinander stehen, um ein simuliertes Endoskop in einen simulierten gastro- intestinalen Trakt vorzuschieben.
Weitere vorteilhafte Ausführungsformen sind in den Unteransprüchen gekennzeichnet.
Anschliessend wird nun die Erfindung anhand von mehreren Ausführungsbeispielen in den Zeichnungen beispielhaft näher erläutert . Es. zeigen:
Fig. 1 eine Seitenansicht eines Schaftes mit zwei mal drei Nuten, Fig. 2 einen schematischen Querschnitt durch den Schaft mit auf diesem aufgesetzten Kugellagern eines der Antriebsblöcke,
Fig. 3a ein Kugellager mit Punktkontakt zum Schaft ohne Nut nach dem Stand der Technik,
Fig. 3b ein Kugellager mit gerundeter Oberfläche, so dass sich ein Linienkontakt zum Schaft ergibt, und
Fig. 3c-e verschiedene Ausführungsformen des Eingriffes eines Kugellagergehäuses in den Schaft mit Nut .
Die Fig. 1 zeigt eine schematische Seitenansicht eines zu bewegenden Schaftes 1 eines virtuellen chirurgischen Instrumentes. Unter Schaft 1 ist auch ein Stab oder ein Hohlrohr oder allgemein ein zylindrisches Element zu verstehen. Wesentlich ist dessen rotationssymmetrische Ausgestaltung bezüglich der Hauptachse des Elementes 1.
Dieses ist in Richtung des Doppelpfeiles 2 in Längsrichtung hin und her zu bewegen sowie, wie durch den Pfeil 3 angedeutet, um die eigene Achse drehbar. Hierfür sind an zwei verschiedenen Orten entlang des Schaftes 1 Antriebsblöcke 4 vorgesehen, von denen hier nur einer schematisch dargestellt ist. Jeder Antriebsblock 4 umfasst den Schaft 1 vollständig und beinhaltet drei Kugellager, die entsprechend Fig. 2 um den Schaft 1 herum angeordnet sind. Die Kugellager 14, 24, 34 laufen in drei Nuten 15, 25 und 35, die in Schraubenform um den Schaft herumlaufen. Durch entsprechende Ansteuerungen der beiden Antriebsblöcke 4 kann somit eine reine Longitudinalbewegung in Richtung des Doppelpfeils 2 oder eine reine Drehbewegung in Richtung des Doppelpfeils 3 oder eine gemischte Bewegung ausgeführt werden. Der eine Bewegung auf den Schaft aufzuprägende Operateur empfindet dies als Kraftrückkopplung.
Neben den drei Nuten 15, 25 und 35 sind drei weitere Nuten 45, 55 und 65 vorgesehen, die entgegengesetzten Drehsinn aufweisen und damit Kreuzungen 8 bilden.
In der Fig. 2 ist in einer schematischen Querschnittsansicht der Schaft 1 dargestellt, der von drei hier schematisch als Kreise dargestellten Kugellagergehäusen 14, 24 und 34 umgeben ist, die jeweils in die Nuten 15, 25 und 35 eingreifen. Die Winkel 16, 26 und 36 zwischen jeweils zwei der drei Kugellager 14, 24, 34 sind nicht gleich 120°. Der Winkel 16 beträgt zum Beispiel 115°, der Winkel 26 beläuft sich auf 110° und der Winkel 36 beträgt 135°. Dieser Unterschied in den Winkeln führt dazu, dass beim Abrollen der Kugellager in den Nuten nie mehr als ein Kugellager an einem Kreuzungspunkt 8 von zwei Nuten ist. Dadurch können Schläge und Verzögerungen, die ein empfindlicher Operateur am Simulator feststellen könnte, sicher vermieden werden. Neben der Veränderung des Winkels der Kugellager könnten die Kugellager auch im 120 Grad Winkel zueinander, aber in longitudinaler Richtung (entsprechend Richtung des Pfeiles 2) zueinander versetzt angeordnet werden.
Die Fig. 3a zeigt in einer sehr schematischen Querschnittsansicht, dass das Gehäuse 14 des Kugellagers im Punktkontakt mit der Oberfläche des zylindrischen Elementes 1 steht .
Fig. 3b zeigt in einer sehr schematischen Querschnittsansicht, dass bei geeigneter Ausgestaltung der Kugellageroberfläche das Gehäuse des Kugellagers 14 in Linienkontakt mit der Oberfläche steht, da ja die Schaftoberfläche eine Zylinderoberfläche ist und ausser in Richtung des Doppelpfeiles 2 somit für die Kugellager gekrümmt ist .
Die Fig. 3c zeigt in einer sehr schematischen Querschnittsansicht, dass das Gehäuse des Kugellagers hier mit einer Kante 9 in der Nut 15 in formschlüssigem Eingriff steht.
Die Fig. 3d zeigt in einer sehr schematischen Querschnittsansicht, dass das Gehäuse des Kugellagers mit einem Ansatz 19 in der Nut 15 in formschlüssigem Eingriff steht.
Die Fig. 3e zeigt schliesslich in einer sehr schematischen Querschnittsansicht, dass das Gehäuse des Kugellagers mit einem Ansatz 19 in der Nut 15 in formschlüssigem Eingriff steht, wobei der Rest der Kugellageroberfläche entsprechend Fig. 3b gerundet ist und somit in Linienkontakt mit der Oberfläche des zylindrischen Elementes steht.

Claims

Patentansprüche
1. Vorrichtung zur Simulation eines stabförmigen virtuellen chirurgischen Instrumentes, insbesondere für die Simulation eines endoskopischen Instrumentes, mit einem ortsfesten Gestell, mit einem Handgriff des Instrumentes, mit mindestens einem Antriebsblock (4) für eine Kraftrückkopplung und mit einem virtuellen Trokar, wobei der Handgriff über den virtuellen Trokar und über den Antriebsblock (4) mit dem Gestell verbunden ist, dadurch gekennzeichnet, dass der Handgriff mit einem zylindrischen Element (1) verbunden ist, dass das zylindrische Element (1) über mindestens zwei Nuten (15, 45) verfügt, in die die Antriebsblöcke (4) eingreifen, so dass eine feste Zuordnung von Position in longitudinaler und in Drehrichtung zum Antriebsblock (4) festlegbar ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Querschnitte der Nuten (15, 45) V-förmig sind.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zwei Antriebsblöcke (4) mit jeweils drei Kugellagern
(14, 24, 34) vorgesehen sind, von denen jeweils mindestens eines der Kugellager (14, 24, 34) mit einer Nut (15, 45) des zylindrischen Elementes (1) in formschlüssigem Eingriff steht.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass der formschlüssige Eingriff in die Nut (15) durch die Kante (9) des Kugellagers erfolgt.
5. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass der formschlüssige Eingriff in die Nut (15) durch einen Ansatz (19) am Kugellager erfolgt.
6. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass der formschlüssige Eingriff in die Nut (15) durch einen Ansatz (19) am Kugellager erfolgt, und der Rest des Kugellagers in Linienkontakt mit dem zylindrischen Element (1) steht.
7. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass alle drei Kugellager (14, 24, 34) in formschlüssigem Eingriff mit den Nuten (15, 25, 35) des zylindrischen Elementes (1) stehen.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass nie mehr als eines der drei Kugellager (14, 24, 34) gleichzeitig an einem Kreuzungspunkt (8) von zwei gegenläufigen Nuten (15, 25, 35, 45, 55, 65) steht.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Winkel (16, 26, 36) zwischen jeweils zwei Kugellagern (14 und 24, 24 und 34, 34 und 14) unterschiedlich gross sind.
10. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die drei Kugellager (14, 24, 34) in longitudinaler Richtung (2) zueinander versetzt sind.
PCT/CH2002/000503 2001-09-12 2002-09-12 Vorrichtung zur simulation eines stabförmigen chirurgischen instrumentes mit kraftrückkopplung WO2003023736A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE20280425U DE20280425U1 (de) 2001-09-12 2002-09-12 Vorrichtung zur Simulation eines stabförmigen chirurgischen Instrumentes mit Kraftrückkopplung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01683/01A CH696009A5 (de) 2001-09-12 2001-09-12 Vorrichtung zur Simulation eines stabförmigen chirurgischen Instruments mit Kraftrückkopplung.
CH1683/01 2001-09-12

Publications (2)

Publication Number Publication Date
WO2003023736A1 true WO2003023736A1 (de) 2003-03-20
WO2003023736A8 WO2003023736A8 (de) 2004-06-03

Family

ID=4565885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2002/000503 WO2003023736A1 (de) 2001-09-12 2002-09-12 Vorrichtung zur simulation eines stabförmigen chirurgischen instrumentes mit kraftrückkopplung

Country Status (3)

Country Link
CH (1) CH696009A5 (de)
DE (1) DE20280425U1 (de)
WO (1) WO2003023736A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9711066B2 (en) 2009-08-18 2017-07-18 Airway Limited Endoscope simulator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008013495A1 (de) 2008-03-10 2009-09-24 Polydimensions Gmbh Vorrichtung zur Erzeugung eines haptischen Eindrucks
DE102008013496A1 (de) 2008-03-10 2009-09-17 Polydimensions Gmbh Mechanisches Instrumentenwechselsystem für kraftrückkoppelnde Geräte zur Simulation laparoskopischer Eingriffe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997019440A1 (en) * 1995-11-17 1997-05-29 Immersion Human Interface Corporation Method and apparatus for providing low cost force feedback and mechanical i/o for computer systems
US5882206A (en) * 1995-03-29 1999-03-16 Gillio; Robert G. Virtual surgery system
WO1999038141A1 (en) * 1998-01-26 1999-07-29 Simbionix Ltd. Endoscopic tutorial system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882206A (en) * 1995-03-29 1999-03-16 Gillio; Robert G. Virtual surgery system
WO1997019440A1 (en) * 1995-11-17 1997-05-29 Immersion Human Interface Corporation Method and apparatus for providing low cost force feedback and mechanical i/o for computer systems
WO1999038141A1 (en) * 1998-01-26 1999-07-29 Simbionix Ltd. Endoscopic tutorial system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9711066B2 (en) 2009-08-18 2017-07-18 Airway Limited Endoscope simulator
US11935429B2 (en) 2009-08-18 2024-03-19 Airway Limited Endoscope simulator

Also Published As

Publication number Publication date
CH696009A5 (de) 2006-11-15
DE20280425U1 (de) 2004-09-09
WO2003023736A8 (de) 2004-06-03

Similar Documents

Publication Publication Date Title
EP1649816B1 (de) Auslenkbares endoskopisches Instrument
EP1235520B1 (de) Vorrichtung zum distrahieren oder komprimieren von knochen oder knochenteilen
DE19780579B4 (de) Abwinkelbares endoskopisches Instrument
EP0452451A1 (de) Pedikelschraube und korrektur- und haltevorrichtung mit einer solchen pedikelschraube.
WO2015144613A1 (de) Roboterarm und montageset
CH651192A5 (de) Osteosynthetische vorrichtung und dazu passende bohrlehre.
EP1330809A2 (de) Simulatorvorrichtung mit zumindest zwei bewegungsfreiheitsgraden für ein instrument
EP1319372B1 (de) Vorrichtung zum Halten von Trokarhülsen
EP3015081B1 (de) Chirurgisches instrument mit einer manuellen steuervorrichtung
WO2023025354A1 (de) Einstellbares orthesengelenk zur kontrollierten bewegung und/oder fixierung einer hand sowie orthese mit einem derartigen orthesengelenk
DE69731774T2 (de) Manipulierzange
EP3534812B1 (de) Vorrichtung zum durchführen einer distraktion oder einer kompression von wirbelkörpern bei einer wirbelsäulenoperation
DE102008013495A1 (de) Vorrichtung zur Erzeugung eines haptischen Eindrucks
CH690210A5 (de) Kompensations-Vorrichtung zum Ausgleich eines drehwinkelabhängigen Drehmomentes und medizinisches Stativ mit einer derartigen Kompensations-Vorrichtung.
DE202008015763U1 (de) Instrument für die laparoskopische Chirurgie
DE102021100041A1 (de) Drehmomentschlüssel, mit dem die Genauigkeit des Drehmomentwerts aufrechterhalten werden kann
WO2003023736A1 (de) Vorrichtung zur simulation eines stabförmigen chirurgischen instrumentes mit kraftrückkopplung
DE102012007652A1 (de) Werkzeug für ein medizinisches Instrument
EP3522805A1 (de) Chirurgisches repositionsinstrument
DE10341561A1 (de) Uterus-Manipulator
EP3688506A1 (de) Prismenhalter eines chirurgischen instruments und chirurgisches instrument
DE102012007648A1 (de) Mikroinvasives medizinisches Instrument
DE102010013917A1 (de) Medizinisches Instrument für einen minimalinvasiven Eingriff
DE10316722B4 (de) Umlenkhebel
DE102019103493A1 (de) Medizinisches Instrument

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 12/2003 DUE TO A TECHNICAL PROBLEMAT THE TIME OF INTERNATIONAL PUBLICATION, SOME INFORMATION WAS MISSING UNDER (81). THE MISSING INFORMATION NOW APPEARS IN THE CORRECTED VERSION

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP