WO2003019738A1 - Cw-oscillation millimeter wave/submillimeter wave laser composed of integrated circuit including intrinsic josephson device - Google Patents

Cw-oscillation millimeter wave/submillimeter wave laser composed of integrated circuit including intrinsic josephson device Download PDF

Info

Publication number
WO2003019738A1
WO2003019738A1 PCT/JP2002/008555 JP0208555W WO03019738A1 WO 2003019738 A1 WO2003019738 A1 WO 2003019738A1 JP 0208555 W JP0208555 W JP 0208555W WO 03019738 A1 WO03019738 A1 WO 03019738A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
millimeter
integrated circuit
intrinsic josephson
continuous
Prior art date
Application number
PCT/JP2002/008555
Other languages
French (fr)
Japanese (ja)
Inventor
Tsutomu Yamashita
Huabing Wang
Peiheng Wu
Original Assignee
Japan Science And Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation filed Critical Japan Science And Technology Corporation
Publication of WO2003019738A1 publication Critical patent/WO2003019738A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S1/00Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range
    • H01S1/02Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range solid

Definitions

  • the present invention relates to a continuous-wave millimeter-wave sub-millimeter-wave laser using an integrated circuit including an intrinsic Josephson device.
  • FIG. 1 is a configuration diagram of such a conventional Nb-Josephson junction array.
  • FIG. 1 (a) is a plan view thereof
  • FIG. 1 (b) is a cross-sectional view taken along line AA ′ of FIG. 1 (a).
  • Fig. 1 (c) is an equivalent circuit diagram
  • Fig. 2 is a current-voltage characteristic diagram
  • the horizontal axis shows voltage V (mV)
  • the vertical axis shows current I ((iA)).
  • 1 0 1 Josephson junction (JJ) device 1 02 under ⁇ Nb, 1 03 upper Nb, 1 04 is a ground plane, I A DC current source, L is the inductance, C is a capacitor , R is the resistance (load), and X is the Nb Josephson junction.
  • the Nb Josephson junction array is composed of 144 junction arrays having one junction. When the IV characteristics of this junction array were measured, it showed sharp resonance characteristics. Detection experiments have shown that this sharp resonance characteristic indicates that laser oscillation occurs in the 100 GHz band. In continuous wave oscillation, its maximum power P max is
  • the maximum power is about 0. 3 W (10_ 4 W / cm 2).
  • the present inventors have already proposed a BSCCO single crystal device (intrinsic Josephson junction device) and a manufacturing method thereof. Disclosure of the invention
  • the present invention provides a continuous-wave millimeter-wave and sub-millimeter-wave laser using an integrated circuit including an intrinsic Josephson element that continuously oscillates by integrating a terahertz-band antenna and a choke circuit by using the BSCCO single crystal device described above.
  • the purpose is to do.
  • a continuous-wave millimeter-wave / sub-millimeter-wave laser based on an integrated circuit containing an intrinsic Josephson device, which is equipped with a DC current source, and a terahertz band antenna and choke circuit mounted on the DC current source. And a two-dimensional array in which a large number of unique Josephson junction devices are connected in series and parallel, and a DC current is injected from the DC current source to generate continuously oscillating millimeter-wave and sub-millimeter-wave laser light.
  • FIG. 1 is a configuration diagram of a conventional Nb Josephson junction array.
  • FIG. 2 is a current-voltage characteristic diagram of a conventional Nb-Josephson junction array.
  • FIG. 3 is a view showing a double-side processing step of the IJJ apparatus according to the present invention.
  • FIG. 4 is a current-voltage (I-V) characteristic diagram of an IJJ apparatus according to the present invention, which has both sides processed to have a uniform Ic.
  • FIG. 5 is a diagram showing a millimeter / submillimeter wave receiver integrated with the antenna and the rf choke circuit according to the present invention.
  • FIG. 6 is an IV characteristic diagram when a sub-millimeter wave of 1.6 Hz is irradiated from the substrate side according to the present invention.
  • FIG. 7 shows a continuous wave fabricated using a high-temperature superconductor IJJ showing an embodiment of the present invention.
  • FIG. 8 shows a continuous wave fabricated using a high-temperature superconductor IJJ showing an embodiment of the present invention.
  • FIG. 4 is a current-voltage characteristic diagram of a THz band laser.
  • FIG. 9 is a schematic diagram of the IV characteristics of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 3 is a view showing a double-side processing step of the intrinsic Josephson junction apparatus (IJJ: Intrinsic Jos ephs on Junction apparatus) according to the present invention
  • FIG. 4 is a double-side processing having uniform Ic.
  • FIG. 4 is a diagram showing current-voltage (I-V) characteristics of the IJJ device.
  • a BSCCO single crystal (Josephson junction crystal) 12 cleaved on a substrate (for example, a silicon substrate) 11 is fixed with polyimide. I do.
  • a first photoresist 13 is disposed on the surface of the B SCC ⁇ single crystal 12 using a photolithography technique. Therefore, the sample is etched to a specific depth by the first ion milling 14.
  • a second photoresist 15 is placed on the surface of the BSC C ⁇ single crystal 12 using a photolithography technique. Then, the second ion milling 16 is performed using the second photoresist 15 to form a unique Josephson junction.
  • the BSCCO single crystal piece 17 is fixed on a new substrate 18 and arranged using a photolithography technique. Then, a third photoresist 19 is formed on the BSCCO single crystal piece 17.
  • the IJJ apparatus 21 is patterned by a third ion milling 20 using a third photoresist 19.
  • FIG. 4 shows the I-V characteristics of the IJJ apparatus 21 thus processed on both sides.
  • the X-axis is 20 OmV / division (diV)
  • the Y-axis is 200 ⁇ / division (di ⁇ )
  • the temperature ⁇ is 4.2 ⁇ .
  • the number of junctions of the IJJ apparatus 21 which has both sides processed and has a uniform Ic is 18 pieces.
  • FIG. 5 is a block diagram of a millimeter wave-submillimeter wave receiver using an integrated circuit including a unique Josephson device according to the present invention.
  • FIG. 5 (a) is a plan view thereof
  • FIG. 5 (b) is a perspective view thereof.
  • Fig. 5 (c) is the equivalent circuit diagram.
  • reference numeral 1 denotes an IJJ apparatus having a large number of double-sided processed joints according to the present invention (the height h is approximately 25.5 nm for 17 joints, and the height for 18 joints). h is approximately 27. O nm), 30 is the substrate, 31 is the bowtie antenna, 32 is the rf choke circuit, 33 is the submillimeter wave to be irradiated, 34 is the voltage terminal, and 35 is the current terminal.
  • an IJJ device 21 according to the present invention shown in FIGS. 3 and 4 is mounted on a substrate (integrated circuit base) on which an antenna 31 and an rf choke circuit 32 are formed. Board) integrated into 30.
  • FIG. 7 is a configuration diagram of a continuous wave terahertz (THz) band laser manufactured by using a high-temperature superconductor IJJ showing an embodiment of the present invention.
  • FIG. 7 (a) is a plan view thereof
  • FIG. (B) is a sectional view of the part A in Fig. 7 (a)
  • Fig. 7 (c) is an equivalent circuit diagram
  • Fig. 8 is an I-V characteristic diagram of the continuous wave THz band laser
  • the horizontal axis is Voltage (0.5V / scale)
  • vertical axis shows current (1mA / scale).
  • Fig. 9 is a schematic diagram of the IV characteristics.
  • 40 is a substrate
  • 41 is an IJJ device according to the present invention
  • 42 is a row wiring in which the IJJ device 41 is connected in series
  • 43 is a column wiring crossing each IJJ device in the row
  • 44 voltage terminals 4 5 current terminal
  • C is key Yapashita
  • L is the inductance
  • Re is the radiation resistance
  • FIG. 7 a planar circuit in which 100,000 IJJ devices 41 are integrated in series and parallel is manufactured.
  • a DC current is supplied from the DC current source to the two-dimensional IJJ device array, sharp resonance characteristics are seen as shown in Fig. 8, indicating that laser oscillation is occurring. That is, as shown in FIG. f. ⁇ ⁇ ( ⁇ is the number of junctions per stack).
  • is the number of junctions per stack.
  • P max The maximum radiated power
  • the frequency in this case was about 400 GHz, and the output power was about 6 mW (16 W / cm 2 ).
  • the feature is that the IJJ device can easily integrate more than 10000 units because of the laminated structure, and its output is theoretically proportional to the number N 2 . According to the experimental results, it is 6 times larger.
  • an integrated circuit in which intrinsic Josephson junction (IJJ) devices (single crystal elements) are arranged in a two-dimensional array.
  • IJJ intrinsic Josephson junction
  • the width is 150 im.
  • a continuous wave laser oscillator for terahertz waves can be configured by superconducting single crystal junction integrated circuit technology.
  • a direct current is supplied to an integrated circuit having a large number (over 10,000) of intrinsic Josephson elements, a terahertz band antenna, and a choke circuit.
  • a terahertz wave emitting superconducting laser capable of generating a continuously oscillating millimeter-wave sub-millimeter-wave laser beam, that is, a continuous-wave millimeter-wave / submillimeter-wave laser can be realized.
  • the laser of the present invention is particularly suitable in the field of information communication technology corresponding to an increase in the amount of information.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

A cw-oscillation millimeter wave/submillimeter wave laser composed of an integrated circuit including a cw-oscillation intrinsic Josephson device and fabricated by integrating a terachrtz-band antenna and a choke circuit by using a BSCCO single-crystal device. The laser comprises a DC current source (IA) and a two-dimensional array where a very large number of (more than 10,000) of intrinsic Josephson junction devices (41) connected to the DC current source (IA) including a terahertz-band antenna and a choke circuit are interconnected in series and parallel. By injecting a DC current from the DC current source (IA), a cw millimeter wave/submillimeter wave laser beam can be generated.

Description

固有ジョセフソン素子を含む集積回路による連続発振ミリ波 ·サブミリ波レーザ Continuous-wave millimeter-wave and sub-millimeter-wave lasers using integrated circuits containing intrinsic Josephson devices.
技術分野 Technical field
本発明は、 固有ジョセフソン素子を含む集積回路による連続発振ミリ波 'サブ ミリ波レ一ザ一に関するものである。  The present invention relates to a continuous-wave millimeter-wave sub-millimeter-wave laser using an integrated circuit including an intrinsic Josephson device.
明 背景技術  Akira Background technology
従来、 このような分野の技術文献として書は、 以下に開示するようなものがあつ た。  Conventionally, as technical literature in such a field, there have been books disclosed as follows.
( 1 ' ) H ". B. Wa n g, e t a 1. ,  (1 ') H ". B. Wa n g, e t a 1.,
Ap 1. Phy s. Le t t. 78 ( 2 5 ) , 40 1 0 ( 200 1 ) . Ap 1. Phy s. Lett. 78 (25), 40 10 (200 1).
( 2 ) H. B. Wa n g, e t a 1. ,  (2) H. B. Wa n g, e t a 1.
Phy s. Rev. L e t t. , (t o b e p u b 1 i s h e α . Phy s. Rev. Le t t., (T ob e p u b 1 ish e α.
(3) B. Va s i l i . e t a 1. ,  (3) B. Va s i l i. E t a 1.,
Ap p 1. Ph s. Le t t. 78 ( 8 ) , 1 1 37 ( 200 1 ) . Ap p 1. Ph s. Lett. 78 (8), 1 1 37 (2001).
この技術文献 ( 3 ) によれば、 Pau l a B a r b a r aらは Nbジヨセフ ソン接合集積回路技術を用いて、 以下のような N bジヨセフソン接合ァレイを提 案している。  According to this technical document (3), Paula Barbara et al. Proposed the following Nb-Josephson junction array using Nb-Josephson junction integrated circuit technology.
第 1図はかかる従来の N bジヨセフソン接合ァレイの構成図であり、 第 1図 (a) はその平面図、 第 1図 (b) は第 1図 (a) の A— A' 線断面図、 第 1図 (c) はその等価回路図、 第 2図はその電流一電圧特性図であり、 横軸は電圧 V (mV) 、 縦軸は電流 I ( (iA) を示している。  FIG. 1 is a configuration diagram of such a conventional Nb-Josephson junction array. FIG. 1 (a) is a plan view thereof, and FIG. 1 (b) is a cross-sectional view taken along line AA ′ of FIG. 1 (a). Fig. 1 (c) is an equivalent circuit diagram, Fig. 2 is a current-voltage characteristic diagram, and the horizontal axis shows voltage V (mV), and the vertical axis shows current I ((iA)).
これらの図において、 1 0 1はジョセフソン接合 (J J) 装置、 1 02は下咅 Nb、 1 03は上部 Nb、 1 04はグランドプレーン、 IA は直流電流源、 Lは インダクタンス、 Cはキャパシタ、 Rは抵抗 (負荷) 、 Xは Nbジョセフソン接 合である。 これらの図に示すように、 Nbジョセフソン接合アレイは、 1個の接合を有す る 144個の接合アレイからなる。 この接合アレイの I—V特性を測定したとこ ろ、 鋭い共振特性を示した。 この鋭い共振特性は 100 GHz帯のレーザー発振 していることを示していることが、 検波実験により明らかになった。 連続波発振 で、 その最大電力 Pmax は、In these figures, 1 0 1 Josephson junction (JJ) device, 1 02 under咅Nb, 1 03 upper Nb, 1 04 is a ground plane, I A DC current source, L is the inductance, C is a capacitor , R is the resistance (load), and X is the Nb Josephson junction. As shown in these figures, the Nb Josephson junction array is composed of 144 junction arrays having one junction. When the IV characteristics of this junction array were measured, it showed sharp resonance characteristics. Detection experiments have shown that this sharp resonance characteristic indicates that laser oscillation occurs in the 100 GHz band. In continuous wave oscillation, its maximum power P max is
Figure imgf000004_0001
Figure imgf000004_0001
= 3 x 101  = 3 x 101
つまり、 最大電力は約 0. 3 W ( 10_4W/cm2 ) であった。 In other words, the maximum power is about 0. 3 W (10_ 4 W / cm 2).
なお、 本願発明者らは、 既に、 BSCCO単結晶装置 (固有ジョセフソン接合 装置) とその製造方法について提案している。 発明の開示  The present inventors have already proposed a BSCCO single crystal device (intrinsic Josephson junction device) and a manufacturing method thereof. Disclosure of the invention
現在の情報通信技術は、 10 GHz帯までを使っているが、 将来の情報量の増 大に対応するためには、 使用周波数を増大させることが必要である。 現在使用中 の周波数の 100倍がテラへルツ波であるが、 この領域は発振器、 伝送路、 受信 機等の基本素子が開発されていないため、 未開周波数となっている。  Current information and communication technologies use up to the 10 GHz band, but in order to cope with an increase in the amount of information in the future, it is necessary to use more frequencies. Terahertz waves are 100 times the frequency currently in use, but this area is an unopened frequency because basic elements such as oscillators, transmission lines, and receivers have not been developed.
本発明は、 上記した B SCCO単結晶装置を用いて、 テラへルツ帯のアンテナ とチョーク回路を集積し、 連続発振する固有ジヨセフソン素子を含む集積回路に よる連続発振ミリ波 'サブミリ波レーザーを提供することを目的とする。  The present invention provides a continuous-wave millimeter-wave and sub-millimeter-wave laser using an integrated circuit including an intrinsic Josephson element that continuously oscillates by integrating a terahertz-band antenna and a choke circuit by using the BSCCO single crystal device described above. The purpose is to do.
本発明は、 上記目的を達成するために、 The present invention, in order to achieve the above object,
〔 1〕 固有ジョセフソン素子を含む集積回路による連続発振ミリ波 ·サブミリ 波レーザーであって、 直流電流源と、 この直流電流源に接続されるとともに、 テ ラヘルツ帯のアンテナとチョーク回路が搭載された多数個の固有ジョセフソン接 合装置が直並列に接続される 2次元アレイとを備え、 前記直流電流源から直流電 流を注入することにより、 連続発振するミリ波 'サブミリ波レーザー光を生成さ せる。  [1] A continuous-wave millimeter-wave / sub-millimeter-wave laser based on an integrated circuit containing an intrinsic Josephson device, which is equipped with a DC current source, and a terahertz band antenna and choke circuit mounted on the DC current source. And a two-dimensional array in which a large number of unique Josephson junction devices are connected in series and parallel, and a DC current is injected from the DC current source to generate continuously oscillating millimeter-wave and sub-millimeter-wave laser light. Let
〔2〕 上記 〔 1〕 記載の固有ジョセフソン素子を含む集積回路による連続発振 ミリ波 .サブミリ波レーザーにおいて、 前記多数個の固有ジョセフソン接合装置 は 10, 000個以上であることを特徴とする。 〔3〕上記 〔 1〕 又は 〔2〕 記載の固有ジョセフソン素子を含む集積回路によ る連続発振ミリ波 ·サブミリ波レーザーにおいて、 前記チョーク回路は、 r fチ ヨーク回路であることを特徴とする。 図面の簡単な説明 (2) A continuous wave millimeter-wave or sub-millimeter wave laser by an integrated circuit including the intrinsic Josephson element according to (1), wherein the number of the intrinsic Josephson junction devices is 10,000 or more. . [3] In the continuous wave millimeter wave / submillimeter wave laser by an integrated circuit including the intrinsic Josephson element according to the above [1] or [2], the choke circuit is an rf chip circuit. . BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 従来の Nbジョセフソン接合アレイの構成図である。  FIG. 1 is a configuration diagram of a conventional Nb Josephson junction array.
第 2図は、 従来の N bジヨセフソン接合ァレイの電流一電圧特性図である。 第 3図は、 本発明にかかる I J J装置の両面加工工程を示す図である。  FIG. 2 is a current-voltage characteristic diagram of a conventional Nb-Josephson junction array. FIG. 3 is a view showing a double-side processing step of the IJJ apparatus according to the present invention.
第 4図は、 本発明にかかる均一な I cを持つ両面加工した I J J装置の電流一 電圧 (I— V)特性図である。  FIG. 4 is a current-voltage (I-V) characteristic diagram of an IJJ apparatus according to the present invention, which has both sides processed to have a uniform Ic.
第 5図は、 本発明にかかるアンテナや r fチョーク回路と共に集積化されたミ リ波 ·サブミリ波受信機を示す図である。  FIG. 5 is a diagram showing a millimeter / submillimeter wave receiver integrated with the antenna and the rf choke circuit according to the present invention.
第 6図は、 本発明にかかる基板側から 1. 6 Hzのサブミリ波を照射したとき の I—V特性図である。  FIG. 6 is an IV characteristic diagram when a sub-millimeter wave of 1.6 Hz is irradiated from the substrate side according to the present invention.
第 7図は、 本発明の実施例を示す高温超伝導体 I J Jを用いて作製した連続波 FIG. 7 shows a continuous wave fabricated using a high-temperature superconductor IJJ showing an embodiment of the present invention.
TH z帯レーザーの構成図である。 It is a block diagram of a TH z band laser.
第 8図は、 本発明の実施例を示す高温超伝導体 I J Jを用いて作製した連続波 FIG. 8 shows a continuous wave fabricated using a high-temperature superconductor IJJ showing an embodiment of the present invention.
THz帯レーザーの電流一電圧特性図である。 FIG. 4 is a current-voltage characteristic diagram of a THz band laser.
第 9図は、 第 8図の I一 V特性の模式図である。 発明を実施するための最良の形態  FIG. 9 is a schematic diagram of the IV characteristics of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の実施の形態について詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail.
第 3図は本発明にかかる固有ジヨセフソン接合装置 (I JJ : I nt r i ns i c J o s ephs on Junc t i o n装置) の両面加工工程を示す図、 第 4図は均一な I cを持つ両面加工した I J J装置の電流一電圧 ( I一 V)特性 図である。  FIG. 3 is a view showing a double-side processing step of the intrinsic Josephson junction apparatus (IJJ: Intrinsic Jos ephs on Junction apparatus) according to the present invention, and FIG. 4 is a double-side processing having uniform Ic. FIG. 4 is a diagram showing current-voltage (I-V) characteristics of the IJJ device.
まず、 I J J装置の両面加工方法について説明する。  First, a method for processing both sides of the IJJ apparatus will be described.
①まず、 第 3図 (a) に示すように、 基板 (例えば、 シリコン基板) 1 1上に 劈開された B SCCO単結晶 (ジョセフソン接合結晶) 12をポリイミ ドで固定 する。 ①First, as shown in Fig. 3 (a), a BSCCO single crystal (Josephson junction crystal) 12 cleaved on a substrate (for example, a silicon substrate) 11 is fixed with polyimide. I do.
②次いで、 第 3図 (b) に示すように、 第 1のフォトレジスト 1 3を B SCC 〇単結晶 1 2表面上にフォトリソグラフィ技術を用いて配置する。 そこで、 第 1 のイオンミリング 1 4により特定の深さにまで試料をエツチングする。  (2) Next, as shown in FIG. 3 (b), a first photoresist 13 is disposed on the surface of the B SCC 〇 single crystal 12 using a photolithography technique. Therefore, the sample is etched to a specific depth by the first ion milling 14.
③次いで、 第 3図 (c) に示すように、 第 2のフォトレジス卜 1 5を BSC C 〇単結晶 1 2表面上にフォトリソグラフィ技術を用いて配置する。 そして、 第 2 のフォトレジスト 1 5を用いて第 2のイオンミリング 1 6を ί亍ぃ、 固有ジヨセフ ソン接合をつくる。  (3) Next, as shown in FIG. 3 (c), a second photoresist 15 is placed on the surface of the BSC C 〇 single crystal 12 using a photolithography technique. Then, the second ion milling 16 is performed using the second photoresist 15 to form a unique Josephson junction.
④次に、 第 3図 (d) に示すように、 第 2のフォトレジス卜 1 5を除去し、 試 料を劈開し、 裏返した B SCCO単結晶片 1 7 〔第 3図 (e) 参照〕 を得る。 ④Next, as shown in Fig. 3 (d), the second photoresist 15 was removed, the sample was cleaved, and the BSCCO single crystal piece 17 turned upside down [see Fig. 3 (e). ] Is obtained.
⑤次に、 第 3図 (e) に示すように、 新たな基板 1 8上にその BSCCO単結 晶片 1 7を固定し、 フォトリソグラフィ技術を用いて配置する。 そして、 第 3の フォトレジス卜 1 9を B S CCO単結晶片 1 7上に形成する。 (4) Next, as shown in FIG. 3 (e), the BSCCO single crystal piece 17 is fixed on a new substrate 18 and arranged using a photolithography technique. Then, a third photoresist 19 is formed on the BSCCO single crystal piece 17.
⑥次に、 第 3図 (f ) に示すように、 第 3のフォトレジスト 1 9を用いた第 3 のイオンミリング 20で I J J装置 2 1をパターニングする。  Next, as shown in FIG. 3F, the IJJ apparatus 21 is patterned by a third ion milling 20 using a third photoresist 19.
このようにして両面加工した I J J装置 2 1の I一 V特性を第 4図に示す。 この図では、 X軸は 20 OmV/目盛 (d i V) 、 Y軸は 200 Α/目盛 (d i ν) 、 温度 Τは 4. 2 Κである。 ここでは、 均一な I cを持つ両面加工し た I J J装置 2 1の接合数は 1 8個である。  FIG. 4 shows the I-V characteristics of the IJJ apparatus 21 thus processed on both sides. In this figure, the X-axis is 20 OmV / division (diV), the Y-axis is 200 目 / division (diν), and the temperature Τ is 4.2Κ. Here, the number of junctions of the IJJ apparatus 21 which has both sides processed and has a uniform Ic is 18 pieces.
第 5図は本発明にかかる固有ジヨセフソン素子を含む集積回路によるミリ波 - サブミ リ波受信機の構成図であり、 第 5図 (a) はその平面図、 第 5図 (b) は その斜視図、 第 5図 (c) はその等価回路図である。  FIG. 5 is a block diagram of a millimeter wave-submillimeter wave receiver using an integrated circuit including a unique Josephson device according to the present invention. FIG. 5 (a) is a plan view thereof, and FIG. 5 (b) is a perspective view thereof. Fig. 5 (c) is the equivalent circuit diagram.
この図において、 1は本発明にかかる両面加工した多数の接合を有する I J J装置 (接合数 1 7個の場合は高さ hは概ね 2 5. 5 nm、 接合数 1 8個の場合 は高さ hは概ね 27. O nm) 、 30は基板、 3 1はボータイアンテナ、 32は r f チョーク回路、 3 3は照射されるサブミリ波、 34は電圧端子、 3 5は電流 端子でめ 。  In this figure, reference numeral 1 denotes an IJJ apparatus having a large number of double-sided processed joints according to the present invention (the height h is approximately 25.5 nm for 17 joints, and the height for 18 joints). h is approximately 27. O nm), 30 is the substrate, 31 is the bowtie antenna, 32 is the rf choke circuit, 33 is the submillimeter wave to be irradiated, 34 is the voltage terminal, and 35 is the current terminal.
第 3図及び第 4図に示された本発明にかかる I J J装置 2 1を、 第 5図に示す ように、 アンテナ 3 1や r fチョーク回路 32が形成された基板 (集積回路基 板) 30に集積化する。 As shown in FIG. 5, an IJJ device 21 according to the present invention shown in FIGS. 3 and 4 is mounted on a substrate (integrated circuit base) on which an antenna 31 and an rf choke circuit 32 are formed. Board) integrated into 30.
そこで、 この I J J装置 2 1の接合にサブミリ波 33を基板 30側から照射す ると、 第 6図に示すように、 明確なシャピロステップを観測できる。  Therefore, when the sub-millimeter wave 33 is irradiated from the substrate 30 side to the junction of the IJJ device 21, clear Shapiro steps can be observed as shown in FIG.
第 6図において、 照射周波数 fFIR = 1. 6 THzに対応するジョセフソン電 ί£ν = φ。 f FIR N= 3. 4 XN (mV) が発生している。 ここで Nは接合数で あり、 X軸は 1 OmV/目盛 (d i V) 、 Y軸は 2 wAZ目盛 (d i v) 、 温度 は 6 Kである。 In FIG. 6, Josephson electron ί £ ν = φ corresponding to irradiation frequency f FIR = 1.6 THz. f FIR N = 3.4 XN (mV) has occurred. Where N is the number of junctions, the X axis is 1 OmV / scale (di V), the Y axis is 2 wAZ scale (div), and the temperature is 6 K.
第 6図から明らかなように、 明確なゼロクロス電圧が見られる。 これは I J J 装置 2 1とテラへルツ (THz) 波の結合が極めて良好であることを示しており、 テラへルツ (THz) 波検出器として実現できることを示している。  As is clear from Fig. 6, a clear zero-crossing voltage is seen. This indicates that the coupling between the IJJ device 21 and the terahertz (THz) wave is extremely good, and that it can be realized as a terahertz (THz) wave detector.
そこで、 従来技術 ( 3 ) に示した P au l a Ba r b a r aらの Nbジョセ フソン接合集積回路技術をも考慮して、 本発明の固有ジヨセフソン素子を含む集 積回路による連続発振ミリ波 'サブミリ波レーザ一を得ることができた。  Therefore, considering the Nb-Josephson junction integrated circuit technology of Paula Barbara et al. Shown in the prior art (3), a continuous-wave millimeter-wave I was able to get one.
第 7図は本発明の実施例を示す高温超伝導体 I J Jを用いて作製した連続波テ ラヘルツ (THz) 帯レーザーの構成図であり、 第 7図 (a) はその平面図、 第 7図 (b) は第 7図 (a) の A部断面図、 第 7図 (c) はその等価回路図、 第 8 図はその連続波 THz帯レーザーの I—V特性図であり、 横軸は電圧 (0. 5V /目盛) 、 縦軸は電流 ( 1mA/目盛) を示している。 第 9図はその I— V特性 の模式図である。  FIG. 7 is a configuration diagram of a continuous wave terahertz (THz) band laser manufactured by using a high-temperature superconductor IJJ showing an embodiment of the present invention. FIG. 7 (a) is a plan view thereof, and FIG. (B) is a sectional view of the part A in Fig. 7 (a), Fig. 7 (c) is an equivalent circuit diagram, Fig. 8 is an I-V characteristic diagram of the continuous wave THz band laser, and the horizontal axis is Voltage (0.5V / scale), vertical axis shows current (1mA / scale). Fig. 9 is a schematic diagram of the IV characteristics.
これらの図において、 40は基板、 4 1は本発明にかかる I J J装置、 42は その I J J装置 4 1が直列に接続された行配線、 43はその行の各 I J J装置と 交差する列配線、 44は電圧端子、 4 5は電流端子、 I A は直流電流源、 Cはキ ャパシタ、 Lはインダクタンス、 Reは放射抵抗であり、 マトリックス状の 次 元アレイを構成している。 In these figures, 40 is a substrate, 41 is an IJJ device according to the present invention, 42 is a row wiring in which the IJJ device 41 is connected in series, 43 is a column wiring crossing each IJJ device in the row, 44 voltage terminals, 4 5 current terminal, I a DC current source, C is key Yapashita, L is the inductance, Re is the radiation resistance, constitutes the matrix of the next original array.
第 7図に示すように、 I J J装置 4 1を直並列に 1 0, 000個集積した平面 回路を作製する。 その 2次元の I J J装置アレイに直流電流源から直流電流を供 給すると、 第 8図に示すような鋭い共振特性がみられ、 レーザー発振しているこ とがわかる。 すなわち、 第 9図に示すように、 Δνは 。 f。 · Ν (Νは 1スタ ックあたりの接合数) であり、 電流を増加すると、 各列が左から順番に電圧発生、 f o で共振している。 最大放射電力 Pmax は、 ここでは、 As shown in FIG. 7, a planar circuit in which 100,000 IJJ devices 41 are integrated in series and parallel is manufactured. When a DC current is supplied from the DC current source to the two-dimensional IJJ device array, sharp resonance characteristics are seen as shown in Fig. 8, indicating that laser oscillation is occurring. That is, as shown in FIG. f. · Ν (Ν is the number of junctions per stack). When the current is increased, each column generates voltage in order from the left, Resonating at fo. The maximum radiated power P max is
Pmax = 2mAx 0. 8V= 1. 6 mW= 1. 6 x 1 0— 3Wとなる。 The P m ax = 2mAx 0. 8V = 1. 6 mW = 1. 6 x 1 0- 3 W.
この場合の周波数は、 約 400 GHzであり、 出力電力は約し 6mW ( 1 6 W/cm2 ) であった。 その特徴は、 I J J装置が積層構造のため容易に 1 0, 000個以上の集積化が可能であることであり、 その出力は、 理論的には個数の N2 に比例する。 実験結果では 6乗倍大となる。 The frequency in this case was about 400 GHz, and the output power was about 6 mW (16 W / cm 2 ). The feature is that the IJJ device can easily integrate more than 10000 units because of the laminated structure, and its output is theoretically proportional to the number N 2 . According to the experimental results, it is 6 times larger.
本発明によれば、 固有ジョセフソン接合 ( I J J) 装置 (単結晶素子) を二次 元アレイに並べる集積回路とした。 因みに、 横幅は 1 50 imである。  According to the present invention, there is provided an integrated circuit in which intrinsic Josephson junction (IJJ) devices (single crystal elements) are arranged in a two-dimensional array. Incidentally, the width is 150 im.
そして、 テラへルツ帯のアンテナとチョーク回路のついた 1 0, 000個以上 の単結晶素子アレイが作製され、 その結果、 直流電流を注入するとテラへルツ波 発光超伝導レーザ一となることが明らかとなつた。  Then, more than 10000 single crystal element arrays with a terahertz band antenna and a choke circuit were fabricated, and as a result, when a DC current was injected, a terahertz wave emitting superconducting laser could be obtained. It became clear.
本発明によれば、 超伝導単結晶接合集積回路技術により、 テラへルツ波用の連 続波レーザー発振器を構成することができる。  According to the present invention, a continuous wave laser oscillator for terahertz waves can be configured by superconducting single crystal junction integrated circuit technology.
なお、 本発明は上記実施例に限定されるものではなく、 本発明の趣旨に基づい て種々の変形が可能であり、 これらを本発明の範囲から排除するものではない。 以上、 詳細に説明したように、 本発明によれば、 多数 ( 1 0, 000個以上) の固有ジヨセフソン素子とテラへルツ帯のアンテナ、 チョーク回路を搭載した集 積回路に直流電流を供給し、 連続発振するミリ波 'サブミリ波レーザー光を生成 されるテラへルツ波発光超伝導レーザ一、 つまり、 連続発振ミリ波 ·サブミリ波 レーザーを実現できる。 産業上の利用可能性  It should be noted that the present invention is not limited to the above embodiments, and various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention. As described above in detail, according to the present invention, a direct current is supplied to an integrated circuit having a large number (over 10,000) of intrinsic Josephson elements, a terahertz band antenna, and a choke circuit. A terahertz wave emitting superconducting laser capable of generating a continuously oscillating millimeter-wave sub-millimeter-wave laser beam, that is, a continuous-wave millimeter-wave / submillimeter-wave laser can be realized. Industrial applicability
本発明のレーザ一は、 特に、 情報量の増大に対応する情報通信技術分野におい て好適である。  The laser of the present invention is particularly suitable in the field of information communication technology corresponding to an increase in the amount of information.

Claims

請 求 の 範 囲 The scope of the claims
1 . 1.
( a ) 直流電流源と、  (a) a DC current source;
( b ) 該直流電流源に接続されるとともに、 テラへルツ帯のアンテナとチョーク 回路が搭載された多数個の固有ジヨセフソン接合装置が直並列に接続される二次 元アレイとを備え、  (b) a two-dimensional array connected to the DC current source and having a plurality of intrinsic Josephson junction devices equipped with a terahertz band antenna and a choke circuit connected in series and parallel,
( c ) 前記直流電流源から直流電流を注入することにより、 連続発振するミリ波 -サブミリ波レーザ一光を生成させる固有ジョセフソン素子を含む集積回路によ る連続発振ミリ波 ·サブミリ波レーザー。  (c) A continuous wave millimeter wave / submillimeter wave laser formed by an integrated circuit including an intrinsic Josephson element that generates a continuous wave millimeter wave / submillimeter wave laser by injecting a DC current from the DC current source.
2 . 請求項 1記載の固有ジョセフソン素子を含む集積回路による連続発振ミリ波 'サブミリ波レーザーにおいて、 前記多数個の固有ジョセフソン接合装置は 1 0 , 0 0 0個以上であることを特徴とする固有ジョセフソン素子を含む集積回路によ る連続発振ミリ波 ·サブミリ波レーザー。  2. A continuous wave millimeter-wave or sub-millimeter wave laser by an integrated circuit including the intrinsic Josephson element according to claim 1, wherein the number of the intrinsic Josephson junction devices is equal to or more than 100,000. Continuous-wave millimeter-wave and sub-millimeter-wave lasers using integrated circuits that include an intrinsic Josephson device.
3 . 請求項 1又は 2記載の固有ジヨセフソン素子を含む集積回路による連続発振 ミリ波 'サブミリ波レーザ一において、 前記チョーク回路は、 r fチョーク回路 であることを特徴とする固有ジョセフソン素子を含む集積回路による連続発振ミ リ波 ·サブミリ波レーザー。  3. A continuous-wave millimeter-wave or sub-millimeter-wave laser according to claim 1 or 2, wherein the choke circuit is an rf choke circuit. 3. The integrated circuit according to claim 1, wherein the choke circuit is an rf choke circuit. Continuous wave millimeter wave and submillimeter wave laser by circuit.
PCT/JP2002/008555 2001-08-27 2002-08-26 Cw-oscillation millimeter wave/submillimeter wave laser composed of integrated circuit including intrinsic josephson device WO2003019738A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001255872A JP2003069096A (en) 2001-08-27 2001-08-27 Continuous-wave millimeter-wave and sub-millimeter-wave lasers using integrated circuits containing intrinsic Josephson devices
JP2001-255872 2001-08-27

Publications (1)

Publication Number Publication Date
WO2003019738A1 true WO2003019738A1 (en) 2003-03-06

Family

ID=19083773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/008555 WO2003019738A1 (en) 2001-08-27 2002-08-26 Cw-oscillation millimeter wave/submillimeter wave laser composed of integrated circuit including intrinsic josephson device

Country Status (2)

Country Link
JP (1) JP2003069096A (en)
WO (1) WO2003019738A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006088802A2 (en) 2005-02-15 2006-08-24 The Boeing Company Composite dipole array
US7532652B2 (en) 2007-02-20 2009-05-12 The Boeing Company Laser thermal management systems and methods
US7796092B2 (en) 2007-05-24 2010-09-14 The Boeing Company Broadband composite dipole antenna arrays for optical wave mixing
US8035550B2 (en) 2008-07-03 2011-10-11 The Boeing Company Unbalanced non-linear radar
US8106810B2 (en) 2008-07-03 2012-01-31 The Boeing Company Millimeter wave filters
US8130160B2 (en) 2008-07-03 2012-03-06 The Boeing Company Composite dipole array assembly

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210585A (en) * 2005-01-27 2006-08-10 National Institute For Materials Science A novel terahertz oscillator using stacked Josephson junctions
JP4595069B2 (en) * 2005-06-09 2010-12-08 独立行政法人産業技術総合研究所 Quasi-planar waveguide type Josephson junction array structure, digital-analog converter using the same, programmable array for Josephson voltage standard, chip for Josephson voltage standard, Josephson voltage generator
JP6140918B2 (en) * 2011-06-16 2017-06-07 日本信号株式会社 Terahertz detector
FR2993706B1 (en) * 2012-07-17 2015-05-15 Thales Sa OSCILLATOR COMPRISING JOSEPHSON JUNCTION WITH HIGH-TEMPERATURE SUPERCONDUCTING ELECTRODES, HETERODYNE DETECTOR COMPRISING SUCH OSCILLATOR, AND METHOD OF MANUFACTURING SUCH OSCILLATOR

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256833A (en) * 1997-03-13 1998-09-25 Nippon Telegr & Teleph Corp <Ntt> Superconducting intrinsic Josephson junction array element oscillator
JP2002050931A (en) * 2000-08-03 2002-02-15 Japan Science & Technology Corp High frequency oscillator using cuprate superconducting single crystal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0823734A1 (en) * 1996-07-23 1998-02-11 DORNIER GmbH Josephson junction array device, and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256833A (en) * 1997-03-13 1998-09-25 Nippon Telegr & Teleph Corp <Ntt> Superconducting intrinsic Josephson junction array element oscillator
JP2002050931A (en) * 2000-08-03 2002-02-15 Japan Science & Technology Corp High frequency oscillator using cuprate superconducting single crystal

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
FILATRELLA G. ET AL.: "Emission from square arrays of stacked Josephson junctions", JOURNAL OF APPLIED PHYSICS, vol. 90, no. 11, 1 December 2001 (2001-12-01), pages 5675 - 5679, XP002962366 *
HUABING WANG ET AL.: "Intrinsic Josephson junction arrays on Bi2Sr2CaCuO8+y single crystal and their possible applications at 100 GHz", IEICE TRANS. ELECTRON., vol. E84-C, no. 1, January 2001 (2001-01-01), pages 61 - 66, XP001003219 *
KEIJIN LEE ET AL.: "Microwave oscillation from Bi2Sr2CaCu2Oy intrinsic Josephson junction arrays", SUPERCONDUCTOR SCIENCE AND TECHNOLOGY, vol. 14, no. 12, December 2001 (2001-12-01), pages 1044 - 1047, XP002962368 *
TSUTOMU YAMASHITA: "Koyu Josephson-koka - shin gensho to oyo no kanosei", OYO BUTSURI, vol. 70, no. 1, 10 January 2001 (2001-01-10), pages 14 - 20, XP002962370 *
TSUTOMU YAMASHITA: "Koyu Josephson-koka no atara-shii gensho", FSST NEWS, no. 79, 15 April 2000 (2000-04-15), pages 4 - 8, XP002962371 *
VASILIC B. ET AL.: "Josephson-junction arrays as high-efficiency sources of coherent millimeter-wave radiation", APPLIED PHYSICS LETTERS, vol. 78, no. 8, 19 February 2001 (2001-02-19), pages 1137 - 1139, XP001011984 *
WANG H.B. ET AL.: "Stacks of intrinsic Josephson junctions singled out from inside Bi2Sr2CaCu2O8+y single crystal", APPLIED PHYSICS LETTERS, vol. 78, no. 25, 18 June 2001 (2001-06-18), pages 4010 - 4012, XP001077339 *
WANG H.B. ET AL.: "Tetrahertz responses of intrinsic Josephson junctions in high Tc superconductors", PHYSICAL REVIEW LETTERS, vol. 87, no. 10, 3 September 2001 (2001-09-03), pages 107002-1 - 107002-4, XP002962367 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7486250B2 (en) 2004-02-16 2009-02-03 The Boeing Company Composite dipole array
US7507979B2 (en) 2004-02-16 2009-03-24 The Boeing Company Composite dipole array systems and methods
WO2006088802A2 (en) 2005-02-15 2006-08-24 The Boeing Company Composite dipole array
WO2006088802A3 (en) * 2005-02-15 2006-12-21 Boeing Co Composite dipole array
US7532652B2 (en) 2007-02-20 2009-05-12 The Boeing Company Laser thermal management systems and methods
US7796092B2 (en) 2007-05-24 2010-09-14 The Boeing Company Broadband composite dipole antenna arrays for optical wave mixing
US8035550B2 (en) 2008-07-03 2011-10-11 The Boeing Company Unbalanced non-linear radar
US8106810B2 (en) 2008-07-03 2012-01-31 The Boeing Company Millimeter wave filters
US8130160B2 (en) 2008-07-03 2012-03-06 The Boeing Company Composite dipole array assembly

Also Published As

Publication number Publication date
JP2003069096A (en) 2003-03-07

Similar Documents

Publication Publication Date Title
Han et al. A SiGe terahertz heterodyne imaging transmitter with 3.3 mW radiated power and fully-integrated phase-locked loop
Horii et al. Harmonic control by photonic bandgap on microstrip patch antenna
Popović et al. Grid oscillators
US6049308A (en) Integrated resonant tunneling diode based antenna
US20070013994A1 (en) Optical switching arrangement using carbon nanotbes
US5114912A (en) Two-dimensional, Josephson-array, voltage-tunable, high-frequency oscillator
WO2003019738A1 (en) Cw-oscillation millimeter wave/submillimeter wave laser composed of integrated circuit including intrinsic josephson device
Li et al. A 37.5-mW 8-dBm-EIRP 15.5$^{\circ} $-HPBW 338-GHz Terahertz Transmitter Using SoP Heterogeneous System Integration
Moussessian et al. A terahertz grid frequency doubler
Nazari et al. 19.1 A fundamental-frequency 114GHz circular-polarized radiating element with 14dBm EIRP,− 99.3 dBc/Hz phase-noise at 1MHz offset and 3.7% peak efficiency
JP6366430B2 (en) Terahertz band electromagnetic wave oscillator and terahertz band electromagnetic wave oscillator
Jameson et al. Sub-harmonic wireless injection locking of a THz CMOS chip array
US11670862B1 (en) Two-dimensional scalable radiator array
JP2006210585A (en) A novel terahertz oscillator using stacked Josephson junctions
JP2002246664A (en) Single crystal intrinsic Josephson junction terahertz detector
Palmer et al. Coherent effects in series arrays of proximity effect superconducting bridges
Rutz A 3000-Mc lumped-parameter oscillator using an Esaki negative-resistance diode
Lin et al. A 4* 4 spatial power-combining array with strongly coupled oscillators in multi-layer structure
Steup et al. A quasioptical doubler-array
JP2003069095A (en) Millimeter-wave and sub-millimeter-wave receivers using integrated circuits including intrinsic Josephson devices
Kunkel et al. Millimeter-wave radiation in high-T/sub c/Josephson junctions
JP7744871B2 (en) Antenna device, communication device, and imaging system
Hollung et al. A 141-GHz quasi-optical HBV diode frequency tripler
Pance et al. Submillimeter Quasioptical Josephson Junction Oscillator with Integrated Tuning Elements
Parini What are active integrated antennas? Can successful CAD be achieved?

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase